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Abstract
As Cyber-Physical Systems (CPSs) evolve they will be
increasingly relied to support time-critical monitoring
and control activities. Further, many CPSs that utiliz-
ing Wireless Sensor Networking (WSN) technologies
will require the use of energy harvesting methods to ex-
tend their lifetimes. For this application class, there are
currently few effective models that allow the simulation
and analysis of new algorithms or system performance.
To address this problem, we define a general purpose
WSN model to support a time-critical CPS system. We
then present a set of Harvesting Aware Speed Selection
(HASS) algorithms. Our technique maximizes the mini-
mum energy reserve for all the nodes in the network, thus
ensuring highly resilient performance under emergency
or fault-driven situations. We present an optimal central-
ized solution, along with an efficient, fully distributed so-
lution. We propose a CPS-specific experimental method-
ology, enabling us to evaluate our approach. Our experi-
ments show that our algorithms yield significantly higher
energy reserves than baseline methods.

1 Introduction
There is an increasing need to effectively support WSN
applications that have significant data collection and
processing requirements. Examples range from Wire-
less Network Video Systems for surveillance [22] to
Cyber-Physical Systems such as smart power grid us-
ing 802.15.4/Zigbee technology [18] or networks con-
sisting of lab-on-chip nodes [8] used for monitoring large
scale water distribution systems. These types of sys-
tems often have strict timing and performance specifi-

cations. For instance, smart power grid systems need to
provide real-time pricing information while water distri-
bution systems need to instantly react to a contamination
by performing coordinated tracking and flow shut-off op-
erations. Further, many of these unattended and deeply-
embedded systems will be expected to last for several
decades, and therefore must carefully manage available
energy resources. The challenge faced by system design-
ers is to balance the performance and system availability
requirements with energy management policies that can
maximize system lifetime.

One approach for maximizing system lifetime is to use
energy harvesting [9]. By harvesting energy from en-
vironmental sources such as solar, wind or water flow,
WSN nodes potentially have a perpetual energy supply.
However, given the large energy demands of computa-
tional and communication intensive WSN applications,
and the potentially limited availability of harvested en-
vironmental power, perpetual operation of WSN nodes
cannot be realized without deliberate energy manage-
ment. This problem is exacerbated if the application has
unpredictable spikes in workload demand such as a water
distribution system reacting to a biological contamina-
tion, or the system is experiencing unexpected shortage
in environmental energy supply. The focus of this pa-
per is a coordinated energy management policy for time-
critical WSN applications that use energy harvesting and
that is capable of maintaining required performance level
under emergency or fault-driven situations.

Our approach is to make combined use of two en-
ergy saving techniques, Dynamic Voltage Scaling (DVS)
[3, 16] and Dynamic Modulation Scaling (DMS) [21].
The DVS technique saves computation energy by simul-
taneously reducing CPU supply voltage and frequency.
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The DMS technique saves communication energy by re-
ducing radio modulation level. To take advantage of
these methods we propose a set of Harvesting Aware
Speed Selection (HASS) algorithms that use both DVS
and DMS in conjunction with energy harvesting mod-
ules. The purpose of the HASS approach is to maximize
energy reserves while meeting application performance
requirements, therefore maximize the system’s resilience
to emergency situations.

One additional difficulty in managing energy for these
systems is that nodes may have quite different workload
requirements and available energy sources. This may
arise from natural factors such as differences in nodes
energy harvesting opportunities, or unbalanced distribu-
tion of processing workloads or network traffics among
nodes. Because of these conflicting design considera-
tions, the HASS approach attempts to maximize the min-
imum energy reserve level over any node in the network
while guaranteeing required system performance levels.

Our specific contributions are summarized as follows:
We first provide a basic architectural description for DVS
and DMS nodes that use energy harvesting. We then pro-
pose a general network and performance model for time-
critical WSN applications. Unlike the majority of ex-
isting works in energy harvesting WSN systems which
mainly focus on individual nodes, we target a multi-hop
sensor network with end-to-end performance require-
ment. Next, we show how to formulate the problem of
maximizing the minimum energy reserve while main-
taining required performance as an optimization prob-
lem. We prove that this problem can be solved optimally
and efficiently. We also propose and evaluate both cen-
tralized and distributed protocols to implement the HASS
solution. We conducted extensive simulations to evalu-
ate our methods under a variety of data processing, com-
munication and performance requirements. Unlike most
existing works which assuming solar energy as environ-
mental sources in their simulations, we propose exper-
imental methodology to simulate an energy harvesting
WSN systems utilizing energy harvested from water flow
in a water distribution system. Our results show that both
the centralized and distributed solutions significantly im-
prove the capacity of time-critical WSN systems to deal
with emergency situations, in addition to meeting perfor-
mance requirements. Finally through numerical and ex-
perimental analysis, we show that both HASS solutions
are very efficient with low computational and communi-
cation overheads.

2 Background and Related Work

The joint use of DVS and DMS in wireless embedded
systems has been explored in [10], [20]. In [10], Ku-

mar et al. addressed a resource allocation problem with
the aim of minimizing energy consumption. They as-
sume a system containing a mixed set of computation and
communication tasks. In [20], the energy management
problem is formulated as a convex optimization prob-
lem, which is then addressed through the use of genetic
algorithms. In [21], Yu et al. proposed DMS-based ap-
proach for a multi-hop WSNs. They assume a data col-
lection application in which a base station periodically
collects sensed data from WSN nodes over a tree-based
routing structure. Unlike our work, [10], [20], [21] as-
sume battery-powered systems without energy harvest-
ing capability. Further, their goals are to prolong sys-
tem lifetime by reducing energy consumption, without
considering issues such as ensuring perpetual operation
through energy harvesting or providing for emergency
response.

Many existing studies explored the design of energy
harvesting WSNs. In [13], Moser et al. proposed
the LSA algorithm (Lazy Scheduling Algorithm) for
scheduling real-time tasks in the context of energy har-
vesting. LSA defers task execution and hence energy
consumption as late as possible so as to reduce the
amount of deadline misses. Liu et al. ([11]) proposed
EA-DVFS (Energy-Aware Dynamic Voltage and Fre-
quency Scaling) which improves the energy efficiency of
LSA by using DVS. Both LSA and EA-DVFS manage
only the CPU energy, while ignoring radio energy. Other
related work includes [15] and [7] which aim at bal-
ancing energy supply and demand in energy harvesting
WSN systems, and [6], which presents a multi-hop rate
assignment approach for data collection. Finally, [9, 14]
proposed to maximally utilize harvested energy so as to
maximize the amount of completed works, and hence
system performance. Neither of these works considered
maximizing minimum energy levels by using joint DVS-
DMS techniques.

3 System Architecture

This section describes our architecture for energy har-
vesting WSN systems supporting time-critical applica-
tions. It consists of a basic node and device model, a
task-based workload and energy consumption analysis,
and a performance model. This will provide a system-
atic methodology for modeling and analyzing the perfor-
mance of this type of systems.

3.1 Device model

Without loss of generality, we assume that each node has
several functional units, including an energy harvester
head, an energy storage unit, a DVS capable CPU, a
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DMS capable radio, as well as required sensor suites.
The harvester head is energy source-specific, such as so-
lar panel or wind generator. The energy storage unit (e.g.
rechargable battery or super-capacitor) has a maximum
energy capacity of Γmax joules. This unit receives power
from the harvester, and delivers power to the sensor node.
We take the commonly used approach that the amount of
harvested power is uncontrollable, but reasonably pre-
dictable, based on the source type and harvesting history
[9]. To capture the time-varying nature of environmental
energy, time is divided into epochs of length S. Har-
vested power is modeled as an epoch-varying function
denoted by Phi , where i is the epoch number. Phi re-
mains constant within the course of each epoch i, but
changes for different epochs. To be precise, Phi is the
actual power received by energy storage which incorpo-
rating the loss during power transfer from harvester to
energy storage, and the power leakage of energy storage.
The time unit used for harvesting prediction is therefore
one epoch. The prediction horizon, H is an interval con-
taining a number of epochs during which predictions can
be reasonably made. Our approach needs to know the
harvested power prediction of only the coming epoch, at
the epoch start.

The node consumes power via either processing, ra-
dio communication or sensing. We now describe how to
model energy consumption for an individual node. The
basic time interval over which energy consumption is
calculated is called a frame, defined precisely below in
Section 3.2. Frames are invoked periodically. We as-
sume the DVS-enabled CPU has m discrete frequencies
fmin=f1<...<fm=fmax in unit of cycles per second, and
the DMS-enabled radio has n discrete modulation levels,
bmin=b1<...<bn=bmax. We use the terms frequency and
compute speed interchangeably. In practice, the modu-
lation level represents the number of bits encoded in one
signal symbol [21]. To understand this relationship, let
R be the fixed symbol rate. Then modulation level b is
associated with communicate speed d expressed as:

d = R · b (1)

Let esen represents the energy required for each sens-
ing which is a constant. The computation energy ecpk in
the kth frame is a function of compute speed fk and sup-
ply voltage Vdd,k [3]. The communication energy ecmk
in the kth frame is a function of communicate speed dk
[21]. Then we have:

ecpk = [αfkV 2
dd,k + P ind,cp] · (C/fk) (2)

ecmk = [βR(2dk/R − 1) + P ind,cm] · (M/dk) (3)

Above, C and M are the computation and communica-
tion workloads in a frame. C is the number of cpu cycles

to be processed, M is the number of bits to be transmit-
ted. The α in Eq. (2) is the CPU switching capacitance
which is constant. The β in Eq. (3) is a constant deter-
mined by the transmission quality and noise level [21].
The terms αfkV 2

dd,k and βR(2dk/R − 1) give the speed-
dependent power of CPU and radio which vary with fk,
Vdd,k, and dk respectively. P ind,cp and P ind,cm are
two constants representing the speed-independent power
of CPU and radio. By using DVS, the supply voltage
Vdd,k can be reduced linearly alongside with fk to ob-
tain energy saving (i.e. fk ∝ Vdd,k), making the speed-
dependent CPU power a cubic function of fk. Our model
assumes a sufficient level of coordinated sleeping and
transmission scheduling, so that the radio energy con-
sumed by listening channel activities is not a significant
factor. Finally, the total energy consumed in frame k, eck
equals:

eck = esen + ecpk + ecmk (4)

3.2 Network and application model

The system consists of N sensor nodes and the set of
wireless links connecting them. Each node is denoted
as Vi. Base stations or control points are denoted as
BS. The N nodes are divided into two types: source
nodes perform sensing, processing and communication
operations, while relay nodes only perform processing
and communication. Our data processing architecture is
quite general, and supports systems that perform some
levels of aggregation at each node, as well as systems
that do not allow any aggregation. We represent a time-
critical and performance sensitive WSN application by
requiring all source nodes report their readings, which
may or may not be aggregated into other readings, ev-
ery π time units. The time interval π is the length of a
data collection frame. Such frame-based data collection
mechanism is quite common for WSN applications [10]
[17] [21]. In other words, all sensed, processed or ag-
gregated data must reach BS by the end of each frame.
For example, at the start of the kth frame (i.e. at time
(k − 1) · π), each source node senses the environment
and sends sensed data to BS. The data is routed by other
nodes and must reach BS by the end of that frame, at
time k · π. We assume all nodes are time-synchronized
so that they are aware of the same frame start and end
times.

On a per-frame basis, energy consuming activities
within each node are represented using a task-based
model. In this way, frame-based energy consumption is
determined by examining the energy demands of individ-
ual tasks (Eq. (4)). There are a total of three task types:
sensing, computation and communication. Without loss
of generality and in order to simplify the modeling pro-
cess, we assume the three tasks are executed in the or-
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der of sense→compute→communicate. That is, in each
frame, a node performs sensing first, then processes the
sensor reading, then transmits the processed data. The
workloads of the computation and communication tasks
of any node Vi are fixed over any frame in a given epoch,
and denoted as Ci and Mi, respectively.

We assume that each node uses standard WSN energy
management techniques for transitioning to sleep states
when there is no active task. We also assume that com-
pute and communicate speeds only change at the start
of an epoch. This design decision reduces the required
level of control and synchronization overhead. For in-
stance, the modulation level of a node must not change
frequently, since each such change must be conveyed to
its receiver in order to ensure correct demodulation of the
transmitted data. Using this analysis we can calculate the
time required by each node Vi to carry out all activities
during frame k, referred as the per-node latency, li,k.
The per-node latency depends upon the compute speed
fi,k and the communicate speed di,k. Then li,k is given
by

li,k = tsen +
Ci
fi,k

+
Mi

di,k
(5)

tsen is the sensing time which is a constant. Note that
tsen equals zero for relay nodes. We make a common as-
sumption that the effective data transmission time domi-
nates the overall communication time while ignoring the
carrier sense time [10], [20], [21]. Thus, the communi-
cation time is inversely proportional to di,k.

The system is organized into a data collection and pro-
cessing tree rooted at BS, using tree construction algo-
rithms such as [1]. In order to support time-critical op-
eration we must define and calculate the maximum data
collection latency and individual path latency. These two
values are used in the optimization formulation in Sec-
tions 4 and 5 to ensure that all latency requirements are
maintained. In each frame, a node Vi receives data from a
set of child nodes denoted as Children(Vi). Vi then for-
wards packets to its parent node, denoted as Parent(Vi),
after received data from all its children. Then the maxi-
mum data collection latency Ltot,k of frame k is the time
interval between the start of frame k, and when BS col-
lects all sensed data, given by

Ltot,k = Max.{Li,k + li,k|Vi ∈ Children(BS)} (6)

Above, Li,k is the latency of the subtree rooted at node
Vi, i.e. Li,k = Max.{Lj,k + lj,k|Vj ∈ Children(Vi)}.
The subtree rooted at a leaf node contains only the leaf
itself, and hence incurs zero latency.

Next, we define the path ρi from a node Vi to the root
BS as the series of nodes and wireless links connecting
Vi and BS. The notation Vj ∈ ρi signifies that Vj is an
intermediate node on path ρi. The latency Hi,k of ρi is

defined as:
Hi,k =

∑
j:Vj∈ρi

lj,k (7)

Note that by resolving the recursion in Eq. (6), Ltot,k
actually equals to the latency of the longest path in the
tree, i.e. Max.{Hi,k|∀ρi}.

4 Harvesting Aware Speed Selec-
tion

Based on the node and network model presented in Sec-
tion 3, we now formally define the Harvesting Aware
Speed Selection (HASS) problem. Our goal is to main-
tain end-to-end performance while maximizing system’s
resilience to abnormal or emergency situations. This is
accomplished by maximizing the minimum energy level
of any node.

The compute and communicate speeds at individual
nodes are adjusted at the start of each epoch, and remain
fixed throughout that epoch. As defined in Section 3.1,
an epoch is a time interval over which an energy harvest-
ing prediction can be reasonably made. For an arbitrary
epoch, the energy consumption eci,k and performance la-
tencies Li,k, Hi,k of node Vi are fixed over any frame k.
For simplicity we therefore rewrite them as eci , Li and
Hi. Then the energy level Γi of a node Vi at the end of a
given epoch is given as:

Γi = Γiniti + Phi · S − bS/πc · eci (8)

Γiniti is the starting energy level of Vi in the epoch. Re-
call that S is the epoch length. bS/πc gives the number
of frames in an epoch. Using this notation, we define
Γmin as

Γmin = Min.{Γi|∀Vi} (9)

Then the goal of our approach is to maximize Γmin.
The variables of the problem are the compute and com-
municate speeds fi, di used by any node Vi in an epoch.
GivenN nodes in the tree, there are 2N unknowns in our
problem. The optimal solution to this problem consists
of N speed configurations (fi, di), one for each node
which maximize Γmin. The problem HASS is given as:

Max. Γmin (10)
s.t. ∀ρi, Hi ≤ π (11)

∀Vi, fi ∈ [fmin, fmax] (12)
∀Vi, di ∈ [dmin, dmax] (13)
∀Vi, 0 < Γi ≤ Γmax (14)

The constraint (11) ensures that the latency of any path
ρi in the tree is smaller than the frame period π. As men-
tioned in Section 3.2, this is equivalent to ensuring that
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the latency of the entire tree is smaller than π. The con-
straint (12) gives the available ranges of f and d. The
constraint (14) requires that the energy level of any node
Vi must be confined to the range (0,Γmax]. In [9], the au-
thors introduced the energy neutrality condition, which
essentially states that the energy consumed must be no
larger than the energy available, such that Γi will never
drop to zero. This is a necessary condition for an energy
harvesting sensor node to operate non-interruptively and
we therefore adopt it as a requirement. The left hand
side of constraint (14) (called the positivity constraint)
must hold in order to ensure energy neutrality, while the
right hand side (called the capacity constraint) is used to
model energy storage capacity. Given known and con-
stant harvested power, and fixed speeds and power con-
sumption, the variation of energy level also fix through-
out an epoch, i.e. either monotonically increase or de-
crease at a fixed rate. Therefore, ensuring a positive en-
ergy level at the end of an epoch also ensures positive
energy level at the end of any frame in that epoch.

5 Centralized and Distributed So-
lutions

This section provides centralized and distributed solu-
tions to problem HASS. The centralized version provides
an optimal solution, while the distributed version is ap-
propriate for systems that need to avoid single control
point.

We first give Lemma 1 which states that solving prob-
lem HASS with full constraint set is equivalent to solving
the same problem but without constraint (14). This en-
ables us to remove constraint (14) and focus on a new
problem obtained in this manner, denoted as HASS-N.
Note that the objective function and all other constraints
are retained in HASS-N.

Lemma 1 If in the optimal solution to HASS-N, Γmin
is strictly positive, then the solution to HASS is identi-
cal to that of HASS-N. Otherwise, HASS has no feasible
solution.

The proof of Lemma 1 can be found in the Appendix. In
the rest of this paper, we will focus on solving problem
HASS-N. Solving HASS-N requires non-linear optimiza-
tion methods, since it has a non-linear objective func-
tion (Eq. (10)). Such costly methods are difficult to im-
plement on resource-constrained sensor nodes. We will
show how to obtain an optimal solution efficiently.

A naive approach to solve HASS-N is to exhaustively
search over all possible solutions. For a system with
N nodes where each node has m compute speeds and
n communicate speeds, there are (mn)N possible solu-
tions, making brute force search impractical. However,

we notice that many different solutions yield identical
Γmin. Using this observation we can simply enumerate
each possible Γmin, check if there exists a feasible so-
lution that yields a minimum energy level (among any
node) equaling the enumerated Γmin, while satisfying
constraints (11) and (12). The highest Γmin that passes
this check is by definition the maximum Γmin that we
are looking for.

For each node, mn speed configurations correspond
to mn different power consumption levels. Since each
node’s power consumption is fixed throughout an epoch,
a node has exactly mn energy consumption levels over
an epoch. Thus, given a known starting energy level and
a fixed prediction for how much energy can be harvested,
a sensor node could end with at most mn possible en-
ergy levels in an epoch. Given N nodes, at the end of
an epoch, there could be at most mnN different energy
levels in the network, and Γmin can be only of these pos-
sible values. The set of possible Γmins is referred as EL
(Energy Level), and has a size of mnN .

5.1 Centralized version

We call the centralized HASS algorithm as CHASS, given
in Algorithm 1. It runs on the base station, and assumes
that BS must collect Γinit from each node in the sys-
tem, and is aware of the available speed configurations of
sensor nodes. CHASS first computes the possible energy
levels of all the nodes using Eq. (8) to build the set EL,
then sorts EL in non-increasing order (line (1)). CHASS
proceeds iteratively over the sorted EL starting from the
first element (i.e. the highest energy level in EL) (line
(2)). In each iteration p, it solves a decision problem,
called Feasible Solution denoted by FSp, by calling al-
gorithm Is-Feasible (line (3)). The pth element in EL,
EL[p] is input to Is-Feasible. The problem FSp is spec-
ified as ”Is there a solution which yields Γmin=EL[p],
while satisfying constraints (11-12)?”

The loop in line (2-9) iterates through all the ele-
ments in EL. It continues if the answer to problem
FSp, ansp is negative, and terminates once it met a FSp
with positive answer, i.e. in iteration z in which FSz
is the first problem encountered with positive answer,
z = Min.{p ∈ [1, |EL|]|ansp = TRUE} (line (4)).
By definition of problem HASS-N and FS, and the or-
dering of EL, EL[z] is the maximum Γmin that can be
achieved (line (5)), while satisfying all the constraints. If
CHASS proceeds to the end of EL and never received a
positive answer to any of the FSp, this implies problem
HASS-N has no feasible solution.

The algorithm Is-Feasible for solving problem FSp is
given in Algorithm 2. The algorithm has one input, the
energy level enumerated in iteration p of CHASS, EL[p].
It has three returned values, the answer to problem FSp,
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ansp, and two speed sets of length N , F ∗, D∗ which
contain f and d derived for all the nodes in the current
iteration; they are returned only if ans is positive, other-
wise they are empty.

Algorithm 1 CHASS

1: Compute and sort EL (in non-increasing order)
2: for p = 1 to |EL| do
3: [ansp, F ∗p , D

∗
p] = call Is-Feasible(EL[p])

4: if ansp == TRUE then
5: Max Γmin = EL[p]
6: [F opt, Dopt] = [F ∗p , D

∗
p]

7: Break from for-loop
8: end if
9: end for

Algorithm 2 Is-Feasible - Input: EL[p]

1: Γmin = EL[p]
2: for i = 1 to N do
3: (F ∗[i], D∗[i], lmini ) = call find fastest(Γmin)

on Vi
4: end for
5: Compute Hi =

∑
j:Vj∈ρi

lminj for any path ρi
6: if ∀ρi, Hi ≤ π then
7: ans = TRUE
8: else
9: ans = FALSE, F ∗, D∗ = ∅

10: end if
11: return [ans, F ∗, D∗]

First, by making Γmin = EL[p] (line (1)), Γi ≥
Γmin = EL[p] must hold for any node Vi. Then the
algorithm calls function find fastest for each node (line
(2-4)) to search over all its mn speed configurations for
the fastest one, while yielding Γi ≥ EL[p]. Specifi-
cally, find fastest returns the speed configuration of Vi,
(F ∗[i], D∗[i]) which satisfies:

F ∗[i] ∈ [fmin, fmax], D∗[i] ∈ [dmin, dmax](15)
Γi(F ∗[i], D∗[i]) ≥ EL[p] (16)
∀(f, d), li(F ∗[i], D∗[i]) ≤ li(f, d) (17)

Γi(f, d) and li(f, d) represent the energy level and per-
node latency achieved using speed configuration (f, d).
find fastest also returns the per-node latency lmini at Vi
achieved by using the derived (F ∗[i], D∗[i]). Note that
lmini is the least achievable latency according to Eq. (17).
Then for each path ρi, we compute its latencyHi by sum-
ming up any lminj , Vj ∈ ρi (line (5)). Since (F ∗, D∗)
minimizes the per-node latency at any node, it also min-
imizes the latency of any path Hi. Therefore, if Hi ≤
π,∀ρi, the constraint (11) is met, hence the answer to

problem FSp is positive (line (6-7)). Otherwise, con-
straint (11) can never be met, hence the answer is neg-
ative (line (8-9)). Note that it is possible that function
find fastest does not return an answer, as there may
exist some nodes having no possible energy level larger
than the input EL[p]. In this case, the algorithm imme-
diately rejects EL[p]. The speed sets F ∗, D∗ found in
iteration z is set to be the optimal solution to problem
HASS-N and also HASS (line (6) in Algorithm 1). EL[z]
is set to be the maximum achievable Γmin.

It is possible to reduce the runtime of the above algo-
rithm. In order to do so we present Lemma 2 and Corol-
lary 1, which is used as the basis forCHASS∗, the faster
algorithm. The key idea of CHASS∗ is to implement a
binary search for FSz . This reduces the number of iter-
ations in CHASS from O(|EL|) to O(log(|EL|)).

Lemma 2 For any node Vi, the least per-node latency
found by invoking algorithm Is-Feasible with Γ1 as input
is no smaller than the one found with Γ2 as input, where
Γ1 ≥ Γ2.

The proof of Lemma 2 can be found in the Appendix.
Given Lemma 2, we have:

Corollary 1 For any node Vi, the least per-node latency
found in iteration p is no smaller than the one found in
iteration q, ∀q ≥ p.

Corollary 1 holds because EL[p]≥EL[q], given that
EL was sorted in non-increasing order. Corollary 1 im-
plies that the latency of any path found in iteration p is
also no smaller than the one found in iteration q, ∀q ≥ p.
Therefore, we can implement the search for FSz using
binary search. The search starts from the pth element of
EL, p = |EL|

2 , and

• continues on the left half (i.e. [1, p− 1]) if FSp has
positive answer. Due to smaller path latency found
in iteration q, q > p, any FS problem on the right
half must also have positive answer, hence it is un-
necessary to search that half. Rather, on the left half,
we may find a problem FS with larger achievable
Γmin.

• continue on the right half (i.e. [p+ 1, |EL|]) if FSp
has negative answer. Due to even larger path latency
found in iteration q where q < p, any FS on the left
half must violate constraint (11), thus have negative
answer.

The binary search continues on either half depending on
the answer to FSp, until FSz is found. The binary search
based implementation reduces the number of iterations in
CHASS from O(|EL|) to O(log(|EL|)).
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Complexity analysis: Given mn speed configura-
tions, the run time of find fastest is O(mn). Given N
nodes, the loop in line (2-4) of Algorithm 2 has run time
O(mnN). Also, computing the latency for all paths (line
(5)) takesO(N) time since there areN nodes. Therefore,
the run time of Is-Feasible isO(mnN). SinceCHASS∗

iterates forO(log(|EL|))=O(log(mnN)) rounds, its to-
tal complexity is O(mnN log(mnN)). Since m and n
are typically much smaller than N , the algorithm can be
seen as an efficient one in practice. In terms of the com-
munication overhead, the gathering of initial energy lev-
els from all the nodes at BS requires one round of data
collection.

5.2 Distributed Version

We next describe the distributed HASS solution called
DHASS. The purpose of the distributed version is to en-
able any node in the network to act as the base station,
and therefore enable that node to make command and
decisions.

The algorithm DHASS proceeds also in binary-search
fashion. It requires one initialization round during which
each sensor node sends an initialization message con-
taining two pieces of information, its estimated lowest
and highest energy levels at the end of the epoch, denoted
as Γlow and Γhigh. After the initialization round, all
the nodes agree on the global lowest and highest achiev-
able energy levels (among the entire tree). The contin-
uous range between the two energy levels is the start-
ing binary search space. Then, it runs for Y computa-
tion rounds, each of which corresponds to one iteration
of binary search, and solves one problem FS using the
distributed Is-Feasible. In each computation round, the
midpoint of the search space is used as input energy level
to Is-Feasible. Given that input, each node calls function
find fastest individually to derive its fastest speed con-
figuration and associated per-node latency. It then com-
putes the accumulative latency at it, i.e. Li+ li and sends
to its parent as a latency message. The parent computes
its accumulative latency as well based on the received
latency messages from its children. By making all the
nodes compute and report their latencies accumulatively,
the latency of the entire tree Ltot will be ultimately com-
puted at the root. The root then compares Ltot to π in
order to determine the answer to problem FS, and dis-
seminates it to all the nodes as a decision message. Note
that any node in the network can be the root. The speci-
fication of DHASS is given below.

In the initialization round, each node estimates its lo-
cal Γlow, Γhigh using Eq. (8), then forwards to its par-
ent as an initialization message. A node receives initial-
ization messages from its children, and compares Γlow,
Γhigh received to the ones of its own, in order to derive

Γlow and Γhigh among its children and itself. The de-
rived Γlow, Γhigh are sent to its parent as well. When
the root receives initialization messages from all its chil-
dren, it derives the global Γlow and Γhigh which actually
equals to the minimum and maximum elements in EL,
Min(EL), Max(EL). Then the root disseminates the
global Γlow and Γhigh to all the nodes for the use in the
first computation round. Their values will be updated
in each computation round according to a rule given in
the following paragraphs. The initialization round ends
when all the nodes receive them.

In a computation round, each node Vi calls func-
tion find fastest to derive its fastest speed configuration
and least per-node latency lmini , while satisfying Γi≥X .
X=(Γlow+Γhigh)/2 is the input energy level in this
round. Note that X should be the same for all nodes
since they had agreed on the initial Γlow and Γhigh after
the initialization round, also the updating rule of these
two values is the same for all nodes. Then, starting from
the leaf nodes, each node sends the accumulative latency
at it, i.e. Li+lmini to its parent. Recall that Li=0 for
any leaf node. Any non-leaf node computes its Li using
Eq. (6) after received latency messages from all children.
The computation and reporting of Li+lmini continues on
all nodes in the tree. The root node computes the latency
of the entire tree Ltot after received latency messages
from all children. Then the root compares Ltot to the la-
tency constraint π. If Ltot≤π, the root sets the answer
to problem FS in the current round to be positive; other-
wise, it sets the answer to be negative. Unlike the central-
ized version, we compute and compare (to π) the latency
of the entire tree instead of the latency of each individ-
ual path. This is because in each computation round, it
requires a node sending only the latency of the subtree
rooted at it, rather than one for each path it resided on.

The answer to problem FS is then disseminated to all
the nodes as a decision message. Each node receives the
decision message, and continues to the next round. The
search space [Γlow,Γhigh] and input energy level X in
the next round are updated based on the answer in the
received decision message as follows:

• If answer is positive, we set Γlow = X which
directs the search to the higher-valued half of the
search space.

• If answer is negative, we set Γhigh = X which di-
rects the search to the lower-valued half.

• We then set X = (Γlow + Γhigh)/2.

The algorithm ends after Y computation rounds, and
sets:

• X in the Y th round to be Max. Γmin, and the speed
configuration found in the Y th round to be the opti-
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mal solution, if the answer to the FS problem in the
Y th round is positive.

• Γlow in the Y th round to be the Max. Γmin, and
the speed configuration found in the round with
X = Γlow as the input to be the optimal solution,
otherwise.

We then propose Theorem 1 which shows the perfor-
mance of DHASS is very close to optimal.

Theorem 1 The maximum Γmin found by algorithm
DHASS is smaller than the optimal value, by at most
(Max(EL)−Min(EL))/2Y−1.

The proof of Theorem 1 can be found in the Appendix.
Complexity analysis: In a computation round,

the major time cost of a node comes from function
find fastest which equals O(mn). Given Y computa-
tion rounds, the total cost is O(mnY ). The root com-
pares Ltot to π in each computation rounds, this causes a
time cost of O(Y ). In the initilization round, each node
sends exactly one initialization message. In any compu-
tation round, each node sends exactly one latency mes-
sage. The optimal speed configurations are computed on
each node individually, hence there is no dissemination
cost.

6 Performance evaluation
We performed a series of simulations to evaluate the ef-
fectiveness of our HASS approaches. Specifically, the
goal of the evaluation is to determine how well both the
CHASS and DHASS algorithm maximize the minimum
energy level across the system. We considered two WSN
application types: aggregating and non-aggregating ap-
plication. The evaluation examined a number of work-
load scenarios, including several emergency scenarios
where there are sudden, unexpected peaks in the demand.

6.1 Experimental Methodology
Without loss of generality we evaluated our approaches
within a WSN system designed for residential monitor-
ing of water usage and quality. Each customer (resi-
dence) is coupled to a supply pipe through a water me-
ter. Our simulation environment assumes that each water
meter is coupled with a DVS-DMS enabled node. En-
ergy is harvested from the flow of water. The amount of
harvested energy is therefore dependent upon the rate at
which the customer uses water. To our best knowledge,
we are the first to simulate energy harvesting WSN sys-
tems utilizing water energy source.

We have developed simulation software upon
TOSSIM: the standard high-fidelity WSN simulator,
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Figure 1: Water energy harvesting profile

combined with EPANET [12]: a public domain, water
distribution system modeling program developed by the
US Environmental Protection Agency. Our simulator
can take as input a variety of WSN topologies, water
distribution system configurations and customer usage
patterns. Based on water utilization and water quality
patterns, the software simulates energy harvesting, and
various WSN processing and communication activities.
The presented results are based upon a 100 node res-
idential water distribution topology. The topology is
derived from an existing suburban area of 100 houses.
The 100 nodes installed in the houses then form a WSN
system. We use Collection Tree Protocol [1] to organize
the nodes into a data collection tree.

Due to the repetitive water usage pattern with a cycle
of 6 hours as supported by EPANET, we fix the harvest-
ing horizon at H=6 hours. A horizon is then divided
into 24 epochs with equal length S=15 minutes. We run
EPANET for 48 hours which is a sufficiently long dura-
tion, containing 8 horizons or equivalently 192 epochs,
and obtained hydraulic simulation reports. Using these
reports we generate water energy harvesting profile for
each node based on the observed water usage at the cus-
tomer. Fig. 1 shows the harvesting profile of one selected
node. The frame period is set to π=240ms.

Both algorithm CHASS and DHASS were imple-
mented in our simulation environment. Although there
are no schemes that are directly comparable to our al-
gorithms, we implemented a baseline scheme called
No-Power-Management (NPM). Unlike the HASS ap-
proaches, NPM scheme is harvesting-unaware in the
sense that it uses the highest frequency and modulation
level on all the nodes in order to guarantee data collection
timing constraint. Our experiments considered two ba-
sic application types: applications that support complete-
aggregation and applications that do not require any ag-
gregation (non-aggregation). By complete-aggregation,
we mean that each node aggregates multiple packets re-
ceived into one single packet, while in non-aggregation
case a sensor node forwards all packets to its parent with-
out aggregation. The packet size is randomly selected
between M=[64, 128] bytes; the computational work-
load is randomly selected between C=[0, 3000000] cy-

8



cles. These two scenarios produce highly different levels
of workload and network traffic.

The hardware basis for a DVS-DMS capable plat-
form is the widely available iMote-2 sensor node [19].
The iMote-2 platform has a Intel Xscale PXA27x CPU
[5] and a ChipCon CC2420 radio [4]. The frequency
and power specification of PXA27x processor is given
in Table (I). We derived the radio speed-independent
power P cm,ind = 26.5mW, radio symbol rate R =
62.5k symbols/sec, and β = 2.74 × 10−8 based on
CC2420 specification [4] and Eq. (3), and model a DMS-
capable radio by assuming four modulation levels: b =
{2, 4, 6, 8} [21] which gives four communicate speeds:
d = {125, 250, 375, 500} kbps (Eq. (1)). The radio en-
ergy is calculated using Eq. (3). We assume a light sensor
TSL2561 [2] which takes 12ms to get one reading and
consume 0.72mW. Each sensor node uses a rechargeable
battery with capacity Γmax = 1000 joules. All nodes
start with the same initial energy level, Γinit = 600
joules.

Freq.(MHz) 104 208 312 416 520 624
Power(mW ) 116 279 390 570 747 925

Table 1: Specification of Intel Xscale Pxa27x

Nodes operate in either normal or emergency mode.
We represent the emergency mode by increasing the
frame-based workload by w times upon the normal
mode, where w is a tunable parameter. This reflects the
fact that nodes will need to perform additional duties dur-
ing those times. We simulate emergency scenarios by in-
troducing contaminant into the system at random time,
this can be done by deteriorating the water quality at the
water reservoir or certain residences in EPANET (imag-
ine a terrorist attack on a water supply). As the spreading
of contaminant, the water quality in the residences will
decrease and finally been detected by sensor nodes. A
sensor node then switches to emergency mode and per-
form additional workloads over a series of epochs, until
the water quality returns to normal.

We consider three different types of emergency sce-
narios which affecting the system in different patterns.
The first type is random (RAND) attack. In this case,
nodes fail according to a negative exponential distri-
bution, and are picked according to a random uniform
distribution from among all the nodes still operating in
normal mode. The second mode is a spreading attack
(SPRD). This represents an emergency that increases its
area of impact over time. We introduce contaminant into
the system from one randomly selected contamination
source node. The contaminant spreads out of the system
with the flow of water, and lasts a few epochs until water
valves are shut off to stop further spreading. The third
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Figure 2: Min. energy level - Normal, non-aggregation
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Figure 3: Min. energy level - RAND, non-aggregation

mode is area instant (INST) attack. Under this scenario
a large contiguous area of the network is affected. We
prevent spreading of contaminant by shutting off the wa-
ter valves. We simulated one emergency in each horizon,
while an emergency started in one horizon may continue
to affect multiple successive horizons.

6.2 Results

In CHASS scheme, the set EL contains 2400 elements,
given 6 CPU frequencies, 4 modulation levels, and 100
nodes. In DHASS scheme, we set the number of search
iterations to be log(|EL|) ≈ 11.

We evaluated the performance of our algorithms un-
der normal and all three emergency modes. Each sce-
nario was tested using complete aggregation and non-
aggregation. We also varied emergency workload levels.
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6.2.1 Non-aggregating applications

In Fig. 2-5, we compared different schemes in term of
the achieved Γmin, while assuming non-aggregating ap-
plications. We fix the emergency level w at 3.0 which
means the emergency workload is three times the nor-
mal workload. In normal mode (Fig. 2), the Γmin value
can be seen to vary semi-repetitively, i.e. though it stays
close to full capacity at most time, however drops down
twice in every horizon (24 epochs). This is because the
workload and energy demand in normal mode is rela-
tively low, such that the energy level is dominantly af-
fected by the amount of harvested water energy which
varies in repetitive pattern (as seen in Fig. 1). However
in Fig. 3-5, the significantly increased workload demand
turns to have a dominant effect on energy level, there-
fore one emergency in each horizon leads to one drop of
Γmin in each horizon. This observation demonstrates the
effects of harvested energy and workload demand over
energy level when operating in different work modes.

As seen from all above figures, in normal and all emer-
gency modes, the CHASS scheme achieves the highest
Γmin, followed by DHASS with slightly lower Γmin.
In normal mode (Fig. 2), NPM scheme is able to sup-
port Γmin close to full capacity, this is because the har-
vested energy is much larger than energy demand in nor-
mal mode which keeps the energy storage at high level.
However, as workload demand increases in emergency
mode (Fig. 3-5), the performance of NPM drops dra-
matically: its achieved Γmin drops to zero after the 61th

epoch in all emergency modes. This imply that at least
one node in the network fails to maintain non-empty en-
ergy storage and is forced to stop operation. The fail-
ure of these nodes will cause service interruption to the
entire data collection application during the rest of the
epochs. Such lasting service interruption is apparently
unacceptable to the mission-critical applications. On the
other side, both HASS approaches achieves much higher
Γmin than NPM which never drops to zero in RAND
and SPRD modes, and becomes zero only during the
last ten epochs in INST mode. This is because by us-
ing HASS approaches, the harvesting-rich nodes run at
faster speeds to allow the harvesting-weak nodes to slow
down, given tight end-to-end latency constraint. The re-
duced speeds allow the weak nodes to maintain a higher
energy storage level, hence enhance the system’s capac-
ity to deal with emergencies. Although under extremely
intensive emergency, zero Γmin is inevitable even using
the HASS approaches, it nevertheless demonstrates the
importance of in-network data aggregation with regard
to energy efficiency.

Another observation from our results is that DHASS
achieves a very close Γmin to CHASS. In normal mode
(Fig. 2), the achieved Γmin of CHASS and DHASS al-
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Figure 4: Min. energy level - SPRD, non-aggregation
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Figure 5: Min. energy level - INST, non-aggregation

most overlap. In emergency modes, the performance
difference between them enlarges slightly due to the
increased influence of workload demands over energy
level. This observation indicates that DHASS scheme can
achieve near-optimal performance when it runs enough
number of binary search iterations, as claimed in The-
orem 1. Also, we observed that DHASS occasionally
achieves higher performance than CHASS, e.g. between
the 1st and 21st epoch in Fig. 5, this is due to the en-
ergy overheads caused by packet collisions and retrans-
missions.

w 1 1.5 2.0 2.5 3.0
RAND 0% 0% 7% 10% 10%
SPRD 0% 0% 6% 9% 9%
INST 0% 0% 7% 10% 16%

Table 2: Percent of depleted nodes: NPM, Non-aggregation

Then, we conducted a stress test over the system while
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w 1 1.5 2.0 2.5 3.0
RAND 0% 0% 0% 0% 0%
SPRD 0% 0% 0% 0% 0%
INST 0% 0% 0% 0% 1%

Table 3: Percent of depleted nodes: CHASS, Non-aggregation

using different schemes. That is, we raise the intensity
of emergency by increasing the value of w from 1.5 to
3.0 with an increment of 0.5. The aim of this stress test
is to evaluate the resilience of different schemes to var-
ious emergency intensities. We measure the system re-
silience to emergency in term of the percentage of nodes
that ran out of energy at the epoch which has the lowest
Γmin among all 192 epochs. The smaller the percentage
of depleted nodes under the same emergency intensity,
the higher resilience supported by a scheme compared to
others.

Table 2 and 3 give the percentage of depleted nodes
in all three emergency modes under various emergency
intensities, using NPM and CHASS scheme respectively.
We omit the results using DHASS, since it results in ex-
actly the same percentages as CHASS under all scenarios.
As seen from Table 2, as emergency intensity increases,
the percentage of depleted nodes increases noticeably in
all modes when using NPM, which implying the low re-
silience of the harvesting-unaware NPM scheme to emer-
gency situations. While using CHASS, the same increase
in emergency intensity depletes almost no node in the
network, except for the scenario when operating in INST
mode with a intensity level w = 3.0. In that scenario,
the lowest Γmin which equals zero, appears around the
181st epoch using all three schemes (as seen in Fig. 5).
We then collected the energy levels of all the nodes at
that time, and found 16% of depleted nodes when using
NPM, while only 1% when using both HASS schemes.
The results of the stress test demonstrates the benefit of
our harvesting-aware approaches in mitigating the im-
pact of emergencies over the system.

6.2.2 Aggregating applications

For aggregating applications, we repeat the same set
of experiments as for non-aggregating applications. In
Fig. 6-9, we also fix the emergency intensity at w =
3.0 and plotted the Γmin achieved by using differ-
ent schemes. In all the modes, CHASS and DHASS
schemes again achieve much higher Γmin than NPM
scheme. The DHASS scheme achieves very close per-
formance to CHASS scheme. As seen in all figures, the
achieved Γmin by our HASS approaches never drop to
zero, while the achieved Γmin by NPM schemes drops
to zero for many times due to the impact of emergency.

Finally, Table 4 and 5 show the percentage of de-
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w 1 1.5 2.0 2.5 3.0
RAND 0% 0% 0% 0% 3%
SPRD 0% 0% 0% 0% 18%
INST 0% 0% 0% 0% 13%

Table 4: Percent of depleted nodes: NPM, complete-
aggregation

pleted nodes under various emergency intensities by us-
ing different schemes. As seen from the tables, fewer
nodes are depleted in aggregating applications than in
non-aggregating applications in all scenarios. Even for
NPM scheme, nodes are depleted only when the emer-
gency intensity increases to w = 3.0. While using both
HASS approaches, depletion of nodes never happens.

w 1 1.5 2.0 2.5 3.0
RAND 0% 0% 0% 0% 0%
SPRD 0% 0% 0% 0% 0%
INST 0% 0% 0% 0% 0%

Table 5: Percent of depleted nodes: CHASS, complete-
aggregation

Communication overhead of algorithm DHASS: In
the simulation, DHASS requires each node to send 1 ini-
tialization message, and 11 latency messages for the 11
computation rounds. Since DHASS needs to run only
once in each epoch, each node sends in total 12 con-
trol messages in an epoch. Given a frame period π =
240 ms, and epoch length S = 15 minutes, each node
executes 3750 frames and sends 3750 data messages.
Therefore we derive the communication overhead to be
12/(3750 + 12) ≈ 0.32%. Consider that control mes-
sages commonly have smaller size than data messages,
the energy overhead might be even smaller. This implies
that our HASS approaches have also the benefit of high

efficiency.

7 Conclusion
This paper presented an epoch-based approach for en-
ergy management in performance-constrained WSNs
that utilizing energy harvesting combined with DVS and
DMS. We adjust radio modulation levels and CPU fre-
quencies in order to satisfy performance requirement.
The goal of our approach is to maximize the minimum
energy reserve over any node in the network. Through
this objective, we ensure highly resilient performance
under both normal and emergency situations. We for-
mulate our problem as an optimization program, and
then solve it with centralized and distributed algorithms.
Through simulation we have extensively evaluated both
algorithms against a baseline scheme. Our results show
that our algorithms achieve significantly higher perfor-
mance than a baseline approach, under both normal and
emergency situations.

A Appendix
Proof of Lemma 1:

We denote the optimal solution of problem HASS-N as
SN , and the achieved minimum energy level using SN as
ΓNmin. Note that SN is optimal in the sense that it max-
imizes Γmin, without considering constraint (14). Simi-
larly, we denote the optimal solution of problem HASS as
S∗, and its achieved minimum energy level as Γ∗min. We
will show that, if SN satisfies the positivity constraint,
i.e. ΓNmin > 0, then we have S∗ = SN ; otherwise, S∗

does not exist. We consider the following three cases:

• If using SN , 0 < Γi ≤ Γmax holds for any node Vi,
obviously we have S∗ = SN .

• In case that SN leads to Γi > Γmax, ∃Vi, we
claim that the compute and communicate speeds
contained in SN can still be used. This is because as
soon as the maximum capacity of the energy storage
is reached, the harvesting circuitry can be automati-
cally turned off, keeping its energy level at Γmax. In
another words, in this case, we still have S∗ = SN .

• If SN leads to Γi ≤ 0, ∃Vi, this implies ΓNmin ≤ 0.
Assume S∗ exists, then using S∗ will lead to ∀Vi,
Γi > 0 in S∗, since S∗ must satisfy the positiv-
ity constraint by definition. This indicates Γ∗min >
0 ≥ ΓNmin which contradicts the fact that SN maxi-
mizes Γmin (recall that the feasible region of HASS
is contained in that of HASS-N). Therefore, if SN

violates the positivity constraint, S∗ cannot exist.
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Proof of Lemma 2:

Let (f1, d1) and (f2, d2) denote the fastest speed con-
figurations at Vi found when the algorithm FS is invoked
by using Γ1 and Γ2 as input respectively, where Γ1 ≥ Γ2.
We use lmini,1 and lmini,2 to denote the (least) per-node la-
tencies at Vi obtained by using (f1, d1) and (f2, d2), re-
spectively. We will show lmini,1 ≥ lmini,2 .

When the FS problem is solved with Γ1 as input,
(f1, d1) yields lmini,1 , while satisfying Γi(f1, d1) ≥
Γ1. When it is solved with Γ2 as input, the function
find fastest could at least find (f2, d2) = (f1, d1) which
yields lmini,2 = lmini,1 , while satisfying Γi(f2, d2) ≥ Γ2

(because Γi(f2, d2) = Γi(f1, d1) ≥ Γ1 ≥ Γ2). In many
cases, (f2, d2) will yield an even smaller lmini,2 .

Proof of Theorem 1:

Denote Γlow and Γhigh in the Y th round as Γlow,Y

and Γhigh,Y , respectively. According to the property of
binary search, in the Y th round, the maximum Γmin
which is our search target is confined to the range
[Γlow,Y ,Γhigh,Y ]. As a result, the maximum Γmin can
be larger than the Γmin found in the Y th round by at
most Γhigh,Y − Γlow,Y . In the Y th round, Γhigh,Y −
Γlow,Y = (Max(EL)−Min(EL))/2Y−1.
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