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Abstract
Fold recognition is a key problem in computational biology

that involves classifying protein sharing structural similari-
ties into classes commonly known as “folds”. Recently, re-
searchers have developed several efficient kernel based dis-
criminatory methods for fold classification using sequence in-
formation. These methods train one-versus-rest binary classi-
fiers using well optimized kernels from different data sources
and techniques.

Integrating this vast amount of data in the form of ker-
nel matrices is an interesting and challenging problem. The
semidefinite positive property of the various kernel matrices
makes it attractive to cast the task of learning an optimal
weighting of several kernel matrices as a semi-definite pro-
gramming optimization problem. We experiment with a previ-
ously introduced quadratically constrained quadratic optimiza-
tion problem for kernel integration using 1-norm and 2-norm
support vector machines. We integrate state-of-the-art profile-
based direct kernels to learn an optimal kernel matrix K∗. Our
experimental results show a small significant improvement in
terms of the classification accuracy across the different fold
classes. Our analysis illustrates the strength of two dominating
kernels across different fold classes, which suggests the redun-
dant nature of the kernel matrices being combined.

1 Introduction
In the past few decades, advances in sequencing tech-
nology has lead to an exponential increase in the vol-
ume of protein sequence data available. However, we
are still lacking in the technical ability to characterize
the experimental structures of these protein sequences.
Remote homology detection and fold recognition play a
central role in computational biology, where researchers
are relying on computational techniques to classify pro-
teins into functional and structural groups based solely
on their amino acid sequences.

Several kernel based methods have been designed and
improved for performing remote homology detection and

fold recognition [12, 19, 17, 18, 10, 11, 27, 13, 24]. In
particular, we [24] used evolutionary information and in-
troduced two classes of well performing direct kernels
(window based and local alignment based kernels).

The challenge was to combine the information ob-
tained from several different data descriptors or vast
number of carefully designed kernels for this problem.
Some of the approaches have resulted in use of voting or
jury based methods, generating a consensus from mod-
els learned using different kernel matrices[25]. Other ap-
proaches build formal graph models and Bayesian infer-
ences for this integration. We approach the problem of
integrating kernel matrices as a convex combination of
several positive semidefinite matrices as done in a previ-
ous study [14] that integrated genomic data from differ-
ent experimental sources.

In this project we combine two different kernels: (i)
the window based, and (ii) local alignment based ker-
nel for performing sequence classification. This method
combines the different positive semidefinite kernel matri-
ces with a semi-definite programming technique [15, 23].
These class of problems fall under the general framework
of “kernel learning” or “multiple kernel learning”. Semi-
definite programming is one of the approaches for inte-
grating the different kernel matrices. The multiple kernel
learning problem has also been casted as a second order
cone programming problem [4], semi-infinite linear pro-
gram [30, 26] and sparsity exploiting semi-definite pro-
gramming based approaches [32].

We trained the 1-norm and 2-norm SVM framework
for weighting the previously developed profile-based
kernel matrices [24] for the fold detection problem. Our
results showed that two of the kernel matrices had the
highest weights for classification, and the integration us-
ing the relaxed semi-definite program yielded a small im-
provement in performance. This work provides a brief
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understanding of how and when multiple kernel learning
methods should be used.

2 Problem Formulation and Methods
2.1 Fold Recognition Problem

The remote homology detection problem is defined as the
identification of protein pairs sharing the same evolution-
ary ancestry, but having less than 30% sequence identity.
Fold recognition is defined as the identification of protein
pairs having similar structural topology and shape but no
guarantee on the sequence identity. The two problems
can be solved by classification of proteins into a particu-
lar class of proteins that are remote homologs or folds.

In this work we simulated fold detection by formulat-
ing as a fold classification problem within the context
of SCOP’s [22] hierarchical classification scheme. In
this setting, protein domains within the same superfam-
ily were considered as positive test examples, and protein
domains within the same fold but outside the superfamily
were considered as positive training examples. Since the
positive test and training instances were members of dif-
ferent superfamilies within the same fold, the sequences
in the different superfamilies do not have any apparent
sequence similarity [22].

2.2 Support Vector Machines

Given a set of training samples {(xi, yi), . . . , (xn, yn)}
where yi ∈ {+1/ − 1}, the 1-norm soft margin support
vector machine [5] (SVM) forms a linear discriminant
boundary in a probably higher dimensional feature space
F , given by f(x) = wT φ(x) + b, where w ∈ F , b ∈ <
and φ(x) represents the input to feature space transfor-
mation. The aim is to maximize the distance between
the positive and negative classes, allowing for a few mis-
classification errors, so as to have a better generalization.
This results in the following optimization problem:

min
w,b,ξ

wT w + C

n∑
i=1

ξi

s.t. yi(wT φ(xi) + b) ≥ 1− ξi,
ξi ≥ 0, ∀i = 1 . . . n

(2.1)
where C is the regularization parameter, ξi are the slack
variables. Taking the dual of the problem in (2.1), the
result is the following well known quadratic optimization
problem [28]:

max
α

2αT e− αTD(y)KD(y)α

s.t. C ≥ α ≥ 0
αT y = 0,

(2.2)

where the Lagrangian multipliers α are the solutions of
the optimization problem and the weight vector can be

expressed as w =
∑n

i=1 αiyiφ(xi). D(y) denotes the
diagonal matrix with entries given by y = (y1, . . . , yn).
K denotes the kernel matrix or function and it defines
the notion of “similarity” between pairs of training in-
stances in their embedded feature space i.e K(xi, xj) =
〈φ(xi), φ(xj)〉 where 〈, 〉 denotes the inner product. The
resulting matrix K is known as the kernel matrix and
satisfies Mercer kernel properties including semidefinite
positiveness (K � 0). Given this kernel matrix K,
the learning problem in SVM is a quadratic optimization
procedure dependent on the kernel matrix.

2.3 Profile-based Kernel Functions

The inputs to our classification algorithm are the vari-
ous proteins and their profiles. A protein sequence X of
length n is represented by a sequence of characters X =
〈a1, a2, . . . , an〉 such that each character corresponds to
one of the 20 standard amino acids. The profile of a
protein X is derived by computing a multiple sequence
alignment of X with a set of sequences {Y1, . . . , Ym}
that have a statistically significant sequence similarity
with X (i.e., they are sequence homologs).

We obtain the profiles using PSI-BLAST [2] as it
combines both steps, is very fast, and has been shown to
produce reasonably good results. However, the profile-
based kernels can be used with other methods of con-
structing sequence profiles as well. For every sequence
position, the profile captures the evolutionary informa-
tion derived from the set of homologous sequences.

Many different schemes have been developed for
determining the similarity between pairs of profiles
that combine information from the original sequence,
position-specific scoring matrix, or position-specific tar-
get and/or effective frequencies [21, 34, 20]. We use a
profile-profile scoring scheme [24] that is derived from
PICASSO [9, 21], found to have superior performance in
building individual remote homology detection and fold
recognition models.

2.3.1 Window-based Kernels In our previous
study [24] we have developed a class of profile-based
kernel functions that determines the similarity between
a pair of sequences by combining the ungapped align-
ment scores of certain fixed length subsequences (re-
ferred to as wmers). Given a sequence X of length n
and a user-supplied parameter w, the wmer at position i
of X (w < i ≤ n − w) is defined to be the (2w + 1)-
length subsequence of X centered at position i. That is,
the wmer contains xi, the w amino acids before, and the
w amino acids after xi. We will denote this subsequence
as wmerX(i). Note that wmers are nothing more than
the fixed-length windows used extensively in secondary
structure prediction and in capturing local sequence in-
formation around a particular sequence position.
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We developed three types of window-based kernel
functions [24]: (i) The AF-PSSM kernel computes the
similarity between a pair of sequences X and Y by
adding-up the alignment scores of all possible wmers
between X and Y that have a positive ungapped align-
ment score. (ii) The BF-PSSM kernel uses a scheme
that computes the similarity between a pair of sequences
based on a subset of the wmers used in the AF-PSSM
kernel. Specifically, the BF-PSSM kernel selects wmers
such that each position of X and each position of Y is
present in at most one wmer-pair and the sum of the
wmer scores of the selected pairs are maximized. (iii)
The BV-PSSM kernel is derived from the BF-PSSM ker-
nel but operates with variable width wmers and selects
for each position of X and each position of Y the vari-
able length wmer with a maximum score.

In this paper we focus on combining the three
window-based kernels with the local alignment kernels
(discussed below) for improving the accuracy of the fold
recognition problem.

2.3.2 Local Alignment Kernels The second
class of profile-based kernels [24] that we use computes
the similarity between a pair of sequences X and Y by
finding an optimal alignment between them that opti-
mizes a particular scoring function. We use the Smith-
Waterman alignments [29] to derive our profile-based lo-
cal alignment kernel, referred to as SW-PSSM.

Given two sequences X and Y of lengths n and m,
respectively, the SW-PSSM kernel computes their sim-
ilarity as the score of the optimal local alignment in
which the similarity between two sequence positions is
determined using the profile-to-profile scoring scheme
of PICASSO [9], and a position independent affine gap
model.

Any function can be used as a kernel as long as
for any number n and any possible set of distinct se-
quences {X1, . . . , Xn}, the n × n Gram matrix defined
by Ki,j = K(Xi, Xj) is symmetric positive semidefi-
nite. These functions are said to satisfy Mercer’s condi-
tions and are called Mercer kernels, or simply valid ker-
nels. Both the window-based and local alignment kernels
are not positive semidefinite. To overcome this problem
we used the approach described in [27] to convert a sym-
metric function defined on the training set instances into
positive definite by adding to the diagonal of the train-
ing Gram matrix a sufficiently large non-negative con-
stant. [24]

2.4 Multiple Kernel Learning

The window-based and local-alignment based kernel ma-
trices [24] have proven to be well optimized matrices for
discrimination between the several fold classes. In this
study, we integrate these different positive semidefinite

kernel matrices using a convex combination technique.
We use this optimization method for weighting a set of
profile-based direct string kernel matrices for performing
fold recognition.

Different kernels correspond to a different feature
space embedding of data and capture a different similar-
ity metric. These kernel matrices being positive semidef-
inite allow us to cast the problem of integrating differ-
ent kernel matrices as a semi-definite programming [33]
(SDP) optimization problem [16, 14, 15]. Given m ker-
nel matrices, we would like to learn a linear weighting
of the different kernel matrices, resulting in the optimal
kernel matrix given by

K∗ =
m∑

i=1

µiKi, (2.3)

where µi denotes the weights learned for the different
kernels and K∗ denotes the optimal kernel matrix.

The optimal support values in Equation 2.2 are highly
dependent on the choice of kernel matrices (which is of-
ten a black art). In the combination setting we can for-
mulate an optimization problem by parameterizing the
kernel matrix K. This is done by minimizing with re-
spect to µi which gives the following optimization prob-
lem [15, 14]:

min
µ∈<m,K∗�0

max
α

2αT e− αTD(y)K∗D(y)α

s.t. C ≥ α ≥ 0,
αT y = 0,
trace(K∗) = c,
K∗ =

Pm
i=1 µiKi,

(2.4)

where c is a constant. Equation 2.4 is a minimum maxi-
mum problem and can be rewritten as:

min
µ∈<m,K∗�0,t

t

s.t. t ≥ max
α

2αT e− αTD(y)K∗D(y)α,

C ≥ α ≥ 0,
αT y = 0,
trace(K∗) = c,
K∗ =

Pm
i=1 µiKi.

(2.5)

The Lagrangian dual of the problem to find optimal val-
ues of α and µ is given by (More details in the work by
Lancreit et. al [15]):

min
µ∈<m,K,t,λ,ν,δ

t

s.t. trace(K∗) = c
K∗ =

Pm
i=1 µiKi � 0„

D(y)KD(y) e + ν − δ + λy
(e + ν − δ + λy)T t− 2CδT e

«
� 0

ν ≥ 0
δ ≥ 0

(2.6)

This optimization is a well known convex opti-
mization problem known as a semidefinite program
(SDP) which can be solved using standard optimiza-
tion tools [33]. These algorithms are limited by a
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worse-case run time complexity of O(n4.5) [14]. This
method of integrating kernel matrices though novel,
has resulted in researchers using several other forms of
convex combination like second-order cone program-
ming (SOCP) [4, 31], semi-infinite linear programming
(SILP) [30, 26], relaxations leading to quadratically con-
strained quadratic optimization problems (QCQP) [15]
and heuristic approaches [32].

We use the restriction µ ≥ 0, which results in a
QCQP [15], leading to an efficient run time complexity,
O(n3). This constraint also improves numerical stabil-
ity, as well as the generalization performance [14, 15]
of learned classifiers. The additional constraint µ ≥ 0
(steps not shown here) results in the following QCQP
optimization problem [15]:

maxα,t 2αT e− ct
subject to t ≥ 1

ri
αTD(y)KiD(y)α i = 1, . . . , m

αT y = 0
C ≥ α ≥ 0

(2.7)

We also studied the 2-norm SVM formulation where the
objective function in Equation 2.1 was modified to in-
clude a quadratic term for the variable ξi as

min
w,b,ξ

wT w + C

n∑
i=1

ξ2
i . (2.8)

Similar to the 1-norm SVM, the Lagrangian dual opti-
mization problem for the 2-norm SVM leads to a QCQP
problem. This can be expressed as [15]:

max
α,t

2αT e− 1
C

αtα− ct

subject to t ≥ 1
ri

αTD(y)KiD(y)α i = 1, . . . , m

αT y = 0
α ≥ 0

(2.9)

3 Numerical Experiments
We evaluated the performance of the multiple kernel
learning methods using the 1-norm and 2-norm learn-
ing framework for the fold recognition problem. Specif-
ically, we evaluated the performance of using the QCQP
optimization framework [14] for integrating the three
window-based and one local alignment kernels. We used
the MOSEK [3] toolkit to run experiments for the QCQP
problem1

3.1 Datasets

The dataset [25] was derived from the SCOP 1.67 [22] by
selecting domains having less than 40% sequence iden-
tity. The resulting dataset consisted of 1651 protein do-
main sequences within 27 fold classes, split to have a

1The code for the 1-norm SVM was provided by Gert Lanckriet. We
modified it to work within the fold recognition framework and setup the
2-norm SVM.

training and test set size of 1307 and 344 respectively. In
this setting, protein domains within the same superfam-
ily were considered to be as positive test examples, and
protein domains within the same fold but outside the su-
perfamily were considered as positive training examples.
For example, we can visually represent the setup for the
fold recognition problem in terms of the test and training
sets for a particular fold class (fold a.2) in Figure 1.

Class a

Fold a.2

Superfam
a.2.1

Family 
a.2.1.4

Family 
a.2.1.5

Family 
a.2.1.7

Superfam
a.2.3

Family 
a.2.3.5

Family 
a.2.3.8

Fold a.4

Superfam
a.4.5

Fold a.6

Positive Test Positive Train Negative Train and Test

…….

…….

Figure 1: SCOP hierarchy tree showing the training and
test instances setup for the fold recognition problem.

3.2 Kernel Functions

For purposes of the experiment we used profile-based
kernel functions [24] to derive our individual kernel ma-
trices. These kernel functions compute the similarity be-
tween a pair of sequences, using conservation informa-
tion. We used the three variations of the window-based
kernels (all fixed (AF) wmer kernel, best fixed wmer
kernel (BF), best variable wmer kernel (BV)) along with
the smith-waterman (SW) kernel in our effort to opti-
mally combine them.2

We also ran experiments using kernels derived from
position independent, BLOSUM62 matrices (GSM).
We also combined the position-specific and position-
independent matrices to study the classification results.

3.3 Results and Discussion

We trained 27 one-versus-rest binary classifiers for fold
recognition for the different kernels and their combina-
tions. Specifically, we evaluate the QCQP optimization
for integrating the different kernel matrices. The accu-
racy of these classifiers were evaluated using the area
under the receiver operating characteristic curve (ROC),
which measures the true positive rate versus the false
positive rate. Specifically we computed ROC50 (ROC
up to the first 50 false positives) measure across the 27
fold classes.

We ran a series of experiments using different com-
binations of kernel matrices, and the two SVM formu-

2The codes to compute these kernels are freely available at
http://bioinfo.cs.umn.edu/supplements/remote-homology/.
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lations. Table 1 shows the average ROC50 results ob-
tained for the different experiments. To set up a base
line, we computed the classification accuracy achieved
by the individual matrices (i.e the AF-PSSM, BF-PSSM,
BV-PSSM, SW-PSSM). We used optimized parameters
for window length, gap opening, extension and shift pa-
rameters [24]. The experiment F1 in Table 1 denotes the
classification performance for an optimal combination of
the three window-based and smith-waterman based ker-
nel matrices. In case of the 1-norm SVM framework the
accuracy results improve to the third decimal place over
the BV-PSSM kernel. The optimal weighting of the ker-
nel matrices did not lead to a boost in the performance,
which can also be noticed in Figure 3 where we show the
ROC50 results for the different fold classes. The results
achieved by the F1 combination scheme are fairly sim-
ilar to the SW-PSSM and the BV-PSSM kernel matrices
for the 1-norm SVM classifier.

On further analysis, the weights computed across the
different kernel matrices as seen in Figure 2 shows that
the combination classifier assigns higher weight to the
SW-PSSM and BV-PSSM kernels, which have a better
classification accuracy when compared to the BF-PSSM
and AF-PSSM kernels. The fact that BV-PSSM domi-
nates can be explained by the fact that it is more relaxed
than the other two window-based kernels and the kernel
learning problem setup probably handles the redundant
information between the window based kernels.

We also performed similar experiments using the po-
sition independent kernel matrices (GSM). As seen pre-
viously [24], the individual GSM-based kernels were
poorer in comparison to the individual PSSM-based ker-
nels. However the optimized kernel combination (F1)
learned using the optimization framework was worse for
both the 1-norm and 2-norm SVM (See Table 1 and Fig-
ure 4).

Finally, we combined all the eight kernel matrices
(PSSM and GSM), shown as F2 in Table 1. This com-
bination achieved the average ROC50 results of 0.351
in comparison to the average ROC50 score of 0.385 for
the F1 combination scheme for the 1-norm SVM. The
decrease in classifier performance was probably because
of the poor performance of the GSM kernels. The input
kernels were fairly similar to each other since they were
derived from the same source of data. Comparing the 2-
norm SVM with the 1-norm SVM, we noticed that the
2-norm SVM always showed poorer classification per-
formance.

4 Conclusion and Future Work
In this study we combined the different optimized ker-
nel matrices using QCQP for performing discriminative
learning using the 1-norm and 2-norm support vector ma-

Table 1: Average ROC50 results across the 27 fold
classes.

PSSM GSM
Schemes 1-norm 2-norm 1-norm 2-norm
AF(2) 0.322 0.306 0.160 0.154
BF(2) 0.341 0.311 0.310 0.291
BV(2) 0.384 0.337 0.332 0.250
SW 0.380 0.356 0.261 0.249
F1 0.385 0.339 0.242 0.240
F2 0.351 0.315 - -

PSSM and GSM denote the use of position specific scoring matrices
and the global scoring matrices for the base kernels, respectively. F1
is the optimal linear weighting of AF, BF, BV and SW kernel matrices.
F2 is the optimal linear weighting of eight matrices (i.e combining both
sets of PSSM and GSM based matrices). AF, BF, and BV kernels use
a window having wmer = 2. The gap-opening, extension and shift
parameters are (3.0, 0.75, 1.5) and (5.0, 1.0, 0.0) for the SW-PSSM and
SW-GSM kernels respectively.

Figure 2: Learned Optimal Weights for different binary
classifiers (1-norm soft margin SVM)
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chines.
We report a slight performance improvement when

using the 1-norm SVM formulation to integrate the ker-
nel matrices. There are a wide range of other kernel
learning methods which need to be studied and analyzed
in the near future. It would be interesting to test the per-
formance of kernel integration methods using SDP [15],
SCOP [4, 31] and SILP [30, 26]. We would also like to
use our two-layered learning framework [25] to integrate
the predictions of individual kernels.

We also realize that the different kernel matrices used
in this study were of similar nature to each other. We may
be adding adding redundant information while learning
the optimal kernel matrix as a weighted combination of
the carefully designed individuals. We would like to
explore the use of kernel matrices derived from differ-
ent databases or heterogeneous sources. We would also
like to integrate kernel matrices derived from protein
local structure prediction i.e backbone and secondary
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Figure 3: Performance comparison when combining po-
sition specific based (PSSM) kernel matrices. The graph
shows the number of fold classes below certain ROC50

values for different kernel matrices and their optimal lin-
ear combination
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Figure 4: Performance comparison when combining po-
sition independent based (GSM) kernel matrices. The
graph shows the number of fold classes below certain
ROC50 values for different kernel matrices and their op-
timal linear combination
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structure information. Another future study, is to ex-
plore the idea of learning a weight combination of ker-
nel matrices for performing multi-class classification di-
rectly [6, 7, 8, 35, 1], rather than building separate one-
versus-rest binary classifiers. Learning a kernel matrix
for the multi-class problem would involve a larger num-
ber of constraints, but would be efficient to learn a single
optimal K∗, kernel matrix rather than individual kernel
matrices for each of the classification models (one per
fold) as done in this study.
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