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Abstract
Traditional graph-based clustering methods group ver-
tices into discrete non-intersecting clusters under the as-
sumption that each vertex can belong to only a single
cluster. On the other hand, recent research on graph-
based clustering methods, applied to real world networks
(e.g., protein-protein interaction networks and social net-
works), shows overlapping patterns among the underly-
ing clusters. For example, in social networks, an indi-
vidual is expected to belong to multiple clusters (or com-
munities), rather than strictly confining himself/herself
to just one. As such, overlapping clusters enable bet-
ter models of real-life phenomena. Soft clustering (e.g.,
fuzzy c-means) has been used with success for non-graph
data, when the objects are allowed to belong to multiple
clusters with a certain degree of membership. In this pa-
per, we propose a fuzzy clustering based approach for
community detection in a weighted graphical represen-
tation of social and biological networks, for which the
ground truth associated to the nodes is available. We
compare our results with a baseline method for both
multi-labeled and single labeled datasets.

1 Introduction
Many real-world data, e.g. social networks [12, 28,
31], biological networks [23] and collaboration net-
works [19], can be represented as graphs which can be
further analysed to explore the properties of those net-
works. For many years, physicists and mathematicians
have been actively studying the statistical properties that
many networks have in common. One such property
is the presence of structural sub-units (a.k.a. communi-
ties) which are highly interconnected and which can be
identified by graph-based clustering methods (the terms

community and cluster are synonymous in case of net-
works). Mining the community structure of a network
has been a popular field of research for the past few
years. For example, knowing the groups or communities
within a social network can be used to infer about the
trends of collaboration between individuals in academia
as well as in industry. In biological sciences, uncovering
the nature of interactions between group of proteins in
a Protein-Protein Interaction (PPI) network will lead to
understanding the function of key biological processes.
Hence, the challenge in the community mining area is
to explore a wide range of well-structured heterogeneous
networks, where the community structure is not clearly
evident, and is difficult to predict using traditional clus-
tering methods.

In many applications, a given vertex in a graph, repre-
senting an individual connected with other people in the
network, can belong to multiple clusters with a certain
degree of membership. The concept of fuzziness arises
while computing these membership values. As per the
convention of fuzzy logic, the sum of all these member-
ship values for a particular vertex must be one. In our
approach, we aim to find these membership values for
every vertex (node) in the graph (network). A weight
can be associated to the edge connecting a pair of ver-
tices, representing the association between the two cor-
responding entities (encoded by the vertices).

Of particular interest are the vertices which have high
degree of membership for more than one cluster in the
network. These nodes are called bridges [17, 18] be-
tween the communities. Identifying bridges in a network
can help in a number of applications, as in a) finding pro-
teins with a certain critical function in protein-protein in-
teraction networks in biology; b) finding individuals who
participate in different communities in social networks;
and c) identifying malicious organizations who act as ne-
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gotiators between terrorist networks. Communities in so-
cial networks represent grouping between individuals in
social gatherings [12, 28, 31]. Communities in collab-
oration networks represent the collaborations between a
group of researchers [19]. In this type of networks, asso-
ciations between entities or individuals can be expressed
as edges between the nodes. The graph itself can be con-
sidered as a collection of connected communities where
there are certain individuals who act as negotiators be-
tween multiple groups, and can be considered as bridges
between different communities. Being able to detect the
structure of networks would help us exploit these prop-
erties more effectively. To this end, we formulate an op-
timization problem which leverages the weights associ-
ated with the edges. The solution to the problem aims to
find the true clusters of the nodes in the network.

The rest of this paper is organized as follows. In Sec-
tion 2 we discuss background and related work. Section
3 explains relevant mathematical notations and provides
details of our proposed approach. Section 4 describes
the experimental setup, and the results are reported in
Section 5. Section 6 discusses ideas for future work and
concludes paper.

2 Background and Motivation

Techniques for identifying groups or communities within
a network can be classified into two different categories:
(i) graph partitioning based approaches [5, 14, 15], and
(ii) modularity scoring based approaches [1, 3, 4, 6, 21,
29, 33]. Graph partitioning based methods generally par-
tition different nodes into groups that share common fea-
tures or topologies. However, when used for community
identification, these approaches produce a hard partition-
ing of the networks, and thereby, not allowing overlap
between communities. Graclus [5] is an efficient mul-
tilevel graph-partitioning approach for weighted graphs
but produces hard clusters, and is not validated with
multi-labeled datasets.

On the other hand, modularity-based clustering algo-
rithms propose a cluster or group quality score derived
from the topological structure of the network, or features
extracted from properties of the nodes and edges. The
modularity score is then optimized to produce high qual-
ity clusters or communities.

Community structure in networks were explored using
Edge betweenness [7] which was computed as a func-
tion of edges between the nodes within a community.
Recently, researchers have proposed another between-
ness centrality measure known as split betweenness of
vertices [8], which show good performance in commu-
nity detection. However, all these methods do not con-
sider weighted networks. Weights represent the degree

of association between the corresponding pair of nodes,
and can provide useful information for community detec-
tion. The work of Newman [20] explores weighted net-
works by reducing integer weights on edges to a multi-
graph (where each edge of weight n is replaced by n
parallel edges), and applying the modularity measures
developed for unweighted networks. Ensemble based
approaches use a combination of different modularity
scores to create independent cluster association matri-
ces which can be combined using a graph-partition based
approach [1, 6, 26]. Other approaches include spectral
clustering [25, 30], symmetric non-negative matrix fac-
torization [16] and density based algorithm [22] for com-
munity detection.

None of the methods discussed so far, take into ac-
count the concept of bridgeness, which is important
for identifying the information flow between communi-
ties within a network. To detect the multiple member-
ship of nodes within different communities, several ap-
proaches [13, 17, 18, 24, 33] use fuzzy sets [2, 11, 32]
to explore the underlying structure of these networks.
Within the context of protein-protein interaction (PPI)
networks, a modularity measure was developed by de-
termining hub-induced subgraphs [29]. In a tangible
approach, a method was developed to distinguish be-
tween dense and sparse subgraphs in weighted networks
to identify community structure [9].

In contrast with the previously developed approaches,
we propose a method to perform fuzzy clustering of
weighted graphs (denoted as FCWG). At the same time,
we aim to identify those nodes which are potential
bridges in the network. This proposed approach is close
to a fuzzy clustering based algorithm developed for un-
weighted graphs [17, 18] (denoted as FCUWG). For the
FCUWG algorithm [17], each node in the network is as-
sumed to belong to multiple clusters with a membership
value associated with each cluster. This can be mathe-
matically expressed in the form of a matrix which has
been referred as fuzzy cluster profile (or just cluster pro-
file) in [17]. As a result, each node has a cluster profile,
which is a vector of values expressing the probability of
belonging to the various clusters. Our FCWG approach
differs in the optimization function, allows unweighted
as well as weighted networks, and is evaluated on net-
work datasets which have multi-labeled information.

3 Methodology

All the aforementioned methods, either disregard the
concept of bridgeness in the network, or provide ef-
ficiency of their approaches in single-labeled and un-
weighted social networking datasets only. We try to
bridge the gap between these methods by proposing a
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new technique which leverages the weights on the edges,
and also tries to validate the concept of bridgeness by
using multi-labeled data (for which we had the ground
truth) to identify the overlapping structure of the net-
work. We provide the technical details of our approach
in this section.

3.1 Fuzzy Clustering of Weighted Graphs
Given a weighted graph in input, we aim to find a fuzzy
clustering of the vertices of the graph. We assume we
are given as input the number of clusters k to be found.
Let N be the number of vertices in the graph. We also
assume that any given pair of vertices is connected by at
most one edge, and there are no self-loops in the graph.

We consider a representation of the vertices in the
space of clusters (cluster profile):

ci = (ci1, . . . ,cik) (1)

where the component ci j represents the probability that
vertex vi belongs to cluster j, and

∑k
j=1 ci j = 1. The

objective is to estimate the vectors ci, for i = 1, . . . ,N.
The cluster profile matrix C is defined as follows

C = [ci j] (2)

where C has N rows and k columns, N is the number of
vertices in the graph, and k is the number of clusters. We
formulate the problem as an optimization problem where
the cost function is expressed in terms of the vectors ci
for i = 1, . . . ,N, i.e., the rows of the cluster profile matrix
C.

Two vertices are considered similar if their cluster pro-
files are similar. Thus, we measure the similarity be-
tween two vertices by computing the inner product be-
tween their cluster profiles:

si j = ci · c j (3)

which gives the probability that vi and v j belong to the
same cluster. Conceptually, two similar vertices are
likely to have a strong association between them, which
corresponds to a high value of the weight on the edge
connecting them. Thus, we leverage the weights on the
edges to represent the association between the nodes.

We want to formulate the problem so that the cluster
profiles associated to the vertices capture the similarity
measure embedded in the weights of the graph edges.
This is achieved by defining the following objective func-
tion:

f (C) =
1
2

N∑
i=1

N∑
j=1

(wi j− ci · c j)
2 (4)

where wi j ∈ (0,1) is the weight of the edge connecting
vertices vi and v j,

∑k
j=1 ci j = 1 ∀i, and ci j ≥ 0 ∀ i, j. The

function f (C) corresponds to the mean square error of
the predicted cluster profile of the vertices.

To encourage solutions that assign vertices to a small
number of clusters, we add a regularization term repre-
senting the entropy of the distribution of the cluster pro-
file vector components for each vertex:

E(C) =
1
2

N∑
i=1

N∑
j=1

(wi j− ci · c j)
2 (5)

−h
N∑

i=1

k∑
l=1

cil logcil

subject to the same constraints
∑k

j=1 ci j = 1 ∀i. The co-
efficient h≥ 0 is a parameter of the procedure. The min-
imization of the cost function E(C) in equation (5) will
aim to minimize the combination of the mean square er-
ror and of the entropy term. In particular, the minimiza-
tion of the entropy term will tend to disregard those so-
lutions of cluster profiles with equal probabilities for a
vertex to belong to multiple clusters. We discuss further
about the optimization process in the following sections.

3.2 Fuzzy Clustering of Unweighted
Graphs

We compare our approach discussed in the previous sub-
section with the baseline method proposed in [17] for
fuzzy clustering of unweighted graphs (FCUWG). In this
section we briefly discuss the cost function introduced
in [17], and our implementation strategy for the same.

Given an adjacency matrix A = [ai j] of a graph G, the
cost function f , expressed in terms of the fuzzy cluster
profile matrix C, can be defined as follows:

f (C) =

N∏
i=1

N∏
j=1

{
1− cT

i c j if ai j = 0
cT

i c j otherwise
(6)

f (C) is maximized under the constraints
∑k

j=1 ci j = 1
∀i, and ci j ≥ 0 ∀ i, j, where vi and v j are any pair of ver-
tices in the graph. To avoid the possibility of obtaining
too small values (due to the presence of products in the
cost function), in our implementation we maximize the
log( f (C)).

3.3 Bridgeness Measure
Once the optimal fuzzy cluster profile matrix C for the
given graph has been computed, we can analyze the re-
sulting vectors ci to quantify the degree to which a given
vertex is shared among different clusters. This measure
is called bridgeness of the vertex. As mentioned in [18],
the bridgeness bi of vertex vi is defined as:
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bi = 1−

√√√√ k
k−1

k∑
j=1

(ci j−
1
k
)2 (7)

If a vertex belongs to all the clusters in the graph with
equal probabilities, then the term inside the summation
evaluates to zero, which in turn gives a bridgeness score
of 1. This implies that ideal bridges in the network will
belong to multiple communities with equal probabilities.
We observe that vertices with low degree and high brid-
geness usually correspond to outliers - for example, in
the case of social networks, these are individuals who do
not really belong to any community. To distinguish be-
tween the true bridges in the network and the outliers,
we use another measure; δ -corrected bridgeness (de-
fined in [17]), which is the product of the degree of a ver-
tex and the bridgeness obtained previously from equation
(7). Vertices having high δ -corrected bridgeness scores
are the estimated true bridges in the network.

Table 1: Description of Datasets.
Dataset #Nodes #Edges #Clusters Average

degree
Average
classes

PPI-1 256 1583 5 12.3672 1.4023
PPI-2 116 501 8 8.6379 2.3017
Zachary 34 78 2 4.58 1

4 Experimental Setup

4.1 Datasets
Table 1 provides the description of the datasets we
have used in our experiments to test the effectiveness
of our method. “Average degree” denotes the average
number of edges connected to each node in the entire
dataset. “Average classes” indicates the average num-
ber of classes each node belongs to. We have selected
two weighted sub-networks (denoted as PPI-1 and PPI-
2) of randomly selected proteins from the Protein-Protein
interaction (PPI) network derived from the BioGRID
database [27]. These interaction networks have some
proteins which belong to multiple classes (labels denote
function of proteins); the column Average Classes gives
an idea of the count. The PPI-1 network has 83 nodes
which belong to more than one class. The PPI-2 network
has 81 nodes which belong to more than one class. The
PPI-1 network has 1 node which belongs to all the 5 clus-
ters. The PPI-2 network has 3 nodes which belong to all
the 8 clusters.

Zachary’s karate club dataset [31] is a popular social
network extensively used by researchers. Due to a dis-
pute between the two instructors of the club, the origi-
nal network of 34 individuals split into two groups. The

Zachary’s network is unweighted. We derive weights for
the edges using equation (8) provided in the following
sub-section. Unlike the PPI networks, all nodes in the
Zachary’s karate club network belong to one class only.
We specifically selected these networks because of the
availability of the ground truth regarding the cluster as-
signments.
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Figure 1: ROC curves for 5 classes in PPI-1 network hav-
ing 256 nodes.
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Figure 2: ROC curves for 8 classes in PPI-2 network hav-
ing 116 nodes.

4.2 Edge weights
For unweighted networks, the adjacency matrix A pro-
vides a representation of the graph. In this case, we
use the expression given in equation (8) to calculate the
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weights of the edges in the graph. We aim to account for
the effect of common neighbors (e.g., node k) to evalu-
ate the strength of the association between nodes i and
j. The more neighbors nodes i and j share, the stronger
their association is. The effect of a common neighbor k
is weighted by the inverse of its degree:

wi j = Ai j +
∑
k∈N

(
Aik

Di−Ai j
×

Ak j

Dk
) (8)

where N is the number of nodes in the network, A is
the adjacency matrix for the graph, and Di is the de-
gree of the vertex i. This approach allows us to assign
weights to the edges of any unweighted undirected graph,
and to leverage those weights through our approach. In
our experiments, we have used equation (8) to derive the
weights for all the edges in the Zachary’s karate club net-
work. The PPI networks have weights associated with
each edge, reflecting the number of wet-lab experiments
where the interaction was observed between the corre-
sponding pairs of proteins. In other words, it signifies the
reliability of a particular protein-protein interaction. In
all cases, the weight matrix was normalized before per-
forming any further computation.

4.3 Label correspondence
Since clustering is an unsupervised problem, we first
solve a label correspondence between the cluster labels
found by our method, and the true cluster labels of the
ground truth. To this end, we perform defuzzification to
assign a particular cluster label to a node, i.e., we assign
to a node the label of the cluster with the largest probabil-
ity value in the corresponding row of C. We then cluster
the nodes accordingly, and sort the resulting clusters in
non increasing order of their sizes. We do the same for
the groups labeled according to the ground truth. Clus-
ters with the same position in the two sorted lists give the
label correspondences.

4.4 Evaluation Metrics
Some nodes in the PPI networks are multi-labeled. We
analyzed the fuzzy cluster profiles obtained for all the
nodes. To compute the fuzzy clustering accuracy of
multi-labeled data, as well as single labeled data [31],
we defined the following four different metrics:

• Top-1 accuracy

For a particular node, we check its cluster profile:
the cluster with the highest probability value is
considered as the node’s final cluster assignment.
We then consider the ground truth labels, and check
whether the set of true cluster labels of the node

under consideration contains the identified label. If
yes, we consider the assignment as correct. This is
the most restricted evaluation metric.

• Top-m accuracy

This is determined by finding the top m most
probable cluster assignments for a particular node
in the cluster profile matrix. We assign the node
to the identified m clusters. We then consider the
ground truth and check if these predicted m labels
belong to the set of true labels for the node. The
value of m is driven by the number of clusters
present in the network, e.g., in our experiments, we
have set m = 2 for PPI-1, and m = 3 for PPI-2.

• Any-1 accuracy

For a particular node, we consider the clusters
in the corresponding profile vector as predicted
clusters, if their corresponding probability values
are greater than 1

k , where k is the number of clusters
in the data. This is the most relaxed metric for
accuracy measure.

• AUC score

The AUC score is the normalized area under a curve
(Receiver Operating Characteristic or ROC curve)
that plots true positives against false positives for
different possible thresholds for classification. For
each class in a dataset, we plot ROC curve and com-
pute the AUC score. We report the average AUC
scores across all classes in a network.

4.5 Software

To solve the optimization problem we have used AMPL
modeling language1 and Quadratic Programming solver
SNOPT2 available online at NEOS server3. AUC scores
were computed using PERF 4. Analysis of output and
plots were done in MATLAB5.

1http://www.ampl.com/
2http://www.sbsi-sol-optimize.com/
3http://neos.mcs.anl.gov/neos/solvers/index.html
4http://kodiak.cs.cornell.edu/kddcup/software.html
5http://www.mathworks.com/
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Table 2: Community identification accuracy across the datasets
Zachary’s karate club network

Method Top-1 Top-m Any-1 Mean AUC score
FCWG(avg h) 0.98±0.0369 - - -
FCWG(h = 0.8) 1 - - 1
FCUWG 0.9706 - - 0.9982

PPI-1 network
FCWG(avg h) 0.2813±0.0954 0.5685±0.0834 0.6877±0.0866 -
FCWG(h = .85) 0.3625 0.6932 0.8087 0.5616±0.0578
FCUWG 0.3068 0.5737 0.6693 0.4855±0.1491

PPI-2 network
FCWG(avg h) 0.4061±0.0808 0.7921±0.0656 0.8194±0.0477 -
FCWG(h = 1) 0.5054 0.8387 0.9140 0.5442±0.0490
FCUWG 0.4624 0.7527 0.7097 0.4958±0.1678
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Figure 3: Sensitivity of accuracy w.r.t. h for the
Zachary’s karate club network.

5 Results

5.1 Accuracy

Table 2 shows the accuracy obtained for all the three
datasets based on Top-1, Top-m, Any-1 metric and AUC
score. All the values are averaged across different values
of the regularization coefficient h varying from 0 to 2 in
steps of 0.05. Since each node in the Zachary’s karate
club network is single-labeled, we have computed only
the Top-1 accuracy for this dataset. For the PPI net-
works, we have reported the average accuracies based on
the four different metrics, along with the standard devia-
tions. The maximum accuracy achieved for each metric,
and the corresponding value of h, are also reported. For
analyzing bridges and plotting ROC curves, we fix h to
the value that provided the maximum accuracy. In par-
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Figure 4: Sensitivity of accuracy w.r.t. h for the PPI-1
network.

ticular, h = 0.8 for the Zachary’s dataset, h = 0.85 for
PPI-1, and h = 1.0 for PPI-2 show the best Top-1 accu-
racy scores. The Mean AUC score gives the average area
under the ROC curves for all classes in PPI networks,
using our method.

Figures 1− 2 show the ROC curves for the PPI net-
works obtained for our approach. We also report the
corresponding accuracy and Mean AUC scores com-
puted using FCUWG [17]. The accuracies reported are
higher for our method (FCWG) compared to the base-
line FCUWG, provided that h is chosen appropriately.
Comparing FCWG with FCUWG for specific values of
h, we achieved 3% improvement in Top-1 accuracy for
the Zachary’s karate club network, 20% improvement in
Top-m accuracy for the PPI-1 network and 11% improve-
ment in Top-m accuracy for the PPI-2 network. Cases in
which our method achieved the best accuracy are high-
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Figure 5: Sensitivity of accuracy w.r.t. h for the PPI-2
network.

lighted in bold in Table 2.

5.2 Sensitivity Analysis
The purpose of the regularization coefficient h in equa-
tion (5) is to penalize solutions in which the vertices be-
long to all the clusters with equal probabilities. Hence,
if we vary h, we are bound to obtain different solutions,
and therefore different accuracy values for all the met-
rics. Table 2 reports the highest accuracy we obtained
for all the three networks, with specific h values. Figures
3−5 show the sensitivity of the accuracy with respect to
h for all three networks.

While the optimal value of h depends in general on
the data, for all the three datasets considered here a value
close to 1 provided the optimal solution, i.e., achieved
the optimal balance between the two terms in equation
(5). For the Zachary’s network, the accuracy is stable
across different values of h. For each PPI network, the
three accuracy measures reveal a similar trend across the
h values. For the PPI-1 network, h values in the range
(0,1) provide on average higher accuracy. For the PPI-2
network, h values in the range (1,2) give better results
on average. Despite these differences, for both networks,
a value of h close to 1 gives optimal results.

5.3 Bridgeness Analysis
To analyze the δ -corrected bridgeness score obtained
from equation (7), we define a new metric called Neigh-
borhood Similarity Ratio (NSR), defined for each node in
the network. Let vi be a node of the network, Li be the
set of labels of vi according to the ground truth, and ni be
the set of neighboring nodes of vi. We define the function
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Figure 6: Zachary’s karate club network: probable
bridge between the two groups have high δ -corrected
bridgeness score.
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Figure 7: PPI-1 network: probable bridges between the
groups have high δ -corrected bridgeness score.

I(.) for vi as follows:

I(Li∩L j) =

{
1 if Li∩L j 6= φ and v j ∈ ni

0 otherwise
(9)

The function I(.) counts the number of neighbors v j ∈ ni
that share at least one label with vi. The Neighborhood
Similarity Ratio (NSR) measure is defined as follows:

NSR(vi) =

∑|ni|
j=1 I(Li∩L j)∑|ni|

j=1 min(|Li|, |L j|)
(10)

The denominator of (10) measures the maximum num-
ber of labels node vi can possibly share with each of
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Figure 8: PPI-2 network: probable bridges between the
groups have high δ -corrected bridgeness score.

it’s neighbors. Figure 6− 8 show scatter plots of the
NSR versus the δ -corrected bridgeness score for all the
three networks. Ideally, most of the nodes in any net-
work should have low degree compared to the degree of
the bridge node, and hence their δ -corrected bridgeness
score should be low. In the plots, these nodes tend to
clutter towards the left, accounting for low bridgeness.
These nodes do have a large NSR value because the NSR
measure increases with the association of nodes in the
same group. A community is strong if the nodes within
that community are likely to have the same set of labels.
Nodes having NSR score 1 are the centers of the com-
munities because they have the majority of the labels in
common with their neighbors. Nodes which have high
bridgeness and high degree clutter towards the right end
and are small in number. These are the true bridges of
the network. For a node to act like a bridge, it should
be connected to other nodes across multiple clusters. In
the plots, we see that these nodes are the ones which get
high δ -corrected bridgeness score and an approximate
NSR score of 0.5.

Figure 9 shows the Zachary’s Karate club network
with a black node denoting the probable bridge in the
network. The white nodes have lower scores, and gray
nodes denote intermediate scores respectively for the δ -
corrected bridgeness. As per our results, node 3 has max-
imum value of δ -corrected bridgeness, which means that
this node is probably the bridge between the two groups
after the club split. It is also the node which has NSR
score approximately equal to 0.5 in the scatter plot of
Figure 6. Compared to the ground truth in [31], this node
was misclassified by the method proposed in [7] but our
method could classify it correctly and also identify it as

Figure 9: Zachary’s karate club network: the black node
is the probable bridge between two groups.

Figure 10: PPI-1 network: white colored nodes in the
center have the maximum δ -corrected bridgeness score.

a bridge node.

Figures 10− 11 shows the plots of the PPI networks
with nodes colored according to the δ -corrected bridge-
ness values, but here the coloring convention is differ-
ent. The white nodes denote high δ -corrected bridgeness
scores and vice versa (in order to visualize the bridge
nodes more prominently).
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Figure 11: PPI-2 network: white colored nodes in the
center have the maximum δ -corrected bridgeness score.

6 Conclusion and Future work

We have proposed a new approach for the identification
of community structures in weighted networks of mod-
erate size, and, at the same time, have compared our re-
sults with a baseline method discussed in [17]. The iden-
tification of bridges in biological network will serve as
an important aspect in analyzing quite a few outstand-
ing problems on protein-protein interactions in biologi-
cal sciences.

The networks we have explored so far are limited in
size, compared to social networks in the real world. For
example, Facebook social networking site has millions
of individuals connected in groups. One way towards
scaling to large networks would be trying a hierarchical
approach to reduce the size of the graph and then apply
fuzzy clustering as mentioned in this paper. Since, we
consider the degree of membership of the nodes to dif-
ferent clusters in the network, another interesting study
would be to explore the statistical models for partial
membership as discussed in [10], and compare our re-
sults for multi-labeled data to those.

Currently, for the method discussed in this paper, we
need to know the number of communities present in the
network beforehand, which is a problem for any unsu-
pervised clustering technique. Automatic detection of
the number of communities present in the network, and
thereafter, analyzing the underlying information flow be-
tween the groups, is another interesting direction to pur-
sue for future research.
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