
Department of Computer Science
George Mason University
Technical Report Series

4400 University Drive MS#4A5
Fairfax, VA 22030-4444 USA
http://cs.gmu.edu/
703-993-1530

Dynamic Minkowski Sum of Convex Shapes

Evan Behar
ebehar@gmu.edu

Jyh-Ming Lien
jmlien@cs.gmu.edu

Technical Report GMU-CS-TR-2010-12

Abstract
Computing the Minkowski sums of rotating objects
has always been done naı̈vely by re-computing every
Minkowski sum from scratch. The correspondences be-
tween the Minkowski sums are typically completely ig-
nored. We propose a method, called DYMSUM, that can
efficiently update the Minkowski sums of rotating con-
vex polyhedra. We show that DYMSUM is significantly
more efficient than the traditional approach, in particular
when the size of the input polyhedra are large and when
the rotation is small between frames. From our experi-
mental results, we show that the computation time of the
proposed method grows slowly with respect to the size
of the input comparing to the naı̈ve approach.

1 INTRODUCTION
The Minkowski sum is an important operation in robotics
due to its fundamental role in providing the geomet-
ric reasoning ability to the robots, such as configuration
space mapping, collision detection and penetration depth
estimation. The Minkowski sum of two shapes P and Q
is:

P⊕Q = {p+q | p ∈ P,q ∈ Q}. (1)

Although the problem of computing Minkowski sums
has been studied since the early 70’s, researchers have
been paying more attention to this problem recently;
see the surveys in [6, 20, 4]. In particular, in 3-
dimensions, methods [11, 4, 7, 5] are known to compute
the Minkowski sum of convex polyhedra efficiently.

In this work, we are interested in a method that can
efficiently compute the Minkowski sum of rotating con-
vex polyhedra. Computing the Minkowski sum of poly-
hedra undergoing rotations can be found in many prob-

(a) ellipse (b) slightly rotated ellipse

(c) (a)⊕GS4 (d) (a)⊕GS4

Figure 1: The Minkowski sums of a rotating ellipse and
a sphere (GS4, shown in Fig. 3). The ellipse in (b) is
rotated by π/40 from (a). The dark (red) facets in (d) are
the differences between (c) and (d).

lems, such as general penetration depth estimation [23]
for physically-based simulation and configuration-space
obstacle mapping [22] for robotic motion planning . Fig-
ure 1 shows an example of the Minkowski sums before
and after rotating the cube.

The main challenge of computing the Minkowski sum
of two rotating polyhedra comes from that fact that
Minkowski sum can be dramatically different after the
input polyhedra rotate. Therefore, existing methods sim-
ply re-compute a new Minkowski sum every time when P
or Q rotates. For example, this approach is traditionally
used to slice the C -space obstacles (C -obst) in motion

1

planning. When the rotation of the robot is considered,
C -obst are approximated by repetitively computing the
Minkowski sums of the robot with different orientations.
These Minkowski sums are usually separated by a fixed
rotational resolution. A main problem of re-computing
the Minkowski sum from scratch is that it requires the
same amount of computation even when a small amount
of rotation is applied to P or Q.

Our work is motivated by the observation described
above. Thus, our objective is to compute the Minkowski
sums of rotating convex polyhedra without re-computing
the entire Minkowski sum repetitively. The main idea in
our method is to generate the Minkowski sum from the
existing Minkowski sum. More specifically, we gener-
ate the new Minkowski sum by correcting the “errors”
introduced by rotation.

In theory, computing the Minkowski sum of two con-
vex shapes P and Q will take O(mn logmn) time by over-
laying the Gaussian maps of P and Q with complexities
O(m) and O(n), respectively [4]. It is also known that the
(space) complexity of the Minkowski sum of the same P
and Q is O(mn) [4]. Therefore, we expect an algorithm,
similar to ours, that updates the Minkowski sum, instead
of re-computing from scratch, will be O(logmn) faster
than the traditional (brute force) approach.

Our Contribution. In this paper, we propose a
method that provides the desired properties mentioned
above. We call this method: DYMSUM (dynamic
Minkowski sum). We show that DYMSUM is signif-
icantly more efficient than the naı̈ve method of re-
computing the Minkowski sum from scratch, in partic-
ular when the size of the input polyhedra are large and
when the rotation is small between frames. From our ex-
perimental results, we show that the computation time of
DYMSUM grows slowly (e.g., linearly if inputs are cubes)
with respect to the size of the input comparing to the
naı̈ve approach (see Section 5). A preliminary version of
this work can be found in a video abstract [15]. Although
we focus on convex shapes, DYMSUM can be used as the
basic operation for non-convex polyhedra using convex
decomposition.

2 RELATED WORK

Many methods have been proposed to compute the
Minkowski sums of polygons or polyhedra, however, to
the best of our knowledge, Mayer et al. [17] and our pre-
liminary work [15] are the only works focusing on the
Minkowski problem involving rotating polyhedra.

Mayer et al. [17] observed that the combinatorial
structure of the Minkowski sum given two such polyhe-
dra only changes at certain critical rotation values, and
construct an efficient search structure they call a critical-

ity map. Unfortunately, as they address in the paper, even
for convex polyhedra with moderate numbers of vertices,
the criticality map can become very large and costly to
construct. They present concepts of the criticality map
for two and three axes of rotation, but the growth order
on the size of these structures makes them expensive to
build and prohibitive to store. Enhancements are pre-
sented for using an axis-angle representation to answer
general rotation queries, as well as dynamic processing
to reduce the size of the structure, which trades off query
time to reduce build time and storage requirements for
the criticality map.

In order to provide enough background in hope that the
readers can appreciate the results of this work more, we
will briefly review existing works on the Minkowski sum
of static inputs; see more detailed surveys in [6, 20, 4].

Convolution. The convolution of two shapes P and
Q, denoted as P⊗Q, is a set of line segments in 2-d or
facets in 3-d that is generated by ‘combining’ the seg-
ments or the facets of P and Q [8]. One can think of the
convolution as the Minkowski sum that involves only the
boundary, i.e., P×Q = ∂P⊕ ∂Q. It is known that the
convolution forms a superset of the Minkowski sum [6],
i.e., ∂ (P⊕Q) ⊂ P⊗Q. To obtain the Minkowski sum
boundary, it is necessary to trim the line segments or the
facets of the convolution.

For 2-d polygons, Guibas and Seidel [9] show an
output sensitive method to compute convolution curves.
Later, Ghosh [6] proposed an approach, which unifies 2-
d and 3-d, convex and non-convex, and Minkowski addi-
tion and decomposition operations. The main idea in his
method is the negative shape and slope diagram. The
slope diagram is closely related to the Gaussian map,
which has been recently used by Fogel and Halperin [4]
to implement robust and efficient Minkowski sum com-
putations of convex objects.

The main difficulty of the convolution-based methods
is in removing the portions of the facets that are inside
the Minkowski sum. Recently, Wein [21] showed a ro-
bust and exact method based on convolution for non-
convex polygons. To obtain the Minkowski sum bound-
ary from the convolution, his method computes the ar-
rangement induced by the line segments of the convolu-
tion and keeps the cells with non-zero winding numbers.
No practical implementation is known for polyhedra us-
ing convolution due to the difficulty of computing the 3-d
arrangement and its substructures [19].

Divide-and-Conquer. In the divide-and-conquer
framework, the input models are decomposed into con-
vex components. Then, this framework computes the
pairwise Minkowski sums of the components. Finally,
all these pairwise Minkowski sums are united.

This approach is first proposed by Lozano-Pérez [16]
to compute C -obst for motion planning. Although the

2

main idea of this approach is simple, the divide step (i.e.,
convex decomposition) and the merge step (i.e., union)
can be very tricky. For example, it is known that creating
solid convex decomposition robustly is difficult [2]. In
addition, Agarwal et al. [1] have shown that different de-
composition strategies can greatly affect the efficiency of
this approach. Hachenberger [10] presents a robust and
exact implementation using the Nef polyhedra in CGAL.
However, his results are still limited to simple models.

The union step is even more troublesome. Flato [3]
computes the unions using the cells induced by the ar-
rangement of the line segments. He uses a hybrid strat-
egy that combines arrangement with incremental inser-
tion to gain better efficiency. Hachenberger [10] also
studies how the order of the union operation affects the
efficiency. To avoid this explicit union step, Varadhan
and Manocha [20] proposed an approach that generates
meshes approximating the Minkowski sum boundary us-
ing marching cube techniques to extract the iso-surface
from a signed distance field. They proposed an adap-
tive cell to improve the robustness and efficiency of their
method.

Point-Based Representation. Alternatively, points
have been used to represent the Minkowski sum bound-
ary [18]. Representing the boundary using only points
has many benefits. First of all, generating such points is
easier than generating meshes and can be done in parallel
and in multi-resolution fashion [13]. Moreover, point-
based representations can be generalized to higher di-
mensional motion planning problems [14].

Voxelization. Li and McMains [12] propose a GPU-
based voxelization technique which directly computes a
volumetric solid with high accuracy instead of an ex-
act boundary representation of the Minkowski sum. The
main limitation is that this technique does not generate
the inner holes of the Minkowski sum.

3 A Brute Force Method

Without loss of generality, we assume that P is movable
while Q is stationary. We let Ps and Pt be two copies of
P at two configurations s and t with distinct orientations.
Our goal is to compute Mt = Pt ⊕Q from Ms = Ps⊕Q.
Moreover, the computation time of the Minkowski sum
should be sensitive to the orientation difference between
Ps and Pt , i.e., the smaller the difference between Ps and
Pt , the faster the computation of Mt .

Computing the Minkowski sum of two convex shapes
is usually based on the idea of overlaying two Gaussian
maps of the inputs. The Gaussian map g(P) of a polyhe-
dron P is a sub-division of S1. One can think g(P) and
P as a dual. That is, each face f of P with the outward
normal n f corresponds to a vertex g(f) ∈ g(P) with co-

ordinate n f , and each vertex v of P corresponds to a face
g(v) ∈ g(P) bounded by the normals of the faces inci-
dent to v. When we overlay two Gaussian maps g(P) and
g(Q), a vertex v in g(P) must be associated with exactly
one face in g(Q) that encloses v and vice versa. More-
over, the edges in g(P) and g(Q) can also intersect.

The facets of a Minkowski sum are defined exactly by
these two types of interactions between g(P) and g(Q):
the facets generated from a facet of P and a vertex of Q
or vice versa, called f v-facets; and the facets generated
from a pair of edges from P and Q, respectively, called
ee-facets. A facet f and a vertex v produce an f v-facet
if and only if the normal of f is a convex combination of
the normals of the facets incident to v. Similarly, a pair
of edges e1 and e2 form an ee-facet if the cross product
of vectors parallel to e1 and e2 is a convex combination
of the normals of the facets incident to e1 and e2.

These criteria allow us to test if a given pair of fea-
tures (a facet/vertex pair or an edge pair) will produce
a Minkowski sum facet by checking only the neigh-
borhood of these features. Given a pair of features
(facet/vertex or edge/edge), we say that the features are
compatible if they form either an f v-facet or an ee-facet.
When Ps transforms to Pt , some facets (i.e., pairs of fea-
tures) in Ms will no longer be compatible. We call these
facets the “errors” introduced by rotation.

A brute force algorithm, which is used in all exist-
ing methods except [17], computes the Minkowski sums
from Ps and Pt without considering the correspondences
between them as shown in Algorithm 3.1. Given Ps and
Q and the existing Minkowski sum Ms. Algorithm 3.1
rotates Ps by θ to obtain Pt . Then it uses an existing
Minkowski sum algorithm to compute Mt .

Algorithm 3.1: BRUTEFORCE(Ms,Ps,Q,θ)

Pt = Rotate(Ps,θ)
Mt = MinkowskiSum(Pt ,Q)
return (Mt)

4 DYNAMIC MINKOWSKI
SUMS (DYMSUM)

In this section, we describe the details of the proposed
method DYMSUM. Our goal is to take advantage of the
correspondences between Ms and Mt that are completely
ignored by Algorithm 3.1. Let us consider the Gaus-
sian map again. Ms is computed by overlaying g(Ps) and
g(Q). To obtain Mt , we need to find out which vertices in
g(Ps) are moved to another face in g(Q) and determine if
the edges of g(Ps) intersect or stop intersecting with the
edges of g(Q) after rotating Ps to Pt . This is exactly what

3

DYMSUM does. That is, DYMSUM first determines these
changes in the overlay introduced by the rotation, and
then corrects the errors to generate the new Minkowski
sum Mt . Therefore, the Minkowski sum Mt is composed
of two types of facets: (1) the facets from Ms that still
satisfy the aforementioned criteria after rotation and (2)
the facets that are created due to the errors.

A sketch of DYMSUM is shown in Algorithm 4.1. In
contrast to the brute-force method, DYMSUM is sensitive
to the amount of rotation. That is, when θ is smaller,
there will be fewer errors in the Gaussian map overlay. In
this case, DYMSUM will likely take less time to compute
the result than the naı̈ve method. In the rest of this sec-
tion, we will discuss how the errors are determined (Sec-
tion 4.1) and how to correct these errors (Sections 4.2
and 4.3).

Algorithm 4.1: DYMSUM(Ms,Ps,Q,θ)

Pt = Rotate(Ps,θ)
Et = FindErrors(Ms,Pt ,Q)
Mt = CorrectErrors(Et ,Ms,Pt ,Q)
return (Mt)

4.1 Find Errors
There are two types of errors, f v-errors and ee-errors,
corresponding to f v-facets and ee-facets, respectively. If
a pair of features was compatible and becomes incom-
patible after the rotation of P, we call this pair an error.

Before we talk about how these errors can be identi-
fied, we will first show the relationship between the f v-
errors and the ee-errors. Theoretically, the complexity
of the Minkowski sum is O(mn) and there can only be
O(m+ n) f v-facets. Therefore, the number of f v-facets
can be far smaller than the number of ee-facets. More-
over, it is easy to show that no ee-errors can occur if there
are no f v errors.

Theorem 4.1. f v-errors and ee-errors must coexist.

Proof. We first show that if there is an ee-error, there
must be an f v-error. Let e and e′ be a pair of edges that
are compatible before rotation and become an ee-error
after rotation. When e and e′ are compatible, g(e) and
g(e′) must intersect and, after rotating P, g(e) and g(e′)
no longer intersect. This means at a certain point during
the rotation, an end point of g(e) must cross g(e′) or vice
versa. When a point v crosses the edge g(e), v changes
the face with which it is associated from one side of g(e)
to the other side of g(e). This change indicates that there
must be an f v-error.

We then show that if there is an f v-error, there must be
an ee-error. If a facet f of P and a vertex v of Q become
an f v-error, we know that f now must be compatible
with some other vertex v′ 6= v of Q. As a result, an edge
g(e) incident to g(f) must be moved (or deformed) with
g(f). Since the faces in g(Q) are convex and g(e) can-
not intersect with a segment more than twice, g(e) must
intersect with some new edges of Q when g(f) moves
from g(v) to g(v′). This indicates that there must be at
least one ee-error.

Therefore, f v-errors and ee-errors must coexist.

Based on Theorem 4.1, we can find all errors by
first exhaustively checking all f v-facets in Ms (the
Minkowski sum before rotation) to find f v-errors. Then
we use these f v-errors to identify all ee-errors. That is,
if there are no f v-errors found, then we can immediately
conclude that there are no ee-errors as well. Otherwise,
the ee-errors must occur at the edges incident to the ver-
tices involved in the f v-errors. Thus, it is clear that find-
ing all errors will take O(m+n) time.

nf

f

v

IC(f, v)

v�

u

(a) degree of incompatibility

e

f−

f+ q+

q−

g(q−)
g(q+)

g(f+)
g(f−)g(e)

(b) correct an ee-error

Figure 2: (a) A 2-d cartoon shows the definition of
IC(f ,v) and its witness vv′. Using gradient decent, we
will find the compatible vertex u for f . (b) Determine
the associated edges for edge e.

4.2 Correct f v-errors
For each f v-error, we perform a gradient descent to
compute a new f v-facet. More specifically, given a
facet/vertex pair, we can measure the degree of incom-
patibility of the pair and attempt to iteratively minimize
the incompatibility until a compatible pair is found.

Let f be a facet of P and v be a vertex of Q. When
f and v are compatible, all the edges that are incident
to v must be below or on the half-plane supported by f .
When f and v are incompatible, we can define the degree
of incompatibility

IC(f ,v) = max{d(e, f) | e ∈ Ev} ,

where Ev is a set of edges incident to v and d(e, f) is
the longest Euclidean distance from any point on e to f .

4

We say an edge e is the witness of the incompatibility
if d(e, f) is IC(f ,v). Fig. 2(a) illustrates an example of
f v-error and IC(f ,v).

In order to find the compatible pair, we find the witness
of the incompatibility e, and replace v with the other end
point v′ 6= v of e, and repeat this until f and v become
compatible. In Fig. 2(a), this vertex is u. Since Q is
convex, this procedure must be able to find a vertex of Q
such that all of its incident edges are below f , therefore,
will always terminate.

This process is equivalent to finding an extreme point
at the outward normal direction of f and therefore can be
done in O(logn) time if Q has n vertices.

4.3 Correct ee-errors

After all the f v-errors are corrected, the incident edges
associated with these f v-errors are marked as ee-errors.
Let e be such an edge from P and let f− and f+ be the
facets in P incident to e. Our goal is to find the edges of
Q that are compatible with e. An exhaustive search for
compatible edges will certainly be slow. Fortunately, we
can find the compatible edges using the results from f v-
facets. That is, since we know that the incident facets f−

and f+ both have the compatible vertices q− and q+ of
Q, we can find the compatible edges for e using q− and
q+. The relationships between e, f± and q± are shown
in Fig. 2(b).

More specifically, if we overlay the Gaussian map g(e)
of e with g(Q), g(e) will intersect a set of faces in g(Q)
and the end points of g(e) are inside g(q−) and g(q+).
See the bottom of Fig. 2(b). If we can determine the rest
of the faces intersected by g(e), we can find the compat-
ible edges for e. We further know that these faces form a
connected component between g(q−) and g(q+), thus the
compatible edges for e must be on the boundary of these
faces. To find these Gaussian faces, we start from g(q−),
and find an incident edge e′ of g(q−) that is compatible
with e. It is obvious that e′ must exist unless q− = q+.
From e′, we replace q− with the vertex x′ 6= q− incident
to e′, and repeat the process until q− = q+.

The computation time is equal to the sum of the degree
of vertices of Q visited during the search process.

5 EXPERIMENTAL RESULTS
In this section, we show that the computation time of
DYMSUM is more efficient than the traditional approach
(Algorithm 3.1) and is indeed sensitive to the amount of
rotation applied to P. In our experiments, the polyhedron
P rotates using a sequence of random quaternions. Each
quaternion is applied to P for a random period of time.
All the computation times that we will show later are ob-

tained by averaging over 100 random rotations. All the
experiments are performed on a machine with Intel CPUs
at 2.13 GHz with 4 GB RAM. Our implementation is
coded in C++.

Figure 3 shows 13 models that we will use in the first
two experiments. Many of these models are from [4]
and can be obtained from the authors’ website. Theoret-
ically, DYMSUM works with polyhedra tessellated with
arbitrary polygons, but in our current implementation
DYMSUM only takes triangulated polyhedra. Therefore,
all the models in Figure 3 are triangulated.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l) (m)

Figure 3: Models used in the experiments. (a) cone, 78
facets (b) cube, 12 facets (c) cylinder, 140 facets (d) dioc-
tagonal dipyramid (DD), 32 facets (e) ellipse, 960 facets
(f) geodesic sphere 1 (GS1), 80 facets (g) GS2, 180 facets
(h) GS3, 320 facets (i) GS4, 500 facets (j) hexagonal
pyramid (HP), 10 facets (k) triakis icosahedron (T), 60
facets (l) truncated icosidodecahedron (TI), 236 facets
(m) v-rod, 324 facets.

5.1 Experiment 1: Dymsum vs. Brute-
force method

In Table 1, we compare the proposed method, DYMSUM,
to a brute-force method (Algorithm 3.1) that re-computes
the Minkowski sum in every time step. The brute-force
method checks the compatibility of all facet-vertex and
edge-edge pairs every time that P rotates. The values
in the table are td/tb f , where td and tb f are the (aver-
aged) updating or re-computing times for DYMSUM and
the brute-force method.

From Table 1, it is clear that DYMSUM is always faster
than the brute-force method. Even for very simple cases,
such as cone⊕HP, DYMSUM is at least 8 times faster.
For more complex examples, such as ellipse⊕ellipse,

5

DYMSUM is about 176 times faster than the brute-force
method.

5.2 Experiment 2: Computation time vs.
Rotational resolution

In this experiment, we study the computation time of
DYMSUM with respect to the rotational resolution of P.
Our goal is to show that, in contrast to the brute force
approach, DYMSUM is in fact sensitive to the magnitude
of the rotation. In the problem of motion planning, this
resolution defines the number of slices in mapping the
configuration space. In the physically-based simulation,
this value defines the number of collision detections and
penetration depth estimations per second. Fig. 4 shows
the results obtained using DYMSUM. Notice that the x
axis is in logarithmic scale.

The x axis of Fig. 4 is the number of steps for P to
make a full rotation. For example, when x = 500, P
will take 500 steps to rotate 360◦ degree. That is, P ro-
tates π/250 around a random axis every step. Therefore,
when x is large, the changes in the Minkowski sum will
be small. From the figure, we can see that the computa-
tion time drops quickly around x = 500 and then stabi-
lizes below the 0.5 millisecond mark. In Experiments 1
and 3, we set x = 500.

 0

 0.5

 1

 1.5

 2

 2.5

100 101 102 103 104

Ti
m

e
(m

illi
se

co
nd

)

Number of steps per 2π

GS1
GS2
GS3
GS4

Figure 4: Computation time at different rotational
speeds. More steps per 2π means slower rotational
speed.

5.3 Experiment 3: Computation time vs.
Input size

In this last experiment, we study the relationship between
the computational time and the input size. We use a
10× 10× 10 cube with different numbers of triangles
tessellated on the surface. Fig. 5 shows that the compu-
tation time of the brute-force method increases rapidly
while that of DYMSUM stays almost constant. When we

show DYMSUM’s computation time along in Fig. 5(b),
DYMSUM’s computation time is increased linearly along
with the size of the cubes.

Recall that the complexity of a Minkowksi sum of
two convex shapes is O(mn), however the number of the
f v-facets is O(m+ n). Therefore a large portion of the
Minkowksi sum is composed of the ee-facets. In our ex-
periment, we see a linear increase in computation time.
We speculate that only a few errors occur at each step
and most of the computation time is spent on verifying
and updating the compatibility of the f v-facets.

6 CONCLUSION AND DISCUS-
SION

We have shown an efficient and robust method for re-
computing 3-d Minkowski sums of convex polyhedra un-
der rotation. Experimentally, we have shown that DYM-
SUM greatly outperforms the brute-force method of re-
computing the Minkowski sum from scratch at each iter-
ation.

Also, because the performance of the algorithm in-
creases as the magnitude of the rotation between steps
decreases, this method is much more useful than the
naı̈ve approach for generating C -obst using discretized
rotation intervals, as it enables the fast computation of
higher resolution C -obst approximations.

The main steps in our method are those of identify-
ing and rectifying errors introduced by rotation. It is
possible to efficiently compute this because of the ob-
servation that there are few f v-errors, and that ee-errors
propagate locally to corresponding f v-errors. Instead
of re-computing the entire Minkowski sum at a cost of
O(mn logn) time, we are able to rectify the errors in sig-
nificantly less time, which is the major efficiency gain
from our method.

We hope to extend this method in the future to work
with non-convex polyhedra. We also plan to apply this
method to general C -space mapping for convex polyhe-
dra.

References

[1] P. K. Agarwal, E. Flato, and D. Halperin. Poly-
gon decomposition for efficient construction of
minkowski sums. In European Symposium on Al-
gorithms, pages 20–31, 2000.

[2] C. Bajaj and T. K. Dey. Convex decomposition
of polyhedra and robustness. SIAM J. Comput.,
21:339–364, 1992.

6

Table 1: The speedup of dymsum using the models in Fig. 3.
The values in the table are td/tb f , where td and tb f are the computation times for DYMSUMand the brute-force method.

cone 9.26
cube 8.58 10.50

cylinder 12.83 10.31 18.73
DD 9.82 9.85 13.33 10.93

ellipse 24.97 14.50 47.51 21.67 176.34
GS1 15.09 11.21 23.66 15.39 51.38 25.23
GS2 19.73 12.15 32.96 17.95 86.99 33.16 52.73
GS3 22.92 12.42 40.45 19.63 120.23 38.88 65.53 86.26
GS4 24.50 12.70 45.22 20.19 146.15 44.21 73.89 100.15 121.26
HP 8.02 9.32 9.59 9.25 13.19 9.75 10.84 11.58 11.51 9.00

T 14.50 11.16 20.66 14.05 35.95 20.33 26.01 29.21 31.83 10.28 16.17
TI 21.30 13.87 35.55 19.53 91.48 38.02 56.86 69.25 78.26 12.78 28.08 63.45

v-rod 20.30 18.31 34.00 21.92 88.30 46.53 65.46 77.73 83.05 15.76 34.23 67.24 123.75
cone cube cylinder DD ellipse GS1 GS2 GS3 GS4 HP T TI v-rod

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

Ti
m

e
(m

illi
se

co
nd

)

Number of triangles in each cube

dymsum
brute force

(a) DYMSUM vs. brute force

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14

 0 200 400 600 800 1000 1200

Ti
m

e
(m

illi
se

co
nd

)

Number of triangles in each cube

dymsum

(b) DYMSUM only

Figure 5: Computation times of DYMSUM and brute force of two identical cubes. The numbers of triangles in the
cubes are 12, 48, 108, 192, 300, 432, 588, 768, 972 and 1200.

[3] E. Flato. Robuts and efficient construction of planar
minkowski sums. M.Sc. thesis, Dept. Comput. Sci.,
Tel-Aviv Univ., Isael, 2000.

[4] E. Fogel and D. Halperin. Exact and efficient con-
struction of Minkowski sums of convex polyhedra
with applications. In Proc. 8th Wrkshp. Alg. Eng.
Exper. (Alenex’06), pages 3–15, 2006.

[5] K. Fukuda. From the zonotope construction to the
minkowski addition of convex polytopes. Journal
of Symbolic Computation, 38(4):1261–1272, 2004.

[6] P. K. Ghosh. A unified computational framework
for Minkowski operations. Computers and Graph-
ics, 17(4):357–378, 1993.

[7] P. Gritzmann and B. Sturmfels. Minkowski addi-
tion of polytopes: computational complexity and
applications to Gröbner bases. SIAM J. Discret.
Math., 6(2):246–269, 1993.

[8] L. J. Guibas, L. Ramshaw, and J. Stolfi. A ki-
netic framework for computational geometry. In
Proc. 24th Annu. IEEE Sympos. Found. Comput.
Sci., pages 100–111, 1983.

[9] L. J. Guibas and R. Seidel. Computing convo-
lutions by reciprocal search. Discrete Comput.
Geom., 2:175–193, 1987.

[10] P. Hachenberger. Exact Minkowksi sums of polyhe-
dra and exact and efficient decomposition of polye-
dra in convex pieces. In Proc. 15th Annual Euro-
pean Symposium on Algorithms (ESA), pages 669–
680, 2007.

[11] A. Kaul and J. Rossignac. Solid-interpolating de-
formations: construction and animation of PIPs. In
Proc. Eurographics ’91, pages 493–505, 1991.

[12] W. Li and S. McMains. A gpu-based voxelization
approach to 3d minkowski sum computation. In

7

SPM ’10: Proceedings of the 14th ACM Symposium
on Solid and Physical Modeling, pages 31–40, New
York, NY, USA, 2010. ACM.

[13] J.-M. Lien. Point-based minkowski sum bound-
ary. In PG ’07: Proceedings of the 15th Pa-
cific Conference on Computer Graphics and Ap-
plications, pages 261–270, Washington, DC, USA,
2007. IEEE Computer Society.

[14] J.-M. Lien. Hybrid motion planning using
Minkowski sums. In Proc. Robotics: Sci. Sys.
(RSS), Zurich, Switzerland, 2008.

[15] J.-M. Lien. Minkowski sums of rotating convex
polyhedra. In Proc. 24th Annual ACM Symp. Com-
putat. Geom. (SoCG), June 2008. Video Abstract.

[16] T. Lozano-Pérez. Spatial planning: A configuration
space approach. IEEE Trans. Comput., C-32:108–
120, 1983.

[17] N. Mayer, E. Fogel, and D. Halperin. Fast and ro-
bust retrieval of minkowski sums of rotating poly-
topes in 3-space. In To appear in Proc. Symposium
of Solid and Physical Modeling (SPM), 2010.

[18] M. Peternell, H. Pottmann, and T. Steiner.
Minkowski sum boundary surfaces of 3d-objects.
Technical report, Vienna Univ. of Technology, Au-
gust 2005.

[19] S. Raab. Controlled perturbation for arrangements
of polyhedral surfaces with application to swept
volumes. In SCG ’99: Proceedings of the fif-
teenth annual symposium on Computational geom-
etry, pages 163–172, New York, NY, USA, 1999.
ACM.

[20] G. Varadhan and D. Manocha. Accurate
Minkowski sum approximation of polyhedral mod-
els. Graph. Models, 68(4):343–355, 2006.

[21] R. Wein. Exact and efficient construction of planar
Minkowski sums using the convolution method. In
Proc. 14th Annual European Symposium on Algo-
rithms, pages 829–840, 2006.

[22] K. Wise and A. Bowyer. A survey of global
configuration-space mapping techniques for a sin-
gle robot in a static environment. The Interna-
tional Journal of Robotics Research, 19(8):762–
779, 2000.

[23] L. Zhang, Y. J. Kim, G. Varadhan, and D. Manocha.
Generalized penetration depth computation. Com-
put. Aided Des., 39(8):625–638, 2007.

8

