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Abstract

Sequence classi�cation is central to many practical
problems within machine learning. Classi�cation al-
gorithms often center around the notion of a dis-
tance metric between examples. Unlike sequences,
the Euclidean distance metric between vectors often
has an intuitive meaning which transfers naturally
to a meaning in the classi�cation domain. Distances
metrics between arbitrary pairs of sequences, how-
ever, can be harder to de�ne because sequences can
vary in both length and the information contained in
the order of sequence elements is lost when standard
distance metrics are applied. We present a scheme
that employs a Hidden Markov Model variant to pro-
duce a set of �xed-length vectors from a set of se-
quences. We then de�ne three inference algorithms,
a Baum-Welch variant, a Gibbs Sampling algorithm,
and a variational algorithm, to infer model parame-
ters. Finally, we show experimentally that the �xed
length representation produced by these inference
methods is useful for classifying proteins by struc-
tural taxonomy.

1 Introduction

The need to operate on sequence data is prevalent
in a variety of real world applications ranging from
protein/DNA classi�cation, speech recognition, in-
trusion detection and text classi�cation. Sequence
data can be distinguished from the more-typical vec-
tor representation in that the length of sequences
within a dataset can vary and that the order of sym-
bols within a sequence carries meaning.

For sequence classi�cation, a variety of strate-
gies, depending on the problem type, can be used to

map sequences to a representation that can be han-
dled by traditional classi�ers. A simple technique in-
volves selecting a �xed number of elements from the
sequence and then using those elements as a �xed-
length vector in the classi�cation engine. In another
technique, a small subsequence length, `, is selected,
and a size M ` vector is constructed containing the
counts of all length ` subsequences from the original
sequence. This vector can then be used for clas-
si�cation. A third method for classifying sequence
data requires only a positive de�nite mapping from
be de�ned between sequences rather than any di-
rect mapping of sequences to vectors. This strategy,
known as the kernel trick, is often used in conjunc-
tion with support vector machines and allows for a
wide variety of sequence similarity measurements to
be employed.

Hidden Markov Models (HMM) [20, 6] have a
rich history for modeling sequence data (in speech
recognition and bioinformatic applications) for the
purposes of classi�cation, segmentation, and clus-
tering. HMMs' success is based on the convenience
of their simplifying assumptions. The space of prob-
able sequences is contrained by assuming only pair-
wise dependencies over hidden states. Pairwise de-
pendencies also allow for a class of e�cient inference
algorithms whose critical steps build on the Forward-
Backward algorithm [20].

We present an HMM variant over a set of se-
quences, with one transition matrix per sequence,
as a novel alternative for handling sequence data.
After training, the per-sequence transition matrices
of the HMM variant are used as �xed-length vector
representations for each associated sequence. There



are a number of ways for understanding how the
HMM variant represents sequence data, and we con-
nect these ways of understanding to both traditional
explanations using simple Hidden Markov Models
and more recent interpretations arising from topic
models [4]. We then describe three methods to infer
the parameters of our HMM variant, explore connec-
tions between these methods, and provide rationale
for the classi�cation behavior of the parameters de-
rived through each.

We perform a comprehensive set of experiments,
evaluating the performance of our method in con-
junction with support vector machines, to classify
synthetically generated data and sequences of amino
acids into structural classes (fold recognition and re-
mote homology detection problem [22]).

The combination of these methods, their inter-
pretations, and their connections to prior work con-
stitutes a new twist on classic ways of understanding
sequence data that we believe is valuable to anyone
approaching a sequence classi�cation task and con-
stitutes a signi�cant contribution of this work.

2 Problem Statement

Given a set of sequences, we would like to �nd a set
of �xed-length vectors, A, that, when used as input
to a function f(A), maximize the probability of
reconstructing the original set of sequences. Under
our scheme, f(A) is a Hidden Markov Model variant
with one transition matrix, An, assigned to each
sequence, a single emissions matrix, B, and a single
start probability vector, a, for the entire set of
sequences. By maximizing the likelihood of the set
of sequences under the HMM variant model, we will
also �nd the set of transition matrices that best
represent our set of sequences. We further postulate
that this maximum likelihood representation will
achieve good classi�cation results if each sequence
is later associated with a meaningful label.

2.1 Model Description We de�ne a Hidden
Markov Model variant that represents a set of se-
quences. Each sequence is associated with a separate
transition matrix, while the emission matrix and ini-
tial state transition vector are shared across all se-
quences. We use the value of each transition matrix
as a �xed-length representation of the sequence. We
de�ne the parameters and notation for the model in
Table 1.

The probability of the model is shown below:

Parameter Description

N the number of sequences
Tn the length of sequence n
K the number of hidden symbols
M the number of observed symbols
ai start state probabilities, where i is

the value of the �rst hidden state
Anij transition probabilities, where n

indicates the sequence, i the
originating hidden state, and j the
destination hidden state

Bim emission probabilities, where i
indicates the hidden state, and m
the observed symbol associated
with the hidden state

znt the hidden state at position t in
sequence n

xnt the observed state at position t in
sequence n

Table 1: HMM Variant model parameters

(2.1) p(x, z|a,A,B) =

N∏
n=1

(
azn1

(
Tn∏
t=2

Anznt−1znt

)(
Tn∏
t=1

Bzntxnt

))

This di�ers from the standard hidden Markov
model only in the addition of a transition matrix
for each sequence. The probability of a set of
sequences under the standard HMM is shown below
(di�erences highlighted in bold):

(2.2) p(x, z|a,A,B) =

N∏
n=1

(
azn1

(
Tn∏
t=2

Aznt−1znt

)(
Tn∏
t=1

Bzntxnt

))

To regularize the model, we further augment the
basic HMM by placing Dirichlet priors on a, each
row of A, and each row of B. The prior parameters
are the uniform Dirichlet parameters γ, α, and β
for a, A, and B respectively. The probability of
the model with priors is shown below, where the
prior probabilities are the �rst three terms in the
product below and take the form Dir(x; a,K) =
Γ(Ka)
Γ(a)K

∏
i x

a−1
i :



(2.3) p(x, z, a, A,B|α, β, γ) =(
Γ(Kγ)

Γ(γ)K

∏
i

aγ−1
i

)∏
ni

Γ(Kα)

Γ(α)K

∏
j

Aα−1
nij


(∏

i

Γ(Mβ)

Γ(β)M

∏
m

Bβ−1
im

)
N∏
n=1

(
azn1

(
Tn∏
t=2

Anznt−1znt

)(
Tn∏
t=1

Bzntxnt

))

One potential di�culty that could be expected
in classifying simple HMMs by transition matrix is
that the probability of a sequence under an HMM
does not change under a permutation of the hid-
den states. This problem is avoided when we force
each sequence to share an emissions matrix, which
locks the meaning of each transition matrix row to
a particular emission distribution. If the emission
matrix were not shared, then two HMMs with per-
muted hidden states could have transition matrices
that with large Euclidean distances. For instance,
the following HMMs have di�erent transition matri-
ces, but the probability of an observed sequence is
the same under each.

HMM1 :A1 =

[
.9 .1
.9 .1

]
, B1 =

[
.9 .1
.1 .9

]

HMM2 :A2 =

[
.1 .9
.1 .9

]
, B2 =

[
.1 .9
.9 .1

]
However, a Euclidean distance between their

two transition matrices, A1 and A2 is large.

2.2 A simple example To gain an intuitive un-
derstanding of how our scheme operates, consider
the following scenario. Assume that instead of learn-
ing the parameters of our emissions matrix, B, we
�x B so that row m describes a multinomial distri-
bution with probability of 1 of emitting the mth ob-
served symbol and zero probability of emitting any
other symbol. For instance, if we have three possible
emission symbols, [a, b, c], then M = 3, K = 3, and
B is set to I3:

B =

xa xb xc
z1 1 0 0
z2 0 1 0
z3 0 0 1

Because there is a deterministic correspondence
between observed and hidden states, the hidden
states are e�ectively observed, and Anij is simply
P (xnt = j|xnt−1 = i), which can be estimated by
taking the normalized count of the number of pairs
of symbols ij in the sequence: {#t : xnt−1 = i, xnt =
j, t > 1} divided by the total number of xnt with
the value i,{#t : xnt = i, t < Tn}.

Our HMM variant is similar to this simpli�ed
scheme, but the number of hidden states, K, is set
beforehand, and an inference algorithm is used to
jointly optimize the transition and emission matrices
to capture the best representation of the set of input
sequences.

2.3 Another interpretation Earlier we noted
that we can interpret each transition matrix An
as the argument to a function that allows us to
reconstruct the sequence xn with minimum error.

Using the basic HMM, we can describe a method
to perform this reconstruction: �rst, an initial
hidden state, zn1, is sampled from a. Next, for
every znt with 1 < t ≤ Tn, znt is sampled from a
multinomial with parameters Anznt−1 . Finally, each
observed sequence element, xnt is sampled from a
multinomial with parameters Bznt

.
Given a single sequence, we can create a stan-

dard HMM, with a probability of 1 of regenerating
the source sequence by setting the number of hidden
states equal to the length of the sequence, K = T .
Next, at each hidden state, k, we set the probabil-
ity of a transition to the hidden state k + 1 to one
and transitions to any other hidden states to zero.
Finally, we set the matrix B so that at hidden state
k = t we emit the symbol xk.

Taking this idea further, we can see intuitively
how the size of A relates to some measure of in-
formation in the sequence. To best illustrate this,
if we take a sequence that consists of two repeated
sections, we would need only K = T

2 states to re-
construct it without error (with n repeats we would
need K = T

n states) because we can set state K to
deterministically transition to state 1.

If the set of sequences has varying amounts of
information per sequence, then, for small values
of K, our scheme will be able to reconstruct low-
information sequences with small error but will
have a high error rate when reconstructing high-
information sequences. If we choose a large K,
then our scheme will be able to reconstruct high-
information sequences well, but for low-information
sequences some values of A will be meaningless.



3 Background

3.1 Mixtures of HMMs HMMs have a rich his-
tory in sequence classi�cation and clustering [20, 6].
Smyth introduces a mixture of HMMs in [25] and
presents an initialization technique that is similar to
our model in that an individual HMM is learned for
each sequence, but di�ers from our model in that the
emission matrices are not shared between HMMs. In
[25], these initial N models are used to compute the
set of all pairwise distances between sequences, de-
�ned as the symmetrized log likelihood of each ele-
ment of the pair under the other's respective model.
Clusters are then computed from this distance ma-
trix, which are used to initialize a set of K < N
HMMs where each sequence is associated with one
ofK labels. Smyth notes that while the log probabil-
ity of a sequence under an HMM is an intuitive dis-
tance measure between sequences, it is not intuitive
how the parameters of the model are meaningful in
terms of de�ning a distance between sequences. In
this research, we demonstrate experimentally that
the transition matrix of our model is useful for se-
quence classi�cation when combined with standard
distance metrics and tools.

3.2 Topic Models Simpler precursors of LDA [4]
and pLSI [10], which represent an entire corpus of
documents with a single topic distribution vector,
are very similar to the basic Hidden Markov Model,
which assigns a single transition matrix to the entire
set of sequences that are being modeled. To extend
the HMM to a pLSI analogue, all that is needed
is to split the single transition matrix into a per-
sequence transition matrix. To extend this model
to an LDA analogue, we must go a step further and
attach Dirichlet priors to the transition matrices.

Inference of the LDA model (Figure 1a) on a
corpus of documents learns a matrix of document-
topic probabilities. A row of this matrix, some-
times described as a mixed-membership vector, can
be viewed as a measurement of how a given doc-
ument is composed from the set of topics. In our
HMM variant (Figure 1c), a single transition ma-
trix, An, can be thought of as the analogue to a
document-topic matrix row and can be viewed as a
measurement of how a sequence is composed of pairs
of adjacent symbols.

More recent topic models contain signi�cant
similarities to our HMM variant. Both the Hid-
den Topic Markov Model (HTMM) (Figure 1b) [9]
and Conditional Topic Random Fields (CTRF) [27]
are similar to our HMM variant in that they add
pairwise dependencies between hidden topics to the
LDA model. The key di�erence between our HMM

variant and the HTMM lie in the HTMM's explicit
modeling of text. Like LDA, the HTMM assigns one
topic composition vector to each document. Depen-
dencies between topics of adjacent words are mod-
eled using a separate binomial parameter and as-
sociated set of indicator hidden variables per topic,
rather than using a transition matrix like the HMM
variant. This binomial parameter has the e�ect of
restricting the possible transitions between topics
according to a per-sentence composition. For the
CTRF, hidden states (topics) are modeled using a
conditional random �eld .

(a)

(b)

(c)

Figure 1: Plate diagrams of the (a) LDA model, expanded

to show each word separately, the (b) Hidden Topic Markov

Model, and the (c) HMM variant.

4 Learning the model parameters

4.1 Baum-Welch A well-known method for
learning HMMmodel parameters is the Baum-Welch
algorithm. The Baum-Welch algorithm is an ex-
pectation maximization algorithm for the standard
HMM model, and the basic algorithm is easily mod-
i�ed to learn the multiple transition matrices of our



variant. The parameter updates shown below con-
verges to a maximum a priori (MAP) estimate of
p(z, a,A,B|x, γ, α, β) [20]:

ai ∝
∑
n

fni(1)bni(1) + γ − 1(4.4)

A
(new)
nij ∝

Tn∑
t=2

fni(t− 1)AnijBjxt
bnj(t) + α− 1

(4.5)

Bim ∝
∑
n

∑
t:xt=m

fni(t)bnj(t) + β − 1(4.6)

where f and b are the forward and backward
recursions de�ned below:

fni(t) =

{∑
j fnj(t− 1)AnjiBixt

, t > 1

aiBix1
, t = 1

(4.7)

bni(t) =

{∑
j AnijBjxt+1

bnj(t+ 1), t < Tn
1
K , t = Tn

(4.8)

The complexity of the Baum-Welch-like algo-
rithm for our variant is identical to the complexity
of Baum-Welch for the standard HMM. The update
for Aij in the original HMM involves summing over∑
n Tn terms, while the update for a single Anij is

a sum over Tn terms, making the total number of
terms over all the An's in our variant,

∑
n Tn, which

is the same as number the original algorithm.

4.2 Gibbs Sampling Two Gibbs sampling
schemes are commonly used to infer Hidden Markov
Model parameters [23]. Unlike the Baum-Welch
algorithm which returns a MAP estimate of the
parameters, these sampling schemes allow the
expectation of the parameters to be computed over
the posterior distribution p(z, a,A,B|x, γ, α, β).

In the Direct Gibbs sampler (DG), hidden states
and parameters are initially chosen at random, then
new hidden states are sampled using the current set
of parameters:

p(z
(new)
ti |zt−1, zt+1) ∝ Azt−1iBixt

Aizt+1
(4.9)

In the Forward Backward sampler (FB), the
initial settings and parameter updates are the same
as the DG scheme, but the hidden states are sampled

in order from Tn down to 1 using values from the
forward recursion. Speci�cally, each hidden state
znt is sampled given znt+1 = j from a multinomial
with parameters

p(z
(new)
nTn

|xn1:Tn
) ∝ fni(Tn)(4.10)

p(z
(new)
nt |xn1:Tn

, z
(new)
nt+1 ) = p(z

(new)
nt |xn1:t, z

(new)
nt+1 )

∝ fni(t)Anij , t < Tn(4.11)

In both algorithms, after the hidden states are
sampled, parameters are sampled from Dirichlet
conditional distributions, shown for A below, where
I(ω) = 1 if ω is true and 0 otherwise:

p(Anij |zn, α) = Dir(

Tn∑
t=2

I(znt−1 = i)I(znt = j) + α)

(4.12)

The FB sampler has been shown to mix more
quickly than the DG sampler, especially in cases
where adjacent hidden states are highly correlated
[23]. We therefore use the FB sampler in our
implementation.

4.3 Variational Algorithm Another approach
for inference of the HMM variant parameters is
through variational techniques. We employ a mean
�eld variational algorithm that follows a similar pat-
tern as EM. When the variational update steps are
run until convergence, Kullback-Leibler divergence
between the variational distribution, q(z, a,A,B),
and the model's conditional probability distribution,
p(z, a,A,B|x, γ, α, β), is minimized. The transition
matrices returned by the variational algorithm are
the expectations of those matrices under the varia-
tional distribution. Thus, like the Gibbs sampling
algorithm, the parameters returned by the varia-
tional algorithm approximate the expectations of the
parameters under the conditional distribution.

Our mean �eld variational approximation is
shown below:



SCOP Version Filtering Taxonomic type # sequences # categories SVM classi�er

1.67 25% class 4995 7 multiclass
1.67 25% fold 1127 25 multiclass
1.67 40% fold 1653 27 multiclass
1.67 40% superfamily 1044 37 multiclass
1.53 25% superfamily 4352 23 one-versus-rest

Table 2: Datasets used to evaluate the HMM variant's ability to classify protein sequences.

q(z, a,A,B) =q(a)

N∏
n=1

K∏
i=1

q(Ani)

K∏
i=1

q(Bi)
∏
nt

q(znt)

(4.13)

=

(
Γ(
∑
i γ̃i)∏

i Γ(γ̃i)

∏
i

aγ̃i−1
i

)
∏

ni

Γ(
∑
j α̃nij)∏

j Γ(α̃nij)

∏
j

A
α̃nij−1
nij


(∏

i

Γ(
∑
m β̃im)∏

m Γ(β̃im)

∏
m

Bβ̃im−1
im

)∏
nti

hznti
nti

with variational parameters hnti, which acts
as an approximate mean for each znti, and α̃nij ,

β̃im, and γ̃i, which can be thought of as Dirichlet
parameters approximating α, β, and γ.

When we maximize the variational free energy
with respect to the variational parameters, we ob-
tain the following update equations, where Ψ(x) =
d log Γ(x)

dx :

(4.14) α̃nij =
∑
t

hnt−1ihntj + α

β̃im =
∑

nt:xt=m

hnti + β(4.15)

γ̃i =
∑
n

hn1i + γ(4.16)

(4.17)

hnti ∝



exp
(

Ψ(γ̃i)−Ψ(
∑

i′ γ̃i′ )

+
∑

j hn2j

(
Ψ(α̃nij)−Ψ(

∑
j′ α̃nij)

)
+
(

Ψ(β̃ixn1 )−Ψ(
∑

m β̃im)
))

,

t = 1

exp
(∑

i′ hnt−1i′
(

Ψ(α̃ni′i)−Ψ(
∑

j α̃ni′j)
)

+
∑

j hnt+1j

(
Ψ(α̃nij)−Ψ(

∑
j′ α̃nij′ )

)
+
(

Ψ(β̃ixnt )−Ψ(
∑

m β̃im)
))

,

1 < t < Tn

exp
(∑

i′ hnt−1i′
(

Ψ(α̃ni′i)−Ψ(
∑

j α̃ni′j)
)

+
(

Ψ(β̃ixnTn−1
)−Ψ(

∑
m β̃im)

))
,

t = Tn

Notice that the update for hnti depends only
on the adjacent h's, hnt−1i and hnt+1i as well as

the expectations of the transition probabilities from
the adjacent h's and the expectation of the emission
probabilities from the current hnti. This mean
�eld algorithm can therefore be understood as an
equivalent of the Direct Gibbs sampling method
except that at subsequent time steps interactions
occur between variational approximations rather
than through the sampled values of z. A complete
derivation of the variational algorithm is included on
the author's website 1.

Other authors have performed variational infer-
ence over hidden Markov models. Most notably,
Ghahramani derives variational updates to itera-
tively optimize parameters of factorial HMMs [8] and
switching state space models [7]. MacKay derives a
variational ensemble for HMM posterior parameters
[17]. Our variational algorithm is most similar to the
mean �eld variational algorithm from Ghahramani
in [8].

5 Experimental Setup

5.1 Protocol To evaluate our �xed-length repre-
sentation scheme, for each classi�cation experiment,
we created three sets of �xed-length representations
per trial over ten trials by running each of the three
inference algorithms: (i) Baum-Welch, (ii) Gibbs
Sampling, and (iii) the mean �eld variational algo-
rithm, on the entire set of input data. We varied the
number of hidden states from 5 to 20 in increments
of 5 (K = {5, 10, 15, 20}). This procedure created a
total of 120 (3× 10× 4) �xed-length representations
for each dataset.

The �xed-length vector data was then used as
input to a support vector machine (SVM) classi�er
2. We used the SVM to either perform either
multiway classi�cation on the dataset under the
Crammer-Singer [5] construction or the one-versus-
rest approach, where a binary classi�er was trained
for each of the classes. No attempt was made
to optimize the SVM parameters in any of the
experiments.

We compare classi�cation results from our

1http://www.cs.gmu.edu/~mlbio/sdm10
2We used SVM-light and SVM-struct for classi�cation

(http://www.cs.cornell.edu/People/tj/svm_light/) [12].



model with results from the Spectrum(2) kernel for
all experiments. The Spectrum(`) kernel is a sim-
ple string kernel whose vector representation is the
set of counts of substrings of of observed symbols
length ` in a given string [15]. For the one-versus
rest experiments, we compare our results to more
sophisticated biologically sensitive kernels for pro-
tein classi�cation, described in Rangwala et. al [21].

5.2 Protein Datasets The Structural Classi�ca-
tion of Proteins (SCOP) [19] database categorizes
proteins from the Protein Databank (PDB)3 into a
multilevel hierarchy that captures commonalities be-
tween protein structure at di�erent levels of detail.
The ASTRAL compendium4, provides versions of
SCOP datasets �ltered to remove sequences whose
structures are signi�cantly similar, allowing for less
biased classi�cation. To evaluate our representa-
tion, we ran sets of protein classi�cation experi-
ments on the three top levels of the SCOP taxon-
omy, class, fold, and superfamily. Table 2 provides
a detailed description of the di�erent SCOP-derived
protein sequence classi�cation datasets, that were
obtained from previous studies [22, 13]. Speci�cally,
the datasets were derived from either the SCOP
1.67 or the SCOP 1.53 versions and �ltered at 25%
and 40% pairwise sequence identities. A protein se-
quence dataset �ltered at 25% identity will have no
two sequences with more than 25% sequence iden-
tity.

We partitioned the data into a single test and
training set for each category. At the class level, the
original dataset was split randomly in to training
and test sets. To eliminate high levels of similarity
between sequences that could lead to trivially good
classi�cation results, we imposed certain constraints
on the training/test set partitioning for classi�cation
in the fold and superfamily experiments. For the fold
level classi�cation problem, the training sets were
partitioned so that no examples that shared the fold
and superfamily labels were included in both the
training and test sets. Similarly, for the superfamily
level classi�cation problem (referred to as the remote
homology detection problem [15, 21]), no examples
that shared the superfamily and family levels were
included in both the training and test sets.

5.3 Synthetic Datasets As a basic test of con-
cept, we constructed synthetic datasets by drawing
samples from two HMMs with transition matrices

3http://www.pdb.org/pdb/home/home.do
4http://astral.berkeley.edu/

A1 =

[
.6 .4
.4 .6

]
, A2 =

[
.4 .6
.6 .4

]
with a discrete emissions matrix where each

state's output is an eight state discretized version of
a univariate normal distribution with means of 3 and
5 respectively. These HMMs were constructed to be
discretized versions of the HMMs used to generate
synthetic data in a previous study [25].

We ran experiments on a dataset consisting of
500 samples from each HMM with the length of each
sequence Poisson distributed with a mean of 100.
We then randomly partitioned the dataset into 20%
test and 80% training samples and used the protocol
described above to classify training samples by their
generating HMM. The experiment was run 10 times
on separately generated datasets.

For the synthetic experiments, we included two
additional kernels. The �rst, a Kullback-Leibler
Divergence Kernel, [18], was used to attempt to
answer the question whether a �natural� metric over
the space of transition matrices produces better
results than the standard dot product. Because each
transition matrix row resides in a K-simplex, we
considered the possibility that a symmetrized DKL
measurement between rows of di�erent matrices
would allow for better comparisons.

We also tested a representation, that we call the
gradient kernel, where the feature vector for each se-
quence was given by the gradient of the log probabil-
ity of a sequence with respect to the transition ma-
trix associated with that sequence. This represen-
tation is similar to the Fisher kernel [11] but di�ers
from the standard Fisher kernel in that the scheme
does not take advantage of information about the
classes associated with sequences in the training set.
A more complete version of the Fisher kernel for the
HMM variant would take into account sequence la-
bels in the training set and would require taking the
gradient of a sequence under the portion of the HMM
variant model associated with each positive and neg-
ative training example, a computationally intensive
task.

5.4 Evaluation Metrics We evaluated each
classi�cation experiment by computing the area un-
der the ROC curve (AUC), a plot of the true positive
rate against the false positive rate, constructed by
adjusting the SVM's intercept parameter. We also
computed the AUC50 value, which is a normalized
computation of the area under the ROC curve until
the �rst 50 false positives have been detected. We
were worried about variance over di�erent Baum-



Welch runs due to convergence of the algorithm to
di�erent local optima. To mitigate this concern, we
ran both the Baum-Welch algorithm and the other
inference algorithms, for consistency, 10 separate
times on each dataset. The results presented for
each inference method are averages over individual
results of the 10 trials across the di�erent classes.

6 Results and Discussion

6.1 Protein Sequence Classi�cation Table 3
shows a comparison of results (average AUC scores)
across the inference algorithms in three taxonomic
categories (class, fold, and superfamily) using the
multiclass SVM. Although the AUC scores are close
for each algorithm in most cases, the Gibbs sampling
algorithm outperforms the other algorithms the ma-
jority of the time.

Table 4 shows a comparison of results over the
inference algorithms but only for the one-versus-rest
superfamily classi�cation experiment on the SCOP
1.53 dataset. Similarly to the multiclass experiments
using the linear kernel, the Gibbs sampling algo-
rithm outperforms the other inference methods in
the one-versus-rest experiments. Although the val-
ues of the AUC and AUC50 scores do not signi�-
cantly change between the Gaussian and linear ker-
nels, the variational algorithm shows the largest im-
provement in the AUC scores, ranging from 6% to
30%, when used with the non-linear kernel.

The results over multiple trials also revealed
an interesting characteristic of the data. Although
the standard deviation of the AUC score between
categories within a single trial is high, with an
average of 0.17 over 10 trials, the standard deviation
of the average AUC score over all categories was
low (0.03 averaged over 10 trials), indicating that
a trade-o� is occurring. If the AUC on a single
taxonomic category is high in one trial, then it
will generally be o�set by a low AUC score on
another taxonomic category and vice versa. Figure
2 graphically illustrates this trade-o�, showing an
overlay of AUC curves for fold classi�cation over 10
Baum-Welch transition matrix representations.

6.2 Synthetic Results Table 5 compares aver-
age AUC and AUC50 scores from the synthetic data
classi�cation experiments between each inference al-
gorithm and the Spectrum(2) kernel. The table also
shows the e�ects of a variety of additional kernels
over the basic description vectors. Notably, the
Baum-Welch algorithm outperforms the others in-
ference algorithms under both the linear kernel and
all of the external kernels. No HMM variant formu-
lation performs better on the synthetic data than

AUC
Alg/Kernel Linear Gaussian DKL Gradient
Baum Welch 0.894 0.926 0.919 0.860

Gibbs 0.606 0.537 0.563 0.828
Variational 0.562 0.562 0.578 0.546

Spectrum 0.997 0.472 0.548 N/A

AUC50
Alg/Kernel Linear Gaussian DKL Gradient
Baum Welch 0.837 0.905 0.890 0.829

Gibbs 0.570 0.523 0.536 0.797
Variational 0.533 0.553 0.560 0.468

Spectrum 0.994 0.511 0.503 N/A

Table 5: AUC and AUC50 results from all synthetic data

experiments averaged over 10 trials. For each HMM variant,

the number of hidden states is 2. Counts of substrings of

length 2 were used to construct the spectrum kernel. The

best performing entry is marked in bold.

the Spectrum(2) vector under a linear kernel. How-
ever, the spectrum kernel results degrade across the
non-linear kernels, while the HMM variant results
are consistent.

We compared several kernel functions over the
HMM variant sequence representation vectors. Al-
though the DKL kernel appears to perform better
than the linear kernel, it does not outperform the
Gaussian. Similarly, the gradient kernel does not
consistently perform better than the Gaussian. The
Gibbs Sampling algorithm performs comparatively
better under the Fisher kernel, a trend not re�ected
in the variational algorithm's performance.

6.3 Analysis of inference algorithms We were
initially puzzled by the signi�cant di�erences in
AUC values resulting from the di�erent training al-
gorithms of our model in both the protein classi�ca-
tion experiments (Tables 3 and 4) and especially in
the synthetic data (Table 5).

A potential explanation of these di�erences lies
in the targets of each algorithms objective function.
While the Baum-Welch algorithm returns MAP pa-
rameters of the model, both the Gibbs sampling
method and the variational algorithm produce ex-
pectations of the parameters. These di�erent con-
vergence points would seem to make a much larger
di�erence in the results if the posterior distribution
of the transition matrix is highly multimodal. Un-
der a multimodal distribution, we expect the Baum-
Welch algorithm to converge to a local maximum
at one of these modes. In contrast, the expecta-
tion computed under both the Gibbs sampling and
the variational algorithm may lie at a point in the
parameter space described by the weighted center of
mass of these modes. Di�erent topologies of the pos-
terior distribution will clearly have an e�ect on how
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Figure 2: A comparison of AUC plots for the Baum Welch algorithm for K = 10 on the SCOP 1.67, 25% fold recognition

dataset (25 classes) over a set of 10 parameters learned through randomly initialized Baum-Welch runs. From the plots, we

can see that the variance of the classi�cation of individual results can be high, especially for the classes with a small number of

examples. However, there was a comparatively smaller amount of variation (∼ 3%) in the average AUC score over all classes.

well the expected value of the parameters compares
to the MAP parameters. If many maxima occur in a
single region, then the expected parameter may per-
form well. However, if a small number of maxima
are highly separated, then the MAP solution, which
will likely reside at one of the maxima, will probably
contain more information about the sequence than
the expected parameter value.

To test this hypothesis, we constructed his-
tograms of transition matrices using 1000 samples
from the Gibbs sampling algorithm. Figure 3 shows
a histogram of the 2×2 transition matrix associated
with the �rst sequence from the synthetic data and
is clearly bimodal with the modes at opposite ends
of the distribution for each matrix entry. Similarly,
Figure 4 shows a histogram of the 5 × 5 transition
matrix associated with the �rst sequence from the
SCOP 1.67, 25% Astral �ltering dataset. This his-
togram exhibits much less multimodality than the
histogram from the synthetic experiments. Taken
together, the histograms, which approximate the
posterior distribution of the transition matrices, il-
lustrate how the multimodality seen in the posteriors
of the synthetic data but not in posteriors of the the
protein data likely causes the Gibbs sampling and
variational transition matrices to perform poorly for

0.0 0.2 0.4 0.6 0.8 1.0
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0.0 0.2 0.4 0.6 0.8 1.0
A0,0,1

0.0 0.2 0.4 0.6 0.8 1.0
A0,0,2

0.0 0.2 0.4 0.6 0.8 1.0
A0,0,3

Figure 3: Histogram of the transition matrix associated with

the �rst sequence of the synthetic dataset. The matrix entries

have two modes at either end of the probability distribution.

classi�cation.
To further analyze the results on the synthetic

data, we observe the emission matrices learned by
each inference method. There are clearly observ-
able di�erences between the emission matrices re-
turned from Baum-Welch and from both the Gibbs
sampling and variational algorithm. Although all
inferred emissions matrices exhibit some amount of
bimodality, the degree of bimodality in the Baum-



Class Level, 7 categories
SCOP 1.67, 25%

Alg/K 5 10 15 20

Baum Welch 0.61 0.64 0.65 0.63
Gibbs Sampling 0.61 0.65 0.66 0.68

Variational 0.60 0.63 0.60 0.60

Fold Level, 25 categories
SCOP 1.67, 25%

Alg/K 5 10 15 20

Baum Welch 0.56 0.59 0.59 0.58
Gibbs Sampling 0.56 0.58 0.59 0.61

Variational 0.54 0.57 0.59 0.58

Fold Level, 27 categories
SCOP 1.67, 40%

Alg/K 5 10 15 20

Baum Welch 0.58 0.60 0.55 0.57
Gibbs Sampling 0.60 0.63 0.65 0.67

Variational 0.58 0.58 0.59 0.59

Superfamily, 37 categories
SCOP 1.67, 40%

Alg/K 5 10 15 20
Baum Welch 0.59 0.63 0.63 0.61

Gibbs Sampling 0.59 0.62 0.64 0.63

Variational 0.59 0.57 0.58 0.57

Table 3: AUC results from all of the multi-class SVM experiments are displayed. The best performing algorithm, the

best performing setting of K, and the best combination of K and algorithm is marked in bold. The Gibbs-Sampling-derived

representation most frequently returned the most accurate level of classi�cation on the majority of the datasets.

Linear Kernel
Evaluation Metric AUC AUC50
Algorithm/K 5 10 15 20 5 10 15 20
Baum Welch 0.58 0.55 0.52 0.57 0.18 0.17 0.15 0.24

Gibbs Sampling 0.64 0.67 0.69 0.69 0.18 0.37 0.32 0.29

Variational 0.63 0.59 0.54 0.58 0.17 0.11 0.19 0.17

Gaussian Kernel
Evaluation Metric AUC AUC50
Algorithm/K 5 10 15 20 5 10 15 20

Baum Welch 0.61 0.60 0.58 0.59 0.26 0.19 0.15 0.30

Gibbs Sampling 0.63 0.63 0.63 0.63 0.20 0.11 0.11 0.11
Variational 0.67 0.60 0.70 0.68 0.23 0.16 0.14 0.16

Table 4: AUC and AUC50 results for protein superfamily classi�cation AUC results on the SCOP 1.53 with 25% Astral

�ltering over a selected set of 23 superfamilies using Gaussian and linear kernels in one-versus-rest SVM classi�cation.
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Figure 4: Histogram of the transition matrix associated

with the �rst sequence of the SCOP 1.67 dataset with

25% Astral �ltering. Modes of the distribution are more

evenly distributed compared to the synthetic data transition

matrices.

Welch emissions matrix is much less than the other
algorithms (see Figure 5), allowing hidden states,
and thus transitions between hidden states, to be
more easily distinguished.

The gap in performance between the Gibbs sam-
pling algorithm and the variational algorithm in the
protein classi�cation experiments is not as surprising
as the di�erent between the Baum-Welch algorithm

and the rest. Both the Gibbs sampling algorithm
and the variational algorithm compute expectations
of the parameters under an approximate posterior
distribution, but each uses a di�erent method to
construct this approximation. The variational al-
gorithm will be less likely to converge to a good
approximation of the marginal distribution because
the mean �eld variational approximation necessarily
does away with the direct coupling between adjacent
hidden states characteristic of the HMM.

6.4 Comparison with standard structure

classi�cation methods Tables 5, 6, and 7 show a
comparison between the HMM variant and common
classi�cation methods for the synthetic, multiclass,
and one-versus rest experiments respectively. The
AUC and AUC50 scores indicate that our scheme
produces a representation that is roughly equivalent
in power to the Spectrum kernel for protein classi�-
cation but is outperformed by the Spectrum kernel
for synthetic data classi�cation. In defense of the
HMM variant, the size of the vector representation
produced by these kernels is signi�cantly larger than
the typical representations produced by our HMM
variant. The Mismatch(5,1) kernel, used for SCOP
1.53 superfamily classi�cation (Table 7), is similar to
the Spectrum(5) kernel but also counts substrings of
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Figure 5: The original emission matrix used to generate the

synthetic dataset (a) compared to typical emission matrices

inferred the synthetic dataset using the Baum-Welch (b),

Gibbs Sampling (c), and variational (d) algorithms. The

charts in the �rst column show the �rst row of the matrix

and the second column shows the second row of the matrix.

length 5 that di�er by one amino acid residue from
those found in an observed sequence. The size of
the vector representation associated with this ker-
nel can be up to 205. This value is large compared
to the largest vector representation in our experi-
ments, which is 400 for the HMM variant with 20
hidden states. Similarly, in the synthetic data clas-
si�cation task, the HMM variant uses a vector rep-
resentation of length 4, while the Spectrum kernel
vector representation is of length 64. Even though
the vector representation associated with these ker-
nels does not need to be explicitly computed, the
size of the representation itself is an indication of
the relative amounts of information used by these
methods compared to the HMM variant.

The HMM variant does not perform as well as
pro�le HMM kernels (AUC scores shown under the
�SW-PSSM� entry in Table 7), which are another
set of kernels commonly used for protein taxonomy
classi�cation. Nearly all of these high-performing
kernel methods, unlike the HMM variant, employ
domain speci�c knowledge, such as carefully tuned
position-speci�c scoring matrices, to aid classi�ca-

Dataset/Kernel HMM Variant Spectrum

Class 0.68 0.66
Fold (25 Categories) 0.61 0.62
Fold (27 Categories) 0.67 0.67

Superfamily 0.66 0.64

Table 6: A comparison of results between the Spectrum

kernel and the HMM variant under experiments using the

multiclass SVM formulation. The HMM variant scores are

the best performing from Table 3.

Algorithm AUC AUC50

HMM Variant (best) 0.67 0.37
Spectrum(2) [15] 0.712 0.290
Mismatch(5,1) [16] 0.870 0.416

Fisher [11] 0.773 0.250
SW-PSSM [21] 0.982 0.904

Table 7: A selection of AUC and AUC50 scores using a

variety of SVM kernels on the same dataset (see [21] for details

on additional kernel methods). The HMM variant scores are

the best performing from Table 4

tion. In contrast, only parameter that needs to be
adjusted in the HMM variant is the value of K.

6.5 Number of Hidden States Tables 3 and 4
not only show how AUC scores are e�ected by the
inference algorithm used but also how the perfor-
mance of the algorithms changes as the number of
hidden states change. For many of the trials, a max-
imum AUC or AUC50 score occur at 10 or 15 hidden
states (although notably, the Gibbs sampling results
appear to increase as K increases), indicating that
the best performing value of K in each experiment
is probably near the range that we tested.

Although we do not present experimental results
with larger numbers of hidden states, our experi-
ments show that larger values of K tend to pro-
duce worse AUC results (The Baum-Welch Algo-
rithm with K=75 results in a AUC score of .54 and
AUC50 of .18 on the class-level dataset using a Gaus-
sian kernel, which was superior to the linear kernel's
performance.). This trend can be accounted for us-
ing arguments similar to those that explain over�t-
ting. As the transition matrix size increases it seems
likely that the number of �junk� hidden states, hid-
den states that contribute to generating observed
symbols for only a small number of sequences in the
dataset, would also increase. These meaningless hid-
den states would cause distances between transition
matrices to be corrupted with noise.

6.6 Higher Order Models In addition to the
experiments described above, we also ran a limited
number of experiments with higher order HMM vari-
ants, where transition matrices are de�ned between



the group of hidden states znt−`, . . . , znt−1 and znt,
where ` is the order of the HMM. Classi�cation per-
formance under this set of models was also inferior
to the �rst order results presented in Table 3. De-
creasing performance with higher order results also
occurs in the Spectrum and Mismatch kernels. The
best performing Spectrum or Mismatch models on
the multiclass protein taxonomy classi�cation prob-
lems use substrings of length 2, and performance de-
creases using counts of larger substrings. This trend
of reduced performance under higher order correla-
tions can be explained by observing that the number
of parameters in the higher order models increase by
a factor of K when ` is incremented by 1 but our
dataset size remains constant. Thus, as the order
of the model increases, the uncertainty in the HMM
variant transition matrices will also likely increase.

7 Conclusions and Future Work

Our HMM variant is an extension of the standard
HMM that assigns individual transition matrices to
each sequence in a dataset. At least two intuitive
interpretations describe the mechanisms that allow
the HMM variant to capture meaningful informa-
tion about a set of sequences. In addition, we de-
scribe three inference algorithms, two of which, a
Baum-Welch-like algorithm and a Gibbs sampling
algorithm are similar to standard methods used to
infer HMM parameters. A third, the variational in-
ference algorithm, is related to algorithms used for
inference on topic models and more complex HMM
extensions. We demonstrate, by comparing results
on protein sequence classi�cation using our method
in conjunction with SVMs, that each of these algo-
rithms infers transition matrices that capture useful
characteristics of individual sequences. We further
show, through an analysis of the transition matri-
ces, what types of information are best captured by
each the inference method. Although classi�cation
performance using our model does not outperform
either highly optimized kernels or simple string ker-
nels, our HMM variant facilitates new ways of un-
derstanding issues in sequence classi�cation.

One basic extension to the HMM variant in-
volves optimization where the parameter K is not
speci�ed. This optimization is possible by extend-
ing the iHMM [1] for inference on a parameterless
version of our variant.

Another extension to the basic scheme would use
the values of the the transition matrix priors rather
than the transition matrices themselves to construct
the �xed-length representation of the sequence. Al-
though the Dirichlet prior parameters are not as in-
tuitively meaningful as the transition matrix, they

can still be interpreted as parameters of a function
that stochastically generates an associated sequence.

Because our model �ts within a large existing
body of work on generative models, it is amenable
to extensions that could increase classi�cation per-
formance. We are especially interested in related
models that perform classi�cation directly rather
than mediated through an SVM. These model ex-
tensions are also related to sLDA [3], Discrimina-
tive LDA [24], as well as models that use only par-
tially generative objective functions such as Dis-
cLDA [14], MedLDA [26], and Conditional Topic
Random Fields [27].

Acknowledgments
This work was supported by NSF grant III-0905117 and a
presidential fellowship awarded to SB.

References

[1] M.J. Beal, Z. Ghahramani, and C.E. Rasmussen.
The in�nite hidden Markov model. Advances in
Neural Information Processing Systems, 1:577�584,
2002.

[2] M.J. Beal and University of London. Varia-
tional algorithms for approximate Bayesian infer-
ence. Citeseer, 2003.

[3] D.M. Blei and J. McAuli�e. Supervised topic mod-
els. Advances in Neural Information Processing
Systems, 20:121�128, 2008.

[4] D.M. Blei, A.Y. Ng, and M.I. Jordan. La-
tent dirichlet allocation. The Journal of Machine
Learning Research, 3:993�1022, 2003.

[5] K. Crammer and Y. Singer. On the algorithmic im-
plementation of multiclass kernel-based vector ma-
chines. The Journal of Machine Learning Research,
2:265�292, 2002.

[6] S. Eddy. Pro�le hidden markov models. Bioinfor-
matics, 14(9):755�763, 1998.

[7] Z. Ghahramani and G.E. Hinton. Variational
learning for switching state-space models. Neural
Computation, 12(4):831�864, 2000.

[8] Z. Ghahramani and M.I. Jordan. Factorial hidden
Markov models. Machine learning, 29(2):245�273,
1997.

[9] A. Gruber, M. Rosen-Zvi, and Y. Weiss. Hidden
topic Markov models. Arti�cial Intelligence and
Statistics (AISTATS), 2007.

[10] T. Hofmann. Probabilistic latent semantic index-
ing. In Proceedings of the 22nd annual interna-
tional ACM SIGIR conference on Research and de-
velopment in information retrieval, pages 50�57.
ACM, 1999.

[11] T. Jaakkola, M. Diekhans, and D. Haussler. A
discriminative framework for detecting remote pro-
tein homologies. Journal of Computational Biol-
ogy, 7(1-2):95�114, 2000.



[12] T. Joachims. SVMLight: Support Vector
Machine. SVM-Light Support Vector Machine
http://svmlight. joachims. org/, University of Dort-
mund, 1999.

[13] R. Kuang, E. Ie, K. Wang, K. Wang, M. Siddiqi,
Y. Freund, and C. Leslie. Pro�le-based string ker-
nels for remote homology detection and motif ex-
traction. Computational Systems Bioinformatics,
pages 152�160, 2004.

[14] S. Lacoste-Julien, F. Sha, and M.I. Jordan. Dis-
cLDA: Discriminative learning for dimensionality
reduction and classi�cation. Advances in Neu-
ral Information Processing Systems 21 (NIPS08),
2008.

[15] C. Leslie, E. Eskin, and W. S. Noble. The spec-
trum kernel: A string kernel for svm protein classi-
�cation. Proceedings of the Paci�c Symposium on
Biocomputing, pages 564�575, 2002.

[16] C. Leslie, E. Eskin, W. S. Noble, and J. Weston.
Mismatch string kernels for svm protein classi�ca-
tion. Advances in Neural Information Processing
Systems, 20(4):467�476, 2003.

[17] D.J.C. MacKay. Ensemble learning for hidden
Markov models, 1997.

[18] P.J. Moreno, P. Ho, and N. Vasconcelos. A
Kullback-Leibler divergence based kernel for SVM
classi�cation in multimedia applications. Ad-
vances in Neural Information Processing Systems,
16:1385�1392, 2004.

[19] A.G. Murzin, S.E. Brenner, T. Hubbard, and
C. Chothia. SCOP: a structural classi�cation
of proteins database for the investigation of se-
quences and structures. Journal of molecular bi-
ology, 247(4):536�540, 1995.

[20] L. Rabiner and B. Juang. An introduction to
hidden Markov models. IEEE ASSp Magazine, 3(1
Part 1):4�16, 1986.

[21] H. Rangwala and G. Karypis. Pro�le-based direct
kernels for remote homology detection and fold
recognition. Bioinformatics, 21(23):4239, 2005.

[22] Huzefa Rangwala and George Karypis. Building
multiclass classi�ers for remote homology detection
and fold recognition. BMC Bioinformatics, 7:455,
2006.

[23] S.L. Scott. Bayesian methods for hidden Markov
models: Recursive computing in the 21st century.
Journal of the American Statistical Association,
97(457):337�351, 2002.

[24] H. Shan, A. Banerjee, and N.C. Oza. Discrimi-
native Mixed-membership Models. In 2009 Ninth
IEEE International Conference on Data Mining,
pages 466�475. IEEE, 2009.

[25] P. Smyth. Clustering sequences with hidden
Markov models. Advances in neural information
processing systems, pages 648�654, 1997.

[26] J. Zhu, A. Ahmed, and E.P. Xing. MedLDA: maxi-
mum margin supervised topic models for regression
and classi�cation. In Proceedings of the 26th An-
nual International Conference on Machine Learn-

ing, pages 1257�1264. ACM, 2009.
[27] J. Zhu and E.P. Xing. Conditional Topic Random

Fields. In International Conference on Machine
Learning (To appear). Citeseer, 2010.



A Derivation of the mean �eld variational algorithm

Parameter Description

N the number of sequences
Tn the length of sequence n
K the number of hidden symbols
M the number of observed symbols
ai start state probabilities, where i is the value of the �rst hidden state
Anij transition probabilities, where n indicates the sequence, i the originating

hidden state, and j the destination hidden state
Bim emission probabilities, where i indicates the hidden state, and m the

observed symbol associated with the hidden state
znt the hidden state at position t in sequence n
xnt the observed state at position t in sequence n
γ Dirichlet prior parameter for a
α Dirichlet prior parameter for A
β Dirichelt prior parameter for B
hnti Variational parameter that approximates the mean of znti
γ̃ Variational parameter that approximates the Dirichlet prior for a
α̃ni Variational parameter that approximates the Dirichlet prior for Ani
β̃i Variational parameter that approximates the Dirichlet prior for Bi

Figure 6: Parameters used in the mean �eld variational algorithm
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i

ani
i

∏
nij

A
nnij

nij

∏
im

Bnim
im

=

(
Γ(
∑
i γi)∏

i Γ(γi)

∏
i

aγi−1+ni

i

)∏
ni

Γ(
∑
j αnij)∏

j Γ(αnij)

∏
j

A
αnij−1+nnij

nij


(∏

i

Γ(
∑
m βim)∏

m Γ(β)im

∏
m

Bβim−1+nim

im

)

A.2 Mean Field Variational Approximation

q(z, a,A,B) =q(a)

N∏
n=1

K∏
i=1

q(Ani)

K∏
i=1

q(Bi)
∏
nt

q(znt)

=

(
Γ(
∑
i γ̃i)∏

i Γ(γ̃i)

∏
i

aγ̃i−1
i

)∏
ni

Γ(
∑
j α̃nij)∏

j Γ(α̃nij)

∏
j

A
α̃nij−1
nij

(∏
i

Γ(
∑
m β̃im)∏

m Γ(β̃im)

∏
m

Bβ̃im−1
im

)∏
nti

hznti
nti



Using the standard variational formulation [2], we construct F(q) by applying Jensen's inequality to
create a lower bound on the marginal likelihood:

F(q) =

ˆ
da

ˆ
dA

ˆ
dB
∑
~z

q(z, a,A,B) log
p(x, z, a, A,B|α, β)

q(z, a,A,B)

=Eq [log p(x, z, a, A,B|α, β)]− Eq [log q(z, a,A,B)]

F(q) = log Γ(
∑
i

γi)−
∑
i

log Γ(γi) +
∑
i

(γi − 1)Eq [log ai]

∑
ni

log Γ(
∑
j

αnij)−
∑
j

log Γ(αnij)

+
∑
nij

(αnij − 1)Eq [logAnij ]

∑
i

(
log Γ(

∑
m

βim)−
∑
m

log Γ(βim)

)
+
∑
im

(βim − 1)Eq [logBim]∑
i

Eq [ni log ai] +
∑
nij

Eq [nnij logAnij ] +
∑
im

Eq [nim logBim]

− log Γ(
∑
i

γ̃i) +
∑
i

log Γ(γ̃i)−
∑
i

(γ̃i − 1)Eq [log ai]

−
∑
ni

log Γ(
∑
j

α̃nij) +
∑
nij

log Γ(α̃nij)−
∑
nij

(α̃nij − 1)Eq [logAnij ]

−
∑
i

log Γ(
∑
m

β̃im) +
∑
im

log Γ(β̃im)−
∑
im

(β̃im − 1)Eq [logBim]

−
∑
nti

Eq [znti] log hnti

A.3 Expectations The expectations of log a, logA, and logB are given by the formula for expectations
of the log of the parameters under the Dirichlet distribution [4].

Eq [log ai] = Ψ(γ̃i)−Ψ(
∑
i′

γ̃i′)

Eq [logAnij ] = Ψ(α̃nij)−Ψ(
∑
j′

α̃nij′)

Eq [logBim] = Ψ(β̃im)−Ψ(
∑
m′

β̃im′)

Eq [ni] =
∑
n

hn1i



Eq [nnij ] =
∑
Z

nnij
∏
nti′

h
znti′
nti′

=
∑
Z

(
Tn∑
t=2

I(znt−1i)I(zntj)

)∏
nti′

h
znti′
nti′

=
∑
Z

(
Tn∑
t=2

I(znt−1i)I(zntj)
∏
nti′

h
znti′
nti′

)

=

Tn∑
t=2

(∑
Z

I(znt−1i)I(zntj)
∏
nti′

h
znti′
nti′

)

=

Tn∑
t=2

(
hnt−1ihntj

∑
Z¬znt−1znt

∏
nti′

h
znti′
nti′

)

=

Tn∑
t=2

hnt−1ihntj

Eq [nim] =
∑

nt:xnt=m

hnti

Eq [znti] = hnti

A.4 Maximize F (q) with respect to γ̃i Here we use a Dirichlet prior on a with uniform parameters γ.

L(γ̃i) =(γ − 1)
∑
i

(
Ψ(γ̃i)−Ψ(

∑
i′

γ̃i′)

)
+
∑
i

∑
n

hn1i

(
Ψ(γ̃i)−Ψ(

∑
i′

γ̃i′)

)

− log Γ(
∑
i

γ̃i) +
∑
i

log Γ(γ̃i)−
∑
i

(γ̃i − 1)

(
Ψ(γ̃i)−Ψ(

∑
i′

γ̃i′)

)

=
∑
i

(
Ψ(γ̃i)−Ψ(

∑
i′

γ̃i′)

)(∑
n

hn1i + γ − γ̃i

)
− log Γ(

∑
i

γ̃i) +
∑
i

log Γ(γ̃i)

∂L(γ̃i)

∂γ̃i
=
∑
i

Ψ′(
∑
i′

γ̃i′)

(∑
n

hn1i + γ − γ̃i

)
−Ψ′(γ̃i)

(∑
n

hn1i + γ − γ̃i

)

Setting the partial derivative to 0, we �nd the update that maximizes γ̃i below:

γ̃i =
∑
n

hn1i + γ

A.4.1 Maximize F (q) with respect to α̃nij Here we use a Dirichlet prior on A with uniform parameters
α.



L(α̃nij) =(α− 1)
∑
nij

Ψ(α̃nij)−Ψ(
∑
j′

α̃nij′)

+
∑
nij

∑
t

hnt−1ihntj

Ψ(α̃nij)−Ψ(
∑
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α̃nij′)


−
∑
ni

log Γ(
∑
j
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∑
nij

log Γ(α̃nij)−
∑
nij

(α̃nij − 1)

Ψ(α̃nij)−Ψ(
∑
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α̃nij′)


=
∑
nij

(∑
t

hnt−1ihntj + α− α̃nij

)Ψ(α̃nij)−Ψ(
∑
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−∑
ni

log Γ(
∑
j
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(∑
t

hnt−1ihntj + α− α̃nij

)
−
∑
j

Ψ′(
∑
j′

α̃nij′)

(∑
t

hnt−1ihntj + α− α̃nij

)

Setting the partial derivative to 0, we �nd the update that maximizes α̃nij below:

α̃nij =
∑
t

hnt−1ihntj + α

A.4.2 Maximize F (q) with respect to β̃im Here we use a Dirichlet prior on B with uniform parameters
β

L(β̃im) =(β − 1)
∑
im

(
Ψ(β̃im)−Ψ(

∑
m′

β̃im′)

)
+
∑
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( ∑
nt:xt=m

hnti

)(
Ψ(β̃im)−Ψ(

∑
m′

β̃im′)

)

−
∑
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∑
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∑
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∑
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(
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∑
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∑
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( ∑
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∑
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−
∑
i
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∑
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log Γ(β̃im)

Setting the partial derivative to 0, we �nd the update that maximizes β̃im below:

β̃im =
∑

nt:xt=m

hnti + β

A.4.3 Maximize F (q) with respect to hnti

L(hnti) =
∑
i

(∑
n

hn1i

)(
Ψ(γ̃i)−Ψ(

∑
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∑
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∂L(hnti)

∂hn′t′i′
=



(Ψ(γ̃i′)−Ψ(
∑
i′′ γ̃i′′)) +∑

j hn′2j

(
Ψ(α̃n′i′j)−Ψ(

∑
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(
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(
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∑
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∑
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∑
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∑
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)
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Setting ∂L(hnti)
∂hn′t′i′

to zero, we �nd the expression for hnti below:
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∑
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∑
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∑
j′ α̃n′i′j′)

)
+
(

Ψ(β̃ixn′1)−Ψ(
∑
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∑
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∑
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∑
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∑
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∑
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∑
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∑
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