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Abstract

Advances in sequencing technologies have revolution-
ized the field of genomics by providing cost effective
and high throughput solutions. In this paper, we de-
velop a parallel sequence assembler implemented on
general purpose graphic processor units (GPUs). Our
work was largely motivated by a growing need in the ge-
nomic community for sequence assemblers and increas-
ing use of GPUs for general purpose computing appli-
cations. We investigated the implementation challenges,
and possible solutions for a data parallel approach for
sequence assembly. We implemented an Eulerian-based
sequence assembler (GPU-Euler) on the nVidia GPUs
using the CUDA programming interface. GPU-Euler
was benchmarked on three bacterial genomes using in-
put reads representing the new generation of sequenc-
ing approaches. Our empirical evaluation showed that
GPU-Euler produced lower run times, and showed com-
parable performance in terms of contig length statistics
to other serial assemblers. We were able to demonstrate
the promise of using GPUs for genome assembly, a com-
putationally intensive task.

1 Introduction

Knowing the entire DNA sequence of an organism is
an essential step towards developing systematic ap-
proaches for altering its function. It also provide better
insights into the evolutionary relations among different
species. In the last few years, we have seen several new,
high-throughput and cost-effective sequencing technolo-
gies that produce reads of length varying from 36 base
pairs (bp) to 500 base pairs (bp). Sequence assembly
algorithms stitch together short fragment reads and put
them in order to get long contiguous stretches of the
genome with few gaps.

Several assembly methods have been developed for
the traditional shotgun sequencing and new sequencing
technologies. Examples include, greedy approaches like

VCAKE [20], graph oriented approach that find Eulerian
tours [27], and use bi-directed string graph represen-
tation [24]. ABySS [35] is one of the first distributed
memory assembler. It has a unique representation for
the de-Bruijn graph that allows for ease of distribution
across multiple compute processors as well as concur-
rency in operations. Jackson et. al. [17, 19] proposed
a parallel implementation for bi-directed string graph
assembly on large number of processors available on
supercomputers like the IBM Blue Gene /L.

In this work, we develop a GPU-based sequence as-
sembler, referred to as GPU-Euler. Specifically, we follow
the Eulerian path based approach that was developed for
Euler [28]. Our method was motivated by the current ad-
vances in multi-core technologies and the use of graphic
processor units (GPUs) in several computing applica-
tions. In this paper, we investigated the effectiveness
and feasibility of graph-based sequence assembly mod-
els on GPUs using the CUDA programming interface.
nVidia GPUs along with CUDA provides massive data
parallelism, that is easy to use and can be considered
cost-effective in comparison to loosely coupled Beowulf
clusters.

GPU-Euler was benchmarked on three previously as-
sembled genomes: (i) Campylobacter Jejuni, (ii) Neis-
seria Meningitidis and (iii) Lactococcus Lactis. We sim-
ulated three sets of reads for each genome with read
lengths equal to 36, 50 and 250 base pairs (bps). The
scope of this work was to develop an assembler that
would exploit the GPU computing resources effectively.
As such, we were focused in improving the run times of
different phases of the algorithm. We compare the per-
formance (run-time, contig accuracy and length statis-
tics) of GPU-Euler to a previously developed assem-
bler, EulerSR [7]. Our experimental evaluation showed
the promise of using GPUs for genome assembly tasks.
In terms of run-time performance, GPU-Euler outper-
formed EulerSR. In our current implementation, we do
not perform any graph simplification as well as error
correction that are integral for producing accurate con-
tigs.
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The rest of the paper is organized as follows. Section 2
provides a thorough review of different sequence assem-
blers. Sections 3 and 4 provide the background on the
parallel computing models and the implementation de-
tails of GPU-Euler. Section 5 provides the experimental
results. Section 6 describes several directions for future
work and provides concluding remarks.

2 Literature Review

The past few years have seen rapid development in new,
high-throughput and cost effective sequencing technolo-
gies; Roche 454, Illumina Genome Analyzer 2 (GA2) and
the ABI SoLID platform in addition to the well estab-
lished Sanger sequencing protocol. These approaches
vary in their output, cost, throughput and errors pro-
duced. All approaches rely on shotgun sequencing [36],
where the genome is randomly sheared into many small
subsequences or pieces referred to as reads. The prob-
lem of combining these sequence reads to reconstruct the
source genome is called the “sequence assembly” prob-
lem. Sanger, produces longer sequence reads, of size
750 to 1000 base pairs (bps) whereas the next generation
sequencing (NGS) technologies produce reads that are
shorter from 36 to 500 bps. The volume of data produced
by NGS technologies demands a robust solution to the
data management, assembly, and the development of
derived information. Pop [29] and Myers et. al. [23] pro-
vide a detailed review of the computational challenges
involved with sequence assembly, along with a study
of the widely used approaches. De novo assembly al-
gorithms stitch together short fragment reads and put
them in order to get long contiguous DNA fragments
called contigs, which are further extended to get super-
contigs and finally placed in order, to get the assembled
genome. The approaches for de novo sequence assem-
bly can be grouped into three categories: (i) greedy, (ii)
overlap-layout-consensus (OLC) and (iii) eulerian-based
approaches.

Greedy assemblers, follow an iterative approach
where at each step, the reads (or contigs) that have
the longest possible overlap with other reads are ex-
tended. An effective indexing mechanism is used to
accelerate the discovery of the reads to be used for fur-
ther extension to produce longer contigs. For assembling
NGS data, greedy assembly algorithms, like SSAKE [37],
SHARCGS [10], QSRA [5] and VCAKE [20] have been
developed. Due to their greedy nature, these algorithms
produce several mis-assemblies due to repeat regions
within the genomes.

The OLC approach finds potentially overlapping
reads between fragments by computing pairwise align-
ments between the reads (overlap). The overlap between
the reads can be modeled using edges of a graph with the
reads as vertices (layout). Determining a Hamiltonian
path, i.e., a valid path that visits every vertex exactly

once will lead to a sequence assembly. However, find-
ing the paths in presence of repeats leads to NP class
of problems, and as such the DNA sequence (consen-
sus) is derived using several heuristics as illustrated in
methods like Celera [25], Arachne [4] and EDENA [13].

The Eulerian based de novo methods have always
been widely used, and were inspired by the sequencing-
by-hybridization approach [16, 28]. These algorithms
represent each read by its set of k-mers (smaller subse-
quences) and construct a de-Bruijn graph. A de-Bruijn
graph is a directed graph where vertices are k-mers, and
there exists an edge between two vertices if there is
an overlapping subsequence of length (k− 1) between
them. Finding the Eulerian path or tour, where each
edge in the de-Bruijn graph will be visited exactly once
will lead to the sequence assembly solution. Before per-
forming the Eulerian tour, these approaches use differ-
ent heuristics to remove from the de-Bruijn graph, nodes
and edges that are created due to sequencing errors and
repeat regions within the genome. Myers presented an-
other graph oriented approach based on the notion of
bi-directed string graph [24]. A bi-directed string graph
has direction associated with both end points of an edge
produced by modeling the forward and reverse orienta-
tion of sequence reads. The Eulerian-tour of such a graph
enforces additional constraints that leads to improved
accuracy and length of produced sequence contigs.

Euler-SR [7], Velvet [38], SHORTY [14], ALLPATHS [6]
and ABYSS [35] are examples of the different Eulerian-
based approaches, developed for NGS read data. These
algorithms differ on the heuristics that they employ to
perform the graph simplification, and on the data struc-
tures used to construct the de Bruijn graph for modeling
the reads.

ABySS [35] is one of the first distributed memory de
novo assembler. It has a unique representation for the de
Bruijn graph that allows for ease of distribution across
multiple compute processors as well as concurrency in
operations. The location of a specific k-mer within the
reads can be computed from the sequence of the reads,
and the adjacency information for a k-mer is stored in a
compact fashion that is independent of the location. Jack-
son et. al. [17, 19] proposed a parallel implementation
for bi-directed string graph assembly on large number
of processors available on supercomputers like the IBM
Blue Gene /L.

In this work we propose an implementation of the
Eulerian-based sequence assembler, that will utilize
graphic processor units (GPUs) to produce sequence
assemblies from short read NGS data.
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Figure 1: GPU-Euler Work Flow.

3 Background

3.1 Compute Unified Device Architecture.

Graphic processing units (GPUs) have long been serving
the need of parallel computation, due to the very na-
ture of the graphics applications. For the past few years,
there have been several efforts, to tap the potential of
GPU’s parallel computation capability so that they can
be utilized for general purpose computing. Compute
Unified Device Architecture (CUDA) is an initiative from
nVidia that provides programming interface to utilize
the compute capabilities of GPUs. CUDA SDK provides
a compiler front end implemented as an extension of C
language, augmented with several device-specific con-
structs. It contains a set of runtime libraries that provide
an API for device management. CUDA-enabled GPU
devices provide parallel thread execution environment
known as PTX, and can be viewed as multiple threads
concurrently executing the same piece of code called
kernel. This form of architecture, can be mapped to
the single program multiple data (SPMD) style for par-
allel computation. The logical view of CUDA device
groups a set of thread into blocks and set of blocks into
grids. Physical view of CUDA consists of a number of
streaming multiprocessors (SMs), having a set of scalar
processors (SP). CUDA threads are scheduled to run on
these SPs. The actual number of threads scheduled to
run concurrently depends on the resources available to
SMs. There are different types of memory available to
the CUDA threads, which vary in terms of their presence
on and off the chip, latency and accessibility to threads
or to blocks.

3.2 Parallel Graph Algorithms

Designing efficient graph algorithms for parallel architec-
ture has always been challenging. Computational prob-
lems dealing with graphs are inherently difficult to de-
compose into balanced sub-problems, and the speedup
achieved is usually not linear [8, 9, 11, 15].

3.2.1 Euler Tour Construction

The “Euler tour” construction problem for a connected
graph is defined as the traversal of a graph by visiting
every edge exactly once. Linear time algorithm with
respect to the number of edges, exist for the sequen-
tial architecture. Makki [22] proposed a O (|E|+ |V|)
algorithm for distributed memory model using a modifi-
cation of the original, Fleury’s sequential algorithm. It
works by simulating the Fleury’s algorithm on the ver-
tices distributed among the nodes, and each node tries
to identify the successive edge.

Awerbuch et. al. [3] proposed a O (log n) parallel time
algorithm for a concurrent-read and concurrent-write,
CRCW model which requires O (|E|) processors. In this
approach, the concurrent writes do not require any spe-
cific ordering of the write operations, which makes it sim-
ilar and applicable on CUDA-enabled GPU platforms.
Concurrent writes can be achieved by using atomic op-
erations.

In our work, we opted for Awerbuch’s approach for
implementing the Eulerian tour construction. This ap-
proach for determining the Euler Tour, first constructs
a successor graph by defining a successor relationship
between edges. In the successor graph, the vertices cor-
responds to the edges of original de-Bruijn graph and
an edge represents the end points that are related to
each other by successor function. Further, the connected
components of the successor graph identifies the circuits
in the graph. Two circuits will be related to each other
if they have edges incident on the same vertex. This
relation is represented in the form of circuit graph. A
spanning tree of this circuit graph will yield a path con-
necting each circuit, which in turn represents edges with
their successors. Swapping the successors of the edges
of two circuits at the same vertex (identified by edge of
the spanning tree), will result in a Euler tour. To lower
the number of edges in the circuit graph, the algorithm
extracts connected sub-graphs from the circuit graphs.
We implement a GPU-based parallel Eulerian tour algo-
rithm by following the above approach. We specifically
use a parallel connected component algorithm as a step
during parallel Eulerian tour algorithm execution.

As part of the Euler tour construction, a spanning for-
est is computed from the circuit graph. The edges in the
spanning forest will identify the edges of the de-Bruijn
graph that can exchange their successors, yielding to the
final euler tour. The different methods used for identify-
ing connected components (see below) can also be used
for identification of spanning forests. There are several
efficient parallel spanning forest algorithms available
for different computing models [2]. In our implementa-
tion, we opted for Kruskal’s Spanning tree algorithm as
implemented in BOOST graph library [34].

Finding Connected Components For a given graph,
finding connected components involves partitioning the
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graph such that the vertices in the partitioned subgraph
(subset) are connected to each other through some path
and there does not exist any path between vertices of
different subgraphs.

Shiloach-Vishkin [33] proposed a O (log n) parallel
time algorithm to find the connected component of
graph using n + 2m processors where n = |V| and
m = |E| for CRCW PRAM model.

This algorithm finds the connected component by it-
erating over four steps. For every vertex, a root pointer
is maintained which points to the lowered numbered
vertex within the connected component. The algorithm
starts with each vertex as a component, with its root
pointer pointing to itself. During the execution, the
root pointer is repeatedly updated. Update steps cor-
responds to the merging of components to form larger
components. Within the iteration, the first step updates
all the root pointers, in case the root vertex itself has
been updated with a new root during previous itera-
tion. The next step requires all vertices to examine their
neighbours and update their root pointers, if the neigh-
bour has root pointer with smaller vertex number. Root
vertices of the component that remained unchanged in
the first step, now try updating their root pointers with
neighbouring lowered number root vertices. All ver-
tices then perform a short-cutting step to update their
root pointer with their root’s root pointer (grand-parent).
These steps are performed iteratively till there are no
more updates to the root pointers.

4 Methods

The current implementation of our algorithm works in
three steps as outlined in Figure 1. In the first step, k-
mers are extracted from the input sequence reads (in
a fasta file) and the de-Bruijn graph is constructed. In
the second step, the de-Bruijn graph is processed on the
GPU to find the euler tour across the graph. In the final
step, the contigs are identified and sent to the output. At
this moment no error correction is performed during the
assembly.

4.1 de-Bruijn Graph Data Structure

An important aspect of our implementation is the data
structure that was used to represent the de-Bruijn graph.
We had two considerations while implementing this data
structure. Firstly, the data structure should be able to
express better locality, which is a driving force for de-
veloping GPU specific application. This would yield
to a layout where those attributes that are going to be
accessed by the same CUDA kernel will be contiguous,
resulting in an efficient memory access pattern. Sec-
ondly, the representation should be efficient in terms of
the memory used, due to the the capacity of memory
available on GPUs. This would also reduce the time

spent transferring data from the host memory to the
GPU memory.

Our de-Bruijn graph is represented as a list vertices V,
a list of edges E, and two lists of pointers, EP and LP,
which store information about the leaving and entering
edges for each of the vertices, respectively. The entries
within EP and LP point to locations within the edge
list E. Also, since the number of entering (incoming)
and leaving (outgoing) edges per vertex is unknown,
both EP and LP are maintained as dynamic lists, with
allocation information per vertex computed during run
time.

4.2 de-Bruijn Graph Construction

The input sequence reads are represented as a string over
four nucleotides or alphabets (A, C, G, T). As such, each
base can be represented using two bits and similarly a
k-mer can be represented as a sequence of 2 ∗ k bits. (A
k-mer is a subsequence of a longer DNA sequence of
length k). With the 2-bit encoding per character, each
k-mer is mapped onto a unique integer value. This en-
coding allows easy computation of k-mer neighbors by
simple bitwise operations (Shift, OR). A neighbor for a
k-mer x, is one that shares either the prefix or suffix of
length k− 1 with x.

For the de-Bruijn graph construction, we used a
scheme where a hash table [1] is constructed with a
(key,value) pair defined using the k-mer’s encoded rep-
resentation as key, and its index within an array as value.
The steps for the GPU-based de-Bruijn graph construc-
tion are shown in Figure 2) Initially, the input file con-
taining the reads is processed to extract (k + 1)-mers
and k-mers. Each k-mer is then assigned an index value
based on the hashing function, which can serve as the
location to store various attributes for the given k-mer in
associative array representation.

Each k-mer represents a vertex in the de-Bruijn graph,
while each l-mer, where (l = k + 1), defines an edge
between two k-mers representing an overlap of k− 1 nu-
cleotides (or characters). Algorithm 1 uses three CUDA
kernel launches. After the initial processing, a CUDA
kernel is invoked to process each of the l-mers (i.e., count
the edges), and update the in-degree and out-degrees
for the different k-mer vertices. As seen in Algorithm
1, we maintain two count lists ECount and LCount to
calculate the number of entering and leaving edges per
vertex. Using the CUDPP Library [12, 31, 32], we per-
form a parallel prefix scan on the GPUs to compute the
memory required per vertex to store the information
regarding the entering and leaving edges. As such, we
record the offset locations for both types of edges, per
vertex. This allows us to maintain the dynamic LP and
EP data structures.

After allocating the required memory, a second CUDA
kernel is invoked to set the vertices with the edge list
offset and count information. During the final step, a
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Figure 2: de-Bruijn Graph Construction.
third CUDA kernel is invoked with each thread working
on an edge to compute information regarding the source,
sink and multiplicity of the edges. Within the CUDA
framework, implicit synchronization is performed at the
end of each kernel call i.e., all threads are automatically
synchronized.

4.3 Euler Tour Construction

The Euler tour construction step is a modified implemen-
tation of the algorithm proposed by Vishkin et. al. [3] for
the CRCW PRAM model. These modifications were nec-
essary, since CUDA follows the SPMD (Single Program
Multiple Data) paradigm without inherent instruction
level synchronization. On the other hand, the CRCW
PRAM model expects that all processors synchronize af-
ter executing each instruction. CRCW PRAM also allows
for concurrent read/write to the same memory location.
CUDA does not support concurrent writes. CUDA offers
two kinds of synchronizations [26]; (i) Across a thread
block, all threads in a single block can be synchronized
using an API command. However, threads across the
blocks aren’t affected by this method. (ii) Across all
threads, there is automatic synchronization at the launch
and completion of CUDA kernels.

These two synchronization mechanism can be used
while working on CUDA platform, to accomplish a
closer simulation of PRAM model. To handle concur-
rent writes, we can use atomic APIs which serialize all
the concurrent accesses to a memory location. Our im-
plemented algorithm defines concurrent writes as one
where arbitrary threads (processors) can win and CUDA
atomic APIs can be used to mimic this behavior. The
net effect of such an implementation is that only the
last write will be visible. Synchronization and atomic
operations are costly operations, and as such can lead
to performance overhead. Atomic instruction sets are
available on CUDA devices with compute capability 1.1
and later. An alternate option is to use shared memory
and break ties using duels.

The input to the euler tour construction consists of
a graph (de-Bruijn graph in our case) represented as a
list of vertices V, list of edges, E and two supplemen-
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Figure 3: Parallel Euler Tour.
tary lists LP and EP, that store the leaving and entering
edges for each vertex, respectively. The intuition behind
this algorithm is to identify circuits in the given graph,
and then change the successor of those edges of a cir-
cuit, which are adjacent to an edge belonging to another
circuit. To lower the complexity of the circuit graph, a
sub-graph is extracted by finding the connected compo-
nents, a spanning tree of this sub-graph would yield the
edges that are required to be switched with their neigh-
bors. Figure 3 shows major components of the Euler tour
construction and are discussed below.

4.3.1 Successor Assignment

In the successor assignment step, each edge in the input
de-Bruijn graph is assigned a successor. The cuda kernel
works on each vertex, assigning one of the leaving edges
as the successor for one of the entering edges. This
assignment follows a sequential pattern i.e., the first
entering edge is paired with first leaving edge, second
entering edge to the second leaving edge and so on.

4.3.2 Successor Graph Creation

In this step, a successor graph is generated to represent
the successor information we computed in the previous
step. This step is required, so that we can identify the
circuit to which each edge belongs. The successor graph
contains all the edges as vertices and an edge exists be-
tween two vertices, if one of them is a successor to the
other. This step can be performed in constant time, pro-
vided the number of processors are equal to the number
of edges. For the successor graph, the number of edges
in our algorithm is linear in terms of vertices. The CUDA
kernel is launched for each de-Bruijn graph edge, which
then sets the information in the graph being constructed.

4.3.3 Connected Components

Our implementation is based on the algorithm proposed
by Uzi Viskin et. al. [33] for CRCW PRAM model that
requires O (log n) parallel time to completion. We modi-
fied the CRCW model such that based on the iteration
step, each thread would be in-charge of either a vertex
or edge from the successor graph, with the four steps
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Table 1: Genome size and number of simulated reads for
different read lengths.

Genome Length 36 bp 50 bp 250 bp
CJ 1,641,481 911,934 656,593 128,241
NM 2,184,406 1,213,559 873,763 170,657
LL 2,635,589 1,314,216 946,236 184,812

Table 2: Profiling of GPU-Euler.
Phase Computation
I/O and k-mer Extraction CPU
Hash Table Construction GPU
de-Bruijn Graph Construction GPU
Euler Tour Construction GPU + CPU
Sub-steps for Euler Tour Construction

Finding Connected Component GPU
Circuit Graph Creation GPU
Spanning Tree CPU
Swipe Execution GPU
Traversal (Other) GPU

Contig Generation (O/P) CPU

involving updating of root vertices performed iteratively.
(See Section 3.2.1).

4.3.4 Circuit Graph Creation

The circuit graph creation works by calculating the edges
between two circuits. At any vertex, instead of consider-
ing all possible combination of the edges, the algorithm
picks edges which are adjacent to each other in the edge
list, i.e. ei and ei+1. In order to maintain a consistent
behavior across different runs, we have stored the edge
list of the circuit graph in canonical order.

4.3.5 Spanning Tree

This step is implemented serially on the CPU using the
boost graph library [34], which implements the Kruskal
spanning tree algorithm and requires O (|E| log |V|)
time. In our situation |E| is of the order of O (|V|) and
the actual time will be dependent on the number of cir-
cuits identified in the successor graph.

4.3.6 Swipe Execution

The final step requires a traversal of the edges in span-
ning tree identified in the previous step. Each edge of the
spanning tree corresponds to a pair of edges in de-Bruijn
graph incident on same vertex, swapping their succes-
sors will connect path containing one edge with the path
containing the other edge, resulting in a connected Eu-
lerian tour. Contigs are generated by identifying the
source vertices and following the successor edge infor-
mation pertaining to each edge.

4.4 Time Complexity Analysis

The de-Bruijn Graph construction is a constant time op-
eration O (1) given O (n) processors, which can be ar-
ranged by assigning each k-mer to a single CUDA-based
GPU thread. The CRCW Euler tour construction algo-
rithm [3] has a run time complexity of O (log n) for n ver-
tices. Our modifications, introduce a constant step that
does not affect the complexity of Eulerian tour construc-
tion phase, which is bounded by O (log n). Specifically,
identifying the component requires O (log n) parallel
steps, and the circuit graph creation and successor graph
creation is a constant time operation in terms of num-
ber of vertices. Prefix scan for calculating the required
memory also takes O (log n) parallel time. The Kruskal
spanning tree algorithm is bounded by O (|E| log |V|)
where |V| is number of vertices and |E| is number of
edges in the successor graph. The number of vertices in
the successor graph tend to be far lesser than the number
of vertices in the de-Bruijn graph, and the dominating
factor in the time complexity analysis is not affected by
the spanning tree algorithm. Hence, the overall run time
complexity of our GPU-Euler is bounded by O (log n),
as shown by analyzing different phases of the algorithm.

5 Experimental Results

5.1 Datasets

To evaluate the performance of our GPU-based assem-
bler we used three previously assembled genomes: (i)
Campylobacter Jejuni (CJ), (ii) Neisseria Meningitidis
(NM) and (iii) Lactococcus Lactis (LL). These genomes
have been used for benchmarking various other assem-
bly algorithms including Euler [28]. The genome sizes
(lengths) of CJ, NM and LL are 1.6Mbps, 2.1 Mbps
and 2.3 Mbps, respectively. For each of the assembled
genomes we simulated error free reads using MetaSim
[30]. The read lengths were varied to be 36 bp, 50 bp and
250 bp for three independent set of experiments, repre-
senting the NGS technologies. For each experiment, the
number of reads simulated achieved a 20x coverage for
the genomes and are summarized in Table 1. Since, we
were focused on illustrating the performance of GPU-
Euler in terms of run times we simulated only error free
reads.

5.2 Experimental Protocol

We performed a comprehensive set of experiments that
assessed the run time performance of GPU-Euler across
the three different genome benchmarks, and with vary-
ing read lengths. We performed run time profiling of
our method, evaluating and optimizing the speed of
different phases of the GPU-Euler algorithm. We also
compared the performance of our approach to well es-
tablished sequence assemblers like EulerSR [7]. We ran

6



Table 3: Run Time Performance for CJ Genome using GPU-Euler (250 bp reads).
k I/O Hash Table de-Bruijn Euler Tour Output GPU CPU TotalComponent Spanning Tree Swipe Other
16 61.646 0.129 0.487 4.364 0.123 0.004 0.240 1.501 5.224 65.497 70.722
18 57.705 0.137 0.513 4.371 0.050 0.004 0.156 1.521 5.181 61.476 66.657
22 60.541 0.136 0.513 4.412 0.035 0.004 0.272 1.594 5.339 64.45 69.790
24 62.273 0.136 0.504 4.412 0.033 0.004 0.301 1.643 5.358 66.221 71.579
26 63.682 0.137 0.503 4.423 0.030 0.004 0.321 1.687 5.388 67.740 73.128
28 65.494 0.137 0.514 4.431 0.026 0.004 0.327 1.734 5.413 69.588 75.002
30 67.595 0.136 0.513 4.484 0.025 0.004 0.324 1.768 5.462 71.651 77.114
32 68.965 0.138 0.504 4.387 0.027 0.004 0.312 1.820 5.344 73.072 78.417

The run-times are reported in seconds. The phases indicated in bold i.e., Hash Table, Component, Swipe and Other are performed on the GPUs.

Table 4: Run Time Performance for NM Genome using GPU-Euler (250 bp reads).
k I/O Hash Table de-Bruijn Euler Tour Output GPU CPU TotalComponent Spanning Tree Swipe Other
16 75.948 0.173 0.723 5.798 0.264 0.030 0.593 2.003 7.319 80.858 88.178
18 76.615 0.179 0.759 5.839 0.209 0.028 0.518 2.057 7.326 81.658 88.985
20 79.029 0.181 0.758 5.732 0.181 0.026 0.499 2.108 7.199 84.139 91.339
22 82.235 0.182 0.748 5.753 0.176 0.024 0.473 2.161 7.183 87.428 94.612
24 84.787 0.181 0.763 5.739 0.164 0.023 0.456 2.263 7.163 90.046 97.210
26 87.398 0.183 0.773 5.734 0.158 0.021 0.439 2.281 7.152 92.767 99.920
28 89.956 0.182 0.781 5.755 0.138 0.021 0.430 2.310 7.171 95.323 102.495
30 92.503 0.184 0.793 5.779 0.135 0.019 0.419 2.380 7.195 97.958 105.154
32 95.303 0.184 0.778 5.735 0.124 0.019 0.361 2.479 7.079 100.835 107.915

The run-times are reported in seconds. The phases indicated in bold i.e., Hash Table, Component, Swipe and Other are performed on the GPUs.

each experiment multiple times to ensure that the run-
times remained consistent due to load factors on the
workstation. We did not notice any significant variabil-
ity across multiple runs with the same parameters, and
as such do not report them in this study. The GPU-Euler
algorithm has different phases of the algorithm run on
the GPUs using CUDA kernel launches, whereas some
of the phases are run on the CPU and some of the steps
are run on the CPU as well as GPUs. We show in Table 2
the different steps of the GPU-Euler algorithm and their
execution pattern.

For contigs greater than 100 bp we report the total
bases within the contigs, mean and maximum length
of contigs obtained. We also compute the N50 score,
which is defined as the length of smallest contig such
that 50% of the genome length is contained in contigs
of size N50 or greater. To compute the accuracy and
coverage statistics, we used the NUCMER pipeline of
MUMMER [21] that allowed for quick and fast alignment
of assembled contigs to the input genomes. NUCMER
uses a suffix-tree based string matching algorithm to
search for exact matches, and extends these matches
using a dynamic programming based alignment that is
considerably faster than BLAST. Using the alignment we
calculate the length weighted accuracy.

5.2.1 System Configuration

The benchmarking of GPU-Euler was performed on a
Dell workstation which has a quad core Intel Xeon 2.00
GHz processor with 8 GB primary memory. This system
has a nVidia Quadro FX 5800 GPU, which has a clock
rate of 1.30 GHz, 240 cores, 4 GB GPU RAM and CUDA
compute capiblity 1.3. We used the CUDA SDK version
2.3 to build GPU-Euler. The GPU-Euler uses both CPU
and GPU, whereas the EulerSR (used for comparison)
was run on a single core of the Intel processor.

5.3 Run-Time Performance

Tables 3, 4 and 5 show the run times (in seconds) across
the different phases of GPU-Euler performed by varying
the overlap parameter, k-mer size from 16 to 32 across
the CJ, NM and LL genomes, respectively. We performed
experiments across reads of length, 36, 50 and 250 bps
but show results in these tables for 250 bps. We report
the run-times for the different phases of the algorithm
across the GPU and CPU as shown in Table 2. We also
report the total run-time along with the total GPU and
CPU run-times.

As we increase the value of k, the CPU run-time grad-
ually increases for all the three genomes. A large percent-
age of time (approximately 90%) is spent in extracting
k-mers from the several input read sequences (denoted
as I/O). During this phase, a file containing the sequence
reads (in fasta format) is processed sequentially and a list
of k-mers along with their occurrence frequency is gen-
erated. We use an unordered set data structure from the
Boost library [34] to maintain the list of occurring k-mers
and their frequency. This is a dynamic structure and
needs to expand, if the number of entries in the set (i.e.,
k-mers) increase. In the I/O phase we also compress and
encode the k-mers using the base4 representation. Thus,
the execution time during the I/O phase performed on
the CPU dominates the overall performance of our cur-
rent algorithm. In the future, we intend to extend our
GPU-implementation to off-load more work from the
CPU.

The different phases of GPU-Euler that are run on the
GPUs do not vary significantly, in terms of run-times as
the k parameters is increases. The GPU run-time is dom-
inated by the connected component phase algorithm
which uses 8 CUDA kernel launches in an iterative fash-
ion. These kernels use CUDA synchronization API to
serialize writes for given memory execution, which ex-
plains the relatively higher execution time for this phase.

When comparing the performance across the three
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Table 5: Run Time Performance for LL Genome using GPU-Euler (250 bp reads).
k I/O Hash Table de-Bruijn Euler Tour Output GPU CPU TotalComponent Spanning Tree Swipe Other
16 84.858 0.200 0.900 6.241 0.186 0.008 0.352 2.224 7.702 90.225 97.928
18 84.397 0.208 0.985 6.278 0.124 0.007 0.302 2.225 7.782 89.877 97.660
20 85.231 0.209 1.001 6.278 0.111 0.006 0.348 2.262 7.845 90.765 98.611
22 88.208 0.208 1.000 6.447 0.096 0.006 0.358 2.384 8.022 93.853 101.876
24 90.868 0.209 0.995 6.315 0.090 0.006 0.366 2.407 7.892 96.547 104.440
26 93.315 0.208 1.016 6.307 0.089 0.006 0.361 2.482 7.900 99.144 107.045
28 95.276 0.210 1.003 6.316 0.083 0.006 0.369 2.530 7.905 101.153 109.059
30 98.125 0.209 0.980 6.341 0.081 0.006 0.352 2.610 7.891 104.079 111.971
32 100.088 0.210 1.008 6.297 0.079 0.006 0.356 2.662 7.879 106.123 114.003

The run-times are reported in seconds. The phases indicated in bold i.e., Hash Table, Component, Swipe and Other are performed on the GPUs.

Table 6: Comparative Performance for GPU-Euler on the CJ genome (Contigs >= 100 bp).

Assembler k Time (s) N50 N Mean Max TB WA
Read Length = 36 bp

EulerSR* 16 122.391 5345 21 503.810 5345 10580 99.35
22 100.676 136 17 144.882 244 2463 100

EulerSR 20 176.858 17827 227 7408.696 57201 1681774 97.37
22 162.582 7386 387 4192.140 36866 1622358 98.62

GPU-Euler 22 42.456 8480 720 4491.206 40255 3233668 83.23
Read Length = 50 bp

EulerSR* 22 101.220 6085 25 441.840 6085 11046 99.88
26 96.496 1686 9 849.667 3637 7647 99.09

EulerSR 21 151.444 79838 114 14404.965 155588 1642166 95.33
26 141.378 46497 124 13042.726 97486 1617298 97.22

GPU-Euler 26 49.166 47766 307 10527.147 158836 3231834 91.01
Read Length = 250 bp

EulerSR* 18 114.383 511 1529 394.891 3476 603788 78.01
32 - - - - - - -

EulerSR 27 103.104 112428 69 24544.275 191547 1693555 95.38
32 - - - - - - -

GPU-Euler 32 78.417 13806 597 5521.774 59742 3296499 98.25
EulerSR* represents a run of EulerSR with -minMult=20. We report for each assembler the results with k-mer size which produces the best N50 score. For EulerSR we also report the results for the k-mer chosen for GPU-Euler. For
k > 30, EulerSR produces a memory error. N50, N, Mean, Max are the N50 scores, total number of contigs, mean contig lengths and maximum contig lengths, respectively. TB and WA denote the total number of aligned bases
within the contigs and the weighted accuracy, respectively.

genomes, we notice that as size of genome increases
from CJ to NM to LL, the number of input reads increase
to maintain the 20x coverage (Table 1). As such, the I/O
and k-mer extraction increases with increasing genome
sizes. The average GPU run times for the CJ, NM and LL
genomes are 5.339, 7.199 and 7.869 seconds, respectively.
This change in the GPU-time is primarily because of
larger de-Bruijn graph size with increasing number of
input reads. In Figure 4 we show a plot of the GPU
run times across these three genome benchmarks for the
different read lengths.

5.4 CUDA Configuration

Within the CUDA specification, we can specify different
groupings of threads for the problem instances. CUDA
threads are grouped into blocks and blocks are grouped
as grids. This arrangement provides different portion of
on-chip memory to be shared among a block of threads,
which can lead to overall improvement in the execution
time depending upon the problem. We also performed
experiments using different kernel launch configuration
i.e., assigning 4 threads per block to 512 threads per block
for our datasets. We observed that the overall GPU run

time exhibited very slight variation across the different
configurations. This was primarily because of the nature
of the problem ported on the GPUs. In this work, we
report results with the kernels having 512 threads per
block.

5.5 Comparative Performance

We compared our assembler with EulerSR [7], a widely
used Eulerian-based assembler developed for short
reads. Experiments for EulerSR were performed on a sin-
gle CPU core of our workstation. Tables 6, 7 and 8 show
the contig length statistic, contig accuracy results and
the run-time for 36, 50 and 250 bps across the CJ, NM
and LL genome benchmarks, respectively. We report
these performance results for GPU-Euler and compare
it to EulerSR. We report those results for the different
assemblers that achieved the best N50 score. For Eu-
lerSR we also invoked a parameter (minMult = 20) that
will filter k-mers that do not occur at least twenty times.
These results are reported in the Tables as “EulerSR*”.
We highlight in bold those entries that show the best
performance across the two assemblers.

Across the three genome benchmarks, we notice that
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Table 7: Comparative Performance for GPU-Euler on the NM genome (Contigs >= 100 bp).

Assembler k Time (s) N50 N Mean Max TB WA
Read Length = 36 bp

EulerSR* 20 145.105 2063 23 482.826 3830 11105 96.77
22 144.716 1083 19 510.000 2852 9690 96.84

EulerSR 21 279.277 4538 894 2307.614 21195 2063007 98.26
22 257.953 3742 1011 2028.121 16374 2050430 98.45

GPU-Euler 22 55.933 3909 2275 1804.153 17635 4104447 84.38
Read Length = 50 bp

EulerSR* 27 128.601 1020 32 399.594 5949 12787 91.30
23 136.295 688 54 321.759 6283 17375 97.60

EulerSR 25 222.046 6808 601 3370.797 25857 2025849 98.19
23 225.512 6574 594 3395.434 23693 2016888 99.32

GPU-Euler 23 67.948 6596 1964 2121.377 25383 4166385 81.37
Read Length = 250 bp

EulerSR* 16 198.608 481 2245 367.697 5227 825479 73.69
31 - - - - - - -

EulerSR 27 162.595 31614 346 9365.142 79346 3240339 47.48
31 - - - - - - -

GPU-Euler 31 106.305 7226 1610 2715.053 30965 4371235 79.97
EulerSR* represents a run of EulerSR with -minMult=20. We report for each assembler the results with k-mer size which produces the best N50 score. For EulerSR we also report the results for the k-mer chosen for GPU-Euler. For
k > 30, EulerSR produces a memory error. N50, N, Mean, Max are the N50 scores, total number of contigs, mean contig lengths and maximum contig lengths, respectively. TB and WA denote the total number of aligned bases
within the contigs and the weighted accuracy, respectively.
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Figure 4: GPU Time comparison across different
genomes.

GPU-Euler consistently outperforms EulerSR in terms
of run times. However, note GPU-Euler is utilizing the
computing capacity of the GPUs whereas EulerSR is
benchmarked on single processor. As the read length
increases from 36 to 250 base pairs, we notice that the run
time for GPU-Euler increases. This is primarily because
of processing longer reads during the I/O phase.

With respect to contig length statistics and accuracy,
we notice that EulerSR shows better performance. GPU-
Euler shows better or comparable N50 scores and mean
contig lengths for few of the cases. The implemented
GPU-Euler works on the full de-Bruijn graph without
any compaction and translation. EulerSR implements
several heuristics that analyze the de-Bruijn graph struc-
ture and help resolve repeat regions within a genome.

6 Conclusion and Future Work

In this work, we investigated the potential of using GPUs
for performing genome sequence assembly task. We de-
veloped an Eulerian-based sequence assembler that used
the GPU in conjunction with the CPU. Our empirical re-
sults showed that this GPU-based assembler had better
run time performance in comparison to EulerSR on three
bacterial genome benchmarks, across reads representing
NGS data. We also showed competitive contig length
statistics but in terms of accuracy there is room for im-
provement.

The hash table implementation can be improved for
more efficient creation and access time. We can also in-
vestigate the possible use of shared memory and texture
memory especially for hash lookup. At this moment , k-
mer extraction and read encoding is done on CPU, which
can be moved to GPU for additional improvements. Be-
sides the run-time performance, we intend to improve
the contig lengths and accuracy by incorporating graph
simplification strategies as well as error correction capa-
bilities. From a benchmarking perspective, we would
like to compare GPU-Euler to EulerSR using multi-cores,
as well as other distributed-memory parallel assemblers
developed, ABySS [35] and YGA [18].

A limitation of our approach is scalability in terms of
the genome sizes. One of the limitations of using GPUs,
is the amount of available memory and the high mem-
ory requirement for genome assembly and analysis tasks.
This can potentially be avoided by a pipelining solution
that would break the computation into different parts
and inter-leave the operations that would be performed
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Table 8: Comparative Performance for GPU-Euler on the LL genome (Contigs >= 100 bp).

Assembler k Time (s) N50 N Mean Max TB WA
Read Length = 36 bp

EulerSR* 19 158.887 5358 7 1380.143 5358 9661 99.73
21 152.476 5222 3 3045.000 5222 9135 99.6

EulerSR 20 276.670 9180 619 3862.969 31070 2391178 99.62
21 270.720 9154 631 3753.751 33986 2368617 97.76

GPU-Euler 21 62.359 7234 1500 3061.075 37629 4591612 80.48
Read Length = 50 bp

EulerSR* 24 139.019 5381 18 590.000 5381 10620 99.08
26 133.875 5379 10 988.700 5379 9887 99.17

EulerSR 25 216.472 30133 317 7264.991 83247 2303002 97.36
26 216.281 27804 318 7168.132 83249 2279466 99.56

GPU-Euler 26 71.991 23998 877 5259.621 95876 4612688 84.76
Read Length = 250 bp

EulerSR* 17 189.402 479 2319 377.916 3719 876388 76.6
32 - - - - - - -

EulerSR 27 167.085 74484 193 11967.648 198384 2309756 97.29
32 - - - - - - -

GPU-Euler 32 113.254 13789 1008 4699.620 47788 4737217 94.58
EulerSR* represents a run of EulerSR with -minMult=20. We report for each assembler the results with k-mer size which produces the best N50 score. For EulerSR we also report the results for the k-mer chosen for GPU-Euler. For
k > 30, EulerSR produces a memory error. N50, N, Mean, Max are the N50 scores, total number of contigs, mean contig lengths and maximum contig lengths, respectively. TB and WA denote the total number of aligned bases
within the contigs and the weighted accuracy, respectively.

on the GPU and CPU. Such a strategy will slow the over-
all process but would allow assembly for large human
genomes.
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Algorithm 1 de-Bruijn Graph Construction on CUDA-
based GPUs.
Input: L: l -mer list, T (): k-mer hash function
Output: V : Vertex List, E : Edge List , LP : Leaving Edge

Pointers List, EP : Entering Edge Pointers List
/* Temporary Lists */
LCount : Leaving Edge Count List
LOffset : Leaving Edge Offset List
ECount : Entering Edge Count List
EOffset : Entering Edge Offset List
/* Kernel 1 for Counting Edges */

1: for all threadi : Li in L do
2: p← PREFIX (Li)
3: s← SUFFIX (Li)
4: pindex ← T(p) /* T is a lookup hash function

*/
5: sindex ← T(s)
6: ECount [sindex] + +
7: LCount [pindex] + +
8: Synchronize

/* CUDPP Library Prefix-Scan */
9: EO f f set← PREFIX− SCAN(ECount)

10: LO f f set← PREFIX− SCAN(LCount)

/* Kernel 2 for Vertices Setup */
11: for all threadi : (key, index)← (Ti) ∈ T do
12: V [index].vid← key
13: V [index].EOffset← EOffset [index]
14: V [index].LOffset← LOffset [index]
15: Synchronize

/* Kernel 3 for Edge Setup */
16: for all threadi : Li in L do
17: p← PREFIX (Li)
18: s← SUFFIX (Li)
19: pindex ← T(p) /* T is a lookup hash function

*/
20: sindex ← T(s)
21: E [i].source← pindex
22: E [i].sink← sindex
23: Update LP [V[pindex].LOffset] with i
24: Update EP [V[sindex].EOffset] with i
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