
Department of Computer Science
George Mason University
Technical Report Series

4400 University Drive MS#4A5
Fairfax, VA 22030-4444 USA
http://cs.gmu.edu/
703-993-1530

HyperCheck: A Hardware-Assisted Integrity Monitor

Jiang Wang, Angelos Stavrou and Anup Ghosh
{jwanga, astavrou, aghosh1}@gmu.edu

Technical Report GMU-CS-TR-2010-5

Abstract
Over the past few years, virtualization has been em-
ployed to environments ranging from densely populated
cloud computing clusters to home desktop computers.
Security researchers embraced virtual machine monitors
(VMMs) as a new mechanism to guarantee deep isola-
tion of untrusted software components. Unfortunately,
their widespread adoption promoted VMMs as a prime
target for attackers. In this paper, we present Hyper-
Check, a hardware-assisted tampering detection frame-
work designed to protect the integrity of VMMs and, for
some classes of attacks, the underlying operating system
(OS). HyperCheck leverages the CPU System Managed
Mode (SMM), present in x86 systems, to securely gen-
erate and transmit the full state of the protected machine
to an external server. Using HyperCheck, we were able
to ferret-out rootkits that targeted the integrity of both
the Xen hypervisor and traditional OSes. Moreover, Hy-
perCheck is robust against attacks that aim to disable or
block its operation. Our experimental results show that
Hypercheck can produce and communicate a scan of the
state of the protected software in less than 40ms.

1 Introduction
Hypervisors1 have become the de facto standard in server
consolidation because they decrease the energy footprint
and cost of management of modern computing clusters.
In addition, hypervisors are increasingly used as compo-
nents to enforce system security and resilience [23, 27,
18, 37, 21, 35, 30]. This widespread adoption of virtual-
ization has attracted the attention of the attackers towards
VMM vulnerabilities. Indeed, recently, there has been

1Also called Virtual Machine Monitors VMMs

a surge in the reported vulnerabilities for commercial
and open source hypervisors [4]. Moreover, the num-
ber and nature [39, 10] of attacks against the hypervisors
are poised to grow.

This increasing attack trend has spurred research to-
wards reducing the hypervisor Trusted Code Base (TCB)
of current commercial hypervisors [26]. Others devel-
opped new specialized prototype hypervisors [35, 25].
However, having a small code base can only limit the
code exposure and thus the attack surface of the hypervi-
sor – it cannot provide strong guarantees about the code
integrity of all the hypervisor components.

To address these limitations and to complement the ex-
isting protection mechanisms, we designed a hardware-
assisted tampering detection framework called Hyper-
Check. HyperCheck is designed to protect the integrity
of VMMs and, for some classes of attacks, the un-
derlying operating system (OS). To achieve that, Hy-
perCheck harnesses the CPU System Managed Mode
(SMM) which is present in all x86 commodity systems
to create a snapshot view of the current state of the CPU
and memory registers of the protected machine. This in-
formation is securely and verifiably transmitted using a
network card to a remote analysis server. Using that in-
formation, the analysis server can identify any tamper-
ing by comparing the newly generated view with the one
recorded when the machine was initialized. If the two
views do not match, a human operator is notified. As
shown in Figure 1, HyperCheck works at the BIOS level
and can protect the software above it. Our assumptions
are that the attacker does not have physical access to the
machine and that the SMM BIOS is locked and thus can-
not be altered during run. We do not explicitly require
trusted boot to initialize HyperCheck [24, 25]. However,
having a machine equipped with trusted boot can prevent
attacks against HyperCheck that simulate a hardware re-

1

Figure 1: HyperCheck can offer protection to services
running above BIOS

set 2

Unlike previous work [29] that use specialized PCI
hardware, we are able to acquire a complete view of
the target machine’s state including the entire memory
and CPU registers. In addition, our approach is able to
thwart attacks aimed at disabling, blocking, or even tak-
ing over PCI devices. To evaluate the validity and per-
formance of our approach, we implemented two proto-
types for HyperCheck. HyperCheck-I uses QEMU [7] –
a fully system emulator – to emulate the PCI NIC, while
HyperCheck-II is based on an Intel e1000 physical NIC.
Using our prototypes, we were able to ferret-out rootkits
aimed at Xen [14] hypervisor, Xen Domain 0, Linux, and
Windows. Our experimental results indicate that Hyper-
Check does not cause prohibitive performance overhead
requiring only a few milliseconds to completely transmit
each snapshot.

In summary, we make the following contributions:

1. Designed a novel hardware-assisted tampering de-
tection framework that creates a complete snapshot
of the state of the system with commercial hardware
and no modification to the installed software.

2. Implemented two prototypes: one based on QEMU
and the other based on the real hardware. The latter
has overhead in the order of few milliseconds. Us-
ing our prototype, we demonstrate that we can suc-
cessfully detect rootkits and code integrity attacks
against the Xen VMM, Xen Domain 0, Linux, and
Windows.

2 Related work
Protecting software from integrity attacks using
hardware-assisted techniques is not new: researchers
used a special-purpose PCI device to acquire the phys-
ical memory either for rootkit detection [29, 6] or for
forensic purpose [12] in the past. The closest system to
our work is Copilot [29]. Copilot employed a special

2As we discuss in Section 7, the same can be accomplished using a
management interface.

PCI device to poll the physical memory of the host and
send it to an admin station periodically. In HyperCheck,
we do not require specialized hardware – only an
out-of-the-box network card. We also offer a complete
view of the CPU state including its registers. Such view
is important to prevent copy-and-change attacks that
can mislead the PCI card to scan the wrong regions of
memory and report erroneously that the system is not
affected.

Another closely related work is HyperGuard [32].
Rutkowska et al. suggested using SMM of the x86 CPU
to monitor the integrity of the hypervisors. Although we
have similar goals as the HyperGuard project, the use of
a network card allows us to outsource the analysis of the
state snapshot. This results in a drastic improvement in
the performance of the system reducing the system busy
time from seconds to milliseconds. Due to its low per-
formance overhead, HyperCheck can also monitors the
code and data of the privileged domain and underlying
OSes. Another difference is that the monitoring machine
can be used to detect the DoS attacks to the SMM code.

DeepWatch [10] also offers detection of hypervisor
rootkits, called virtualization malware in DeepWatch, by
using the embedded micro-controller(s) in the chipset.
DeepWatch is signature based and used to detect rootkits
relying on hardware-assisted virtualization technologies
such as Intel VT-d [19]. Contrary, HyperCheck performs
anomaly detection and thus can identify a larger class of
software rootkits.

Flicker [24] uses a TPM based method to provide a
minimum Trusted Code Base (TCB), which can be used
to detect the modification to the kernels. Flicker requires
advanced hardware features such as Dynamic Root of
Trust Measurement (DRTM) and late launch. In contrast,
HyperCheck uses the static Platform Configuration Reg-
isters (PCRs) to secure the booting process. In addition,
by sending out the data, HyperCheck has a lower over-
head on the target machine compared to Flicker. To re-
duce the overhead of Flicker, TrustVisor [25] has a small
footprint hypervisor to perform some cryptography op-
erations. However, all the legacy applications should be
ported for TrustVisor to work. In addition, TrustVisor
requires DRTM.

Another branch of research tries to improve the secu-
rity of the hypervisor by adding hooks [13] and enforcing
security policies between virtual machines [33]. These
methods are hypervisor specific and run as the same level
as the hypervisor. HyperCheck monitors the hypervisor
state from a lower level and thus, is complementary to
these methods.

Furthermore, there is a plethora of research aimed to-
wards protecting the Linux kernel [6, 23, 18, 37, 21, 35,
30]. Baliga [6] et al. use a PCI device to acquire the
memory and automatically derive the kernel invariance.

2

Currently, we discover the kernel invariance manually
but we could employ their techniques directly and with-
out modifications. Litty [23] et al. developed a tech-
nique to discover the address of key data structures that
are instantiated during run-time by relying on processor
hardware and executable file specifications. But they also
rely on the integrity of the underlying hypervisors. Hy-
perCheck first obtains the virtual addresses of those sym-
bols through the symbol file, but then calculates the phys-
ical addresses through CPU registers. Therefore, Hy-
perCheck can get the correct view of the system mem-
ory even if the underlying OS or hypervisor is compro-
mised and page tables are altered. Other existing re-
search [37, 21, 35, 30], including work by Jiang et al.,
depend on the integrity of the hypervisor to protect the
kernel. Our work is complementary and can be employed
as a meta-protection mechanism to guard the integrity of
OS-level defenses. A lot of recent work has gone towards
using SMM to generate efficient rootkits [38, 9, 17, 15].
These rootkits can be used either to get root privilege or
as a key-stroke loggers. We use SMM to offer integrity
protection by monitoring the state of hypervisors and op-
erating systems.

3 Threat model

3.1 Background of System Management
Mode

System Management Mode (SMM) was introduced in
the Intel386 SL and Intel486 SL processors. It became
a standard IA-32 feature in the Pentium [3] processor.
SMM is a separate CPU mode besides the protected and
real mode. The original purpose of SMM was to provide
a transparent mechanism for implementing platform spe-
cific functions such as power management and system
security. The processor enters SMM when the external
SMM interrupt pin (SMI#) is activated or a SMI is re-
ceived from the advanced programmable interrupt con-
troller (APIC).

In SMM, the processor switches to a separate address
space, called system management RAM (SMRAM). In
addition, all hardware context of the currently running
code is saved in SMRAM. Then, the CPU, being in
SMM, executes transparently code that is usually a part
of BIOS and resides in SMRAM. The SMRAM can
be made inaccessible from other CPU operating modes.
Therefore, it can act as trusted storage, sealed from being
accessed from any device or even the CPU (while not in
SMM mode). In HyperCheck, we modify the SMM code
to execute our monitoring functions. This modification
of SMM code can be integrated into the BIOS. Another
way is to use a trust boot mechanism or a management

interface to upload the code to SMM (when SMRAM is
not locked) and then lock the SMRAM. Upon returning
from SMM, the processor is placed back into its state
prior to enter SMM.

3.2 Attacker’s capabilities
We assume that the adversary has following capabili-
ties: she is able to exploit vulnerabilities in any software
running in the machine after bootup. This includes the
VMM and all of its privileged components. For instance,
the attacker can compromise a guest domain and escape
to the privileged domain. In Xen 3.0.3, pygrub [?] allows
local users with elevated privileges in the guest domain
(Domain U) to execute arbitrary commands in Domain
0 via a crafted grub.conf file [2]. Also, the attacker can
modify the hypervisor code or data using any known or
zero-day attacks. For instance, the DMA attack [39] hi-
jacks a device driver to perform unauthorized DMA to
the hypervisor’s code or data.

3.3 General Assumptions
The attacker cannot tamper with or disable the installed
PCI hardware without stopping or rebooting the ma-
chine. Also, if the SMM code is integrated with BIOS,
we assume the SMRAM is properly setup by BIOS upon
boot time. If the SMM code is not included in the BIOS,
it has to be reliably uploaded to the SMRAM during
boot. This can be done by either using trusted boot or
using the management interface to bootstrap the com-
puter. In this case, to initialize the SMM code, a trusted
bootstrap mechanism has to be employed. The SMRAM
is locked once it is properly set up. Once it is locked,
we assume it cannot be subverted by the attacker (an as-
sumption supported by current hardware). Attacks that
attempt to modify the SMM code [40, 16] are beyond
the scope of this paper.

3.4 In-scope Attacks
HyperCheck aims to detect the in-memory, Ring-0 level
(hypervisor or general OS) rootkits and rootkits in priv-
ileged domains of hypervisors. A rootkit is a set of pro-
grams and code that allows a permanent or consistent,
undetectable presence on a computer [20]. One kind of
rootkits only modifies the memory and/or registers and
runs in the kernel level. For example, the idt-hook rootkit
[5] modifies the interrupt descriptor table (IDT) in the
memory and then gains the control of the complete sys-
tem. An stealthier version of the idt-hook rootkit could
keep the original IDT unchanged by copying it to a new
location and altering it. Next, the attacker could change
the IDTR register to point to the new location. When it

3

Hardware

Hypervisor

OS 1 OS 2

Monitor

Machine
PCI NIC

(1)

SMM

(2)

Analysis

Module

(1) Acquiring module

(2) Register Checking module

Figure 2: The architecture of HyperCheck

comes to the hypervisor level rootkit, there is yet another
kernel: the hypervisor kernel which runs underneath the
operating system kernel. There are existing methods to
detect in-memory, kernel-level rootkits. We try to bridge
this gap by introducing HyperCheck.

3.5 Limitations

Currently, our analysis cannot protect against attacks
that modify dynamic data. There are two types of
threats: modification to the dynamically generated func-
tion pointers and return-oriented attacks. In these at-
tacks, the control flow is redirected to memory location
controlled by the attacker. There are techniques to thwart
such attacks: the non-executable bit in new CPUs and
Address Space Layout Randomization to name a few.
HyperCheck can leverage and integrate those techniques
to provide full protection but it was not part of our im-
plementation in this paper. Having said that, we can still
detect the presence of the malfease if it tries to inter-
fere with the VMM code or statically defined function
pointer.

4 System Architecture
HyperCheck is composed of three key components: the
physical memory acquiring module, the analysis mod-
ule and the CPU register checking module. The mem-
ory acquiring module reads the contents of the physical
memory of the protected machine and sends them to the
analysis module. Then, the analysis module checks the
memory contents and verifies if anything is altered. The
CPU register checking module reads the registers and
validates their integrity. The overall architecture of Hy-
perCheck is shown in Figure 2. Before introducing the
key components, we first describe our design principles.

Our main design principle is that HyperCheck should
not rely on any software running on the machine except
the boot loader. Since the software may be compromised,
one cannot trust even the hypervisor. Therefore, we use
hardware – a PCI Ethernet card – as a memory acquiring

module and SMM to read the CPU registers. Usually,
Ethernet cards are PCI devices with bus master mode en-
abled and are able to read the physical memory through
DMA, which does not need help from CPU. SMM is an
independent operating mode and could be made inacces-
sible from protected mode which is what the hypervisor
and privileged domains run in.

Previous researchers only used PCI devices to read the
physical memory. However, CPU registers are also im-
portant because they define the location of active mem-
ory used by the hypervisor or an OS kernel such as CR3
and IDTR registers. Without these registers, the attacker
can launch a copy-and-change attack. It means the at-
tacker copies the memory to a new location and modifies
it. Then the attacker updates the register to point to the
new location. PCI devices cannot read the CPU regis-
ters, thereby failing to detect this kind of attacks. By
using SMM, HyperCheck can examine the registers and
report the suspicious modifications.

Furthermore, HyperCheck uses the CR3 register to
translate the virtual addresses used by the kernel to
the physical addresses captured by the analysis mod-
ule. Since the acquiring module uses the physical ad-
dress to read the memory, HyperCheck needs to find
the physical addresses of the protected hypervisor and
privileged domain. For that purpose, HyperCheck uses
both symbol files and CPU registers. From symbol files,
HyperCheck can read the virtual addresses of the target
memory. Then, HyperCheck uses CPU registers to find
the physical addresses corresponding to the virtual ones.
Previous systems, used the symbol files to read the vir-
tual addresses and calculate the physical addresses with-
out accessing the CR3 and page tables. Such systems can
not detect attacks that modify page tables and leave the
original memory untouched. Another possible way to
get the physical addresses without using registers, is to
scan the entire physical memory and use pattern match-
ing to find all potential targets. However, this method
is not scalable or even efficient especially since hyper-
visors and operating system kernels have small memory
footprint.

4.1 Acquiring the physical memory

In general, there are two ways to acquire the phys-
ical memory: a software method and a hardware
one. The former uses the interface provided by
the OS or the hypervisor to access the physical
memory, such as /dev/kmem on Linux [11] or
\\.\Device\PhysicalMemory on Windows [36].
This method relies on the integrity of the underlying op-
erating system or the hypervisor. If the operating sys-
tem or the hypervisor is compromised, the malware may
provide a false view of the physical memory. Moreover,

4

these interface to access memory can be disabled in fu-
ture versions of the operating systems. In contrast, the
hardware method uses a PCI device [12, 29] or other
kinds of hardware [10]. The hardware method is more
reliable because it depends less on the integrity of the
operating system or the hypervisor.

We choose the hardware method to read the physi-
cal memory. There are also multiple options for the
hardware components such as a PCI device, a FireWire
bus device or customized chipset. We selected to use a
PCI device because it is the most commonly used hard-
ware. Moreover, existing commercial Ethernet cards
need drivers to function. These drivers normally run in
the operating system or the driver domain, which are vul-
nerable to the attacks and may be compromised in our
threat model. To avoid this problem, HyperCheck puts
these drivers into the SMM code. Since the SMRAM
memory is going to be locked after booting, it will not
be modified by the attacker. In addition, to prevent the
attacker from using a malicious NIC driver in the OS to
spoof the SMM driver, we use a secret key. The key is
obtained from the monitor machine when the target ma-
chine is booting up and then stored in the SMRAM. The
key then is used as a random seed to selectively hash a
small portion of the data to avoid polution and data re-
play attacks.

Another class of attacks is denial of service attacks.
Such attacks aim to stop or disable the device. For in-
stance, according to ACPI [1] specification, every PCI
device supports D3 state. This means that an ACPI-
compatible device can be suspended by an attacker who
takes over the operating system: ACPI was designed to
allow the operating system to control the state of the de-
vices. Of course, the OS is not a trusted component in our
threat model. Therefore, one possible attack is to selec-
tively stop the NIC without stopping any other hardware.
To prevent ACPI DoS attacks, we need an out-of-band
mechanism to verify that the PCI card is not disabled.
The remote server that receives the state snapshots plays
that role.

4.2 Translating the physical memory

In practice, there is a semantic gap between the physi-
cal memory that we monitor and the virtual memory ad-
dressing used by the hypervisor. To translate the phys-
ical memory, the analysis module must be aware of the
semantics of the physical memory layout depends on the
specific hypervisor we monitor. On the other hand, the
acquiring module may support many different analysis
modules with no or small modifications.

The current analysis module depends on three prop-
erties of the kernel memory: linear mapping, static na-
ture and persistence. Linear mapping means the kernel

(OS or hypervisor) memory is linearly mapped to phys-
ical memory and the physical addresses are fixed. For
example, on x86 architecture, the virtual memory of Xen
hypervisor is linearly mapped into the physical memory.
Therefore, in order to traslate the physical address to a
given virtual address in Xen, we have to subtract the vir-
tual address from an offset. In addition, Domain 0 of Xen
is also linear mapped to the physical memory. The offset
for Domain 0 is different on different machines but re-
mains the same on a given machine. Moreover, other op-
erating system kernels, such as Windows [34], Linux [8]
or OpenBSD [15], also have this property when they are
running directly on the real hardware.

Static nature means the contents of the monitoring part
of the hypervisor have to be static. If the contents are
changing, then there might be a time window between
the CPU changing the contents and our acquiring mod-
ule reading them. This may result in inconsistency for
analysis and verification. Persistence property means the
memory used by hypervisors will not be swapped out to
the hard disk. If the memory is swapped out, then we
cannot identify and match any content by only reading
the physical memory. We would have to read the swap
file on the hard disk.

The current version of HyperCheck relies on these
three properties (linear mapping, static nature and per-
sistence) to work correctly. Besides the Xen hypervisor,
most operating systems hold these three properties too.

4.3 Reading and verifying the CPU regis-
ters

Since the Ethernet card cannot read the CPU registers,
we must use another method to read them. Again, there
are software and hardware based methods. For software
method, one could install a kernel module in the hypervi-
sor and then it could obtain registers by reading from the
CPU directly. However, this is vulnerable to the rootkits,
which can potentially modify the kernel module or re-
place it with a fake one. For hardware method, one could
use chipset to obtain registers.

We choose to use SMM in x86 CPU which is similar
to a hardware method. As we mentioned earlier, SMM is
a different CPU mode from the protected mode which the
hypervisor or the operating system reside in. When CPU
switches to SMM, it saves the register context in the SM-
RAM. The default SMRAM size is 64K Bytes beginning
at a base physical address in physical memory called the
SMBASE. The SMBASE default value following a hard-
ware reset is 0x30000. The processor looks for the first
instruction of the SMI handler at the address [SMBASE
+ 0x8000]. It stores the processor’s state in the area
from [SMBASE + 0xFE00] to [SMBASE + 0xFFFF]. In
SMM, if SMI handler issues rsm instruction, the proces-

5

sor will switch back to the previous mode (usually it is
protected mode). In addition, the SMI handler can still
access I/O devices. HyperCheck verifies the registers in
SMM and reports the result by sending it via the Ether-
net card to the monitor machine. HyperCheck focuses on
monitoring two registers: IDTR and CR3. IDTR should
never change after system initialization. For CR3, SMM
code can use it to translate the physical addresses of the
hypervisor kernel code and data. The offsets between
physical addresses and virtual ones should never change
as we discussed in Section 4.2.

5 Implementation
We implemented two prototypes for HyperCheck.
HyperCheck-I is based on QEMU full system emulation
while HyperCheck-II is based on a physical machine.
HyperCheck-I is first developed for quick prototyping
and debugging. To measure the actual performance, we
then developed HyperCheck-II. Both of them utilize Intel
e1000 Ethernet card as the acquiring module.

We first introduce HyperCheck-I. The target machine
runs as a virtual machine in QEMU. The analysis mod-
ule runs on the host operating system of QEMU. For the
acquiring module, we put a small NIC driver into SMM
of the target machine. It drives the NIC to transmit the
contents of physical memory as an Ethernet frame. On
the monitoring machine, an analysis module receives the
packet from the network. The analysis module then com-
pares contents of the physical memory with the original
(initial) versions. If a new snapshot of the memory con-
tents is different from the original one, the module will
report the event and the administrator can then make a
decision. Moreover, the small program runs in the SMM
checks the CPU registers and reports the result via the
Ethernet card.

For HyperCheck-II, we use two physical machines:
one as the target and the other as the monitor. On the
target machine, we installed Xen 3.1 natively and used
the physical Intel e1000 Ethernet card as the acquiring
module. Also, we modified the default SMM code on the
target machine. The analysis module runs on the moni-
tor machine and is the same as the one in HyperCheck-I.
HyperCheck-II is mainly used for performance measure-
ment.

5.1 Memory Acquiring module

As mentioned earlier, we used QEMU full system emu-
lation mode for HyperCheck-I. QEMU is suitable for de-
bugging problems. But it also has two drawbacks. First,
the throughput of a QEMU network card is much lower
than a real device. For our QEMU based prototype, the

network card throughput is just about 10MB/s, although
Gigabit Ethernet cards are common in real world. Sec-
ond, the performance measurement on QEMU may not
reflect the real world performance. HyperCheck-II over-
comes these problems.

The main task to implement the acquiring module is
to port the e1000 network card driver into SMM to scan
the memory and send it out. Normally, SMM code is
one part of BIOS. Since we don’t have the source code
of the BIOS, we used the method similar to the one men-
tioned in [9] to modify the default SMM code. Basically,
it writes the SMM code in 16bit assembly and uses a user
level program to open the SMRAM and copy the assem-
bly code to the SMRAM.

To overcome the limitations of [9], we split the e1000
driver into two parts: initialization and data transfer.
The initialization part is complex and very similar to the
Linux driver. The transferring part is simpler and differ-
ent from the Linux driver. Therefore, we modified the
existing Linux e1000 driver to initialize the network card
and only program the transferring part in assembly. The
e1000 driver on Linux is changed to only initialize the
NIC but does not send out any packet. The assembly
code is compiled to an ELF object file. Next, we wrote
a small loader which can parse the ELF object file and
load the code and data to the SMM.

For this implemntation, the NIC driver is ported to the
SMM, the next step is to modify the driver to scan the
memory and send them out. HyperCheck uses two trans-
mission descriptors per packet, one for the header and
the other for the data. The content of the header should
be predefined. The NIC is already initialized by the OS.
The driver in SMM has only to prepare the descriptor
table and write it to the Transmit Descriptor Tail (TDT)
register of the NIC. The NIC will send the packet to the
monitoring machine using DMA. NIC driver in SMM
prepares the header data and let the descriptor point to
this header. For the payload, the descriptor is directly
pointed to the address of the memory that needs to be
scanned. In addition, e1000 NIC supports CRC offload-
ing.

To prevent replay attacks, a secret key is transferred
from the monitor machine to the target machine when it
is booting. The key is used to create a random seed to se-
lectively hash a portion of the data. If we hash the entire
data, the performance impact may be high. To reduce
the overhead, we use the secret key as a seed to gener-
ate one big random number used for one-time pad en-
cryption and another set of serial random numbers. The
serial of random numbers are used as the indexes of the
positions of the memory being scanned. Then the con-
tent at these positions are XORed with the one-time pad
with the same length before starting NIC DMA. After
the transmission is done, the memory content is XORed

6

again to restore the original value.
The NIC driver also checks the loop back setting of

the NIC before sending the packet. To further guarantee
the data integrity ,the SMM NIC driver stays in the SMM
until all the packet is written to the internal FIFO of the
NIC, and add 64KB more data to the end to flush the
internal FIFO of the NIC. Therefore, the attacker cannot
use loopback mode to get the secret key or peek into the
internal NIC buffer through debugging registers of the
NIC.

5.2 Analysis module

On the monitoring machine, a dedicated network card is
connected with the acquiring module. The operating sys-
tem of the monitoring machine was CentOS 5.3. We run
tcpdump to filter the packets from the acquiring mod-
ule; the output of tcpdump is sent to the analysis mod-
ule. The analysis module written in a Perl script reads the
input and checks for any anomalies. The analysis mod-
ule first recovers the contents using the same secret key.
Then it compares every two consecutive memory snap-
shots bit by bit. If they are different, the analysis module
outputs an alert on the console, as we are checking the
persistent and static portion of the hypervisor memory.
The administrator can then decide whether it is a normal
update of the hypervisor or an intrusion. Note that during
the system boot time, the contents of those control data
and code are changing.

Currently, the analysis module can check the integrity
of the control data and code. The control data includes
IDT table, hypercall table and exception table of Xen,
and the code is the code part of Xen hypervisor. To
find out the physical address of these control tables, we
use Xen.map symbol file. First, we find the virtual ad-
dresses of idt_table, hypercall_table and ex-
ception table. Then the physical address of these sym-
bols is virtual address − 0xff00,0000 on x86-32 archi-
tecture with PAE. The address of Xen hypervisor code is
between _stext and _etext. HyperCheck can also
monitor the control data and codes of Domain 0. This
includes the system call table and the code part of Do-
main 0 (a modified Linux 2.6.18 kernel). The kernel of
Domain 0 is also linearly mapped to the physical mem-
ory. We use a kernel module running in Domain 0 to
compute the exact offset. On our test machine, the off-
set is 0x83000000. Note that, there is no IDT table for
Domain 0, because there is only one such table in the
hypervisor. We input these parameters to the acquiring
module to improve the scan efficiency.

Note that these control tables are critical to system in-
tegrity. If their contents are modified by any malware,
then that malware can potentially run arbitrary code in
the hypervisor level, i.e. the most privileged level. An

antivirus software or intrusion detection system that runs
in Domain 0 is difficult or unable to detect this hypervi-
sor level malware because they rely on the hypervisor to
provide the correct information. If the hypervisor itself
is compromised, it may provide fake information to hide
the malware. The checking for the code part of the hy-
pervisor enables HyperCheck to detect the attacks which
do not modify the control table but just modify the code
invoked by those tables.

5.3 CPU register checking module

HyperCheck uses SMM code to acquire and verify CPU
registers. In a product, the SMI handler should be inte-
grated into BIOS. Or it can be set up during the system
boot time. This requires the bootstrap to be protected
by some trusted bootstrap mechanism. In addition, most
chipsets provide a function to lock the SMRAM. Once it
is locked, SMM handler cannot be changed until reboot.
Therefore, the SMRAM should be locked once it is set
up. In our prototype, we used the method mentioned in
Section 5.1 to modify the default SMM code.

There are three steps for CPU register checking: 1)
triggering SMI to enter SMM; 2) checking the registers
in SMM; 3) reporting the result. SMI is a hardware inter-
rupt and can only be triggered by hardware. Normally,
I/O Controller Hub (ICH), also called Southbridge, de-
fines the events to trigger SMI. For HyperCheck-I, the
QEMU emulates Intel 82371SB chip as the Southbridge.
It supports some device idle events to generate SMI. SMI
is often used for power management, and Southbridge
provides some timers to monitor the state of a device.
If that device remains idle for a long time, it will trig-
ger SMI to turn off that device. The resolutions of these
timers are typically one second. However, on different
motherboard, the method to generate the SMI may be dif-
ferent. Therefore, we employ the Ethernet card to trigger
the SMI event.

For the register checking, HyperCheck monitors IDTR
and CR3 registers. The contents of IDTR should never
change after system boot. The SMM code just reads
this register by sidt instruction. HyperCheck uses CR3
to find out the physical addresses of hypervisor kernel
code and data given their virtual addresses. Essentially,
it walks through all the page tables as a hardware Mem-
ory Management Unit (MMU) does. Note that offset be-
tween the virtual address and the physical address of hy-
pervisor kernel code and data should never change. For
example, it is 0xff000000 for Xen 32bit with PAE. The
Domain 0 has the same property. The SMM code re-
quires the virtual address range as the input (this can be
obtained through the symbol file and send to the SMM in
the boot time) and then check their physical addresses. If
any physical address is not equal to virtual address – off-

7

set, then it is a possible attack. The SMM code reports
the result of this checking via the Ethernet card. The as-
sembly code of it is just 67 LOC.

As we already mentioned, the SMM code uses the Eth-
ernet card to report the result. Without the ethernet card,
it is difficult to send the report reliably without stopping
the whole system. For example, the SMM code could
write the result to a fixed address of physical memory.
But according to our threat model, the attacker has ac-
cess to that physical memory and can easily modify the
result. Or the SMM code could write it to the hard disk.
Again, this can be altered by the attacker too. Since secu-
rity cannot relies on the obscurity, the only way left with-
out a network card is to stay in the SMM mode and put
the warning message on the screen. This is reliable, but
the system in the protected mode becomes completely
frozen. Sometimes, it may not be desirable, and could
be abused by the attacker to launch Denial of Service at-
tacks.

5.4 HyperCheck-II

In HyperCheck-II, the main difference from
HyperCheck-I is the acquiring module. We ported
the SMM NIC driver from QEMU to a physical ma-
chine. Both of them have the same model of the NIC:
82540EM Gigabit Ethernet card. However, the SMM
NIC driver from the QEMU VM does not work on the
physical machine. And it took one of the author one
week to debug the problem. Finally, we find out that the
main difference between a QEMU VM and the physical
machine (Dell Optilex GX 260) is that the NIC can
access the SMRAM in a QEMU VM while it cannot
on the physical machine. For HyperCheck-I SMM NIC
driver, the TX descriptor is stored in the SMRAM and
it works well. For HyperCheck-II, the NIC cannot read
the TX descriptor in the SMRAM and therefore does not
transmit any data.

To solve this problem, we reserved a portion of phys-
ical memory by adding a boot parameter: mem=500M
to the Xen hypervisor or Linux kernel. Since the total
physical memory on the physical machine is 512MB, we
reserved 12MB for HyperCheck by using mem parame-
ter. This 12MB is used to store the data used by SMM
NIC and the TX descriptor ring. We also modified the
loader to be a kernel module; it calls ioremap() to
map the physical memory to a virtual address and then
load the data there. In a product, the TX descriptor ring
should be prepared every time by the SMM code before
transmiting the packet. In our prototype, since we don’t
have the source code of the BIOS, we used the loader to
load the TX descriptor.

In addition, we built a debugging interface for the
SMM code on the physical machine. We use the re-

served physical memory to pass the information between
the SMM code and the normal OS. This interface is also
used to measure the performance of the SMM code as we
will discuss in Section 6.

6 Evaluation
To validate the correct operation of HyperCheck, we first
verified the properties that need to hold for us to be able
to protect the underlying code as we discussed in Sec-
tion 4.2. Then, we tested the detection for hypervisor
rootkits and measured the operational overhead of our
approach. We have two testbeds: testbed 1 is mainly
used for HyperCheck-I and also used as the monitor ma-
chine for HyperCheck-II. Testbed 2 uses HyperCheck-II
to produce the plotted performance overhead on the real
hardware. Testbed 1 was equipped with a Dell Precision
690 with 8GB RAM and one 3.0GHz Intel Xeon CPU
with two cores. The host operating system was Cen-
tOS 5.3 64bit. The QEMU version was 0.10.2 (without
kqemu). The Xen version was 3.3.1 and Domain 0 was
CentOS 5.3 32bit with PAE. Testbed 2 was a Dell Op-
tilex GX 260 with one 2.0GHz Intel Pentium 4 CPU and
512MB memory. Xen 3.1 and Linux 2.6.18 was installed
on the physical machine and the Domain 0 is CentOS 5.4.

6.1 Verifying the static property

An important assumption is that the control data and
respective code are statically mapped into the physi-
cal memory. We used a monitoring module designed
to detect legitimate control data and code modifications
throughout the experiments. This enabled us to test our
approach against data changes and self-modifying code
in the Xen hypervisor and Domain 0. We also tested the
static properties of Linux 2.6 and Windows XP 32bit ker-
nels. In all these tests, the hypervisor and the operating
systems are booted into a minimal state. The symbols
used in the experiments are shown in Table 1. During the
tests, we found out that during boot the control data and
the code changes. For example, the physical memory of
IDT is all 0 when the system first boots up. But after
several seconds, it becomes non-zero and static. The rea-
son is that the IDT table is initialized later in the boot
process.

6.2 Detection

To verify whether HyperCheck can detect attacks against
the hypervisor, we implemented DMA attacks [39] on
Xen hypervisor and then tested HyperCheck-I’s response
on testbed 1. We ported the HDD DMA attacks to mod-
ify the Xen hypervisor and Domain 0. There are four

8

Table 1: Symbols for Xen hypervisor, Domain 0, Linux
and Windows

System Symbol Use
idt table Hypervisor’s Interrupt

Descriptor Table
Hypercall table Hypervisor’s Hypercall

Table
Xen exception table Hypervisor’s Excep-

tion Table
stext Beginning of hypervi-

sor code
etext Bnd of hypervisor code

sys call table Domain 0’s System
Call Table

Dom0 text Beginning of Domain
0’s kernel code

etext End of Domain 0’s ker-
nel code

idt table Kernel’s Interrupt De-
scriptor Table

Linux sys call table kernel’s System Call
Table

text Beginning of kernel
code

etext End of kernel code
Windows PCR→idt Kernel’s Interrupt De-

scriptor Table
KiServiceTable Kernel’s System Call

Table

attacks to Xen hypervisor and two attacks to Domain
0. We also modified the pcnet network card in QEMU
to perform the DMA attack from the hardware directly.
The modified pcnet NIC is used to attack Linux and Win-
dows operating systems. There are three attacks to Linux
2.6.18 kernel and two attacks to Windows XP SP2 ker-
nel, each targeting one control table or the code. They
can modify the IDT table and other tables of the kernel.
HyperCheck-I correctly detected all these attacks by re-
porting the contents of memory in the target machine are
changed.

6.3 Monitoring overhead

!

"!

#!

$!

%!

&!!

&"!

&#!

& ' () * && &' &(
!"#$%& '()%* + ,-&%' .

/(
0
%
*0

(11
(2
3
45

6
#-
#1
%'
.

Figure 3: Network overhead for variable packet size.

!

"!!!

#!!!

$!!!

%!!!

&!!!

"! &! "!! "&! #!!

!"#" $%&' ()*+

,%
-
'
(-

%..
%/
0
12

3
45
4.
'$
+

Figure 4: Network overhead for variable data size.

The primary source of overhead is coming from the
transmission of the memory contents to the external
monitoring machine. In addition, to ensure the mem-
ory contents have not been tampered with, HyperCheck
needs to remain in SMM and wait until the NIC finished.
Otherwise, the attacker may control the OS and mod-
ify the memory contents or the transmit descriptor in the
main memory while transmitting. Initially, we measured
the time to transmit a single packet varying its payload
size. The packet flushed out when the Transmit Descrip-
tor Head register (TDH) is equal to Transmit Descriptor
Tail register (TDT). We calculated the elapsed time us-
ing the rdtsc instruction to read the time stamp before

9

!

"!

#!

$!

%!

&!

'!

(!

)!

*!

!"
#
$%
&
"''
"(
)
*+
,
*-
*'
$.
/ +,- ./0/

1,2345 1/-.

672. ./0/

878,-9 /11766

Figure 5: Overhead of the operations in SMM

and after each operation. As expected, the time linearly
increases as the size of the packet increases.

Next, we measured the bandwidth by using different
packet sizes to send out a fixed amount of data: 2881 KB
memory (the size of Xen code plus Domain 0 code). The
result is depicted in the Figure 3: when the packet size
is less than 7 KB, the time required to send the data sim-
ilar to a constant value. When the packet size becomes
8KB, the overhead increases dramatically and it remains
high. The reason is that the internal NIC transfer FIFO
is 16KB. Therefore, when the packet size becomes 8KB
or larger, the NIC cannot hold two packets in the FIFO at
the same time and this introduces delay.

Since HyperCheck can be used to monitor different
sized hypervisors and OSes, we measured the time re-
quired to send different amount of data and the results
are in Figure 4. In this set of experiments, we use 7KB
as the packet size since it introduced shortest delay in our
testbed. We can see that the time also nearly linearly in-
creased with the amount of memory. In addition to PCI
scanning, HyperCheck also triggers SMI interrupt every
one second and checks the registers in SMM. To measure
the overall overhead of entering SMM, executing SMM
code and return from SMM, we wrote a kernel module
running in Domain 0.

The tests were conducted on testbed 2 (HyperCheck-
II) and each test is repeated many times. Here we present
the average of the results. The overall time is composed
of four parts. First, the time taken to XOR the data with
the secret key. Second, the time to access the memory.
Third, the time to configure the card and switch from
protected mode to SMM and back. Finally, the time to
send out the data through the NIC. To find out how much
time was spent in each part, we wrote two more test pro-
grams. One is a dummy SMM code which does noth-
ing but just returns from SMM to CPU protected mode.
The other one does not access the main memory but just

!

"!!

#!!!

#"!!

$!!!

$"!!

%!!!

$ % &

!"#" $%&'()*+

,%
-
'(
)
%..
%/
0
12
3
14
1.
'$
+

Figure 6: Overhead of the XOR data in SMM

Execution Time(ms)
Code base Size(MB) HC SMM TPM

Linux 2.0 31 736 1022
Xen+Dom0 2.7 40 981 >1022
Window XP 1.8 28 709 > 972
Hyper-V 2.4 36 876 >1022
VMWare ESXi 2.2 33 825 >1022

Table 2: Time overhead of HyperCheck and other meth-
ods

use the registers to simulate the verification of IDTR and
CR3. Then we tested the running time for these two
SMM codes. From the first one, we can get the time for
switching between protected mode and SMM and then
switch back. From the second one, we can get the time
for the CPU computation part of the verification of IDTR
and CR3.

The results are presented in Figure 5. The most of the
time is spent in sending the data, which is 73 Million
cycles. Next is the time to accessing the main memory
: 5.28 Million cycles. Others took a very small portion.
The total time is 80 Million cycles. Since the CPU of the
testbed 2 is 2 GHz. Therefore, the SMM code consumes
6.5% of the CPU cycles, and takes 40 ms.

We also measured the code size of our SMM code,
which is just about 300 Bytes. On the monitor machine,
the overhead for reading the memory contents and com-
paring them with previous state took 230 ms, including
49 ms for only comparing the data. Note it is possible
to reduce the time for reading the memory contents from
the file, if we use pipe or other memory sharing based
communication between tcpdump and the perl script.

In contrast, previous research suggests using SMM to
read the memory and hashing it on the target machine.
We call this SMM only method. To compare our ap-
proach with SMM only method, we wrote a program to
XOR the memory in SMM with different sizes. The re-
sult is shown in Figure 6.

10

Memory Registers Overhead

HyperCheck x x Low
SMM x x High
PCI x Low

TPM x x High

Table 3: Comparison between HyperCheck and other
methods

The time for XOR data is linearly increased with the
amount of data and typically uses thousands of CPU cy-
cles. Also, we compare our approach with a TPM based
approach [24] which can also be used to monitor the
integrity of the kernels. The result is shown in the Ta-
ble 2. HC stands for HyperCheck. We can see that the
overhead of HyperCheck is one magnitude lower than
SMM-only and TPM based method. For SMM-only, it
has to hash the entire data to check its integrity, while
HyperCheck only hashes a random portion of the data
and then sends the entire data out using an Ethernet card.
For TPM based method, the most expensive operation
is TPM quote, which alone took 972 ms. Note that the
test machine of TPM based method is better than our
testbed 2. An overall comparison between HyperCheck
and other methods is shown in Table 3. We can see that
only HyperCheck can monitor both memory and regis-
ters with low overhead.

7 Security Analysis & Limitations
HyperCheck aims to detect the modifications to the con-
trol data and the codes of the hypervisors or OS kernels.
These kinds of attacks are realistic and have a signifi-
cant impact on the system. HyperCheck can detect these
attacks by using an Ethernet card to read the physical
memory via DMA and then analyze it. For example, if
the attackers control the hypervisor and make some mod-
ifications, HyperCheck can detect that change by reading
the physical memory directly and compare it with previ-
ous pristine value.

In addition, HyperCheck also uses SMM to monitor
CPU registers, which provides further protection. Some
pervious research works only rely on the symbol table in
the symbol file to find the physical address of the kernel
code and data. Nonetheless, there is no binding between
the addresses in the symbol table and the actual physical
address of these symbols [23]. For example, one poten-
tial attack is to modify the IDTR register of CPU to point
to another address. Then the malware can modify the
new IDT table, keeping the old one untouched. Another
potential attack is to keep the IDTR register untouched,
but modify the page tables of the kernel so that the vir-

tual addresses in the IDTR will actually point to different
physical addresses. HyperCheck can detect these cases
by checking CPU registers in SMM. In SMM, Hyper-
Check read the content of IDTR and CR3 registers used
by the operating system. IDTR should never change after
booting. If it changed, SMM will send a warning through
the Ethernet card to the monitor machine. From CR3,
HyperCheck can find the actual physical address given
the virtual ones. The offset between the virtual addresses
and the physical addresses should be static. If some off-
sets changed, HyperCheck will generate a warning too.
Moreover, PCI devices including the Ethernet card alone
can be cheated to get a different view of the physical
memory [31]. With SMM, we could avoid this problem
by checking the corresponding settings in SMM.

The network card driver of HyperCheck is put into the
SMM code to avoid malicious modifications. Also, to
prevent replay attacks, we use a key to hash a portion of
the data randomly and then send them out to the anal-
ysis module. Since the key is private and locked in the
SMRAM, the attacker cannot get it and cannot generate
the same hash. Attacker can still try to disable the Ether-
net card or the SMM code, but we can detect it through
an out-of-band monitor, such as Dell remote access con-
troller.

In addition, the attacker may try to launch a fake re-
boot attack to get a private key from the monitor ma-
chine. It can mimic the SMM NIC driver and send a
request for a new key. For this event, we have two
options: first, we could use Trusted Platform Module
(TPM) based remote attestation to verify the running
state of the target machine [24]. We only need to verify
whether the OS has been started or not. If it is already
started, the monitor machine should refuse to send the
key. If the target machine does not have a TPM, the sec-
ond method is to send another reliable reboot signal to
the target machine when it asks for the key to make sure
the SMM code is running.

However, HyperCheck also has its limitations. It can-
not detect the changes which happen between the two
consecutive memory and register scans. Although the
time window between the scans is just one second in
the current prototype, malware can still potentially make
some changes in the time interval and restore it before the
next scan. To address this problem, we could randomize
the scan interval to increase the chances for detection. In
addition, we could use high bandwidth devices, such as
PCI Express, which is able to reach 5GT/s transfer rate
[28], to minimize the scan interval.

In addition, if the memory mappings of the hypervisor
do not hold the three properties (linear mapping, persis-
tence and static nature), the current version of Hyper-
Check cannot deal with it. We will try to address these
problems in the future.

11

8 Conclusions
In this paper, we introduced a hardware-assisted tamper-
ing detection framework designed to protect the software
code integrity of VMMs. We rely on the CPU System
Managed Mode (SMM) to securely generate and trans-
mit the full state of the protected machine to an exter-
nal server. Moreover, we implemented two prototypes to
demonstrate the performance and feasibility of our ap-
proach: using an Ethernet card and a commodity x86
machine.

Our experiments show we can successfully identify
tampering to the control data and the code part of the
Xen hypervisor. In addition, we also used HyperCheck
to protect Domain 0 in Xen and other operating systems,
such as Linux and Windows. HyperCheck does not rely
on the software running on the target machine. More-
over, HyperCheck is robust against attacks that aim to
disable or block its operation are relatively lightweight:
it can produce and communicate a scan of the state of the
protected software in less than 40ms.

References
[1] ACPI http://www.acpi.info/.

[2] Cve-2007-4993.

[3] Intel R© 64 and ia-32 architectures software developers
manual volume 1.

[4] National vulnerability database, http://nvd.nist.gov/.

[5] K. Adamyse. Handling interrupt descriptor table for fun
and profit. Phrack 59, 2002.

[6] A. Baliga, V. Ganapathy, and L. Iftode. Automatic in-
ference and enforcement of kernel data structure invari-
ants. In ACSAC ’08: Proceedings of the 2008 Annual
Computer Security Applications Conference, pages 77–
86, Washington, DC, USA, 2008. IEEE Computer Soci-
ety.

[7] F. Bellard. QEMU, a fast and portable dynamic translator.
In Proceedings of the USENIX Annual Technical Confer-
ence, FREENIX Track, pages 41–46, 2005.

[8] D. Bovet and M. Cesati. Understanding the Linux kernel
3rd edition. O’Reilly Media, 2005.

[9] BSDaemon, coideloko, and D0nAnd0n. System Man-
agement Mode Hack: Using SMM for ”Other Purposes”.
Phrack Magazine, 2008.

[10] Y. Bulygin and D. Samyde. Chipset based approach to
detect virtualization malware a.k.a. DeepWatch. Blackhat
USA, 2008.

[11] M. Burdach. Digital forensics of the physical memory.
Warsaw University, 2005.

[12] B. D. Carrier and J. Grand. A hardware-based memory
acquisition procedure for digital investigations. Digital
Investigation, 1(1):50 – 60, 2004.

[13] G. Coker. Xen security modules (xsm). Xen Summit,
2006.

[14] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt,
A. Warfield, P. Barham, and R. Neugebauer. Xen and
the art of virtualization. In In Proceedings of the ACM
Symposium on Operating Systems Principles, 2003.

[15] L. Duflot, D. Etiemble, and O. Grumelard. Using
CPU System Management Mode to Circumvent Operat-
ing System Security Functions. In Proceedings of the 7th
CanSecWest conference. Citeseer, 2001.

[16] L. Duflot, D. Etiemble, and O. Grumelard. Security is-
sues related to pentium system management mode. In
Cansecwest security conference Core06, 2006.

[17] S. Embleton, S. Sparks, and C. Zou. SMM rootkits: a new
breed of OS independent malware. In Proceedings of the
4th international conference on Security and privacy in
communication netowrks, page 11. ACM, 2008.

[18] T. Garfinkel and M. Rosenblum. A virtual machine intro-
spection based architecture for intrusion detection. In In
Proc. Network and Distributed Systems Security Sympo-
sium, pages 191–206, 2003.

[19] R. Hiremane. Intel R© Virtualization Technology for Di-
rected I/O (Intel R© VT-d). Technology c© Intel Magazine,
4(10), 2007.

[20] G. Hoglund and J. Butler. Rootkits: Subverting the Win-
dows Kernel. Addison-Wesley Professional, 2005.

[21] X. Jiang, X. Wang, and D. Xu. Stealthy malware de-
tection through vmm-based out-of-the-box semantic view
reconstruction. In Proceedings of the 14th ACM con-
ference on Computer and communications security, page
138. ACM, 2007.

[22] G. H. Kim and E. H. Spafford. The design and implemen-
tation of tripwire: a file system integrity checker. In CCS
’94: Proceedings of the 2nd ACM Conference on Com-
puter and communications security, pages 18–29, New
York, NY, USA, 1994. ACM.

[23] L. Litty, H. A. Lagar-Cavilla, and D. Lie. Hypervisor
support for identifying covertly executing binaries. In
SS’08: Proceedings of the 17th conference on Security
symposium, pages 243–258, Berkeley, CA, USA, 2008.
USENIX Association.

[24] J. McCune, B. Parno, A. Perrig, M. Reiter, and H. Isozaki.
Flicker: An execution infrastructure for TCB minimiza-
tion. In Proceedings of the 3rd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2008, pages
315–328. ACM, 2008.

[25] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor,
and A. Perrig. TrustVisor: Efficient TCB reduction and
attestation. In Proceedings of the IEEE Symposium on
Security and Privacy, May 2010.

[26] D. Murray, G. Milos, and S. Hand. Improving Xen secu-
rity through disaggregation. In Proceedings of the fourth
ACM SIGPLAN/SIGOPS international conference on Vir-
tual execution environments, pages 151–160. ACM, 2008.

12

[27] B. Payne, M. de Carbone, and W. Lee. Secure and flexible
monitoring of virtual machines. In Computer Security Ap-
plications Conference, 2007. ACSAC 2007. Twenty-Third
Annual, pages 385–397, Dec. 2007.

[28] PCI-SIG. PCI Express 2.0 Frequently Asked Questions.

[29] N. L. Petroni, Jr., T. Fraser, J. Molina, and W. A. Ar-
baugh. Copilot - a coprocessor-based kernel runtime in-
tegrity monitor. In SSYM’04: Proceedings of the 13th
conference on USENIX Security Symposium, pages 13–
13, Berkeley, CA, USA, 2004. USENIX Association.

[30] R. Riley, X. Jiang, and D. Xu. Guest-transparent preven-
tion of kernel rootkits with vmm-based memory shadow-
ing. In Recent Advances in Intrusion Detection, pages
1–20. Springer.

[31] J. Rutkowska. Beyond the CPU: Defeating hardware
based RAM acquisition. Proceedings of BlackHat DC
2007, 2007.

[32] J. Rutkowska and R. Wojtczuk. Preventing and detect-
ing Xen hypervisor subversions. Blackhat Briefings USA,
2008.

[33] R. Sailer, E. Valdez, T. Jaeger, R. Perez, L. Van Doorn,
J. Griffin, and S. Berger. sHype: Secure hypervisor ap-
proach to trusted virtualized systems. IBM Research Re-
port RC23511, 2005.

[34] S. Schreiber. Undocumented Windows 2000 secrets: a
programmer’s cookbook. Addison-Wesley, 2001.

[35] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: A
tiny hypervisor to provide lifetime kernel code integrity
for commodity OSes. In Proceedings of twenty-first
ACM SIGOPS symposium on Operating systems princi-
ples, page 350. ACM, 2007.

[36] T. Vidas. The acquisition and analysis of random access
memory. Journal of Digital Forensic Practice, 1(4):315–
323, 2006.

[37] Z. Wang, X. Jiang, W. Cui, and P. Ning. Countering ker-
nel rootkits with lightweight hook protection. In Proceed-
ings of the 16th ACM conference on Computer and com-
munications security, pages 545–554. ACM, 2009.

[38] F. Wecherowski and core collapse. A Real SMM Rootkit:
Reversing and Hooking BIOS SMI Handlers. Phrack
Magazine, 2009.

[39] R. Wojtczuk. Subverting the Xen hypervisor, 2008.

[40] R. Wojtczuk and J. Rutkowska. Attacking SMM Memory
via Intel R© CPU Cache Poisoning.

13

	Introduction
	Related work
	Threat model
	Background of System Management Mode
	Attacker's capabilities
	General Assumptions
	In-scope Attacks
	Limitations

	System Architecture
	Acquiring the physical memory
	Translating the physical memory
	Reading and verifying the CPU registers

	Implementation
	Memory Acquiring module
	Analysis module
	CPU register checking module
	HyperCheck-II

	Evaluation
	Verifying the static property
	Detection
	Monitoring overhead

	Security Analysis & Limitations
	Conclusions

