
Department of Computer Science
George Mason University Technical Reports

4400 University Drive MS#4A5
Fairfax, VA 22030-4444 USA
http://cs.gmu.edu/ 703-993-1530

Mining the Execution History of a Software System

to Infer the Best Time for its Adaptation

Kyle R. Canavera, Naeem Esfahani, and Sam Malek
{kcanaver, nesfaha2, smalek}@gmu.edu

Technical Report GMU-CS-TR-2012-2

Abstract

An important challenge in dynamic adaptation of a soft-
ware system is to prevent inconsistencies (failures) and
disruptions in its operations during and after change.
Several prior techniques have solved this problem with
various tradeoffs. All of them, however, assume the avail-
ability of detailed component dependency models. This
paper presents a complementary technique that solves
this problem in settings where such models are either not
available, difficult to build, or outdated due to the evo-
lution of the software. Our approach first mines the ex-
ecution history of a software system to infer a stochastic
component dependency model, representing the proba-
bilistic sequence of interactions among the system’s com-
ponents. We then demonstrate how this model could be
used at runtime to infer the “best time” for adaptation
of the system’s components. We have thoroughly eval-
uated this research on a multi-user real world software
system and under varying conditions.

1 Introduction

As engineers have developed new techniques to ad-
dress the complexity associated with the construction of
modern-day software systems, an equally pressing need
has risen for mechanisms that automate and simplify the
management of those systems after they are deployed,
i.e., during runtime. This has called for the development
of (self-)adaptive software systems [12, 14]. However,
the construction of such systems has been shown to be
significantly more challenging than traditional software
systems [3, 15].

One important challenge is the management of the
runtime change to avoid inconsistencies during and after
the adaptation. Informally, an inconsistent application
state is one from which the system progresses towards an
error state [13]. In a component-based software system,
application transactions change the state of the system.

An application transaction is defined as a set of related
interactions among two or more software components.
The important observation is that while a transaction is
in progress, the internal state of the participating compo-
nents may be mutually inconsistent [13]. To avoid incon-
sistencies, replacement of components should be delayed
until the transaction has ended and the participating
components have a stable state.

In their seminal work [13], Kramer and Magee de-
veloped a technique, known as quiescence, that from a
static component dependency model of the system (e.g.,
UML Component Diagram) calculates the components
that have to be halted (passivated) before a component
can be safely adapted. Reliance on a static component
dependency model, however, makes quiescence rather
pessimistic in its analysis, which could lead to signifi-
cant delays and disruptions. This is an issue that has
been tackled in two recent approaches, tranquility [21]
and version-consistency [16], which have showed that by
leveraging the dynamic component dependency model of
the system (e.g., UML Sequence Diagram) it is possible
to become more refined in the analysis and thus reduce
the unnecessary overhead.

All of these approaches, however, assume the avail-
ability of an accurate component dependency model of
the system. While this may be true in some cases, of-
ten such models are either not available or provide an
inaccurate representation of the system’s evolving de-
pendencies. For instance, consider that the majority of
existing open-source software systems lack such mod-
els, and when not, the models are not necessarily up-
to-date with the system’s implementation. Moreover,
in emerging software systems, such as those comprised
of externally provided services, the dependencies among
the system’s components are constantly changing, mak-
ing it difficult to maintain such models.

In this paper, we present a novel approach that de-
termines the “best time” for adapting a system’s soft-
ware components in settings where an accurate model
of their dependencies is not available. We define “best

1

time” to be the time at which the adaptation of a given
component results in neither inconsistency (failure), nor
significant disruption to the system. The underlying in-
sight is that by collecting a software system’s execution
history for a sufficiently long period of time, it is possi-
ble to mine a stochastic component dependency model of
the system. This model provides a new kind of proba-
bilistic information that has been lacking in the models
used for making adaptation decisions in the prior re-
search [16, 21]. We first leverage data mining techniques
to infer a set of probabilistic rules representing the dy-
namic component dependencies among a system’s soft-
ware components. The rules are then used at runtime
for determining the likelihood of a component being in
an appropriate state for adaptation at a given point in
time. Finally, by checking our predictions against the ac-
tual behavior of the system, we are able to continuously
refine the dependency models to the system’s evolving
interactions.

Our experiences with thorough evaluation of this ap-
proach in the context of a large distributed software sys-
tem have been very positive. The results have shown the
ability to infer precise models that can be used to effec-
tively manage the interruptions caused by adaptation.
We have also developed and evaluated a novel technique
that prevents inconsistencies, even when our predictions
are off.

The remainder of this paper is organized as follows.
Section 2 describes a software system used for illustration
of the research and its evaluation. Section 3 provides
the necessary background, while Section 4 motivates the
research in the context of prior work. Section 5 provides
an overview of our approach. Sections 6 to 8 delve into
the details. Section 9 presents the evaluation. The paper
concludes with an overview of prior research and avenues
of future research.

2 Illustrative Example

We illustrate the concepts using a software system,
called Emergency Deployment System (EDS) [17], and
intended for the deployment and management of person-
nel in emergency response scenarios. Figure 1 depicts a
subset of EDS’s software architecture, and in particular
shows the dependency relationships among its compo-
nents.

EDS is used to accomplish four main tasks: (1) track
the resources using Resource Monitor, (2) distribute re-
sources to the rescue teams using Resource Manager,
(3) analyze different deployment strategies using Strat-
egy Analyzer, and finally (4) find the required steps to-
ward a selected strategy using Deployment Advisor. In-
terested reader may find a more detailed description of
EDS in [17]. It suffices to say that EDS is representa-
tive of a large component-based software system, where
the components communicate by exchanging messages

Figure 1: Subset of the Emergency Deployment System’s
software architecture.

(events). In the largest deployment of EDS to-date , it
was deployed on 105 nodes and used by more than 100
users [17].

Systems such as EDS are often deployed in highly un-
predictable and dynamic settings. Therefore, it is of-
ten desirable to be able to adapt such systems at run-
time to deal with changes that may affect the system’s
functional or non-functional properties. However, such
changes should occur in a manner that do not lead to in-
consistency or significant disruption in the services pro-
visioned to the users.

3 Research Background

Kramer and Magee [13] showed that for a component
to remain in a consistent state during/after adaptation,
it should not be changed in the middle of a transac-
tion. They defined transaction to be exchange of event
between two components by which the state of a com-
ponent is affected. A dependent transaction is in turn
a transaction whose completion depends on the comple-
tion of consequent transactions.

We first formally define and then illustrate these con-
cepts using a subset of transactions comprising EDS be-
low. Figure 2 shows the transactions corresponding to
the strategy analysis capability, which is only one of the
use cases in EDS.

An event e is defined as a triple tuple e =<
src, dst, time >, where src and dst are identifiers for
the source and destination components, and time is the
timestamp of its occurrence. Although an event is also
likely to have a payload, it is not relevant to this line of
research, and thus not modeled. In the EDS example of
Figure 2, 12 events (e1-e12) are depicted. In this area of
research, it is assumed that events, including their source

2

Figure 2: Transactions comprising strategy analysis sce-
nario of EDS.

and destination, are observable.
A transaction t is defined as a triple tuple

t =< start, end,R >, where start and end respectively
represent the events initiating and terminating the trans-
action t, while R is a set of transactions that subse-
quently occur as a result of t. R 6= ∅ when t is a de-
pendent transaction (e.g., t1, t3, and t4 in Figure 2),
and R = ∅ when t is an independent transaction (e.g.,
t2, t5, and t6 in Figure 2).

A top-level transaction t is a kind of transaction where
there is no other transaction x in the system such that
t ∈ x.R. In other words, a transaction is top-level if
its occurrence is not tied to other transactions in the
system. A top-level transaction corresponds to the sys-
tem’s use cases (functional capabilities). For instance,
t1 in Figure 2 is a top-level transaction, initiated in re-
sponse to e1, which although not depicted in the figure
represents the user requesting a service from the system
via its GUI.

Replacing a component in the middle of a transaction
could place the system in an inconsistent state. Con-
sider a situation in which Strategy Analyzer component
of Figure 2 is replaced after sending request event e5,
but before receiving the response event e8. Since the
newly installed component does not have the same state
as the old one, it may not be able to handle response e8
and subsequently initiate transaction t6 via event e9, re-
sulting in an inconsistency and potentially the system’s
failure.

Even if the component is stateless, inconsistency prob-
lems may arise. Consider a stateless compression compo-
nent that compresses and decompresses data using two
interfaces that are reverses of one another. Replacing
this component with one that uses a different type of
compression algorithm in the middle of a transaction
could break the system’s functionality, since the decom-
pression cannot be performed on data that was com-

pressed using the old component. By the same reason-
ing, state transfer in the case of stateful components is
not sufficient to address inconsistency due to adaptation.

Three general approaches to this problem have
been proposed: quiescence, tranquility, and version-
consistency.

Quiescence [13] is the established approach for safe
adaptation of a system. A component is in quiescence
and can be adapted if (1) it is not active, meaning it is
not participating in any transaction, and (2) all of the
components that may initiate transactions requiring ser-
vices of that component are passivated. A component
is passive if it continues to receive and process transac-
tions, but does not initiate any new ones. At runtime,
the decision about which part of the system should be
passivated is made using a static component dependency
model, such as that shown in Figure 1. For instance, to
change the Map component, on top of passivating itself,
Weather Analyzer, Strategy Analysis KB, HQ UI, Sim-
ulation Agent, and Resource Manager components need
to be passivated as well, since those are the components
that may initiate a transaction on Map.

While quiescence provides consistency guarantees, it is
very pessimistic in its analysis and, therefore, sometimes
very disruptive. Consider that the static dependency
model includes all possible dependencies among the sys-
tem’s components, while at any point in the execution of
a software system only some of those dependencies take
effect. To address this issue, tranquility [21] proposes
to use the dynamic component dependency model of a
system in its analysis, an example of which is shown in
Figure 2. Under tranquility a component can be replaced
within a transaction as long as it has not already partic-
ipated in a transaction that it may participate in again.
For instance, under tranquility, Map could be replaced
either before it receives event e2 or after it sends event
e7, but not in between.

A shortcoming of tranquility, as realized in [21], was
lack of support for handling dependent transactions.
This issue was addressed in version-consistency [16],
which guarantees a dependent transaction is served by
either the old version or new version of a component that
is being changed.

4 Motivation and Objectives

Similar to the prior research [16, 21], we believe using
static dependency models for achieving consistency to
be overly disruptive in most cases. However, unlike prior
research, we do not assume the availability of dynamic
component dependency models (e.g., UML Sequence Di-
agram) for the following reasons.
• Manually Intensive: Dependency models are not al-

ways available and do not come for free. To de-
velop these models, one has to understand the in-
ternal logic of components, which is a manual, cum-
bersome process, specially if the developer of those

3

models is not part of the team that implemented
those components.

• Dynamism and Evolution: Determining the de-
pendencies prior to system’s deployment in emerg-
ing and increasingly dynamic paradigms, such as
service-oriented and mobile domain, is difficult. As
the system evolves, the internal logic of its com-
ponents changes, making the manually constructed
models inaccurate representations of the system,
which if used for making adaptation decisions may
break the system’s consistency. Therefore, even
when dependency models are available, keeping
them up-to-date is a challenge.

• Non-determinism: Finally, and perhaps most im-
portantly, component dependencies are often non-
deterministic, i.e., a component depends on another
component under some circumstances, but not oth-
ers. The model depicted in Figure 2 is deterministic,
since it assumes the transaction t1 always results in
the same exact sequence of subsequent events and
transactions. No prior research has developed mech-
anisms for ensuring consistency and managing dis-
ruption in a non-deterministic setting.

In this research we aim to infer the stochastic compo-
nent dependency model of the system. Such a model not
only infers the dynamic dependencies among the com-
ponents (i.e., information equivalent to that captured in
Figure 2), but it also provides a probabilistic measure
of the certainty with which events and transactions may
occur. Thus, our approach does not compete with the
prior research (i.e., tranquility and version-consistency),
but rather paves the way for those techniques to be ap-
plicable in settings where dynamic dependency models
are not available.

To keep our approach widely applicable, we make min-
imal assumptions about the available information from
the underlying system. These assumptions are the same
as those made in the prior research:

1. Black-Box Treatment : We assume the software com-
ponents’ implementation is not available. This al-
lows our approach to be applicable to systems that
utilize services or COTS components, whose source
code is not available. It also enables our approach
to naturally support the evolution of software com-
ponents.

2. Observability of Event : We assume that events
marking the interactions among the system’s com-
ponents are observable. An event could be either
a message exchange or a method call, which could
be monitored via the middleware facilities that host
the components or instrumentation of the commu-
nication links.

3. Observability of Transaction Duration: We assume
events start and end, which as you may recall from
Section 3 indicate beginning and termination of a
transaction, to be observable. This is a reasonable

assumption that has also been made by all prior re-
search [13, 21, 16]. For instance, in the example of
Figure 2, the HQ UI component should be able to
determine and record the occurrence of dependent
transaction t1 in terms of request e1, which corre-
sponds to the user clicking on a button on the GUI,
and its termination via response e12, which corre-
sponds to the results to be displayed on the GUI.

Our approach makes no further pertinent assumptions
and requires no additional information from the system.
Based on this minimal information, our objective is to
infer the stochastic component dependency model of the
system. The crux of this is the ability to identify the
causal relationship among the transactions. In other
words, our objective is to determine the set R for ev-
ery transaction occurring in the system (recall the for-
mal definition of transaction in Section 3). This is a
challenging problem to solve by simply monitoring the
system, given that there may be multiple concurrently
running top-level transactions at any point in time using
the same set of components. Moreover, components in
our approach could act non-deterministically, producing
different behaviors under different conditions.

5 Approach Overview

We present a novel approach for automatically deriving
the stochastic component dependency model by mining
the execution history of the software system. The result
of mining is a set of rules expressing the probabilistic re-
lationship among the occurrences of transactions in the
system. This set of rules represents our stochastic com-
ponent dependency model. Given a set of active transac-
tions in the system, these rules can be used to predict the
probability with which a component can be changed at a
point in time without jeopardizing the system’s function-
ality, while minimizing the interruptions. Additionally,
by continuously monitoring the transactions and the ac-
curacy of predictions, the approach provides the means
to adjust the rules as new patterns of interaction emerge.

Figure 3 provides an overview of our approach, con-
sisting of two complementary asynchronously running
cycles: Mining Rules and Applying Rules.

The Mining Rules cycle starts by processing the Event
Log of the system to construct a large number of Item-
sets. An itemset indicates the events that occur close in
time. Itemsets are then passed through a data mining al-
gorithm to derive Transaction Association Rules (TARs)
relating the relationship between transactions that are
occurring in the system and those that may happen in
the future. Since mining may generate a large number of
rules, some of which may be invalid and redundant, we
prune the generated rules to arrive at a small number of
useful rules that can be applied efficiently at runtime.

The Applying Rules cycle starts with the Track Active
Transactions activity that monitors the currently run-

4

Figure 3: Approach overview.

ning transactions in the system. Select Relevant TARs
then uses the information about currently active trans-
actions to pick a set of candidate TARs from the Rule
Base for estimating the usage probability of components.
Update Predictions uses candidate TARs to update the
Usage Prediction Registry, which is a data structure that
contains the up-to-date usage predictions for the com-
ponents in the system. The usage prediction for each
component is the probability that the component will
imminently be used as a result of the transactions run-
ning in the system. These predictions can be calculated
either continuously or on an as-needed basis.

Finally, as indicated by Check Prediction Accuracy,
the predictions are scrutinized at runtime, and if they go
above an unacceptable threshold, a new round of mining
based on the newly collected log of events is initiated.
This allows the approach to incorporate changes due to
how the software is used or its evolution into the mining
process. In the following sections, we describe the details
of our approach.

6 Mining Rules

This section describes the Mining Rules cycle (recall Fig-
ure 3). This cycle runs asynchronously, separate from
the system’s execution, and potentially on a different
platform. It may repeat throughout the system’s execu-
tion to adjust the model to the evolving behavior of the
software system.

6.1 Event Log

Mining operates on an Event Log of the system, which
represents an execution history of the system for a suf-
ficiently long period of time to be truly representative
of how the system is used. Clearly our approach is not
applicable to systems where such a history cannot be col-
lected, or the system’s past behavior is not indicative of
its future, but we believe most systems do not fall in this
category. Since our objective is to infer the relationship

among the transactions, we would like mining to oper-
ate on a representation that is in terms of transactions
as opposed to events. As a result, the Event Log of the
system is automatically processed to determine all of the
transactions that have occurred by pairing the start and
the end events for each transaction. Recall from Sec-
tion 3 that consistent with the prior work [13, 21, 16],
we assume these types of events are observable and could
be used to identify the occurrence of transactions. From
this point forward, we will mainly focus on transactions,
though the reader should be aware of the relationship to
the events.

6.2 Constructing Itemsets

The first step to mining the relationship among the
transactions is to Construct Itemsets (see Figure 3). An
itemset, as in the data mining literature for association
rule mining, is a set of items that have occurred together.
In the context of our research, an itemset I is a set of
transactions that have occurred temporally close to one
another at some particular point during the execution of
the system: I = {t1, t2, ..., tn}.

The transaction records for the execution history of
the system are transformed into itemsets through a sim-
ple process. A new itemset is formed for each top-level
transaction, but not the transactions that those top-level
transactions initiate. A top-level transaction is automat-
ically detected if its beginning, end, or both do not fall
within the beginning and end of another transaction.
All other transactions are placed in the itemsets for the
transactions whose beginning and end times fully sur-
round the beginning and end times of the present trans-
action.

In reference to Figure 2, a new itemset would be cre-
ated for t1, as its beginning and end (determined by e1
and e12) do not fall within any other transactions. All
the remaining transactions t2, t3, t4, t5, and t6 are added
to It1 itemset as follows: It1 = {t1, t2, t3, t4, t5, t6}.

Using this process, an entire segment of a software sys-
tem’s execution history can be transformed into a set of
itemsets representing the occurrence of transactions to-
gether in time. Given a sufficiently large usage history,
the approach compensates for concurrently running top-
level transactions. Consider a version of the scenario
depicted in Figure 2 in which a second top-level transac-
tion t7 overlapping partially in time with t1 starts and
itself initiates a transaction t8 that falls wholly within
the beginning and end times of both t1 and t7. The
approach will include t8 in both It1 and It7. However,
since transactions t1 and t7 are truly independent, the
false placement of t8 in It1 is a random event that is not
likely to occur in a significantly large number of itemsets,
and thus safely ignored by the data-mining algorithm us-
ing minimum frequency thresholds.

5

6.3 Deriving Rules

Several data mining approaches [11] can be used to per-
form learning on the set of itemsets constructed this way.
We found the association rule mining class of algorithms
to be the most suitable for our purposes. The output
of an algorithm of this type for our problem is a set of
transaction association rules (TARs). TARs are proba-
bilistic rules for predicting the occurrence of transactions
as follows X −→ Y : p. A TAR states that the occurrence
of set of transactions X implies the occurrence of a set
of transactions Y with probability p. As shown in Fig-
ure 3, TARs derived in this way are eventually stored in
the Rule Base for use during the system’s adaptation at
runtime.

For association rule mining algorithms, an appropriate
value for p is the confidence of the implication X −→ Y .
Confidence is defined as:

p =

∑
si

{
1 if X ∈ si ∧ Y ∈ si,
0 otherwise.∑
si

{
1 if X ∈ si,
0 otherwise.

Confidence is an appropriate metric for p in TARs
because it provides a measure of the strength of the im-
plication X −→ Y . TARs with strong relations between
X and Y have a high confidence value, while TARs with
weak relations between X and Y have a low confidence
value.

Another metric that is commonly generated by data
mining algorithms during the learning phase is support :

s =

∑
si

{
1 if X ∈ si ∧ Y ∈ si,
0 otherwise.

NumberofItemsets

While support is not appropriate for the value of p in
TARs, it is useful in that it provides a measure of the fre-
quency with which X and Y occur together. As such, we
use a minimum support value during the mining phase
in order to filter out rare relationships that represent
outliers in the general usage of the system. Thus, the
errors introduced in itemsets due to concurrent execu-
tion of transactions in the system (recall Section 6.2)
can be filtered out effectively using a minimum support
and confidence threshold.

While the mining algorithm in the Derive Rules activ-
ity produces logically accurate TARs, it typically pro-
duces an excessively large number of TARs, some of
which are not useful. As such, the generated rules must
be pruned to make them suitable for use at runtime. As
shown in Figure 3, the Derive Rules step terminates by
passing the raw set of generated TARs to Prune Rules.

6.4 Pruning the Rule Base

An excessively large number of TARs is produced as a
result of the Derive Rules activity, because we set the
minimum confidence for a TAR to be very small, i.e.,
we do not filter out many TARs based on the confidence
level. We take this approach contrary to many other
applications of associate rule mining because, while a
TAR having a small p expresses less confidence in the
prediction than does a different TAR having a larger p,
both predictions are accurate and can be used in unison
as explained in Section 7.3.

In addition, many of the unnecessary TARs are pro-
duced because the data mining algorithm and its input
(i.e., itemsets) do not fully incorporate all of the knowl-
edge that we have about the system. For instance, item-
sets are unordered and thereby the resulting TARs incor-
porate no ordering information. As a result, the mining
algorithm produces an excessively large number of TARs
that are not useful.

Since we would like to use the rules at runtime, we
need to prune them to an optimum set of highly predic-
tive rules that can be applied efficiently at runtime. To
that end, and as depicted in Figure 3, the Derive Rules
step terminates by passing the raw set of generated TARs
to Prune Rules. There are three highly effective heuris-
tics that we have developed for pruning the TARs.

(1) Redundant TAR Pruning Heuristic: Consider
TARs satisfying this pattern:
TAR1 : X1 −→ Y1 : p1
TAR2 : X2 −→ Y2 : p2
where (X2 ⊆ X1) ∧ (Y1 = Y2) ∧ (p1 = p2)

In this scenario, TAR1 and TAR2 predict the same set of
transactions and at the same level of confidence. How-
ever, the conditions for satisfying TAR2 is a subset of
those for TAR1, i.e., X2 is a subset of X1. As will be ex-
plained in Section 7.2, a TAR’s conditions are considered
to be satisfied, when the transactions comprising its left
hand side have been observed. Therefore, TAR1 and
TAR2 predict the same exact outcome, except TAR2

requires fewer conditions to be satisfied. We can safely
prune TAR1, since it is redundant.

(2) Less Specific TAR Pruning Heuristic: Consider
TARs satisfying this pattern:
TAR1 : X1 −→ Y1 : p1
TAR2 : X2 −→ Y2 : p2
TAR3 : X3 −→ Y3 : p3
where (X1 = X2 = X3) ∧ (Y1 = Y2 ∪ Y3)

In this scenario, TAR1 makes a composite prediction
of TAR2 and TAR3. All three TARs are satisfied
with the observation of the same set of transactions
X1 = X2 = X3. However, because Y1 = Y2 ∪ Y3, TAR1

is a composite prediction of the more specific predic-
tions made by TAR2 and TAR3. Given the definition of
confidence and its use as the prediction value p, the pre-
diction value p1 for TAR1 will always be weaker (lower)
than the prediction values of p2 and p3 for TAR2 and

6

TAR3, respectively. As a result, TAR1 is a less specific
rule and can be pruned.

(3) Misordered TAR Pruning Heuristic: We can also
prune rules by incorporating our knowledge of what con-
stitutes a valid behavior. We can prune TAR : X −→
Y : p, where ∃x ∈ X ∧ y ∈ Y : x.start.src = y.end.dst.
In this kind of TAR one of the predicted transactions in
Y has as its destination the source of one of the observed
transactions in X. Therefore, the TAR is useless because
it predicts the use of a component that must have already
been used. It is important to note that, while this type of
TAR seems illogical and perhaps presumptively unlikely
to be generated, the association rule mining algorithm
and its input (i.e., itemsets) do not recognize any trans-
action ordering. Furthermore, these types of TARs can
be highly predictive and are very common. Essentially
they predict that the transaction necessary for another
transaction to occur will in fact occur with that transac-
tion. Therefore, this pruning step removes many useless
rules and has the largest impact in our approach.

At the completion of this activity a small subset of
generated rules remains, which is stored in the Rule Base
and used for runtime prediction of component usage.

7 Applying Rules

In this section, we describe the activities comprising the
Applying Rules cycle from Figure 3.

7.1 Tracking Active Transactions

Track Active Transactions step processes any observed
event to.start and to.end, indicating the beginning and
termination of transaction to, respectively. To that end,
we use a data structure, called top-level tracker, and rep-
resented as set TLT, for each top-level transaction active
(i.e., currently running) in the system. The purpose of
TLTs is to keep account of the present transaction ac-
tivity in the system.

Upon observing to.start, the state of TLTs is updated
as follows. If to is a top-level transaction, a new TLT is
created. But if to is not a top-level transaction, its iden-
tifier is added to all open TLTs, i.e., to is associated with
every top-level transaction that may have caused it. This
is done because there is no way of knowing which top-
level transaction has actually initiated this transaction.
Upon observing to.end, if to is not a top-level transac-
tion, it is ignored. On the other hand, if to is a top-level
transaction, then the TLT corresponding to to is closed.

Changes to TLTs impact the Usage Prediction Reg-
istry. In the following subsections, we describe the pro-
cess assuming to.start has been observed, but revisit the
situation in which to.end is observed before concluding.

Algorithm 1: Building the candidate TARs for ap-
plication at runtime.

1 foreach tar ∈ Rule Base do
2 if to ∈ tar.X then
3 foreach tlt ∈ {TLT1, ..., TLTn} do
4 if (tar.X ⊆ tlt) ∧ (tar.Y − tlt 6= ∅) then
5 add tar to CTAR

7.2 Selecting the Relevant Rules

The updated TLTs are used to determine what new pre-
dictions can be made about the probability with which
components will be used. All predictions of the system
activity are made by using the TARs stored in the Rule
Base. We must determine what new TARs, if any, are
implicated by the observation of to.start.

To that end, we use Algorithm 1, which iterates over
all TARs in the Rule Base (Line 1). A tar ∈ RuleBase
can only be implicated by the observation of to, if to is
a member of set X of that tar (Line 2). That is to say,
we cannot make a new prediction based on the given tar,
unless to contributes to the prediction. If this criterion is
met, then we look to see if the tar is satisfied by any open
top-level transaction as tracked by TLTs (Line 3). For a
tar to be satisfied, all transactions in X must have been
observed during the processing of at least one tlt (first
condition in Line 4). Furthermore, the tar ’s prediction
(i.e., Y) should have new transactions other than the
ones that have already occurred during the processing
of the satisfying tlt (second condition in Line 4). Stated
differently, a tar is only considered to have a useful pre-
diction if (1) all of its prerequisites have been seen, and
(2) at least some of its predictions are unseen. If both
of these conditions are met, then the tar is added to the
set CTAR (Line 5), which is a set of all new TARs that
are candidates for being applied at that given point in
time.

The tlt that satisfies the conditions for presence of
a tar in CTAR (Line 4) is said to be a basis for the
application of that tar. Although not shown in Line 5
for the sake of simplicity, this basis information is tracked
along with the tar and used in the next stages.

7.3 Updating the Usage Prediction Reg-
istry

In the previous sections, we described the process for
generating the set CTAR in response to a single obser-
vation to.start. The next step is to apply these TARs
to update the Usage Prediction Registries, represented
as set UP . Given a component c, there are typically
more than a single TAR predicting its usage probability
uc ∈ UP . While some may be due to the new obser-
vation to.start, others may be due to the prior observa-

7

tions. Therefore, we must combine the various p values
from all of the satisfied TARS into a single prediction
value uc.

Before describing how uc can be calculated, we need to
define three sets: (1) CTARc is a set of candidate TARs
that are supposed to affect a given component c and
defined as CTARc = {tar|tar ∈ CTAR ∧ (∃t ∈ tar.Y :
t.start.dst = c)}. These are the new TARs based on
the observation to.start. (2) ATARc is the set of active
TARs currently contributing to uc due to observations
made prior to to.start. (3)Finally, PTARc = CTARc ∪
ATARc is the complete set of TARs that determine the
new value of uc.

We can now describe how uc is calculated in five steps:

(1) Removing duplicate TARs: We do not need to
reconsider a tar ∈ CTARc, which is already actively
predicting the usage of component c (i.e., tar ∈ ATARc).
Therefore, we remove any such tar from CTARc (i.e.,
CTARc = CTARc −ATARc).

(2) Removing superseded TARs: A superseding rela-
tionship occurs when we have TARs satisfying this pat-
tern:
TAR1 : X1 −→ Y1 : p1
TAR2 : X2 −→ Y2 : p2
where (Y1 = Y2) ∧ (X1 ⊆ X2)

In this scenario, TAR2 predicts the same set of transac-
tions as TAR1, however TAR2 makes use of more infor-
mation than TAR1 and hence makes a more informed
prediction. Therefore, TAR1 is removed from its set
(i.e., either CTARc or ATARc, depending on which one
it came from).

(3) Selecting the best candidate: Even after remov-
ing the redundantly overlapping rules, we may still have
some partially overlapping ones. Partially overlapping
rules express the various execution paths that may even-
tually result in the use of the same component. Consider,
for example, the following two TARs:
TAR1 : {t1, to} −→ {t3, tc} : p1
TAR2 : {t2, to} −→ {t4, tc} : p2
where (tc.start.dst = c)

Since TAR1.Y 6= TAR2.Y , the superseding relationship
cannot be used to remove one of the TARs. However,
the observation of a single to.start should at most result
in a single prediction for the component c. We use a
heuristic and choose the TAR with the highest p value
to be the best candidate. This TAR expresses the great-
est risk that c will be used. After this step CTARc must
have a single member.

(4) Trimming PTARc: Analogous to the logic in the
previous step, it is reasonable to expect each top-level
transaction to make a single prediction for a component
c. When there are more than one active top-level trans-
actions, we cannot know with certainty which top-level
transaction actually initiated to.start. However, based
on the number of active TLTs (recall Section 7.1), we
know how many top-level transactions are active in the
system when to.start is observed. Therefore, we approx-

imate by limiting the number of TARs contributing to
uc to the number of top-level transactions active at that
point in time. As with the reduction of CTARc in the
previous step, we choose to be conservative by keeping
the TARs with the highest p values. We remove the
TARs with the lowest p value from PTARc until the
size of PTARc is equal to number of active TLTs.

(5) Combining the predictions: At this point, we let
the ATARc to be equal to PTARc. We can now recalcu-
late uc based on the updated ATARc. Because there are
no duplicate, overlapping, or related TARs in ATARc,
we calculate uc by combining the prediction values from
individual TARs in ATARc as independent probabili-
ties:
uc = 1− probability c is not used = 1−

∏|ATARc|
i=1 (1−pi)

This follows from the fact that according to each
TARi ∈ ATARc, the probability of c not being used
as a result of the relationship modeled in TARi is 1−pi.

So far, we explained how the Usage Prediction Reg-
istries are updated when to.start is observed. However,
the observation of to.end can also update the Usage Pre-
diction Registries. If to.end is a top-level transaction, the
tlto corresponding to to.end is removed. As a result, all
the TARs that have tlto as their only basis are removed
from ATARc. Since in this case CTARc = ∅, steps 1-4
are skipped, and step 5 is performed to propagate the
impact of these deletions on all of the components’ pre-
dictions.

The Usage Prediction Registry is either updated each
time a transaction and its corresponding events are ob-
served, or on an as-needed basis.

8 Using Registry for Adaptation

The ultimate goal in our research is to use the predic-
tions for making adaptation decisions. The probabilistic
rules inferred using our approach collectively represent
the stochastic dependency model of the system. Such
a model could be used in the context of both tranquil-
ity [21] and version-consistency [16] for adaptation. In
our current approach, we employ a technique similar
to that described in tranquility, where we temporarily
buffer (store) events intended for a component during
the time it is being replaced. Alternatively, we could
have employed a technique similar to that of version-
consistency, where two instances of a component are
leveraged, and incrementally new top-level transactions
are shifted to use the new version. Our approach could
be used to both guarantee consistency and minimize dis-
ruption as described in detail below.

8.1 Guarantying Consistency

As specifically noted in Section 3, inconsistency could re-
sult if a component is adapted at a time in which it has
already participated in a transaction that it participates

8

in again. That is to say, to maintain consistency, a com-
ponent must not be adapted if it has been used in some
top-level dependent transaction until that top-level de-
pendent transaction terminates. Our predictions would
very nearly approximate that type of protection, given
that a component that is used typically ends up with a
high usage prediction in its register and that value will
not dissipate until the top-level transaction that caused
it terminates. However, there is a slight risk that our
approach as described up to this point would not fully
guarantee consistency, because after all one cannot guar-
antee the accuracy of mined rules.

In situations where such a risk is unacceptable, we
make a slight modification to the approach described
in Section 7.3 that allows us to provide consistency
guarantees. When we observe a transaction to, where
to.start.dst = c, we lock the value of uc = 1 to prevent
c from being adapted, since we now know it has partic-
ipated in a transaction, and changes to it may result in
inconsistencies. However, since we do not know in which
top-level transaction it has participated (i.e., we do not
know the TLT), we keep the prediction locked at 1 un-
til all of the TLTs that are the basis of that prediction
have closed, at which point we roll back to the mecha-
nism described in Section 7.3 for updating its prediction
value.

8.2 Minimizing Disruption

As will be shown in Section 9, our predictions are highly
accurate, allowing us to avoid changing components
when they are likely to be used, thus reducing the dis-
ruption in the system. Recall from the previous section
that when uc = 1, we do not adapt c, since the change is
likely to leave the system in an inconsistent state. How-
ever, when uc < 1, c has not yet been in a top-level
transaction, but could still be used at anytime in the
future. If we adapt c, we may disrupt the system, as
events sent to that component would be buffered until
the adaptation has finished.

To eliminate disruption, it is tempting to use uc = 0
as condition for adapting c. It may, however, take a
long time for uc to become 0 and this could create a
reachability problem, i.e., a situation in which one has to
wait a long time, or even forever, before the condition
for adaptation is met. In practice, it is often reasonable
to accept the potential for a slight disruption and allow
adaptation when uc < ε.

Figure 4 exemplifies how this approach works. Al-
though the examples are hypothetical, the registries in-
deed behave similarly in practice. A typical registry
goes through this motion many times over the execu-
tion of the system: starting at 0 when a top-level trans-
action is initiated, rising as new observations are made
and TARs are applied, and falling back to 0 once the
top-level transaction has terminated. The steps in these
functions represent the times at which the registries are

updated. Finally, when the rules are accurate, we ex-
pect the step function to be skewed to the right when
the component is eventually used, and skewed to the left
otherwise. This is because typically when a component
is eventually used, additional observations are made that
subsequently satisfy more TARS, which combine to in-
crease the component’s usage probability.

As depicted in Figure 4, when a component has a
uc ≥ ε at the time of adaptation decision and the compo-
nent actually gets used before the end of that transaction
(active), we say it is a True Positive (TP) result. When
a component has a uc < ε at the time of adaptation de-
cision and the component is eventually used (active), we
say it is a False Negative (FN) result. Similarly, False
Positive (FP) and True Negative (TN) results can be de-
fined when a component is not eventually used (inactive)
as depicted in Figure 4b.

The remaining challenge is how to pick a value for
ε that is meaningful. We define ε in terms of another
parameter r, which represents the tolerable rate of all
adaptations that may result in disruption for a given
system. We believe r is a reasonable threshold that can
be specified by the user, e.g., the user stating that on
average no more than 0.05 (5%) of adaptations should
result in a disruption. In essence, r is used to make a
trade-off between reachability and disruption. To be able
to calculate ε based on r, we have to relate a system-wide
threshold defined by r to a component-specific threshold
defined by ε. For that, we build a probability distribution
for prior usage predictions and then use it to calculate ε
based on r.

We calculate ε in terms of r by looking at the past pre-
dictions embodied in the recorded uc values. However,
r represents the probability of disruption in the system,
whereas uc represents the probability that a component
c could be used, which may or may not result in a disrup-
tion. In order to determine a value for ε, we must relate
our predictions uc to the value of r. However, they not
only have different semantics (i.e., one representing dis-
ruption probability and the other usage probability), but
also different domains (i.e., one is in terms of component
and the other system).

We let Ua represent the set of all recorded predic-
tions for components that were eventually used (active),

time

uc
1

ε

Component is Used

(a)

TPc

FNc time

uc
1

ε

Component is Not Used

(b)

FPc

TNc

Figure 4: Hypothetical behavior of uc as to.start is ob-
served for some top-level transactions over time: (a) c is
eventually used, and (b) c is not used.

9

ua
1

PUa

0 ε
r

(a)

ui
1

PUi

0 ε

(b)

ua
1

FUa

0 1ε

1

r

(c)

ui
1

FUi

0 1ε

1

(d)

Figure 5: (a) Frequency distribution for Ua, (b) Fre-
quency distribution for Ub, (c) CDF for Ua, and (d) CDF
for Ui.

and Ui represent the set of all recorded predictions for
components that were eventually not used (inactive). In
essence, Ua represents the set of all recorded values corre-
sponding to the step function of Figure 4a for all compo-
nents in the system, while Ui represents the same except
for Figure 4b. As a result, Ua indicates the situations
in which adaptations could have possibly disrupted the
system in the past. So now Ua and r have the same se-
mantic, but to be able to relate them, we also need them
to have the same domain.

To change the domain, we build a probability distri-
bution by collecting a large sample of ua values from Ua.
Based on this we build the frequency distribution for
Ua, which provides a system-wide representation of those
predictions. A hypothetical probability distribution for
Ua is shown in Figure 5a as PUa , while an analogous ver-
sion for Ui as PUi

is shown in Figure 5b (though ε is not
known when these are first built). From this frequency
distribution and using conventional techniques [2] we
can derive the cumulative distribution function (CDF),
which we call FUa , an example of which is depicted in
Figure 5c. The analogous version for Ui is shown in Fig-
ure 5d. In this CDF function, FUa

(ε) defines the frac-
tion of all ua samples where ua ≤ ε. In other words,
r = FUa

(ε). Thus, we can calculate ε based on the r
value specified by the user as the inverse ε = F−1Ua

(r).
In terms of probability theory, this means that ε is the
r-quantile of the probability distribution [2]. We can see
from Figure 5c that ε can be determined by finding the
intersection of r and FUa

and tracing down to the x-axis.
This value of ε can then be transferred to FUi

, PUa
, and

PUi as shown in Figure 5. We can thus see that all of PUa

to the left of ε is a false negative and equal in quantity
to r, while all of PUi

to the right of ε is a false positive.
This can therefore be seen as setting the ε cut-off be-
tween FN and TP in Figure 4a and between TN and FP
in Figure 4b. The CDF is updated periodically based on
the recent execution profile of the system.

It should be apparent from Figure 5a and b that the
key to limiting error in the approach is to skew PUa

to-

wards high values of u and PUi towards low values of
u. This will result in FUa

remaining at low values and
then escalating quickly as it approaches 1.0, while FUi

escalates quickly and then grows gradually to 1.0. This
difference in FUa

and FUi
can be seen in Figure 5c and

d based on the slight difference in skewing shown in PUa

and PUi in Figure 5a and b. If the approach is able
to skew the distributions for active and inactive com-
ponents differently, then it effectively achieves the real
goal of this approach: it distinguishes between active and
inactive components in advance. The following section
discusses how well our approach achieved this aim.

9 Evaluation

We have developed a prototype of the approach using
Apriori—an association rule-mining algorithm with an
implementation provided in WEKA [10]. As explained
in Section 6.4, we intentionally use very low confidence
and support thresholds: p = 0.05 and s = 0.045. We per-
formed experimentation on runtime adaptation of EDS
(recall Section 2). To evaluate the approach, we used
several versions of EDS as shown in Table 1. We used a
baseline version of EDS with a single user. We then re-
peated the evaluations on higher and higher concurrency
systems to evaluate the susceptibility of the approach to
concurrency errors. The 80 and 137 user experiments
were simulated by using hyperactive dummy users, as
EDS never naturally reached that level of concurrency
error. Therefore, the values for users are merely projec-
tions, and the precise values for concurrency error rate
should receive primary focus. As previously discussed,
concurrency in the system means that an observed trans-
action must be attributed to all open top-level transac-
tions. This in turn results in duplication of the observed
transaction for each top-level transaction. Table 1 shows
what percentage of all recorded transactions were actu-
ally these erroneous duplicates, as well as the average
number of these erroneously recorded transactions per
top-level transaction. Each experiment had roughly 8
true transactions per top-level transaction.

Table 1: Experimental systems used in evaluation, and
effects of TAR pruning heuristics.

of TL Trans. Concurrency Errors Number of TARs
Users Observed Rate Per Itemset Initial Remained

1 500 0.00% 0.00 38,582 1,683

10 1,628 1.69% 0.13 34,050 2,190

28 2,787 4.51% 0.35 38,248 2,331

40 3,330 10.94% 0.92 38,460 1,758

80 11,920 36.32% 4.19 35,168 3,126

137 3,543 60.77% 11.26 31,442 3,143

10

Table 2: Error and accuracy rates for the experimental
systems.

of False False True True ε
Users Negative Positive Positive Negative Value

1 0.212 0.049 0.788 0.951 0.66

10 0.204 0.053 0.796 0.947 0.71

28 0.203 0.049 0.797 0.951 0.74

40 0.203 0.054 0.797 0.946 0.72

80 0.204 0.063 0.796 0.937 0.92

137 0.202 0.175 0.798 0.825 0.95

9.1 Effectiveness of TAR Reducing
Heuristics

We first show the effectiveness of our rule pruning heuris-
tics (recall Section 6). Significant reduction in TAR vol-
ume in the Prune Rules stage took place in all of the ex-
periments. The reduction number can be seen in Table 1.
This reduction can only be truly appreciated when con-
sidered with two other facts: (1) the reduced rule base
does not significantly degrade the accuracy as evaluated
next, and (2) because of this reduction, the remaining
rules can be applied very efficiently at runtime (evalu-
ated in Section 9.4).

9.2 Accuracy of Component Usage Pre-
dictions

A crucial evaluation dimension for our approach is the
degree to which it correctly predicts the usage of a com-
ponent. As discussed in Section 8.2, the accurate predic-
tion is manifested through skewing FUa

to a slow growth
function that then escalates quickly at high values of ua,
while at the same time skewing FUi

to a quickly esca-
lating function that then grows only gradually over high
values of ui. Figure 6a and b show FUa and FUi for the
various experimental systems that we used. It is clear
from comparison of these two charts that our approach
achieved significant differentiation between active and
inactive components.

Using these CDFs, we can quantify the effectiveness
of the approach in terms of FN, TP, TN, and FP. As dis-
cussed in Section 8.2, the approach uses ε to fix the FN
rate at r. Therefore, the effectiveness of the approach
must be measured in its ability to minimize the FP rate
based on the fixed value of FN. Because our approach
achieved significant differentiation between FUa and FUi ,
for r = 0.20, we were able to set ε at relatively high val-
ues and achieve the very favourable error rates as shown
in Table 2. As seen, the unfixed error rate of FP was
held to below 7% in all experiments except for that with
the highest concurrency, well below the fixed FN error
rate. Beyond demonstrating accuracy in the prediction
of component activity, these ratios also demonstrate that
the approach was not noticeably impacted by an increase
in concurrency in the system until concurrency reached
extreme levels.

Figure 6: The results from the experiments: (a) CDF of
Ua and (b) CDF of Ui.

This quality of differentiation can be further viewed
with a ROC curve as shown in Figure 7. ROC curve is
a conventional approach for evaluating classifiers [7, 20].
In our case, the ROC curve depicts the change in the
ratio of TP to FP as different ε thresholds are chosen.
The extreme of ε = 1.0 exists at the origin of the ROC
plot, while the extreme of ε = 0.0 exists at the point
(1 , 1) of the ROC plot. Therefore, it can be seen how
the TP and FP rates respond by moving the ε threshold
to balance between (1) rate of disruption and (2) reach-
ability of adaptation. The ROC curve shows that the
approach does an incredible job of achieving true posi-
tives despite changes in the ε threshold. The approach
achieves greater than 0.7 true positive rate with nearly
every level of false positive rate.

The comparison of the different experiments in Ta-
ble 2 and Figure 7 also serves to show the way the ap-
proach compensates for concurrency and how high lev-
els of concurrency eventually prevent the approach from
compensating further. As seen in Table 2, higher val-
ues for ε are needed to achieve r = 0.20 as concurrency
increases. This occurs because, with many users in the

Figure 7: ROC Curve for the various experiments.

11

system, there are many more observations that allow the
approach to predict usage of a component c, when c is
actually used. Therefore, as concurrency increases, the
values for ua are more skewed towards 1.0 until, at a con-
currency error rate of roughly 60% for EDS (i.e., case of
137 users), active components are constantly at uc = 1.0
until the transactions they participate in subside. While
this is beneficial because it approaches perfect classifica-
tion of active components (as can be seen in Figure 7,
higher concurrency systems actually escalate to the (0 ,
1) point more directly), it results in two detriments to
the approach.

First, once the concurrency rate forces ε to be set to 1.0
given some r value, ε has reached its maximum value and
as such cannot compensate for the increasing false pos-
itive rate by moving to a higher value. Therefore, once
concurrency forces ε to be set to 1.0 to achieve r, the ap-
proach can no longer compensate for the higher FP rates
caused by even further increases in concurrency. Second,
as concurrency increases to greater levels, components
remain active for greater portions of time. But, since at
that point all active components are effectively always
at ua = 1.0, problems of reachability may occur if the
components never become inactive. An implementation
of our approach based on version-consistency [16] would
address this problem, by bringing a new version of the
component on line to service the new top-level transac-
tions, while the old component gradually transitions to
an inactive state. That said, we have never been able
to recreate such an extreme scenario in EDS, using real
user loads or even the highly extreme simulated cases.
While our current implementation is based on tranquil-
ity, which simply buffers events, there is nothing funda-
mentally different from applying the version-consistency
model of adaptation that does not have such limitations.

9.3 Accuracy of Desired Disruption
Rate

The third point of evaluation is the degree to which the
approach achieves the desired r rate of disruption dur-
ing adaptation. The evaluation results presented in the
previous section and shown in Table 2 were prospective
error rates due to setting ε at the specified level based
on historic prediction values. In this section, then, we
look to see how well the false negative rate r was tracked
once ε was set. Table 3 shows the mean false negative
rates and 95% confidence intervals for those false nega-
tive rates for the different experimental systems. These
statistics were calculated based on 450-sample moving
averages that were recalculated at 45 sample intervals.
As shown, the system very effectively tracks the chosen
r = 0.20 and maintains a fairly tight confidence interval
around its mean. Furthermore, it should be noted that
the rate of concurrency does not noticeably affect the
tracking of r.

Table 3: Tracking of false negative (FN) threshold.
of Users Mean False Neg. Rate 95% Conf. Interval

1 0.209 [0.204, 0.215]

10 0.200 [0.196, 0.205]

28 0.203 [0.199, 0.207]

40 0.210 [0.207, 0.213]

80 0.206 [0.191, 0.222]

137 0.208 [0.203, 0.213]

9.4 Performance and Timing

The final evaluation criteria are the performance bench-
marks of Mining Rules and Applying Rules cycles. We
have collected these numbers on a MacBook pro laptop
with 2.53 GHz Intel Core i5 processor and 4 GB 1067
MHz DDR3 memory. The mining of the event logs to
generate the rules has been extremely fast. Although we
set our support and confidence values very low, resulting
in a large number of rules to be generated, Apriori has
always completed that in less than 2 seconds in all of the
experiments described here.

The performance of updating the predictions at run-
time consists of two primary elements: retrieval of rele-
vant TARs (recall CTAR from Section 7.2) and update
of the Usage Prediction Registry by applying the rules.
For the former, MySQL database version 5.5.8 is used to
store the rule base. However, because retrieval of TARs
from MySQL was observed to take typically between
1.355 seconds and 0.959 seconds, we implemented a sim-
ple caching of the Rule Base. Based on this caching, the
combined time of retrieving relevant TARs and updat-
ing the Usage Prediction Registry by applying the rules
takes very little time. The mean processing times and
95% confidence intervals for those processing times are
given in Table 4. As seen, the processing times are quite
short, tightly bound in the 95% confidence intervals, and
not noticeably effected by the increase in concurrency ex-
cept for a few millisecond gain in mean processing time
for larger rule bases.

10 Related Work

In Section 3, we described the most related approaches,
namely quiescence [13], version-consistency [16], and
tranquility [21], including their relationship to this work.
Here we focus on other related literature.

Table 4: Performance of rule application.
of Mean Time for Rule 95% Confidence
Users Application (ms) Interval (ms)

1 3.23 [3.087, 3.378]

10 3.80 [3.587, 4.016]

28 2.88 [2.700, 3.056]

40 2.14 [2.093, 2.184]

80 4.90 [4.602, 5.204]

137 5.04 [4.962, 5.126]

12

Researchers have used log of event data collected from
a system to construct a model of it for various purposes.
Cook et al. [4] use the event data generated by a software
process to discover the formal sequential model of that
process. In a subsequent work [5], they have extended
their work to use the event traces for a concurrent sys-
tem to build a concurrency model of it. Gaaloul et al. [8]
discover the implicit orchestration protocol behind a set
of web services through structural web service mining of
the event logs and express them explicitly in terms of
BPEL. Motahari-Nezhad et al. [18] presents an algorith-
mic approach for correlating individual events, which are
scattered across several systems and data sources, semi-
automatically. They use these correlations to find the
events that belong to the same business process execu-
tion instance. Wen et al. [22] use the start and end of
transactions from the event log to build petri-nets corre-
sponding to the processes of the system. None of these
approaches aim to understand the behavior of the system
for the purpose of adaptation.

Software architecture has been shown to provide an
appropriate level of abstraction and generality to deal
with the complexity of dynamically adapting software
systems [14, 19]. Gomaa and Hussein [9] developed the
notion of reconfiguration pattern, which is a repeatable
sequence of steps for placing a software component in
the quiescence state. In a recent work [6], we adopted
this concept to provide safe adaptation support on top
of a middleware platform.

Finally, mining software repositories (e.g., source con-
trol systems, bug tracking systems, etc.) is a thriving
thrust of research (see [1]). Although related, our objec-
tive in this paper is fundamentally different from that
line of research. To the best of our knowledge, data
mining has not been applied for determining the time at
which changes should occur in a running software sys-
tem.

11 Conclusion

We provided an overview of a mining-based approach
that from the execution history of a software system
infers a stochastic component dependency model of its
components. We have used this model for the purpose
of determining the time at which a component can be
replaced without leaving the system in an inconsistent
state and creating a significant disruption. Our approach
can be applied with minimal effort. All that is needed is
the ability to monitor the interactions among the com-
ponents of that system. Our approach can be used to
learn the emerging component dependencies as the soft-
ware system evolves. The evaluation of our approach
using a real software system and numerous users have
empirically shown the accuracy of the models inferred
in this way, and the ability to leverage those models to
make timely and effective adaptation decisions.

In the future, we plan to experiment with other types
of data mining algorithms that leverage frequency of
item occurrence, as well as temporal and ordering rela-
tionship among events. With these sorts of approaches,
we hope to leverage information that is already avail-
able, but not effectively utilized in our current approach
to further improve its precision and performance.

12 Acknowledgments

This work is partially supported by grant CCF-0820060
and CCF-1217503 from the National Science Founda-
tion and grant N11AP20025 from Defense Advanced Re-
search Projects Agency.

References

[1] Mining software repositories. http://msrconf.org/.

[2] Bertsekas, D. P., and Tsitsiklis, J. N. Introduction
to Probability, 2nd Edition. Athena Scientific, July
2008.

[3] Cheng, B. et al. Software engineering for Self-
Adaptive systems: A research roadmap. In Software
Engineering for Self-Adaptive Systems, LNCS Hot
Topics. 2009, pp. 1–26.

[4] Cook, J. E., and Wolf, A. L. Discovering models
of software processes from event-based data. ACM
Trans. Softw. Eng. Methodol. 7, 3 (July 1998), 215–
249.

[5] Cook, J. E., and Wolf, A. L. Event-based detection
of concurrency. In Int’l Symp. on the Foundations of
Software Engineering (Lake Buena Vista, Florida,
Nov. 1998), pp. 35–45.

[6] Esfahani, N., and Malek, S. Utilizing architectural
styles to enhance the adaptation support of middle-
ware platforms. Journal of Information and Soft-
ware Technology (2012).

[7] Fawcett, T. An introduction to ROC analysis. Pat-
tern Recogn. Lett. 27, 8 (June 2006), 861–874.

[8] Gaaloul, W., Baina, K., and Godart, C. Log-based
mining techniques applied to web service composi-
tion reengineering. Service Oriented Computing and
Applications 2, 2-3 (May 2008), 93–110.

[9] Gomaa, H., and Hussein, M. Software reconfigu-
ration patterns for dynamic evolution of software
architectures. In Working IEEE/IFIP Conf. on
Software Architecture (Oslo, Norway, June 2004),
pp. 79–88.

[10] Hall, M. et al. The WEKA data mining software:
an update. SIGKDD Explor. Newsl. 11, 1 (Nov.
2009), 10–18.

13

[11] Han, J., and Kamber, M. Data mining: concepts
and techniques. Morgan Kaufmann, 2006.

[12] Kephart, J. O., and Chess, D. M. The vision of
autonomic computing. IEEE Computer 36, 1 (Jan.
2003), 41–50.

[13] Kramer, J., and Magee, J. The evolving philoso-
phers problem: Dynamic change management.
IEEE Trans. Softw. Eng. 16, 11 (Nov. 1990), 1293–
1306.

[14] Kramer, J., and Magee, J. Self-Managed systems:
an architectural challenge. In Int’l Conf. on Soft-
ware Engineering (Minneapolis, Minnesota, May
2007), pp. 259–268.

[15] Lemos, R. d. et al. Software engineering for Self-
Adpaptive systems: A second research roadmap.
In Software Engineering for Self-Adaptive Systems
(Dagstuhl, Germany, June 2011), R. d. Lemos,
H. Giese, H. Muller, and M. Shaw, Eds.

[16] Ma, X., Baresi, L., Ghezzi, C., Panzica La Manna,
V., and Lu, J. Version-consistent dynamic recon-
figuration of component-based distributed systems.
In Int’l Symp. on the Foundations of Software En-
gineering (Szeged, Hungary, Sept. 2011), ACM,
pp. 245–255.

[17] Malek, S., Mikic-Rakic, M., and Medvidovic, N. A
Style-Aware architectural middleware for Resource-
Constrained, distributed systems. IEEE Trans.
Softw. Eng. 31, 3 (Mar. 2005), 256–272.

[18] Motahari-Nezhad, H. R., Saint-Paul, R., Casati, F.,
and Benatallah, B. Event correlation for process
discovery from web service interaction logs. The
VLDB Journal 20, 3 (June 2011), 417–444.

[19] Oreizy, P., Medvidovic, N., and Taylor, R. N.
Architecture-based runtime software evolution. In
Int’l Conf. on Software Engineering (Kyoto, Japan,
Apr. 1998), pp. 177–186.

[20] Tan, P., Steinbach, M., and Kumar, V. Introduction
to Data Mining, 1 ed. Addison Wesley, May 2005.

[21] Vandewoude, Y., Ebraert, P., Berbers, Y., and
D’Hondt, T. Tranquility: A low disruptive alter-
native to quiescence for ensuring safe dynamic up-
dates. IEEE Trans. Softw. Eng. 33, 12 (Dec. 2007),
856–868.

[22] Wen, L., Wang, J., Aalst, W. M., Huang, B., and
Sun, J. A novel approach for process mining based
on event types. J. Intell. Inf. Syst. 32, 2 (Apr. 2009),
163–190.

14

