
Department of Computer Science
George Mason University
Technical Report Series

4400 University Drive MS#4A5
Fairfax, VA 22030-4444 USA
http://cs.gmu.edu/
703-993-1530

Extra Buffer Resources Improving Competitiveness in
Minimizing Energy Consumption

Zhi Zhang
zzhang8@cs.gmu.edu

Fei Li
lifei@cs.gmu.edu

Technical Report GMU-CS-TR-2010-6

Abstract
In this paper, we consider energy management algo-
rithms for scheduling jobs in power-scare scenarios such
as embedded computer systems and sensor networks. We
focus on investigating the impact of buffer resources in
minimizing the total energy cost in an online setting.
The online algorithms do not have any assumptions on
job arrivals; their worst-case performance is measured
in term of competitive ratio, when they are compared
with the optimal algorithms with clairvoyance. We prove
that with appropriate extra buffer space, an online algo-
rithm can beat an weak optimal offline algorithm in terms
of the total energy required. Our research result helps
to quantitatively estimate the optimal on-chip buffer re-
sources allocated in real-time systems with power con-
straints. We also present the lower bound of competi-
tive ratio that any deterministic online algorithm cannot
achieve.

1 Introduction
In designing a System-on-Chip (SoC) or a Network-on-
Chip (NoC) for embedded computer systems and sensor
networks, silicon area and power consumption are most
two significant factors to optimize. The techniques in
minimizing chip areas are relatively mature. However,
the energy consumption has been widely known to be-
come the principal factor of improving system perfor-
mance. In these power-scarce settings, the benefit of
completing a job is usually diluted by its energy expense.
Thus, how to develop efficient algorithms to economi-
cally manage energy expenditure during executing jobs
is a challenging problem. This research topic has at-

tracted much attention recently; see [9, 7] and the ref-
erences therein. The main algorithmic techniques for re-
ducing energy consumption can be broadly classified in
two categories: dynamic power management (DPM) and
dynamic voltage scaling (DVS). DVS is a technique used
in modern microprocessors operated by battery. Voltage
and frequency levels of the microprocessor are set prop-
erly to meet jobs’ performance requirements while en-
ergy consumption is minimized. This technique is initial-
ized by Yao et al. [14]. In contrast with DVS, DPM saves
energy by putting the system into a lower power state
during the idle periods, defined as the duration in which
there are no pending jobs for the machine to execute.
Many dynamic power management strategies — both of-
fline and online solutions such as those in [8, 2, 1, 5] —
have been proposed to save energy when the idle periods
are long enough. Our research in this paper lies in the
line of the research on DPM.

Let us consider Figure 1 as an example to illustrate
the packet switch mechanism within an embedded sen-
sor. The system has a few input ports that are accepting
packets from its neighbors in the network. These pack-
ets are forwarded to other neighbors via the output ports.
In general, some buffer slots are allocated to accommo-
date the packets before they are sent out. However, the
buffer space is a kind of precious resource for SoC and
NoC. People have studied the on-chip buffer constraint
for streaming applications (see [12] and the references
therein). However, little work has been done on evaluat-
ing the on-chip buffer effect for energy management. In
this paper, we try to answer the following two questions
that are naturally raised: (1) How do we quantitatively
evaluate the effect of the buffer space in serving stream-
ing (online) applications? (2) In serving streaming ap-

1

plications, what is the best tradeoff between the buffer
space and the energy required? That is, if we increase
the buffer space a little, can we improve the efficiency of
power consumption significantly?

One concern on energy consumption comes naturally
from the consideration on jobs’ delays in execution when
they are buffered for some time before being served. In
the previous work [8, 1, 5], jobs are supposed to be exe-
cuted immediately at the time when there is no other job
being processed. This implies that in their settings, the
‘machine’ is non-idling and all jobs have their slacks (to
be formally defined in the following) implicitly assumed
0. However, we realize that if jobs are allowed to be
postponed in execution (that is, we increase their slacks
such that they can be accommodated in the buffer longer
before being served), an online algorithm’s performance
of weak competitiveness (defined in Subsection 2) can
be improved significantly. The underlying reason is that
the energy cost associated with powering on the machine
is considerably decreased. To reveal the impacts of jobs’
delay in execution on an online algorithm’s performance,
we study a job’s slack, defined as the upper bound of the
difference between the job’s release time and the latest
time it should be executed. Our research concludes that
the more slacks jobs have, the better competitive ratio an
online algorithm can achieve. We note that there exists
correspondence between the buffer space required and
job slacks: The buffer space should be a constant fac-
tor of the slacks of jobs. Thus, the more buffer space is,
the better competitiveness an online algorithm has. The
rigorous analysis in this paper validate our intuition.

In this paper, motivated by scheduling job in embed-
ded computer systems and sensor networks, we consider
the above model of energy management and we call it a
slack model. Our model is described in Section 2. Note
that scheduling jobs is essentially an online decision-
making problem, we design a competitive online algo-
rithm for the slack problem in Section 3 and analyze its
performance in terms of both asymptotic running time
and weak competitive ratio in Section 4, respectively.
Conclusion remarks and related work are described in
Section 5.

2 The Slack Model

We design algorithms to schedule unit-length jobs (also
called jobs). In our setting, time is discrete and each time
interval [t, t +1) is called a time step t. We consider the
slack model in which online algorithms have no knowl-
edge about future released jobs.

The machine

There is one machine (for instance, a job transmitter in a
wired/wireless communication system). At any time, at
most one job can be run on the machine. The machine
has only two states: active and sleep. If the machine
is currently running a job, it must be at its active state
and a machine cannot run a job at all at its sleep state.
When the machine does not run any job (though there
may exist pending jobs), it can be at either its active

or sleep state. We call the machine spinning when it
is at the active state but no job is running. When it is
at the active and sleep states, the machine consumes
energy µ ∈R+ and e(s) ∈R+ per time unit respectively.
Without loss of generality, we assume µ > 0 and e(s) =
0.

In order to power on (respectively, off) the machine
from a sleep (respectively, an active) state to an
active (respectively, a sleep) state, we have to pay
transition energy C(s/a) ∈ R+ (respectively, C(a/s) ∈
R+). We denote C = C(s/a)+C(a/s). For unit-length
jobs (jobs), the machine can finish processing a job com-
pletely in each single time step.

Jobs

Let the set of jobs released be I . Each job j ∈ I is
released at an integer time r j ∈ Z+. Without loss of gen-
erality, for this model, we can assume that in each time
step, at most one unit-length job arrives. The same as-
sumption has been made as well in all of the models
considered in [10, 11, 8, 2, 1, 5]. (If x jobs arrive at
the same time, we simply assume that they are release
at time t, t +1, t +2, . . . , t + x−1, respectively.) With
such an assumption, any schedule can finish all released
jobs as long as it processes a job immediately at its ar-
rival. All released jobs are to be finished and S = I .
The extended work (algorithms, their analysis and per-
formance) on scheduling jobs with various lengths are
quite similar.

Jobs have slacks κ such that a job has to be executed
some time within κ time units after it is released. For
offline algorithms, κ is assumed 0. In this paper, we
evaluate an online algorithm’s performance when its κ

is allowed to be positive.
We note here that jobs have no deadlines in the slack

model; though we can regard that each job j has a dead-
line r j +κ , where κ ≥ 0 for online algorithms and κ = 0
for offline algorithms.

Energy cost

Let E denote the total energy spent by the machine in fin-
ishing a set of jobs S⊆I . Let T (a) (respectively, T (s))

2

Figure 1: Packet-switching mechanism in an embedded sensor

denote the total amount of time the machine remains at
the active (respectively, sleep) state. Let m ∈ Z+ (an
integer ≥ 1) be the number of times that the machine is
powered on along the course of scheduling jobs. The ma-
chine is assumed at its sleep state initially and finally.
The total energy cost is defined as

E = µ ·T (a)+ e(s) ·T (s)+(C(s/a)+C(a/s)) ·m
= µ ·T (a)+C ·m.

In the slack model, we note that all released jobs
should be completed by the online algorithms as well.
Our objective is to minimize the total energy cost E that
we have to pay to complete all jobs. For online algo-
rithms, jobs have slacks κ ≥ 0 but the complete job se-
quence is not known beforehand. On the contrary, the
optimal offline algorithms have clairvoyance over all re-
leased jobs in the whole input but κ = 0 for their jobs.

A metric of evaluating online algorithms
One of the widely employed metrics in evaluating on-
line algorithms’ performance is competitive ratio [3].
For a competitive online algorithm, we compare it with
an optimal offline algorithm. The offline algorithm is
a clairvoyant one, empowered to know the whole input
sequence in advance to make its decision. Competitive
online algorithms guarantee the worst-case performance,
without requiring any stochastic assumptions on the in-
put sequences.

Definition Competitive ratio [3]. Given a maxi-
mization problem (respectively, a minimization prob-
lem), a deterministic online algorithm ON is called k-
competitive if its objective value on any instance is at
least 1/k (respectively, at most k) of the objective value
of an optimal offline algorithm on this instance: k =
maxI {(OPT(I)− ε)/ON(I), ON(I)/(OPT(I)−
ε)}, where ε is a constant, OPT(I) is the optimal solu-
tion of an input I and ON is a deterministic algorithm.
The parameter k is known as the online algorithm’s com-
petitive ratio [3]. If the additive constant ε ≤ 0, the algo-
rithm ON is called strictly k-competitive.

Note that for online algorithms, no stochastic assump-
tion is made on the input. The optimal offline algorithm
is also called the adversary of the online algorithm since
the input sequence constructed by the offline optimal al-
gorithm is allowed to maximize the competitive ratio k.
The upper bounds of competitive ratio are achieved by
some known online algorithms. A competitive ratio less
than the lower bound is not reachable by any online algo-
rithm. For input sequences with sufficiently large length,
we can ignore ε in the above definition.

In most scenarios, competitive ratio provides a pes-
simistic result of the online algorithm’s performance
since the adversary can adaptively generate the input to
beat the online algorithm. In this paper, we define a
(weak) competitive ratio to show the performance of an
online algorithm compared with a weak adversary with
less resources. For example, we allow the online algo-
rithm to use more buffer space and study the relationship
between the extra resource and improvement of compet-
itiveness. In any case, we have no assumptions on the
input sequence.

3 An Algorithm

We first note that in the slack model, each job has a slack
κ . Then, any released job j must be processed by time
r j + κ , and no more than bκc jobs can be concurrently
pending in the buffer (queue) at any time. In the model,
an extra buffer with size bκc is sufficient for use. For
simplicity of presentation, we assume κ (= bκc) is an
integer constant in our following algorithm design and
analysis. Here, we consider the variant in which the
queue length of the online algorithm’s buffer is always
limited by κ . The queue size of the adversary is 0. Our
algorithm and analysis are suitable for the more general
setting when the optimal offline algorithm has a buffer
with size a and the online algorithm is to allowed to have
a buffer with size of a+κ .

3

3.1 The algorithm SLACK
The algorithm’s idea has the flavor of “lazy scheduling”.
The machine is at its sleep state initially. A coming job
j will be buffered into the queue before it gets expired at
time r j +κ . At the time step r j +κ when the first job j
in the queue is to expire, the machine is powered on to
the active state and starts to process all pending jobs in
the queue in a FIFO manner. If a job is chosen to be pro-
cessed, it will be removed from the queue immediately
and one more queue space (buffer slot) will be available
for one coming job. Once the machine is at the active

state, it processes jobs till the queue becomes empty (that
is, no pending jobs). Then the machine is powered off to
its sleep state immediately. This algorithm is described
in Algorithm 1.

Algorithm 1 SLACK(κ)
1: Append newly arriving jobs at the end of the queue.
2: while the machine is at its active state do
3: if there are pending jobs in the queue then
4: Process pending jobs in a FIFO order.
5: else
6: Power off the machine to its sleep state.
7: end if
8: end while
9: while the machine is at its sleep state do

10: if the earliest-released pending job is j and the
current time is r j +κ then

11: Power on the machine to its active state.
12: end if
13: end while

4 Analysis of SLACK
In this section, we provide the proofs of the correctness,
of its running complexity, as well as of the worst-case
performance in term of competitive ratio of the algorithm
SLACK.

4.1 On correctness
Theorem 1 The algorithm SLACK completes all jobs re-
leased. It has a running complexity of O(n) where n is
the number of jobs released.

Proof Directly from Algorithm 1 we know that the
running complexity is linear O(n) of the number of jobs
since we process each released job in constant time.
Now, we prove that all released jobs can be finished by
the algorithm.

We apply the contradiction method to prove the cor-
rectness of the algorithm. Assume a job j is released but

it is not processed by the machine by time r j + κ . We
know that if j is buffered, j cannot be removed from the
buffer due to following released jobs. We case study j.

Assume j has not been buffered.

In this case, at time r j, the buffer has κ jobs pending
and the machine has not processed the earliest-released
job. However, this cannot happen since in each time step,
at most one job is released and the earliest job, say f ,
must be released at time r f ≤ r j−κ . Thus, it is time to
process that job since r f +κ ≤ r j. This part of analysis
also infers that in the algorithm, any job should be able
to be buffered at its arrival.

Assume j is buffered at time r j.

In this case, let the earliest-released job in the buffer be
f when j is buffered at time r j. Let the queue at time
r j be Qr j . Since at most one job is released in each time
step, then r f < r j−|Qr j \ { j}|. If j is not processed by
time r j + κ , f should not have been processed by time
r j +κ −|Qr j \ { j}|. This contradicts r f +κ < r j +κ −
|Qr j \{ j}|.

Hence, an unprocessed job j does not exist. Theo-
rem 1 is completed. �

4.2 On competitiveness
Theorem 2 The algorithm SLACK has a strict competi-
tive ratio bounded by 2C/(C+µκ).

When µ is set 0, from Theorem 2, we immediately
have

Corollary 1 When an online algorithm does not have a
buffer (κ = 0, jobs have no slacks), the algorithm SLACK
is 2-competitive.

Corollary 1 is the result presented in [10]. Note that
when µ is set 0 for online algorithms, the lower bound
of competitive ratio is 2. Thus, in the slack model,
increasing µ beats any deterministic online algorithms
with µ = 0.

Proof (of Theorem 2) Our proof employs a phase-
based charging scheme. We first define non-overlapping
phases to cover all the schedule created by the online al-
gorithm SLACK. We then prove that in each phase, with
an appropriate charging scheme, SLACK is (2C/(C +
µκ))-competitive; this directly results that SLACK’s
competitive ratio is 2C/(C+ µκ) over the whole sched-
ule.

Let I be such a sequence of jobs. Assume that the
earliest-released job satisfying the following conditions
be j.

4

Condition 1 The job j is released at time r j with slack
κ . This job j is either followed by a set of jobs Ĵ =
{ j1, . . . , jl} satisfying that for job ji, it has r ji < r ji+1
and r ji ≤ r j +κ + i, where i = 1, 2, . . . , l; or is followed
by nothing within the time interval [r j, r j +κ +1]. That
is Ĵ = /0.

According to the algorithm, this set of jobs { j} ∪ Ĵ
(= { j, j1, . . . , jl}) will be processed one by one and
the machine does not need to be spinning any time in be-
tween r j +κ and r j +κ + l. Let the next job satisfying
Condition 1 but not in { j, j1, . . . , jl} be j′ (if any) and
S be the last time step SLACK processes a job. The du-
ration [r j +κ, min(r j′ +κ−1, S)] is defined as a phase.
For the case Ĵ = /0, the phase [r j + κ, r j + κ + 1] only
includes one job j.

Note that the machine will not be spinning and the
queue of the online algorithm is empty both at the be-
ginning and the end of each phase. In each phase defined
by SLACK, we compare SLACK with an optimal offline
algorithm OPT which has no queue for pending jobs and
processes a job immediately at its arrival. This means
that SLACK and OPT process the same set of jobs dur-
ing each phase.

Now, we examine that whether the online algorithm
and the offline algorithm are in the same state at the end
of each phase or not. We introduce two parameters SON
and SOPT to represent the states of the online algorithm
SLACK and the offline algorithm OPT at the end of each
phase. Let ALG ∈ {ON, OPT}.

SALG =

 1, if ALG is at its active state
after processing the last job of the phase,

0, otherwise.

Energy cost of the online algorithm SLACK

Assume there are nk jobs for the k-th phase. For SLACK,
the machine is powered on to an active state at time
r j +κ and it keeps in the active state in processing jobs
continuously for nk time units. The machine gets to the
sleep state immediately after processing the last job in
this phase. The machine is powered on/off once for each
phase. The total energy cost of SLACK for the k-th phase
is CON(Ik) =C+µnk.

Energy cost of the optimal offline algorithm OPT

In the same phase, if the machine is at its sleep state,
OPT powers on the machine to an active state when
it sees the first job’s arrival. Based on the length of the
idling period T between this job and the next released
job, the machine is either spinning (if T < C/µ) or get-
ting to the sleep state (if T >C/µ). Denote li,i+1 as the

idling period length between the i-th job and the (i+1)-
th job. We define

Ci,i+1 =

{
C, if li,i+1 ≥C/µ,
µ · li,i+1, otherwise.

For the same phase, the cost of OPT is represented as
COPT(Ik) =C+µnk +

∑nk−1
i=1 Ci,i+1.

For SLACK, it must be at the sleep state at the end of
each phase. For OPT, its state depends on the length of
the interval between the last release time of a job in the
previous phase and the first release time of a job in the
following phase. We case study OPT’s state at the end of
a phase.

Assume OPT is at a sleep state at the end of the
phase. OPT will never beat the online algorithm for
its extra pay on spinning over all li,i+1. In this case,
SLACK’s performance is no worse than that of OPT.

Assume OPT is at an active state at the end of the
phase. We note that the “gap” between the last time
step SLACK processes a job and the earliest released
job in the next phase is no more than C/µ . Thus, OPT
is spinning after processing the last job of the current
phase. Let this gap’s length be Tk time units. The cost of
OPT for the current phase is ĈOPT(Ik)≥C+µnk +µTk,
where Tk > κ +1. (For any two neighboring phases, the
gap length > κ + 1). Also, we have Tk ≤ C/µ . Then
κ +1 < Tk ≤C/µ .

In order to keep SLACK share the same state active
with OPT, we charge the cost of powering up the machine
for SLACK in the next phase into the amortized cost of
the current phase. We have ĈON(Ik) =C+µnk +C.

For both cases, we have

ĈON(Ik) = C+µnk +(SOPT−SON) ·C.

ĈOPT(Ik) = C+µnk +(SOPT−SON) ·µ ·Tk.

Let SLACK’s competitive ratio be α . We ensure
ĈON ≤ α ·ĈOPT.

α =
ĈON

ĈOPT
=

C+µnk +(SOPT−SON) ·C
C+µnk +(SOPT−SON) ·µ ·Tk

.

Remember that Tk ≥ κ , so we have

ĈOPT(Iκ) = C+µnk +(SOPT−SON) ·µ ·Tk

≥ C+µnk +(SOPT−SON) ·µ ·κ.

α =
C+µnk +(SOPT−SON) ·C

C+µnk +(SOPT−SON) ·µ ·Tk

≤ C+µnk +(SOPT−SON) ·C
C+µnk +(SOPT−SON) ·µ ·κ

≤ C+µnk +C
C+µnk +µ ·κ

≤ 2C
C+µ ·κ

.

5

Note that if κ ≥ C/µ , the online algorithm will al-
ways beat the offline algorithm. Also, SLACK’s com-
petitive ratio α is getting better when the buffer size κ

is increased. Above ratio α holds for each phase. Theo-
rem 2 is proved. ��

We remark here that Theorem 2 provides the worst-
case guarantees. In practice, the algorithm’s performance
might be far better than the bound presented. Figure 2
shows the change of the competitive ratio along the in-
crease of packet slacks.

Figure 2: Competitive ratio α along the increase of
packet slacks κ

4.3 The lower bound
In this section, we present the lower bound of compet-
itive ratio β for deterministic online algorithms for the
patient model. Here, we consider an adaptive offline ad-
versary, who generates a job sequence based on the past
behavior of the online algorithm along the course of the
scheduling. We refer to the optimal offline algorithm as
OPT and online algorithm as ON respectively.

Note here that from Theorem 2, if κ ≥C/µ , we know
that there exists an optimal online algorithm such as
SLACK. Thus, we only consider the lower bound of
competitive ratio when κ < C/µ . The main technical
contribution here is to show that even with facility of
(limited) slacks for jobs, any online algorithm cannot
perform arbitrarily close to the optimal offline algorithm.

Theorem 3 Assume κ <C/µ . The lower bound of com-
petitive ratio for deterministic algorithms is

β ≥min
(

3µ +2C
2µ +2C

,
2µ +2C

2µ +C+µ ·κ

)
.

Proof Initially, we assume that both OPT and ON
have their machines at the sleep state. Without loss
of generality, we assume C/µ is an integer and µ is the
energy cost per unit time when the machine is active

(including spinning).
Let the adversary release a job j0 at the beginning of

step 1. OPT powers on the machine to process j0 and
gets it done at the end of step 1. For ON, there are two
options now: (1) letting the machine transit to its active
state to process j0, or (2) buffering j0 into the queue till
some time t ≤ 1+κ , where 1+κ is the latest time for j0
to be executed.

Assume ON powers on the machine to the active

state immediately at j0’s arrival.

After completing j0 at the end of step 1, ON either keeps
the machine active (spinning) or turns to the sleep

state.

Assume ON keeps in the active state. The adversary
then releases another job j1 at time C/µ + 2. There are
no more jobs released.

In this case, OPT powers off the machine after fin-
ishing j0 at the end of step 1 and then powers on to an
active state at time C/µ +2 to process job j1. The total
cost paid by OPT is C1

OPT = 2µ +2C.
On the other hand, ON either keeps the machine

active till j1 arrives with a total cost of C1
ON = 3µ +2C,

or ON makes the machine sleep at some time before
C/µ + 2 and powers it on to the active state at some
time before the deadline of job j1 to process it with a
total cost ≥C2

ON = 3µ +2C.
The lower bound of competitive ratio β1 here is

β1 ≥
min(C1

ON, C2
ON)

C1
OPT

=
3µ +2C
2µ +2C

(1)

Assume ON powers off the machine to its sleep state
at the end of time step 1. The adversary releases a job
j2 at the beginning of step 2. There are no more jobs
released.

OPT keeps the machine active to finish job j2 with a
total cost of C2

OPT = 2µ +C.
On the other hand, ON has chosen to power off the

machine to sleep. To get j2 finished, it will need to
switch back to the active state again at some time t ≤
κ +2, the latest time for j2 to be executed. The total cost
of ON is C3

ON ≥ 2µ +2C.
The lower bound of competitive ratio β2 here is

β2 ≥
C3

ON

C2
OPT

=
2µ +2C
2µ +C

. (2)

6

Assume ON buffers the job j0 into the queue.

ON must switch the machine to active to process j0
at some time t ≤ κ +1. After time t +1, ON will either
choose to power off the machine to a sleep state or keep
it spinning. We consider the end of step t +1 now.

Assume ON keeps active. The adversary adopts a
strategy similar to the strategy used above. It releases
another job j3 at time t +C/µ + 2. There are no more
jobs released.

In this case, OPT powers off the machine to the sleep
state after finishing job j0 at time 1. Then it switches to
the active state at time t +C/µ + 2 to process job j3.
The total cost paid by OPT is C3

OPT = 2µ +2C.
On the other hand, ON will either keep in the active

state till the job j3 finished with a total cost of C4
ON =

3µ +2C, or ON switches to the sleep state at some time
before t +C/µ + 2 and powers on the machine at some
time before t +C/µ + 2+κ to process the job j3. The
total cost of ON is C5

ON ≥ 3µ +2C.
The lower bound of competitive ratio β3 here is

β3 ≥
min(C4

ON, C5
ON)

C3
OPT

=
3µ +2C
2µ +2C

. (3)

Assume ON powers off the machine at time t + 1 ≤
κ +1 after finishing the job j0. (Note t ≤ κ .) Only in
this case, we need the assumption in Theorem 3 that
κ <C/µ . The adversary releases a job j4 at time t +1.
There are no more jobs released.

OPT keeps the machine active till finishing job j4 at
time t+2. The total cost of OPT is C4

OPT = 2µ+C+µ ·t.
On the other hand, ON powers the machine off and it

needs to turn it on again before time t +κ +1 to process
job j4. The total cost of ON is C6

ON ≥ 2µ +2C.
The lower bound of competitive ratio β4 here is

β4 ≥
C6

ON

C4
OPT

=
2µ +2C

2µ +C+µ · t
≥ 2µ +2C

2µ +C+µ ·κ
. (4)

Combine Inequalities 1 2 3 and 4, we have the lower
bound β of competitive ratio for the slack model.

β ≥min(β1, β2, β3, β4)=min
(

3µ +2C
2µ +2C

,
2µ +2C

2µ +C+µ ·κ

)
.

Therefore, β depends on the value of µ .

β =

3µ+2C
2µ+2C , when µ ≤min

(
C/µ, 2C2+µC−2µ2

3µ2+2µC

)
.

2µ+2C
2µ+C+µ·κ , when 2C2+µC−2µ2

3µ2+2µC ≤ κ ≤C/µ.

Theorem 3 is completed. ��

5 Related Work and Conclusion
In this paper, we consider scheduling algorithms for jobs
with slacks for energy management. The goal is to mini-
mize the total cost upon giving slacks to jobs in an online
setting. We focus on investigating the relationship be-
tween the competitive ratio and jobs’ slacks. We prove
that with appropriate slacks, an online algorithm can beat
the weak optimal offline algorithm without slacks. We
also present the lower bound of competitive ratio that
any deterministic online algorithm cannot achieve. We
provide theoretical analysis of the model and the online
algorithm SLACK. These results are provable worst-case
guarantees.

Two related work are [4] and [13]. In both work,
buffers can used to smooth the variations of job process-
ing time and also used for elongating idle periods. In
their settings, larger buffers may not be better than mul-
tiple smaller buffers as smaller buffers cost less energy.
In contrast to their approaches, we consider introducing
extra buffer space and reducing energy cost in total. The
energy overhead from the lightly larger buffer space is
negligible in our setting.

There are some problems still open: We need to shrink
the gaps between the lower bound and upper bound of
competitive ratio for the slack model. We still do not
know the lower bound and upper bound of competitive
ratio when jobs are with variable lengths (rather than
unit-lengths jobs). We also have not addressed the same
problem (online minimizing energy consumption) under
the fading channel models [6] where the fade state of the
channel determines the throughput obtained per unit of
time and the channel’s quality changes over time as well.
We also note here that along with stochastic assumptions
on the job arrival patterns, better competitiveness can be
achieved. Our future research also targets on multiple
buffer management.

Acknowledgements
This research is partially supported by NSF under Grant
CCF-0915681.

References
[1] J. Augustine, S. Irani, and C. Swamy. Optimal power-

down strategies. SIAM Journal on Computing (SICOMP),
27(5):1499–1516, 2008.

[2] P. Baptiste, M. Chrobak, and C. Durr. Polynomial time
algorithms for minimum energy scheduling. In Proceed-
ings of the 15th Annual European Symposium on Algo-
rithms (ESA), pages 136–150, 2007.

[3] A. Borodin and R. El-Yaniv. Online Computation and
Competitive Analysis. Cambridge University Press, 1998.

7

[4] L. Cai and Y-H Lu. Energy management using buffer
memory for streaming data. IEEE Transactions on Com-
puter Aided Design of Integrated Circuits System (IEEE
TCAD), 24(2):141–152, 2005.

[5] G. Dhiman and T. S. Rosing. System-level power man-
agement using online learning. IEEE Transactions on
Computer-Aided Design of Integraded Circuits and Sys-
tems (IEEE TCAD), 28(5):676–689, 2009.

[6] A. Fu, E. Modiano, and J. Tsitsiklis. Optimal trans-
mission scheduling over a fading channel with energy
and deadline constraints. IEEE Transactions on Wireless
Communications, 6(1):630–641, 2006.

[7] S. Irani and K. R. Pruhs. Algorithmic problems in power
management. ACM SIGACT News, 36(2):63–76, 2005.

[8] S. Irani, S. Shukla, and R. Gupta. Online strategies for
dynamic power management in systems with multiple
power-saving states. ACM Transactions on Embedded
Computing Systems (TECS), 2(3):325–346, 2003.

[9] S. Irani, G. Singh, S. K. Shukla, and R. K. Gupta. An
overview of the competitive and adversarial approaches to
designing dynamic power management strategies. IEEE
Transactions on Very Large Scale Integration Systems
(IEEE TVLSI), 13(2):1349–1361, 2005.

[10] A. R. Karlin, M. S. Manasse, L. A. McGeoch, and S. Ow-
icki. Competitive randomized algorithms for nonuniform
problems. Algorithmica, 11:542–571, 1994.

[11] P. Krishnan, P. Long, and J. Vitter. Adaptive disk spin-
down via optimal rent-to-buy in probabilistic environ-
ments. Algorithmica, 23(1):31–56, 1999.

[12] A. Maxiaguine, S. Kunzli, S. Chakraborty, and L. Thiele.
Rate analysis for streaming applications with on-chip
buffer constraints. In Proceedings of the 2004 Asia
and South Pacific Design Automation Conference (Asia-
DAC), pages 131–136, 2004.

[13] J. Ridenour, J. Hu, N. Pettis, and Y-H Lu. Low-power
buffer management for streaming data. IEEE Trans-
actions on Circuits and Systems for Video Technology,
17(2):143–157, 2007.

[14] F. Yao, A. Demers, and S. Shenker. A scheduling model
for reduced CPU energy. In Proceedings of the 36th An-
nual IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), pages 374–382, 1995.

8

