Department of Computer Science
Technical Reports

George Mason University

4400 University Drive MS#4A5
Fairfax, VA 22030-4444 USA
http://cs.gmu.edu/ 703-993-1530

GeoMason: GeoSpatial Support for MASON

Keith Sullivan
ksulliv2@cs.gmu.edu

Mark Coletti
mcoletti@cs.gmu.edu

Sean Luke
sean@cs.gmu.edu

Technical Report GMU-CS-TR-2010-16

Abstract

MASON is a free, open-source Java-based discrete event
multi-agent simulation toolkit that has been used to
model network intrusions, unmanned aerial vehicles, no-
madic migrations, and farmer/herder conflicts, among
others. Many multi-agent models use georeferenced
data which represent such things as road networks,
rivers, vegetation coverage, population, and topology.
However, MASON does not directly support georefer-
enced data. Therefore practitioners using MASON must
hand craft such support, which may be difficult and
eITor prone.

In this paper we describe newly added geospatial func-
tionality in MASON that addresses this problem. We dis-
cuss the design of this functionality, called GeoMASON,
and its use and limitations. Finally, we give examples on
how to import and manipulate georeferenced data.

1 Introduction

MASON is an open source, multi-agent simulation li-
brary written in Java [14]. Designed as a research tool,
MASON has been used in various multi-agent problem
domains, including traffic control [1], network intrusion
detection, ant foraging [21, 22, 9], cooperative target ob-
servation [15], and modeling civilization development
[6, 5].

MASON is unusual among “swarm”-style lightweight
multi-agent simulators in that it was intended to run
on both front-end systems with visualization, on back-
end compute servers with no visualization, and to mi-
grate between these two modes. This enables exper-
iments with potentially millions of agents involving
many thousands of simulation runs, often for optimiza-
tion or parameter-sweeping. To this end, MASON is
designed to run efficiently, even in heterogeneous en-
vironments, and to have its core models entirely sepa-
rated from visualization tools. This allows for MASON
simulations to run on back-end machines without in-

curring visualization overhead, thus greatly increasing
throughput; the simulations can be visualized in a sep-
arate session. In contrast, other agent-based modeling
tools tightly integrate their computation and visualiza-
tion parts. In addition, MASON was designed as a gen-
eral purpose, extensible multi-agent simulation toolkit
for tasks ranging from robotics to social networks.

In this paper we discuss extensions to MASON to
provide Geographic Information Systems (GIS) facili-
ties. Many agent-based models (ABMs) benefit from em-
bedding the simulation in an actual environment based
somewhere on the Earth. To do this, data representing
surface features, otherwise known as georeferenced data,
must be imported into a given simulation (i.e., features
that correspond to roads, buildings, lakes, provinces,
and the like must be incorporated into a given model).
Moreover, ABMs may need non-spatial data associated
with a given physical location such as demographics,
pollution levels, location names, etc. A GIS is used to
store, analyze, and visualize geospatial data and is typi-
cally the ultimate source for any such data used by an
ABM tool.

GIS data comes in two broad categories: raster and
vector. Raster data can represent such things as eleva-
tion values, a scanned-in topographic map, or satellite
imagery. Vector data can represent geometry associated
with land features such as buildings, roads, lakes, and
so on. An ABM can use such data in a variety of ways.
For example one project of ours blends slope and vege-
tation raster satellite data to compute crop and grazing
suitability in a herder and farmer simulation for Africa
[24]. In general an ABM can use geospatial data to have
agents move along roads, determine building locations,
locate water sources, compute political influence, etc.

Several extant ABM programs and toolkits are GIS
capable [4, 12, 19]. NetLogo imports vector and raster
data in ESRI shapefile format and allows user-supplied
projections [27]. SeSAm imports vector data [10]. Both
NetLogo and SeSAm are distributed in binary format,
with no access to source code. The Kenge [3] project adds
GIS support to the SWARM library [16] by using raster



data in cellular automata format. In a similar fashion,
OBEUS works on the geographical automata system
by importing raster data into a cellular automaton [2].
Similar to an ABM, Framsticks has some GIS support
[11]. Repast [7] has full GIS support: importing vector
and raster 2D and 3D data, agent manipulation of GIS
data, and using user supplied projections. Repast can
also communicate with ArcGIS via intermediate files.
Using the Java Topology Suite, Repast can represent any
spatial geometry. Repast largely imports ESRI shapefiles,
but can import any filetype supported by GeoTools.

MASON does not inherently support geospatial data,
so practitioners have had to handcraft geospatial data
support for their MASON simulations. To address this
problem we have created an ancillary MASON package,
GeoMASON, that supports such data. In the interest
of following the MASON design philosophy of being
lightweight, modular, and efficient, GeoMASON rep-
resents objects as general geometric shapes instead of
objects that support full blown GIS functionality. Geo-
MASON geometry is supported via the Java Topology
Suite API which allows for general geometry related
operations. Currently GeoMASON only works with vec-
tor formatted data; raster data will be supported in a
future release. However, MASON itself already partially
supports raster geospatial data with existing 2D and 3D
grids of hexagons or squares.

By following MASON’s design philosophy of separat-
ing computation and visualization, GeoMASON does
not add significant additional computational load to
MASON. The design intent is to do computationally
expensive GIS related processing, such as map project-
ing, outside of MASON. As such, GeoMASON does not
make MASON into a general GIS tool. Rather, GeoMA-
SON adds the ability to import and use geospatial data
within MASON; GeoMASON does not presently have
the ability to do complex GIS-like operations or analysis.
Any changes to the GIS data require a dedicated GIS pro-
gram such as Quantum GIS [23], uDIG [17], or GRASS
[18].

GeoMASON is part of the contrib branch of the MA-
SON SVN repository and can be downloaded from
http://code.google.com/p/mason/.

2 Geographical Information
System Overview

Generally a Geographical Information System collects,
stores, analyzes, and visualizes geospatial data [13]. For
example, a GIS can be used to analyze migration pat-
terns, population distributions, and predict flood cover-
age. GIS data can be gathered from a variety of sources
including satellite imagery, scanned topographic maps,
radar, and Light Detection And Ranging (LIDAR) data.
Geospatial data describes a location on the Earth’s sur-
face of which raster and vector are two broad categories.

Raster data is organized as a grid of data correspond-
ing to a patch on the Earth’s surface. Each grid cell can
represent an elevation value, population size, type of
vegetation, slope, a photograph pixel, and so on. In vec-
tor data individual features are represented as geometric
shapes such as points, lines and polygons. For example,
lakes could be represented by polygons, roads as line
strings, and cell towers as points.

The Earth is a three dimensional object that can be
modeled as an ellipsoid. A map or most simulations of
surface features is a two dimensional representation of
a region on that ellipsoid. To get from the three dimen-
sional domain to the two dimensional, the data must be
projected into a two dimensional coordinate system. Un-
fortunately the projection process will introduce spatial
distortion. There exist a variety of well known projec-
tions each with their respective distortions. Generally
projections will try to minimize some subset of distance,
shape, area, or shortest route distortions. When bringing
together disparate geospatial data for an area of inter-
est it is important to ensure that they all use the same
coordinate reference system. Otherwise, the data from
different sources will not line up when used together.

3 Design

Like MASON, GeoMASON is written in three layers:
a utility layer, a model layer, and a visualization layer.
The utility layer imports GIS data into MASON and also
supports exporting. The model layer contains zero or
more GeomFields which contain the GIS geometries and
associated metadata. Finally, the visualization layer con-
tains classes for drawing the geometries and displaying
the associated metadata. Figure 1 shows a simplified
UML diagram relating GeoMASON objects within the
model and visualization layers, and how these objects
relate to the MASON architecture.

3.1 Model Layer

The model layer in MASON is unaware of the visualiza-
tion layer. The model layer contains a single instance of
a MASON model class, which in turn contains a discrete-
event Schedule, random number generator, and zero or
more fields. A field relates objects or data to a specific lo-
cation: for example, a 2D grid of integers may be a field;
or a data structure representing continuous 3D space; or
a social network. Objects may exist in more than one
field.

GeoMASON introduces two new fields, GeomVector-
Field and GeomGridField, that are both subclasses of Ge-
omField. They are described below:

GeomVectorField contains all the geometry objects
from the GIS datafile. Individual geometry are
stored as MasonGeometry objects. A MasonGeom-
etry object consists of JTS (Java Topology Suite) [25]



SimState GUIState
............................... o
1 0"
Model Visualization @ .........L= S
Layer Layer Display2D
1
0. 0
GeomVector T o :
Geo:;;zcmr <-- Visualizes ---------- Field —| > Por;’aeu;IZD
Portrayal N y _______ :
1.% 1.*
0.*
Mason < oepays -4 Inspector
Geometry attributes of p
1 .
1 Produce\s\ 0.*
JTS : o Geom \ Simple
‘<-- Visualizes ———————__] —> :
Geometry = evalzes Portrayal . Portrayal2D
- AN J

Figure 1: A simple UML diagram of how GeoMASON fits into the software architecture of MASON. Built-in MASON

and JTS objects are depicted in italics.

geometry and option user supplied data. JTS ge-
ometries provide basic geometric operations such as
intersection, union, and distance calculations. A JTS
Geometry also allows for user provided data, which
GeoMASON uses to attach associated attribute in-
formation.

GeomGridField embues georeference awareness to a
user provided MASON Grid2D object. That is, an
implementor could use, say, an IntGrid2D or Dou-
bleGrid2D to store grid based GIS data in a Geom-
GridField and then define the position and ground
resolution for the grid. GeomGridField provides basic
grid-vector conversion services, such as returning
a JTS Point that corresponds to a given grid cells
centroid or returning the coordinate of a grid cell
that a given Point falls in.

3.2 Visualization Layer

The visualization layer is responsible for displaying
fields and individual objects, and allowing inspection
of objects. The visualization layer also provides one or
more displays for showing the model. Displays hold
zero or more field portrayals, which are responsible for
displaying all objects in field and for handling any user
requests involving objects within that field. Field por-
trayals typically draw individual objects within the field
using one or more simple portrayals. Each simple por-
trayal can build an inspector to display and modify user-

defined information about a specific object.

GeoMASON introduces a new field portrayal, Ge-
omVectorFieldPortrayal, for displaying GeomVectorFields.
GeoMASON also provides GeomPortrayal that extends
a MASON SimplePortrayal and handles portraying indi-
vidual MasonGeometry objects. Since GeomGridField is
Grid2D wrapper, regular MASON field portrayals can be
used to render its contents.

3.3 Utility Layer

MASON's utility layer contains classes for a variety of
general uses, including random number generation, data
structures, and GUI widgets. GeoMASON adds the
ability to import and export GIS datafiles and associated
attribute files.



(a) Agent moving among arbitrary geometry

(b) Highlighting a nearby polygon

Figure 2: GeoMASON examples of determining nearby objects.

The GeomImporter interface reads GIS information into
a GeomField. Currently, there are four subclasses of Ge-
omlmporter, which are listed below:

e ShapeFilelmporter: a pure Java importer for ESRI
shape files [8], which has no dependencies on exter-
nal, third-party libraries.

e GeoToolslmporter: a pure Java importer which re-
lies on the GeoTools library [20]. This can import
GIS files in the following formats: ESRI shapefile,
PostGIS, Web Feature Format (WES), Open Web Ser-
vice (OWS), and various database formats including
DB2 and Oracle.

e OGRImporter: a JNI interface to the OGR library
[26], which supports a very large number of vector
geospatial formats. This requires the user to compile
and install the full OGR library on their system.

e GDALImporter: a NI interface to OGRs sister library,
GDAL, that reads in a large variety of grid-based
geospatial formats. This similarly requires GDAL
to be installed locally.

The GeomExporter interface writes geospatial data
from a GeomField. Presently there is just one imple-
mentation, ShapeFileExporter, which writes GeomField’s
contents to ESRI Shape Files. We plan to add other Geom-
Exporter GeoTools- and OGR-based implementations.

4 Examples

In a multi-agent simulation, a common functionality
is to determine nearby objects. GeoMASON queries a
GeomField for the closest objects using JTS primitives.
This functionality exists for both simple geometric en-
vironments and geospatial environments. In Figure 2a

an agent, represented by a red dot, reports the closest
object, be it a string of lines, a polygon, or a point, as
it moves through the environment. In addition to the
closest object, GeoMASON can also determine all ob-
jects which touch a given object, i.e., determine adjacent
objects. Figure 2b shows a set of adjacent polygons. A
polygon is randomly selected and is colored red. In sub-
sequent steps an arbitrary adjacent polygon is selected
and colored red; that is, the notion of the current polygon
“moves” to an adjacent one.

GeoMASON can also enforce geometric constraints
on the agents. For example, Figure 3a shows how an
agent’s movement may be limited to a network. In this
example, the agent moves randomly, but must stay on
the gray lines. At intersections, the agent randomly
chooses a new direction. An agent’s movement can also
be limited to a polygon. Again using the Fairfax county
voting districts, Figure 3b shows agents (red dots) whose
movement is limited to a single polygon.

Figure 6 shows how geometry can be colored based
on criteria. A practitioner may color geometry based on
inherent feature properties as well as values calculated
dynamically from the simulation. In this case, the darker
the shade of blue, the more agents are in a given district.

GeoMASON scales to many agents interacting with
many geometry objects. Figure 4 shows 1000 agents
moving along walkways on a map of George Mason Uni-
versity. Like the network model above, the agents move
randomly along campus walkways. Figure 5 shows an
inspector for the Johnson Center building at GMU. While
the original attribute data contains many fields, the fig-
ure illustrates that GeoMASON can limit the number of
displayed fields provided the user knows their names.



(a) Agent moving along a network (b) Agents moving within polygon regions

Figure 3: GeoMASON examples of enforcing geometric constraints on an agent’s movement.

Figure 4: Agents moving on campus walkways



YaYe) GeoOgrTestGUI

File

"About = Console Displays Inspectors ]

POLYGON ((11822641.571770338 6987729.534509165, 11822637.771706335 6987714.8
I=) ]

Position

» null

Geometry Properties
Type % Polygon

Centroid % POINT (11822640.598755226 6987512.569608023)
Area & 85359.25072465837

Perimeter & 1502.8498048554575

Geometry Properties
FLOORS & 5
NAME % GEORGE W. JOHNSON CENTER

[ EmptyList ) [ Detatch )

I> IF M Atstart

| Time 4]

Figure 5: Inspector for campus walkways example

5 Conclusion

GeoMASON allows multi-agent modelers to use vector
georeferenced data within the MASON framework. It
supports many data formats, including Shape, SDTS,
NTF, TIGER, S57, VRT, and GML. GeoMASON’s reliance
on the Java Topology Suite allows for complex geometric
operations to be applied to geospatial data. It follows the
MASON design philosophy of separating computation
and visualization, meaning that ABM researchers can
take advantage of MASON'’s speed while incorporating
GIS information.

There are some avenues for future work for increasing
GeoMASON’s functionality. A convenience function for
synchronizing minimum bounding rectangles between
GeomFields could be provided. And, as mentioned ear-
lier, GeoTools and OGR versions of write support can be
provided.

Acknowledgements

We gratefully acknowledge the support for this research
provided by the Joint Improvised Explosive Device De-
feat Office (JIEDDO) J-9 Division and the Office of Naval
Research (ONR) under Government Contract number
N00014-09-C-0419, and also NSF grant 0916870. We
would also like to thank the entire MASON develop-
ment team and the GMU Center for Social Complexity.
Finally, we would like to thank the Government Docu-
ments/Maps groups at the GMU library for providing
the campus and Fairfax County geospatial data.

Figure 6: Showing agent population of areas ranked by
color.

References

[1] Gabriel Balan and Sean Luke. History-based traffic con-
trol. In Proceedings of Autonomous Agents and Multiagent
Systems, Hakodate, Japan, May 2006.

[2] Itzak Beneson, Slava Birfur, and VLad Kharbash. Geo-
graphic automata systems and the OBEUS software for
their implementation. In Complex Artificial Environments,
pages 137 — 153. Springer, 2006.

[3] Paul Box, Akiko Ogawa, and Alex Wells. Kenge: The
Swarm GIS-CA libraries. http://www.gis.usu.edu/
swarm, 1999.

[4] Christian]. E. Castle and Andrew T. Crooks. Principles
and concepts of agent-based modelling for developing
geospatial simulations. Working Papers Series, Center of
Advanced Spatial Analysis, University College London,
2006.

[5] Claudio Cioffi-Revilla, Sean Luke, Dawn C. Parker, J. D.
Rogers, W. W. Fitzhugh, W. Honeychurch, B. Frohlich,
P. DePriest, and Chanag Amartuvshin. Computational
modeling frontiers in international politics: Agent-based
modeling and simulation of adaptive behavior and long-
term change in inner asia. In Proceedings of First World
Congress on Social Simulation, 2006.

[6] Claudio Cioffi-Revilla, Sean Paus, Sean Luke, James Olds,
and Jason Thomas. Mnemonic structure and sociality: A
computational agent-based simulation model. In Proceed-
ings of the Conference on Collective Intentionality IV, 2004.

[7] Nick Collier. Repast: An agent based modelling toolkit
for java, 2001. http:/ /repast.sourceforge.net.

[8] Environmental Systems Research Institute, Inc. ESRI
Shapefile Technical Description, July 1998.

[9] Brian Hrolenok, Sean Luke, Keith Sullivan, and Christo-
pher Vo. Collaborative foraging using beacons. In Proceed-
ings of Autonomous Agents and Multiagent Systems, 2010.

[10] Franziska Kliigl, Rainer Herrler, Manuel Fehler, Conelia
Triebig, and Gustavo Andriotti. SeSAm: Shell for simu-
lated agent systems. http://www.simsesam.de/, 2010.



[11] Maciej Komosinski and Szymon Ulatowski. Framsticks:
Creating and understanding complexity of life. In Ar-
tificial Life Models in Software, pages 107 — 148. Springer,
2009.

[12] Karl D. Liebert, David C. Earnest, and Andreas Tolk. Us-
ing GIS data to build virtual environments for agent based
models. In Proceedings of Agent Directed Simulation Sympo-
sium at the Spring Simulation Multiconference, 2008.

[13] Paul Longley, Michael Goodchild, David Maguire, and
David Rhind. Geographic Information Systems and Science.
Wiley, 2002.

[14] Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, Keith
Sullivan, and Gabriel Balan. MASON: A multiagent sim-
ulation envrionment. Simulation, 81(7):517 — 527, 2005.

[15] Sean Luke, Keith Sullivan, Liviu Panait, and Gabriel
Balan. Tunably decentralized algorithms for cooperative
target observation. In Proceedings of the Fourth International
Joint Conference on Autonomous Agents and Multi-Agent Sys-
tems (AAMAS 2005), 2005.

[16] Nelson Minar, Roger Burkhart, Christopher Langton, and
Manar Askenazi. The swarm simulation system., 1996.
http:/ /www.swarm.org.

[17] Markus Neteler and Helena Mitasova. Open source GIS:
A GRASS GIS approach. http://udig.refractions.
net, 2007.

[18] Markus Neteler and Helena Mitasova. Open Source GIS:
A GRASS GIS Approach. Springer, 2008.

Cynthia Nikolai and Gregory Madey. Tools of the trade: A
survey of various agent based modeling platforms. Jour-
nal of Artificial Societies and Social Simulation, 12(2), 2009.

[20] Open Source Geospatial Foundation. GeoTools: The open
source Java GIS toolkit. http://www.geotools. com, 2010.

[19

—_

[21] Liviu Panait and Sean Luke. Ant foraging revisited. In
Proceedings of the Ninth International Conference on the Sim-
ulation and Synthesis of Living Systems (ALIFE9), 2004.

[22] Liviu Panait and Sean Luke. Learning ant foraging be-
haviors. In Proceedings of the Ninth International Conference
on the Simulation and Synthesis of Living Systems (ALIFE9),
2004.

[23] Quantum GIS Development Team. Quantum GIS geo-
graphic information system. http://qgis.osgeo.org,
2010.

[24] M. Rouleau, M. Coletti, J. K. Bassett, A.B. Hailegiorgis,
T. Gulden, and W.G. Kennedy. Conflict in complex socio-
natural systems: Using agent-based modeling to under-
stand the behavioral roots of social unrest within the man-
dera triangle. In Human Behavior-Computational Modeling
and Interoperability Conference, 2009.

[25] Vivid Solutions, Inc. Java Topology Suite, September 2009.
http:/ /www.vividsolutions.com/jts/jtshome.htm.

[26] Frank Warmerdam. OGR Simple Features Library, 1998.
http:/ /www.gdal.org/ogr/.

[27] Uri Wilensky. Netlogo, 1999.
http:/ /ccl.northwestern.edu/netlogo/.



