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Abstract

Proteins perform several critical biological processes by
interacting with other macromolecules (DNA, RNA) and
small molecules. Several computational approaches have
been developed to determine the protein interaction sites
using sequence and structure features. Instead of build-
ing another adhoc prediction algorithm, the purpose of
this study is to understand the contribution of a protein’s
residue in a RNA-binding event and compare it with the
DNA-binding process. We evaluate several sequence and
structure-based features using mutual information the-
ory. We show that solvent accessibility and profile-based
features can be used for developing good protein-RNA
binding site determination algorithms. We also recom-
mend features that could discriminate between RNA and
DNA binding sites. This work can be extended to un-
derstand protein-protein and protein-ligand interactions
as well.

1 Introduction

Proteins govern several processes within the cell by in-
teracting with other proteins, DNA, RNA and small
molecules. In fact proteins are ubiquitous as well
as promiscuous in terms of their interaction partners.
Protein-RNA and protein-DNA interactions play a cru-
cial role in biological processes that includes regulation
of gene expression and protein synthesis [19, 15].

The number of experimentally available protein-RNA
complexes in the Protein Data Bank (PDB) [4] are rel-
atively few and biased towards certain families of com-
plexes [20]. As such several computational methods have
been developed over the years to determine which pro-
teins interact with RNA [20] molecules, and specifically

which protein residues are involved in the interaction.
These interacting residues involved are interchangeably
referred to as binding sites or contact sites in this pa-
per. Similar computational methods have been devel-
oped for determining DNA binding proteins and inter-
acting residues [5, 23, 1, 2].

These methods determine binding sites using geomet-
ric approaches if three-dimensional structure of a protein
is available or use a statistical learning based approach to
predict the binding sites using information derived from
the protein sequence only. For example, RNABindR [20]
uses a naive Bayesian classifier to predict the RNA bind-
ing sites from sequence only. BindN [22] is a support
vector machine (SVM) based classifier that uses physico-
chemical properties of residues to predict DNA-binding
and RNA-binding residues. KYG [13] uses structure in-
formation along with evolutionary information to deter-
mine RNA-binding sites for proteins whose structures
are known but have not been co-crystallized. TCBRP [8]
is a useful web service that parses the PDB to find com-
plexes and determines the binding residues by comput-
ing the atomic distance between the protein atoms and
the interacting partner’s atoms.

In this paper we take an information theoretic ap-
proach to understand the contribution of a residue’s con-
tribution in a RNA-binding event. Using mutual informa-
tion we evaluate various sequence-based and structure-
based features derived for a protein residues to determine
the likelihood of specific features in determining RNA-
binding sites. We compare the MI values obtained for
single or a combination of paired features to a previous
study on protein-DNA interaction analysis [12].

We determine features that could be used for develop-
ing effective prediction algorithms to determine protein-



RNA binding sites. We also provide details on specific
features like solvent accessibility that could be used for
discriminating between protein-RNA and protein-DNA
interactions.

2 Methods

2.1 Mutual Information (MI)

In this study we evaluate the strengths of different
sequence and local structure features for predicting
protein-RNA interaction sites. As done previously in the
analysis of protein-DNA interaction sites, [12] we use
mutual information (MI) to capture the inter-dependence
between two variables: (i) features being evaluated and
(ii) protein-RNA interaction sites. Mutual information
for two discrete random variables X and Y is given by

MIX,)Y)= >

(zeX,yeY)

where x and y are the discrete values taken for the ran-
dom variables X and Y, respectively. p(z) is the prob-
ability of taking the discrete value x and p(z,y) is the
probability that z and y occur together. Mutual informa-
tion takes on the unit of bits due to the base-two loga-
rithm.

We use the variable X to represent whether the residue
is an interaction site (protein-RNA binding) or not. Thus
X is always binary whereas random variable Y is used
for representing the various features that are evaluate in
this study. The MI between the RNA interaction feature
and the other features provides us with an estimate of
the usefulness of the features in predicting the interact-
ing sites. We also compare the MI values for the same
features obtained from the protein-DNA interaction data.
This allows us to compare the protein-RNA interactions
with protein-DNA interactions. We also perform an ex-
periment (See Section 3.3) where the protein-RNA and
protein-DNA datasets are pooled together. In this case
the variable X can take three values.

2.2 Defining Binding Sites

To compute the mutual information we need to deter-
mine for the variable X whether the residue is a bind-
ing (interaction/contacting) site or not. For determining
the RNA-binding residues we compute the distance be-
tween each atom of a residue in the protein and each atom
in the RNA structures of the protein-RNA complex file.
The smallest distance is taken as the distance between
the protein residue and RNA macromolecule. Based on
a distance cutoff we define a residue to be RNA bind-
ing or not. We increment the distance cutoff (starting at
0 Angstroms) in steps of 0.25 and compute the mutual

information with all the different features at every step.
This allows us to plot a curve for every feature show-
ing the characteristics of the signal separating the RNA
binding residues from the non-binding residues. Mutual
information is set to zero when a combination of values
for the feature does not exist. This can happen when the
feature can take on large values or when the distance cut-
off is very small or very high. A similar procedure for
defining the DNA-binding sites was followed by Kauft-
man et. al. [12].

2.3 Feature Description

Table 1 summarizes the various sequence-based and
structure-based features that were evaluated in this study.
Some of these features are discrete in nature, whereas
some are continuous or vectors. To compute the mutual
information (Equation 1) we need to convert the contin-
uous and vector valued features into discrete variables.
Continuous valued features can be broken into discrete
bins by defining boundaries. To compare our work with
the protein-DNA interaction study [12], for the continu-
ous valued features we choose the same boundary defini-
tions as done in that study. We verified on a smaller sam-
ple dataset that the boundary definitions were generally
the same if chosen to maximize the mutual information.
The vector-valued features can be discretized by using a
clustering algorithm (described below).

2.3.1 Sequence and Profile-based Features

We use the amino acid composition (AAC) for a residue.
This feature is inherently discrete in nature (has twenty
different values that a natural amino acid can take).

Profiles capture evolutionary information that has
shown to be useful in a wide range of protein sequence
prediction problems like remote homology detection [17]
and local structure prediction problems [18]. The pro-
file of a protein X is derived by computing a multi-
ple sequence alignment of X with a set of sequences
{Y1,...,Y,,} that have a statistically significant se-
quence similarity with X (i.e., they are sequence ho-
mologs).

‘We obtain the profiles using PSI-BLAST [3] as it com-
bines both steps, is very fast, and has been shown to pro-
duce reasonably good results. The profile of a sequence
X of length n is represented by two n x 20 matrices. The
first is its position-specific scoring matrix PSSM that is
computed directly by PSI-BLAST using the scheme de-
scribed in [3]. The rows of this matrix correspond to
the various positions in X and the columns correspond
to the 20 distinct amino acids. The second matrix is its
position-specific frequency matrix PSFM that contains
the frequencies used by PSI-BLAST to derive PSSM. We
collectively refer to the two matrices as “Profiles” in the
study.



However the PSSM and Profile features are vectors
of length 20 and 40 per residue, respectively. We use
a clustering based approach to discretize these vector-
based features. Specifically, we use CLUTO [11] (ver-
sion 2.1.2) with default options to create various num-
ber of clusters. Each cluster serves as a discrete value
for the vector-valued feature. This clustering based ap-
proach was used in the analysis of protein-DNA study as
well [12].

The PSI-BLAST output also provides a measure of the
sequence diversity per column of the profile known as
information per position (IPP). Low values indicate less
diversity which shows a strong preference for particular
amino acids in that position. We discretize the contin-
uous values into either two, three or four bins with the
cutoff values shown in Table 1. These boundary defi-
nitions were determined in the protein-DNA interaction
study [12]. We found these boundary definitions to pro-
duce the maximum MI value after a grid search on small
held out protein-RNA interaction dataset.

Since the functional and structural properties of
residues (in this case binding) are highly dependent on
the local sequential residues [18] as well as local spatial
residues (structurally close) we evaluate the features us-
ing the sequentially neighboring residues. For a residue
x; at position ¢ we define a (2w + 1)-length subsequence
called a wmer consisting of x; and w residues immedi-
ately to the left and right of the residue x;. To evaluate
the PSSM features we concatenate the 20-length feature
vectors obtained for each residue within the wmer . This
feature vector is denoted as WPSSM and produces a vec-
tor of length (2w+1) x 20. Using the clustering approach
described earlier we discretize the vectors into clusters of
size 5, 10 or 20.

2.3.2 Local Structure-based Features

Protein residues involved in binding often taken on par-
ticular local structural shapes or configurations. In this
paper we compared the local structural properties for
residues involved in binding with DNA and RNA macro-
molecules.

Even the secondary structure (SS) definition of the
protein derived using the program DSSP [10] produces
three discrete classes denoting the most commonly oc-
curring local topological structures, namely the alpha he-
lix, beta sheets, and coil regions [10].

A universal definition of local structure is the sec-
ondary structure which captures recurring, locally oc-
curring shapes in the PDB. Researchers have devel-
oped several sequence-based prediction programs like
PSIPRED [9] to accurately predict the secondary struc-
ture of residues upto 80% accuracy. Using the DSSP pro-
gram [10] we parse the three-dimension structure files

to generate the three secondary structure classes: (i) al-
pha helix, (ii) beta sheets, and (iii) coil regions. We use
the three discrete class labels as secondary structure fea-
tures (SS) to evaluate their relationship to RNA and DNA
binding residues.

From the DSSP program we also extract the solvent
accessibility surface area (SASA) which provides the
surface area of a residue accessible to solvent (water)
molecules. The SASA values are normalized based on
the maximum SASA of a residue in Gly-X-Gly calcu-
lated using the values of Miller et. al. [14]. Both the
SASA and SS features though determined using three-
dimensional structure of a protein can be predicted accu-
rately from sequence information using tools like svm-
PRAT [18].

We evaluate two other features: (i) the amino acid
composition and (ii) PSSMs (captures evolutionary in-
formation) by using the spatially proximal residues to the
residues of interest. We determine the structural neigh-
borhood of a particular residue by using a 14 Angstrom
cutoff distance between the C\,, atoms. The amino acid
composition feature is aggregated across the neighbor-
hood residues and is denoted as StrN in this study. We
also aggregate a twenty length PSSM vector and denote
the same as StrN-PSSM. Residues that are sequentially
less than 3 amino acids apart are neglected for evalua-
tion.

2.4 Joint Features

The binding properties will generally be determined by
not one single features but a gamut of features combined
together. As such, prediction algorithms developed use
a range of features together to achieve the best accu-
racy [13]. We combine pairs of features to compute the
mutual information. The paired features take values that
are every possible combination of the values taken by
the individual features. As such the size of joint feature
space is the product of the sizes of the individual fea-
tures. This makes the problem intractable beyond two
features. For example, combining the amino acid com-
position (AAC) with 20 labels and the PSSM features
with 20 cluster labels leads to 400 values. In Table 3
we show the joint features that were studied in this paper
along with the mutual information values.

2.5 Datasets
2.5.1 RNA Interaction Dataset

The RNA interaction dataset used in this study was ex-
tracted from the web-based binding site detection tool
TCBRP [8]. TCBRP provides us a list of 546 protein-
RNA co-crystal PDB files. Each co-crystal file may con-
tain several chains with identical sequence which can



Table 1: Residue Features Considered for Mutual Information with RNA-contacting classes.

Feature Notation Description Discretization
Amino-Acid Com-  AAC Amino acid residue type 20 values
position
Information Per Po-  IPP PSI-BLAST [3] produced column that computes 2-values: 0.0-1.15, >1.15
sition sequence divergence per position. Lower value in- 3-values: 0.0-0.65,0.65-1.15,
dicates stronger preference for certain amino acids >1.15
4-values: 0-0.25,0.25-0.65, 0.65-
1.15,>1.15
Secondary Structure ~ SS Secondary structure assigned to a residue by DSSP 3 values: alpha-helix, beta-sheet
and coil/others
Position  Specific ~ PSSM Only the PSSM from the PSI-BLAST profile 5, 10, and 20 clusters
Score Matrix
Concatenated WPSSM The PSSMs of residues within a sliding window of 5, 10 and 20 clusters
PSSM size 5 concatenated together
Profiles Profiles Combination of the PSI-BLAST (3 iteration 5, 10 and 20 clusters
against the NR database) derived Position Specific
Scoring Matrix (PSSM) and the Position Specific
Frequency Matrix (PSFM)
Solvent Access Sur- ~ SASA DSSP computed values of a residue’s exposure to  2-values: 0.00-0.20, >0.20
face Area solvent molecules. 3-values: 0.00-0.07, 0.07-0.20,
>0.20
4-values: 0.0-0.01, 0.01-0.07, 0.07-
0.20, >0.20
Structural ~ Neigh- ~ StrN Sum of amino acid types within a 14 Angstrom 5, 10 and 20 clusters
bors sphere. The distance is between the center of mass
of two residues
Structural ~ Neigh-  StrN- Sum of PSSM for all residues within 14 Angstrom 5, 10 and 20 clusters
bors PSSM PSSM radius

lead to unfair bias when computing the mutual informa-
tion values. We use the PISCES culling server [21] so
as to create a non-redundant dataset such that no pairs of
protein chains within the dataset have greater than 30%
sequence identity. This results in a dataset of 143 protein
chains with 40,925 protein residues. In Figure 1 we show
the percentage of RNA contacting residues according to
the different distance cutoff values (plot in green).

2.5.2 DNA Interaction Dataset

For the DNA interaction dataset we use the protein lists
provided by Kauffman et. al. [12]. The dataset consists
of 246 different chains and 51,268 residues culled using
PISCES [21] as described above to not include any pairs
having greater than 30% identity. In Figure 1 we show
the percentage of DNA contacting residues based on the
increasing distance cutoff values (plot in red).

3 Results And Discussion

3.1 Single Features

The mutual information values obtained for the individ-
ual features is in the order of hundreths of bits. This
range is consistent with the values obtained for the previ-
ous protein-DNA interaction study [12], pairwise contact
potentials [6] and sequence-structure correlations [7]. As
observed in the protein-DNA interaction study [12] in-
creasing the number of clusters for vector valued features

leads to an increase in the mutual information values. We
experiment with 20, 10, and 5 clusters for the vector-
based PSSM, Profiles, WPSSM, StrN and StrN-PSSM
features.

In Table 2 we report the maximum obtained MI score
along with the distance cutoff for the features evaluated
individually on the protein-RNA study. These results are
sorted in decreasing values of MI obtained. We also re-
port the corresponding results from the previous protein-
DNA interaction study [12]. Figure 2 shows how mutual
information for some of the representative features varies
as the protein-RNA distance cutoff defining the contact-
ing residues is increased. The results are shown in de-
creasing MI values for the protein-RNA dataset.

We observe that a combination of structural features
(SASA and StrN, StrN-PSSM) along with profile-based
sequence features (PSSM and Profiles) show the high-
est bit scores. This is different from the protein-DNA
interaction dataset where sequence-based and sequence-
derived features had higher MI values in comparison to
the structure-based features. The highest MI obtained
for the protein-RNA interaction data is for the solvent
accessibility surface area feature (SASA with four dis-
crete labels) is 4.44 x 102 bits at a distance cutoff of
4.25 Angstroms, whereas for the protein-DNA interac-
tion dataset it is only 1.41 x 102 at a cutoff of 3.77
Angstroms. This suggests that the two types of interac-
tions vary based on the number of residues that are acces-
sible on the surface. For both the interaction datasets the
secondary structure shows the lowest MI values suggest-
ing no particular preference for a particular local topo-



Table 2: Mutual Information for Single Features on RNA-binding and DNA-binding datasets.

protein-RNA protein-DNA
Feature Nyal MI DC MI DC
SASA 4 4.44 1072 425 141 x10~2 3.77
PSSM 20 3.94 1072 5.25 3.23 X102 4.97
Profiles 20 3.82 x1072 425 3.18 X102 497
StrN 20 3.57 x1072 5.5 226 x1072 8.57
StN-PSSM 20 3.11 x1072 6 2,67 x1072 10.17
PSSM 10 2.87 x1072 5 243 x1072 497
StrN 10 2.83 x1072 6.25 1.82 x10~2 7.17
Profiles 10 2.73 x1072 5.75 2.67 X102 4.77
AAC 20 2.56 x1072 3.5 291 1072 3.37
PSSM 5 243 x1072 475 1.98 x10~2 4.97
StrN-PSSM 10 241 x1072 5.25 1.96 x10~2 9.57
IPP 4 2.19 x1072 13.25 1.26 x10~2 9.57
Profiles 5 2.04 x10~2 5.25 1.29 x10~2 3.97
StN 5 1.95 x10~2 6 1.48 x10~2 6.97
StrN-PSSM 5 1.91 x10~2 7 127 x10~2 9.57
WPSSM 20 1.83 x10~2 5.5 1.69 x10~2 5.17
WPSSM 10 1.69 x10~2 5.25 1.57 x10~2 4.97
WPSSM 5 1.03 x10~2 5.25 1.11 x10~2 497
SS 3 440 x10~3 6.25 250 x10~3 5.77

MI and DC denotes Mutual Information (in bits) and Distance Cutoff (in Angstrom), respectively. N, o; denotes the total number of discrete values for the feature. We
report the largest MI value obtained for a distance cutoff that denotes a residue to be in the contacting or non-contacting class. We ran the protein-DNA results
ourselves and obtain the reported results in the study [12]. The three largest MI values for both protein-RNA and protein-DNA datasets are highlighted in bold

Table 3: Mutual Information for Joint Features on RNA-binding and DNA-binding datasets.

Joint Features protein-RNA protein-DNA
Feature 1 Nyqi1| Feature 2 Nyaiol Nior | MI DC MI DC
AAC 20 SASA 4 80 6.44 X102 4 4.037 X102 377
PSSM 20 SASA 4 80 6.09 x10~2 4.25 4389 102 3.97
PSSM 20 StrN 20 400 5.86 x10~2 6 5.278 X102 5.77
PSSM 20 SteN 10 200 5.68 x10~2 5.5 4.756 X102 5.37
Profile 20 StrN 10 200 5.61 x1072 6 4.691 x 102 6.57
Profile 20 SASA 4 80 541 x1072 45 4.464 X102 4.17
Profile 10 SN 20 200 4.85 x1072 6.25 4555 x1072 5.97
Profile 10 PP 4 40 459 x1072 6.75 4239 x1072 5.37
PSSM 20 IPP 4 80 428 x1072 5.75 4.495 x1072 4.97
PSSM 10 StN 20 200 425 x1072 11 4558 X102 5.97
Profile 20 StrN-PSSM 5 100 3.68 X107 2 5.75 3.951 x10~2 5.37
AAC 20 SS 3 60 3.02 x10~2 3.5 3.234 x10~2 3.57
AAC 20 IPP 4 80 2.85 1072 5.75 4263 x1072 3.57

MI and DC denotes Mutual Information (in bits) and Distance Cutoff (in Angstrom), respectively. Ny 11, Nyai2 and Ny, denotes the total number of discrete values
for the Feature 1, Feature 2 and the joint feature, respectively. We report the largest MI value obtained for a distance cutoff that denotes a residue to be in the contacting
or non-contacting class. We ran the protein-DNA results ourselves and obtain the reported results in the study [12]. The three largest MI values for both protein-RNA
and protein-DNA datasets are highlighted in bold.
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Figure 1: Percentage of Contacting Residues vs. Distance Cutoff in Angstrom.

logical shape when the protein residues are involved in
binding.

A interesting result is the low MI value for the
wmer based concatenated PSSM in comparison to the
single residue based PSSM. Several prediction algo-
rithms [18] use a wmer based subsequence window to
capture information for a residue from its sequential
neighbors to predict local structure and functional prop-
erties like disorder, ligand-binding and secondary struc-
ture prediction. We experimented with several values of
w and found setting the window size as 5 to produce the
largest MI value. The current method of discretization
could be a reason for the low MI values for the WPSSM
features but needs further investigation.

3.2 Joint Features

For the joint features we summarize a sample of the var-
ious combinations that were tested. In Table 3 we re-
port the largest MI value obtained from the combination
of two features for the protein-RNA and protein-DNA
interaction study along with the distance cutoff. The
combination of SASA (highest MI amongst single val-
ued in Table 2) along with PSSM and AAC features (to-
tal 80 features) leads to the highest joint MI values for

the protein-RNA interaction study of 0.0644 and 0.0609
bits, respectively. In comparison for the protein-DNA
interaction study we notice the highest joint MI value of
0.05278 for the combination of PSSM and StrN (total
400 features).

Figure 3 shows the trend of the MI value for the differ-
ent joint features on the protein-RNA interaction dataset
with increasing distance cutoff values. The combination
of information per position along with PSSMs and Pro-
files leads to an increased MI value. Combining the sec-
ondary structure (SS) with other features does not lead to
a large increase in the MI values.

3.3 Pooling RNA and DNA Binding
Datasets

We also performed an experiment where we pooled the
RNA and DNA interaction datasets. We can character-
ize how the features varied across the two different types
of interactions. In the pooled experiment for computing
the mutual information we defined three different dis-
crete values for the variable X in Equation 1: (i) RNA
contacting residue, (ii) DNA contacting residue and (iii)
non-contacting residue. As done in the previous experi-
ments we compute the MI value for the different single
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Angstrom) vs. mutual information (unit is bits) for sin-
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RNA-contacting classes.

and joint features with increasing distance cutoff values.
It was ensured that there was no overlap in the chains
involved in the RNA and DNA interaction i.e., we re-
strict the analysis to residues involved only in one type
of interaction. The pooled results for the single and joint
features are shown in Figures 4 and 5, respectively. The
MI values for this pooled experiment can be compared to
the results obtained for the individual protein-RNA and
protein-DNA datasets.

As expected the solvent accessibility feature (SASA)
stands out individually (peak MI value of 0.048 bits) and
in combination with the PSSM feature produces the high-
est MI values (MI value of 0.092 bits) . This suggests
that SASA can be important in distinguishing between
the RNA and DNA binding properties of residues. From
a pure sequence based perspective we can use prediction
methods like svmPRAT [18] or ACCPRO [16] to predict
SASA features from sequence and use the predicted val-
ues to discriminate between the RNA and DNA binding
residues.

4 Conclusions and Future Direc-
tions

Using the mutual information as a measure of de-
pendence we determine specific properties of protein
residues that are involved in RNA-binding and DNA-
binding events. We observe the strong relationship be-
tween the relative solvent accessibility surface area and
protein-RNA binding site. Comparing these features to
the protein-DNA binding sites also helps us characterize
the nature of interaction and difficulty of predicting bind-
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to characterize paired combination of individual features
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lue(bits)

Mival

Figure 4: Contact distance cutoff (unit is Angstrom) vs.
mutual information (unit is bits) for single features on a
pooled RNA and DNA binding dataset.

ing sites from sequence. Since the high scoring features
are structural in nature, it may lead to the conclusion that
protein-RNA interaction sites may be hard to predict us-
ing just sequence information. However, we could pre-
dict features like contact order (i.e., number of protein
residues in close proximity to another residue) as well
as solvent accessibility if we were to build a sequence-
based predictive model. Using the information learned
from this study we would like to build a machine learn-
ing classifier to predict protein-RNA binding sites.

The results of the concatenated PSSM were surpris-
ing since the use of subsequence or local sequence in-
formation always improves results for predicting local
structure [18]. In the future we would like to use this
approach to study protein-protein interactions as well as
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protein and small molecule interaction.
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