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Abstract. Users seeking information in distributed environments of large
numbers of disparate information resources are often burdened with the
task of repeating their queries for each and every resource. Invariably,
some of the searched resources are more productive (yield more useful
documents) than others, and it would be undoubtedly useful to try these
resources first. If the environment is federated and a single search tool is
used to process the query against all the disparate resources, then a sim-
ilar issue arises: Which information resources should be searched first, to
guarantee that useful answers are streamed to users in a timely fashion.
In this paper we propose a solution that incorporates techniques from
text classification, machine learning and information retrieval. Given a
set of pre-classified information resources and a keyword query, our sys-
tem suggests a relevance ordering of the resources. The approach has
been implemented in prototype form, and initial experimentation has
given promising results.

1 Introduction

Users seeking information in distributed environments of large numbers of dis-
parate information resources are often burdened with the task of repeating their
queries for each and every resource. Examples include searching for news items
on a specific topic among hundreds of news feeds; searching for a job or an
apartment in multiple classified ads repositories; or searching for technical ad-
vise in a multitude of support sites and discussion groups. Invariably, some of
the searched resources are more productive (yield more useful documents) than
others, and it would be undoubtedly useful to try these resources first.

If the environment is federated and a single search tool is used to process
the query against all the disparate resources, then a similar issue arises: Which
information resources should be searched first to guarantee that useful answers
are streamed to users in a timely fashion.



This issue can be formalized abstractly as follows. Consider a collection
{R1, . . . , Rn} of information resources (e.g., document collections), assume a
query Q is processed in the entire collection R = ∪n1Ri, and let A be its ranked
answer. Let Ai be the subset of A that originates from Ri (the subsets Ai are not
necessarily disjoint) and let ωi denote the contribution of Ai to A. We define the
ranking of the resource environment R for the given query Q as the ordering of
the individual resources Ri according to their ωi values. Sub-answer contribution
could be measured in any of a number of ways, and should reflect both the total
number of answer elements in Ai (quantity) and their relative ranking (quality).

The challenge we address in this paper is to design a methodology that ap-
proximates this order. That is, given a query Q against a collection of informa-
tion resources R, rank the resources in R in terms of their expected contribution
to the query Q. With such a ranking, users who seek answers to queries in a
multi-source environment (or meta-searchers that process queries in such envi-
ronments) can achieve their goals more effectively.

The solution we propose is based on techniques from information retrieval,
text classification and machine learning, and it makes several simplifying assump-
tions. It assumes that each of the information resources in R is homogeneous;
that is, its documents are on a single subject. Specifically, it assumes that the
given information resources have been classified with a pre-determined set of
C1, . . . , Cp categories (labels). Given a query Q, we attempt to classify it by
the same set of categories; but rather than settle on a single classification, each
query Q results in a ranked list of classifications. This list, in turn, implies an
order of the information resources, which we suggest as an approximation of the
order defined above.

Thus, the main challenge is to classify a query; that is, to map Q to a permu-
tation of C1, . . . , Cp. The main resource in our classification is a semantic index.
This index is constructed from training documents, in a process that combines
content acquisition, feature extraction, and latent semantic analysis (LSA) [5]. It
provides the background knowledge necessary for classification. Essentially, this
semantic index is an approximation of the traditional matrix of features (terms)
by documents, in which the number of features has been reduced in a procedure
called Single Value Decomposition (SVD). This new representation is known
to mitigate the classical problems of synonymy (different terms have the same
meaning) and polysemy (a term has multiple meanings). Into this space we also
cast the query and compute the documents that are its k nearest neighbors us-
ing the traditional cosine similarity measure. Since each of the documents has
an associated category Ci, the k nearest neighbors provide a multiset of cate-
gories. Using a voting approach, this multiset is used to infer a classifying order
of the categories. If a final step, each category in the ordered classification of Q
is replaced by the resources in R that are associated with this category.

The architecture of the system is described in detail in Section 3. This archi-
tecture was implemented in prototype form, weaving together readily available
software components to perform the necessary content acquisition, feature ex-
traction, learning and classification.



Our experiments are described and discussed in Section 4. Essentially, the
experiments were designed to (1) validate the feasibility of the architecture and
to measure its performance, and (2) to draw conclusions as to the optimal values
of two important classification parameters: the number of dimensions (features)
used in the semantic index and the number of closest neighbors used in the clas-
sification. Our experiments showed that even with moderate amount of training
(3533 documents classified by 11 categories), effectiveness of 71% (as measured
by the F -measure) can be achieved. These results were achieved with relatively
small values for the number of features (200) and the number of closest neighbors
(25).

Section 5 concludes the paper with a brief summary and directions for further
research. To put our work problem in its appropriate context, we begin with a
brief discussion of related work.

2 Background

We assume that readers are familiar with basic concepts of information re-
trieval [10] and we focus our attention on two active areas of research that
relate strongly to this work: database ranking and query classification. We note
that database ranking may refer to two different tasks: ranking answers (sets of
rows) that are retrieved from a database in response to queries, listing “better
rows” first (an early example of this may be found in [11]), or to ranking of a
collection of databases with respect to a particular information need. Our work
here, and therefore this review, concerns the latter.

Keyword-based selection of multiple structured data sources is the subject
of [16]. The authors construct keyword summaries of the databases that partic-
ipate in the ranking process. Given a query, they compare its keywords to each
database summary and measure its proximity to the database’s schema and
content. The problem is original and the effectiveness of the approach has been
demonstrated. Yet, keyword matching suffers intrinsically from poor precision
and recall due to vocabulary mismatch [10]. For example, if users submit synony-
mous keywords that do not occur in database’s keyword summary, they might
miss relevant resources. Our work addresses this issue by using latent semantic
analysis, a method known for its ability to handle synonymy and polysemy [7].

Text categorization is an intensively researched area, and query classification,
a sub-area, has been very active recently [12, 15, 13, 9, 2, 3, 8]. Our task is essen-
tially to learn a text categorizer that maps short, noisy, and ambiguous sets of
keywords to relevant resources [9]. In general, query classification research varies
by (1) the machine learning (ML) approach and (2) the type of training data.

A basic necessity to any query classification task is the selection and acquisi-
tion of training data that are representative of users’ queries [9, 12]. Essentially,
a large collection of labeled content that is both general and adaptive enough to
categorize queries is hard to find. Training data are often obtained from search
engines results [15, 3, 12, 13], click-through data in query logs [2, 1], or open di-
rectory services [15, 1]. Our solution utilizes document feeds that conform to



the RSS (Really Simple Syndication) protocol — a widely used format for dis-
seminating content on the Web. Typically, each such feed contains articles on
a particular topic. The assumption is that a sufficiently large set of documents
obtained from each feed provide a reliable representation of the feed for the
purpose of future classification.

We employ a classification technique called transfer knowledge or background
knowledge which is recognized as an effective method for creating general pur-
pose classifiers [4, 14, 17]. Background knowledge leverages training data from
one classification task to apply to another related classification task [4, 14, 17].
Although previous research suggested the use of background knowledge [15, 3], it
considered the query answer as the training material; that is, the search results
are examined for patterns that explain the query. Other classifiers described in
the literature include rule-based classifiers [2], pattern matchers [13, 12, 2], Sup-
port Vector Machines (SVM) [13, 12], and probabilistic classifiers [15, 3]. Our
classifier’s performance is linear in the number of documents, which makes it suit-
able for large-scale deployment. Moreover, our solution classifies queries without
knowledge of the corresponding result set, a feature essential in the application
of query classification to resource ranking.

3 System Architecture

Our system consists of two principal phases common to classification tasks:
preparatory indexing and request processing, with the former providing the knowl-
edge necessary for the latter. Figure 1 illustrates this architecture. Preparatory
indexing consists of three stages: content acquisition, feature extraction, and se-
mantic indexing. In two additional stages, request processing uses two system
assets — the output of the semantic indexing and a classified catalog of the
available resources — to assign a set of resources to each user query. A more
detailed description of these five stages follows.

3.1 Preparatory Phase

In the first phase, training documents are processed and preserved using the well-
known vector space model of information retrieval. The product of this phase is
an LSI index to be used for query processing.

Content Acquisition. Initially, users of this system choose a set of labels (cate-
gories) to be used in classification. For each such label, one or more document
collection is selected. Each collection should include documents that correspond
primarily to the particular label. This collection provides relevant background
to interpret the meaning of the label. In this work we chose to work with doc-
ument collections that are RSS feeds. Custom Java software that incorporates
the ROME Java software library is used for managing feeds. Each document is
retrieved with an HTTP request, its content is parsed, and the result is saved
to a local store.
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Fig. 1. System architecture

Feature Extraction. In the next stage, each parsed document is processed to
obtain a list of features (terms). It is assumed that the features extracted are
characteristic and descriptive of the label associated with the feed.

Semantic Indexing. Let the total number of acquired documents be m, and let
the total number of extracted features be n. The documents are now represented
in a matrix of n rows and m columns, with the value in position (i, j) denoting
the relevance (significance) of the ith feature to the jth document. We mea-
sure this relevance with the well-known concept of entropy: Let fi,j denote the
number of occurrences of the i’th feature in the j’th document, then Σm

j=1(fi,j)
is the total number of occurrences of this feature in all the documents, and
pi,j = fi,j/Σ

m
j=1(fi,j) is the relative frequency of occurrence. The value stored in



position (i, j) is pi,j · log pi,j . Typically, each document will contain only a small
number of the possible features, resulting in a very sparse matrix. The row-
dimensionality of this matrix is then reduced, first by eliminating features that
correspond to common words (“stop-words”), and then by using Single Value
Decomposition (SVD). A complete explanation of SVD is outside the scope of
this paper and may be found in [7].

3.2 Request Processing

The second phase is the repetitive processing of user queries. It involves two
stages: query classification and resource ranking.

Query Classification. The output of the preparatory phase is a semantic index:
a set of vectors representing the documents by means of their features. Initially,
each user query is transformed into a similar vector using the same SVD process
that was applied to the original matrix. Next, this vector is compared to all
the vectors in the semantic index, and, using the well-known cosine measure of
similarity, its k nearest neighbors (k-NN) are determined [6]. Since each of the
k documents originated from a particular collection (feed), it is associated with
a particular label. The k labels thus obtained are tallied and ranked according
to their rate of occurrence in the set. In other words, the documents closest to
the query “vote” on its classification.

Resource Ranking. In the final stage we assume that the collection of available
resources has been pre-classified using the same set of labels. (Indeed, it may be
assumed that the set of labels has been derived from this classification.) This
catalog of resources is now used to match the query with a ranked list of resources
that correspond to its ranked classification.

It should be noted that, in essence, there are three classifications in this work,
and they use the same set of categories: The training documents and the catalog
resources are assumed to be pre-classified, whereas user queries are classified by
the system.

4 Experimentation and Discussion

To validate the approach outlined in this paper we conducted an experiment of
moderate size. Our objective was two fold. The first objective was to validate
that the architecture that we proposed can indeed deliver good results. The
second objective was to experiment with two important parameters of query
classification, namely the number of dimensions with which a document is rep-
resented, and the number of closest neighbors that would be used to vote on the
classification.



4.1 Datasets

Training Documents. Our system uses 11 different classification labels typical
in the newspaper domain; for example, business, sports, health, education, and
so on. For training the system, we used RSS feeds of the Washington Post news-
paper. RSS feeds are increasingly the dissemination method of choice of on-line
resources, and the advantage of using newspaper feeds and labels is that the
documents been classified by human editors and thus provide authoritative in-
terpretation for the labels. A total of 34 RSS feeds were sampled and a total
of 3533 documents were extracted. Figure 2 shows the breakdown of the 3533
documents by the 11 categories. As can be seen, the distribution of the docu-
ments is relatively balanced. The resource catalog used in the final classification
stage assigns each resource to one of the 11 categories. A small example of such
a catalog is shown in Table 1.

Fig. 2. Histogram of training documents

Test Queries. Our experiment used actual user queries submitted to the Google
Web search engine. Specifically, the most frequent 100 queries for a given day
were collected over a period of two weeks. From this set of 1,400 queries, a
random sample of 66 queries was selected, providing for confidence level of 90%.
These queries, typically a few keywords each, were classified “manually” using
the same 11-label scheme. These authoritative classifications were later used to
measure the accuracy of the classifications generated by the system.

4.2 Experimental Results

After the preparatory phase was completed, each of the 66 queries was classified
30 times, using 6 different values for the number of dimensions and 5 different



Category Resources

Business http://www.forbes.com/fdc/rss.html

http://feeds.fool.com/usmf/foolwatch

http://online.wsj.com/xml/rss/3_7086.xml

Sports http://sports.yahoo.com/top/rss

http://sports.espn.go.com/espn/rss/nfl/news

http://content.usatoday.com/marketing/rss/

rsstrans.aspx?feedId=sports1

Technology http://rss.news.yahoo.com/rss/tech

http://feeds.wired.com/wired/index

http://www.infoworld.com/rss/news.xml

Table 1. A classified catalog (partial)

values for the number of closest neighbors. A classification was correct, if the
manually-assigned category matched the top predicted category. The classifica-
tion of the set of 66 queries with a specific number of dimensions and neighbors
was considered a single experiment, whose success was measured with the F -
measure (the harmonic mean of the precision and recall). Figure 3 summarizes
the results of the 30 experiments.

Fig. 3. F -Measure at various levels

An analysis of the variance of these results (using two-way ANOVA with-
out replication) concluded that there is no significant interaction between the
number of dimensions and the number of neighbors chosen, suggesting that they
could be optimized independently. Observing the impact of dimensionality on
the F -measure (Figure 4), it is apparent that increasing the number of dimen-



sions improves performance through 200 dimensions, provides no improvement
when the number is increased to 300, and worsens performance substantially
thereafter. Observing the impact of the number of neighbors on the F -measure
(Figure 5), it is apparent that increasing the number of closest neighbors (the
number of documents that “vote” on the classification) improves performance
through 25 neighbors. Once this number is reached, the quality of the classifica-
tion remains unchanged. Combined, these three somewhat surprising conclusions
suggest keeping the number of dimensions at 200 and the number of neighbors
at 25.

Fig. 4. F-measure vs. dimensions

4.3 Discussion

The overall results of this experiment are promising. Roughly speaking, the
system can classify a query correctly (and recommend the appropriate resources)
about 71% of time. And with various extensions and refinements (to be discussed
later) we expect even further improvements.

The results of our experimentation with different classification parameters
are also noteworthy. Intuitively, as the number of features used to describe a
document increases, the semantics of documents are captured with more fidelity,
and hence classification should be more accurate. Similarly, a larger number of
close neighbors should be expected to minimize possible “noise” caused by the
misclassification of some documents, resulting in a more robust classification.
In practice, in both instances, increasing the corresponding parameters proved
beneficial, but only to a certain level, beyond which there were no improvements
(and in the case of the dimensionality of vectors, performance eventually started



Fig. 5. F-measure vs. neighbors

to decline). These two results, combined with the discovery that these two pa-
rameters do not interact and could thus be optimized independently, suggest
that “more is not always better”. A conclusion that has positive impact on time
performance.

5 Conclusions and Future Work

The availability of multiple information resources against which a query may be
processed raises the issue of which information resources would prove to be more
productive. In this paper we addressed this issue in the context of resources that
are collections of documents and queries that are sets of keywords. Specifically,
given a large number of document collections and a keyword query, rank the
collections in the order of relevance; that is, resources that are more likely to
yield documents relevant to the query should be listed earlier.

To address this issue, we proposed and tested a machine learning approach
in which we assumed that the given resources have been pre-classified by a set
of categories, and the challenge is to correctly classify a given query by the
same set of categories. Our query classification method is based on the notion of
similarity, and produces not a single category, but a ranked order of categories.
These, in turn, suggest a ranking order of the corresponding resources.

Our prototype system combined off-the-shelf tools for RSS feed acquisitions,
feature extraction, and latent semantic indexing. The information resources we
used were RSS feeds of a major newspaper. Initial experimentation demonstrated
that F -measures of 71% can be achieved with moderate size background knowl-
edge.



For this approach to work well, it is important to use sufficient number of
training documents and use RSS feeds that accurately characterize the topics
that interest the user. Note that available collections of resources need not be
static, as they can be updated periodically with “feed crawls”.

There are many opportunities for further research and we mention here just
four. First, when classifying a query we ranked the categories by their frequencies
in the nearest neighbors set. This corresponds to a simple voting procedure in
which all neighbors have equal votes. Another possibility here is to use a weighted
voting scheme, in which the vote of each neighbor is weighted by its proximity
to the query.

Second, we assumed that the information resources in the catalog have been
pre-classified. A familiar argument is that this manual classification is laborious
and inaccurate. An attractive proposition is to apply similar machine learning
techniques to automate the classification of the resources as well.

Third, we assumed a pre-determined set of categories (business, sports, pol-
itics, and so on). Alternatively, we could obtain the set of categories from the
classification of the resources (which was suggested above), and then use these
in the other two classification processes (document training and user queries).

Finally, the classification of each query was by a ranked order of categories.
With a small effort this classification could be converted into a weighted vector
of categories. On the other hand, each of the given information resources have
been assumed to fall into a single category (a somewhat restrictive assumption).
An attractive approach is to classify each resource with a similar weighted vector
of categories, and then use a similarity measure (such as the cosine) to find the
resources that are the closest neighbors of the query classification vector.
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