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Abstract

Owed to their versatile functionality and size, PDF doc-
uments have become a popular avenue for exploitation
ranging from broadcasted phishing attacks to targeted
attacks. In this paper, we present a method for efficiently
detecting malicious documents based on feature extrac-
tion of document metadata and structure. We demon-
strate that by carefully extracting a wide-range of feature
sets we can offer a robust malware classifier. Indeed, us-
ing multiple datasets containing an aggregate of 5,000
malicious documents and 100,000 benign ones, our clas-
sification rates are well above 99% while maintaining
low false negatives 0.01% or less for different classifica-
tion parameters and scenarios.

Surprisingly, we also discovered that by artificially
reducing the influence of the top features we can achieve
robust detection even in an adversarial setting where
the attacker is aware of the top features and our nor-
mality model. Therefore, due to the large number of
the extracted features, a defense posture that employs
detectors trained on random sets of features, is robust
even against mimicry attacks with intimate knowledge
of the training set.

1 Introduction

Malicious code is often embedded or packaged within
documents that appear legitimate including government
forms and bank statements. Thus, malicious documents
are also called trojan documents because they carry a
malicious payload in a seemingly desirable document
which serves as distribution mechanism for the malware.
The use of documents as a vehicle for exploitation has be-
come more popular as the exploitation of vulnerabilities
in client applications, including document viewers, has
increased [7, 8]. In addition, it is easier to entice users
to open a malware-bearing document through social
engineering. The complexity and structure of modern

documents can make detection of the malicious code
extremely difficult: the document offers many places
where code can be confused for data and many more
additional layers of obfuscation compared to a Portable
Executable (PE). To make matters worse, client applica-
tions, such as document viewers and data containers, are
usually the consumers of foreign code and data making
them perfect targets for exploitation.

Many recent studies have shown that malicious docu-
ments are frequently used in highly socially engineered
phishing attacks perpetrated by groups of highly sophis-
ticated, persistent, and targeted attackers whose goal is
espionage [16, 2]. The use of malicious documents in
targeted attacks, including those perpetrated by a class
of attacks called Advanced Persistent Threats (APTs),
adds urgency to countering this form of malware de-
livery. PDF documents have become one of the most
popular file formats exploited in targeted attacks [10]
and new vulnerabilities continue to be used by targeted
attackers [1]. The exact mechanism of delivery and ex-
ploitation employed varies widely: in some cases, the
document is used to merely to exploit a vulnerability
in the reader application with the document itself pro-
viding little value in terms of social engineering. For
instance, some classes of web based attacks, such as
those leveraging cross-site scripting, operate in this way.

In phishing attacks, the document augments the so-
cial engineering aspect of the attack. This is the case
when a malicious document is attached to a phishing
email. In some attacks, the document contains the com-
plete malware payload the attacker wishes to deploy,
while in others, the document only has enough code to
download additional malware components [19, 23, 9, 25].
Although exploitation of the reader program can result
in the viewer program hanging or crashing, potentially
alerting the user of a problem, sometimes such faults
remain hidden from the end-user because the reader
program is used as plug-in in a larger program, such as
Internet browsers [11, 5, 17, 3].

1



In highly targeted attacks, the exploit often involves
opening a benign document that is extracted from the
trojan document to mask the exploitation and enhance
social engineering. Many malicious documents seem to
be truly Spartan, in that they contains only malicious
content without superfluous metadata or structural ele-
ments. However, some malicious documents contain ex-
tensive non-malicious metadata items and structural ele-
ments seemingly indicative of the malware author either
beginning construction with an existing benign docu-
ment or the author intentionally inserting non-malicious
content to avoid detection. Despite the differences, mali-
cious documents are a common vector for exploitation
and delivery of malware. This study proposes an al-
ternate mechanism for detecting malicious documents
which seeks to leverage some of the restrictions the use
of documents enforces to malware delivery.

There exist many approaches for detecting malicious
documents. Signature matching is widely employed and
is effective for detecting previously identified malware
on a broad scale. Indeed, many signature matching sys-
tems, such as commodity antivirus scanners [13, 27] pro-
vide functionality specific to PDF documents so that they
can be decoded to reveal malicious content and exploita-
tion of document specific vulnerabilities. A common
alternative to signature matching is dynamic analysis of
documents where the behavior of the entire system or
the set of programs are observed while the document is
opened. Furthermore, some classes of malicious code
can be exposed through deviations of file or format spec-
ifications. All of the current malicious detection mecha-
nisms provide some benefits, but all have shortcomings.
Reliable detection of malicious documents remains an
open research topic.

In this paper, we explore the limits of static analy-
sis detection mechanisms that utilize machine learning
techniques on document-specific attributes to identify
embedded PDF malware. Our approach addresses some
of the shortcomings of existing techniques through the
use of a broadly applicable mechanism to classify and
characterize documents. The proposed method is vulner-
ability and exploit agnostic and thus seeks to remove the
dependence on a priori knowledge of specific malware
families and vulnerabilities while remaining computa-
tionally and operationally tractable. Moreover, we aim
to seek to further classify whether malicious documents
are associated with broad based, opportunistic threats
or highly targeted attacks.

As part of our analysis, we show that while the use
of documents as an exploitation vector can be an en-
abling mechanism for the attacker, it also provides ad-
ditional detection opportunities. All of the data closely
associated with malicious activity can be used to aid
in detection, regardless of whether the data utilized for
detection is inherently malicious or not. Indeed, in sig-
nature matching systems, signatures are often generated
for byte sequences highly specific to known malware

families, even if those byte sequences are not malicious
in and of themselves. The underlying premise and intu-
ition of our study is that malicious documents do have
similarities to other malicious documents; they also have
dissimilarities to benign documents, regardless of the
specific vulnerability exploited or the specific malware
embedded in the document. We posit that features based
on document structure and metadata are adequate for
reliable document classification given appropriate sta-
tistical methods are applied to these features. At a very
high level, this is similar to the semantic operations of
SPAM detection algorithms that use features of the email,
including the textual part of an email to feed a machine
learning engine to reliably classify email into SPAM or
legitimate.

For the purpose of our analysis, documents are repre-
sented by their respective feature vectors extracted from
statically processing the document files. These features
are constrained to items derived from the document
metadata, such as the number of characters in the title,
or features derived from the document structure, such as
the size of the images in the document. This study uses
10,000 documents from a widely available data set and
100,000 documents collected from a university network.
We employed different machine learning techniques and
our results show that random forests algorithm performs
the best with True Positives (TP) more than 0.99 (99%)
while maintaining a False positive rate of 0.0001 (0.01%)
or less depending on the scenario, dataset, and thresh-
olds used. The most important finding of our study is
the effectiveness of mimicry type attacks appear to be
limited. This is because the set of features we extracted
provide robust detection as a set even when the top fea-
tures on our training set are used as part of a mimicry
attack by the attacker. By perturbating the training data
to mitigate the reliance on features heavily favored by
the classifier, evasion becomes much more difficult.

2 Related Work

Malicious documents have been the subject of much re-
search over the years. In terms of static analysis, Li et
al. [15] and Tabish et al. [26] demonstrated that detect-
ing malicious Word documents through static analysis
using n-grams representation for the document data and
course dynamic analysis shows promise but also comes
with limitations due to the size of the malcode. While
the techniques and file format differ, the end goals are
very similar to our work. Signature analysis has also
been studied extensively [24, 22] including specifically
for PDF vulnerabilities [20].

In terms of dynamic analysis, Munson and Cross [6]
use an instrumented reader application and dynamic
analysis to extract structural features of PDF documents
to be used in a machine learning based classifier. While
the high level approach is similar to what is presented
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here, they were unable to demonstrate strong detec-
tion rates. The approach presented here differs in that
static analysis is used to extract a much larger num-
ber of features, including metadata, without without
seeking to fully decode the document through dynamic
analysis. Laskov and Srndic extract, process, and clas-
sify javascript embedded in PDFs using support vector
machines to achieve relatively mediocre classification
rates [14]. In both these studies, an important factor iden-
tified was the ability to effectively parse PDF documents
which is extremely difficult, especially in the case of ma-
licious documents. The research presented here skirts
this issue by focusing on different features and different
methods of extracting those features. Tzermias et al. [27]
showed that the effectiveness of existing antivirus sys-
tems against malicious PDF files is quite modest. To
boost the detection, they used the combination of static
and dynamic analysis to identify malicious documents
with focus on specific vulnerabilities and mixed results
due to the need of VM support. Our approach is agnos-
tic to vulnerabilities and does not require any form of
execution (i.e. dynamic analysis).

Although different in terms of purpose and target,
the use of statistical learning to identify malicious docu-
ments can be compared to SPAM detection, a topic on
which there is a large corpus of previous work. Doc-
uments are similar to email messages in that both are
primarily designed for transfer of human readable text
and detection is usually concerned with identifying ma-
licious activity very early in the attack life cycle. Statis-
tical methods, such as bayes classification of body text,
have been used effectively for years [21]. More recently,
progress has been made towards effective network and
transport layer identification of SPAM [4, 12]. One could
consider the features of network traffic used for SPAM
detection to be most closely analogous to the structural
features of documents used in this study.

3 Data & Feature Description

3.1 Data Types

This study focuses on classifying malicious documents,
specifically Adobe PDF documents. The PDF document
type was chosen because of it’s ubiquitous use, availabil-
ity of public data sets, the large number of recent vulner-
abilities in the Adobe PDF reader, and the frequent use
of PDF documents in targeted attacks.

In our experiments, PDF documents are classified as
either benign or malicious with malicious being further
split into two categories: opportunistic and targeted.
These are abbreviated “ben”, “mal”, “opp”, and “tar”
respectively. To be classified as malicious, documents
must exploit a software vulnerability and execute mal-
cious code. For the purpose of this study, documents
that contain text instructing the reader to perform mal-

cious actions (wire money), that contain hyper links to
malicious content where the user must click, etc are con-
sidered benign. While difficult to codify precisely and
often requiring data outside the document itself, fac-
tors such as victim specific social engineering and cor-
relations with other known targeted attacks are used to
separate opportunistic from targeted attacks.

3.2 Data Sources

There are two primary data sources used in this study.
The first is the widely available Contagio data set [18]
designated for signature research and testing. This
source of data sets, was selected because it contains
a large number of labeled benign and malicious doc-
uments, including a relatively large number from tar-
geted attacks. This source provides a few collections of
documents. All of the PDF documents from “Collection
1: Email attachments from targeted attacks” were used
as targeted malicious documents. The documents from
“Collection 4: Web exploit pdf (I think they all are pdf)
files” are used as malicious documents. The vast major-
ity of the documents from Collection 4 were attributed
to opportunistic threats and were used as such, with a
few exceptions. There were 10 identical documents in
collection 1 and collection 4: these were considered tar-
geted. Also, an additional 22 documents were identified
as targeted through manual inspection and correlation
to other targeted attacks. Lastly, “Collection 5: Non-
Malicious PDF Collection” was used for benign PDF
examples. A total of 10,000 documents were used from
this source for the training data set.

Table 1: Data Set Summary
Training Testing/Operational

benign (ben) 5,000 99,705
opportunistic (opp) 4,844 286
targeted (tar) 156 9
total 10,000 100,000

The second collection is taken from monitoring of the
network of a large university campus. These documents
were extracted from HTTP and SMTP traffic. The bulk
of this collection was taken from approximately 6 days
of capture. Because this data is taken from a real data
capture it is termed the “operational” data set. The op-
erational data set required labeling by the researchers
to be useful for evaluation. To separate the malicious
documents from the benign, a combination of 5 common
virus scanners were used. The corpus was scanned with
the virus scanners until signature updates ceased adding
detections. The virus scanner detections continued to
improve until approximately 10 days following the end
of the collection. Note that no single virus scanner de-
tected all the malicious documents. All the documents
that were flagged by a single scanner were subjected to
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additional virus scanning and manual analysis. Two of
the twelve documents identified by a lone AV scanner
as malicious were found to be benign. All of the ma-
licious documents from the week long collection were
considered opportunistic as there was no evidence to
support labeling them as targeted. 9 malicious PDFs
associated with targeted attacks on the same organiza-
tion were added to this collection. These targeted PDFs
were observed on the campus network over the span
of approximately 18 months and were collected in the
same manner. The addition of these targeted attacks was
necessary to allow the operational data set to be used
to evaluate targeted attack detection. A total of 100,000
unique documents were used from the operational data
set.

In both data sets, only unique documents were used.
Where sampling occurred, the sampling was random.
Table 1 summarizes these data sets by displaying the
number documents of each class in the two sets.

Note that the training data set includes equal parts
benign and malicious documents which is desirable for
training. The operational data set’s ratio of benign to
malicious is intended to mirror a typical operational en-
vironment and provide insight to detection rates and
false positives in a real environment. The number of tar-
geted documents is undesirably low but is the best that
could be obtained given their scarcity. The operational
and the training data set are completely independent.
The training set was compiled months before the opera-
tional data set.

3.3 Examples of Malicious PDFs

Malicious PDF documents present a wide diversity in
structure. Here are presented two distinct malicious doc-
uments with large differences in metadata and structure,
despite using the same exploit: CVE-2009-4324. Some
structural elements of these documents, one targeted
malicious and the other opportunistic malicious, are rep-
resented in Table 2 and Table 3 respectively. All the
relevant structural features are shown in Table 15 and
Table 16 in Appendix A.

The targeted document is large (4MB) and was deliv-
ered via a targeted email. The votes from the classifier
are 84.4% malicious and 80% targeted which would be
detected with cutoff values exceeding .156 and .20 re-
spectively. The targeted document has many structural
elements and attributes, including text content and font
objects, that are superfluous to successful exploitation.
Indeed, even the content in these unnecessary elements,
which would not be seen by the user, are inconsistent
with the social engineering used in this attack. Concern-
ing metadata, the targeted document contains PDF ID
values, which is normal. However, these values are the
same which indicates that this document was not modi-
fied by a conventional PDF editor, which should change
the ID1 value but leave the ID0 static. Upon successful

Table 2: Example Structure: Targeted
Location Content Description

0003E0

0003F0

000400

000410

000420

000430

.endobj..7 0 obj

..<</Type/Font/S

ubtype/Type1/Bas

eFont/Helvetica/

Encoding/WinAnsi

Encoding>>..endo

Font object: Hel-
vetica.

0005A0

0005B0

0005C0

...

0007D0

0007E0

...

000AD0

/Action /S /Java

Script /JS (..fu

nction re(count,

...

...this.media.ne

wPlayer(sgo);}..

...

.>>..endobj..9 0

Malicious
javascript object.
This javascript
exploits CVE-
2009-4324.

000FA0

000FB0

000FC0

...

3FF920

3FF930

</Filter /FlateD

ecode/Length 114

688>>stream....l

...

..endstream..end

obj..xref..9 4..

(File Extracted and
Decrypted):

Type: PE32

executable for

MS Windows (GUI)

Intel 80386

32-bit

Name: update.exe

Compiled: Wed Dec

29 02:37:00 2010

Object contain-
ing purported
compressed
stream. This
stream is not
valid com-
pressed data.
The majority
of the stream
contains two
encrypted
payloads: a
PE executable
and a PDF
document.
The PE ex-
ecutable is
decrypted,
installed on
system, and
executed. This
malware pro-
vides remote
access trojan
capabilities.

exploitation of the reader program, the shellcode de-
crypts and “drops” a malicious windows PE executable
and a benign PDF document. The existence of benign
document artifacts and the method of embedding the
malicious payloads in the targeted document suggest
the author constructed the document from an existing
benign document or document template. Construction
was likely performed without a conforming PDF editor
as evidenced by PDFID metadata and invalid streams.

The opportunistic document is very small (2 KB) and
was delivered through malicious web traffic. The clas-
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Table 3: Example Structure: Opportunistic

000130

000140

000150

000160

000179

000180

...

000690

0006A0

j..<</Creator 8

0 R>>..endobj..8

0 obj..<</Lengt

h 1299 /Filter /

FlateDecode..>>.

.stream..x..Y...

...

.........bw...en

dstream..endobj.

(Deflated and un-
escaped to reveal
javascript excerpt):

d + e;}a();a();t

ry {this.media.n

ewPlayer(null);}

catch(e) {}a();

(Further un-
escaped to reveal
shellcode excerpt):

URLDownloadToFil

eA.pdfupd.exe.cr

ash.php.http://1

11.gosdfsdjas.co

m/l.php?i=16..

Reference to,
definition of ob-
ject representing
the ”Creator”
metadata item.
This object
contains a com-
pressed stream.
The compressed
stream contains
obfuscated
javascript and
which contains
obfuscated
shellcode.
The javascript
exploits CVE-
2009-4324.
The shellcode
downloads
more malicious
content from
the Internet.

sifier assigned a rating of 100% malicious, 100% oppor-
tunistic. This document is minimal in structure. It has
only the few structural elements necessary for obfus-
cation and exploitation. This document has no valid
optional metadata. However, an object labeled as the
“Creator” metadata item houses the bulk of the malicious
content in the document and comprises 70% of the doc-
ument. Regardless, the “Creator” metadata item is not
reported by PDF metadata extraction tools. When ex-
ploitation occurs, the necessarily small shellcode pulls
additional malicious content from the Internet. Con-
trasting with the embedding seen in the targeted docu-
ment, the streams containing the exploit code must be
decoded by the vulnerable reader, so these streams are
well-formed.

4 Classification Methodology

4.1 Feature Selection

We selected a large number of features to characterize
PDF documents. Our main goal was to provide strong
classification quality, including the ability to reliably dis-
tinguish targeted attacks from opportunistic attacks. In
addition, the approach taken here seeks to be resilient

to differences in threats and vulnerabilities by focusing
on patterns in documents that apply broadly. There-
fore most features are derived either from document
metadata or document structure. See Appendix B for a
complete list of features that we tested our system under.

A secondary goal was to measure the robustness of
those features when the attacker was aware that the de-
fender was using them for detection. The features are
designed to eliminate reliance on specific strings or byte
sequences. For example, when dealing with data that
might represent artifacts of specific actors, such as the
author metadata item, abstracted features, such as the
number of characters in the author field, are used. Simi-
larly, features were intentionally avoided that are tightly
related to specific vulnerabilities or malware because
including these features could result in strong classifica-
tion for known attacks while yielding low detection rates
for novel attacks. For example, features related directly
to jbig2 encoded objects were removed because these fea-
tures would be strongly tied to a specific vulnerability:
CVE-2009-0928.

Features were identified initially through manual re-
view of documents of each class. Then, following an
iterative process, feature extraction tools and the clas-
sifier were updated to include potentially useful data.
Specific features were determined to be valuable through
manual inspection or through the improvement in clas-
sification accuracy they provided. As the feature selec-
tion process continued, misclassified documents were
inspected to determine potential features that provide
adequate discrimination for correct classification. This
iteration occurred until classification rates were very
high. The features selected should not be presumed to
be exhaustive–no effort was made to identify all useful
features. In total, 135 features were chosen for use. The
complete list of features and their descriptions is found
in Appendix B

As we already mentioned, most features are taken
directly from observation of the document metadata or
document structure, such as the number of lower case
characters in the title or the number of font objects in the
document. A few of the features are further refined by
transformation of 1 or more elements. For example, one
feature is the ratio of the number of pages to the size of
the whole document.

4.2 Feature Extraction

We created our own prototypes for extracting features
from PDF documents. Regular expressions are applied
to the raw document to identify and extract data for
further processing, if necessary. Many of the features
can be derived from simple string matching reporting
solely the location of the matches. Ex. count of Font
objects or average length of the stream objects where
the length each stream object is measured by the differ-
ence between the location of a “stream” marker and and
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the next “enstream” marker. Many features required
extracting specific data for further normalization or pro-
cessing such as the dimensions of a box object or the
number of lower case characters in the title. This soft-
ware functions without significant PDF structure parsing
or validation which is necessary for success in dealing
with malicious or otherwise malformed documents. This
“fast and loose” metadata extraction intentionally results
in some inaccurate or ambiguous extracted data, but
the end features are deterministic. For example, a PDF
edited with incremental updates may have extracted fea-
tures that report an inflated object count. Additionally,
instead of trying to use the “correct” value in the case
of multiple instances of a metadata item repeated in a
document, other features such as the number of times
the values differ are used.

The majority of the metadata items are inherently nu-
meric. The other features are all extracted or transformed
to make them numeric. There are largely no differences
in how binary, discrete, and continuous data is handled,
although some of each type exist.

4.3 Classification Techniques

To categorize observed documents, the features are ex-
tracted and run through a classifier generated from la-
beled training data. Random Forest was selected be-
cause of its effective classification capability, strong per-
formance, and ease of use. Table 4 compares Random
Forest classification performance to that of Support Vec-
tor Machine and Naive Bayes using the training data
set and the default parameters for each method. These
results represent the average of multiple cross validation,
classifier training, and classification of observations us-
ing the the classifier. All analysis was performed using
R, including the randomForest and e1071 packages.

The first step is to produce a classifier using labeled
training data. This classifier consists of a set of clas-
sification trees. After features are extracted from the
document, they are run through the trees, each of which
provides a vote in the reported classification. The initial
training process is relatively computationally expensive
but once the classifier is constructed, categorizing new
observations is fast.

The goal of classification here is to not only classify
documents as benign or malicious, but also to differen-
tiate opportunistic from targeted attacks. As shown in
Figure 1, unclassified documents are fed through a clas-
sifier which separates benign documents from malicious
documents. Those found to be malicious are fed through
a second classifier that differentiates opportunistic from
targeted malicious documents. While random forest sup-
ports multiple class outcomes, this dual binary classifier
arrangement is used because it makes it easier to under-
stand and compare the two classification goals individu-
ally. The two binary classifiers are tuned independently
and results for each are presented individually.

In order to tune the sensitivity of the classifier, the cut-
off value is adjusted. Typically, random forests operates
by predicting the class which receives the most votes.
Hence, the default cutoff value for a binary classifier is
.5. This value can be adjusted, allowing sensitivity of
the classifier to be adjusted so that the operator can se-
lect a desirable TP/FP ratio. All ROC curves presented
here are created by adjusting this cutoff value during
prediction.

ben/mal

opp/tar

ben

mal

opp tar

input

Figure 1: Dual Classifier Arrangement

4.4 Optimizing the Machine Learning Pa-
rameters

The Random Forests algorithm has two primary parame-
ters that were tuned for this study. The parameter “ntree”
dictates the number of trees to grow in the classifier. In
addition, “mtry” controls the number of features sam-
pled at each node in the trees. To properly tune these
parameters, multiple values were tested with the classi-
fication error being compared. For the results shown in
Table 5 and Table 6, the average of 10 independent trials
of ten fold cross validation was used on the training data
set.

The default values of ntree is 500 and mtry is 11. For
the ben/mal classifier, values of 1000 and 33 are used.
For the opp/tar classifier, values of 1250 and 22 are used.

5 Performance Evaluation

The classifier was applied to the training data set using
10-fold cross-validation. The results from each fold are
averaged to produce a single outcome for the whole
set. These resulting ROC curves for the ben/mal and
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Table 4: Classifier Performance Comparison
Classifier Error Rate Train Time Classify Time
Naive Bayes 12% 1 sec 54 sec
Random Forest .18% 52 sec 1 sec
Support Vector Machine 19% 167 sec 27 sec

Table 5: Error Rates for ben/mal (%)
ntree

mtry 250 500 750 1000 1250 1500
6 0.224 0.233 0.227 0.234 0.234 0.226
11 0.180 0.176 0.172 0.178 0.172 0.177
17 0.148 0.150 0.152 0.154 0.151 0.156
22 0.144 0.133 0.143 0.134 0.134 0.136
28 0.121 0.126 0.123 0.118 0.117 0.123
33 0.126 0.117 0.116 0.110 0.111 0.117
39 0.130 0.119 0.120 0.123 0.120 0.129
44 0.134 0.134 0.134 0.130 0.128 0.130

Table 6: Error Rates for opp/tar (%)
ntree

mtry 250 500 750 1000 1250 1500
6 0.706 0.726 0.714 0.716 0.706 0.712
11 0.678 0.690 0.682 0.682 0.694 0.688
17 0.672 0.672 0.676 0.678 0.668 0.670
22 0.686 0.674 0.672 0.670 0.666 0.670
28 0.696 0.678 0.696 0.678 0.680 0.682
33 0.698 0.678 0.688 0.668 0.680 0.676
39 0.690 0.708 0.688 0.678 0.690 0.676
44 0.690 0.698 0.702 0.704 0.690 0.700

opp/tar classifiers are shown in Figure 2 and Figure 3
respectively.

In addition, Table 7 and Table 8 list select data points
from this graph. The cutoff reported in these tables
is the minimum percentage of votes as benign that an
observations must exceed to be considered the negative
class (ben for ben/mal, opp for opp/tar).

Table 7: FP/TP Rates for Training Set (ben/mal)
Cutoff FP Rate TP Rate FP Count TP Count
0.2 0 0.991 0 4955
0.3 0 0.9938 0 4969
0.4 0.0002 0.9966 1 4983
0.5 0.0006 0.9982 3 4991
0.6 0.0014 0.9988 7 4994
0.7 0.003 0.999 15 4995
0.8 0.0082 0.9992 41 4996
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Figure 2: ROC for Training Set(ben/mal)

Table 8: FP/TP Rates for Training Set (opp/tar)
Cutoff FP Rate TP Rate FP Count TP Count
0.2 0.00082 0.6913 4 108
0.3 0.00144 0.7933 7 124
0.4 0.00248 0.8512 12 133
0.5 0.00351 0.8838 17 138
0.6 0.00578 0.9225 28 144
0.7 0.00825 0.9421 40 147
0.8 0.00949 0.9483 46 148

5.1 Detection Performance

The classifier was applied to the operational data set
collected from live network observation. These resulting
ROC curves for the ben/mal and opp/tar classifiers are
shown in Figure 4 and Figure 5 respectively.

In addition, Table 9 and Table 10 list select data points
from this graph. The cutoff reported in these tables
is the minimum percentage of votes as benign that an
observations must exceed to be considered the negative
class (ben for ben/mal, opp for opp/tar).

5.2 Computational Complexity

The document classification process can be divided into
three logical steps: feature extraction, classifier training,
and classification of new observations. Feature extrac-
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Figure 3: ROC for Training Set (opp/tar)

Table 9: FP/TP Rates for Operational Set (ben/mal)
Cutoff FP Rate TP Rate FP Count TP Count
0.2 0.00021 0.9390 21 277
0.25 0.00042 0.9424 42 278
0.3 0.00075 0.9458 75 279
0.35 0.00089 1.0000 89 295
0.4 0.00154 1.0000 154 295
0.45 0.00193 1.0000 192 295

tion must occur for both training data and new data
to be classified. The majority of the processing in fea-
ture extraction is dedicated to matching signatures on
the documents. This facet was poorly optimized in the
implementation used for this study where multiple sig-
natures were applied to the document serially, with each
of the 9 signatures requiring another pass through the
document. This implementation could be improved by
making this signature matching parallel, which would
improve performance about an order of magnitude and
put performance roughly on par with conventional an-
tivirus scanners.

Training the classifier is the most expensive operation.
This training, however, need only occur infrequently.
Once the features are extracted from documents to be
classified, running these observations through the clas-
sifier is extremely fast. Table 11 demonstrates the run
times of these operations applied to the training data
set, which contains 10,000 documents. The experiments
were performed on an Intel Xeon X5550 processor run-
ning 2.67GHz CPU. All the applications were executed
in single-thread mode.

Similarly, little effort was placed into minimizing use
of memory. However, for all operations, memory usage
was negligible except for training the classifier, which
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Figure 4: ROC for Operational Set (ben/mal)

Table 10: FP/TP Rates for Operational Set (opp/tar)
Cutoff FP Rate TP Rate FP Count TP Count
0.2 0.0000 0.44 0 4
0.25 0.0000 0.56 0 5
0.3 0.0000 0.67 0 6
0.35 0.0000 0.78 0 7
0.4 0.0000 0.89 0 8
0.45 0.0070 1.00 2 9

required about 700 MB of RAM.

6 Adversarial Analysis & Robust-
ness

Strong detection rates for past and current attacks are de-
sirable, but it is important that any detection mechanism
demonstrate resistance to intentional evasion. Therefore,
the robustness of the selected features under mimicry
and evasion attacks is crucial to the actual detection
rates that can be achieved in a real-world environment.
The detection mechanism presented in this paper is de-
signed to classify documents based on similarity to past
documents of the same class. These similarities between
documents can arise from a wide spectrum of root causes
varying among necessity, convenience, convention, and
ambivalence. Presumably some of the attributes of ma-
licious docs are easy to modify and others are more
difficult. For example, while use of javascript is often
not strictly required for exploiting vulnerabilities in PDF
readers, it is often the most practical method for trigger-
ing a successful exploit. Hence the features related to
the existence of javascript may be hard for attackers to
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Figure 5: ROC for Operational Set (opp/tar)

Table 11: Run Times on Training Data
Operation Time
Feature Extraction 12 min
Classifier Training 26 min
Observation Classification 4 sec

modify.
Alternatively, the lack of inclusion of a metadata item,

such as the producer field, may be intentional to help
prevent detection or the inclusion of the malware gener-
ation tool may be an omission on the part of the attacker.
Spoofing the producer field may improve social engi-
neering or it may facilitate detection through another
method. It is infeasible to fully enumerate or to accu-
rately predict or anticipate all evasion vectors, especially
as some of the factors are dependent on the attacker
and attack vector. Some constraints on evasion are also
caused by the use of this mechanism in parallel to other
techniques. However, the use of a training set from a
different organization that was was published months
before the use of the classifier provides strong indication
that at least some resiliency exists in the similarities used
as the basis for detection in this study. In the next part
of this section, we will provide experimental evidence
that support this claim and show the robustness of our
approach against attacks that try to evade us.

6.1 Mimicry Attack Effectiveness

The classification and malware detection is based on
similarity of extracted features to previous documents.
An obvious evasion technique would be to mount a
mimicry attack where malicious documents are purpose-
fully modified to “normalize” some of their features and

make them similar to benign documents while still re-
taining the embedded malicious content. If the attacker
has knowledge of specific features used in the classifier
and their importance, along with a good representation
of what the defender considers as normal, the attacker
can focus on mimicking the features most important for
classification.

To simulate mimicry of document properties, the au-
thors modified the top ranked features of malicious ob-
servations and subjected these modified observations
to the classifier. For simplicity’s sake, the documents
themselves are not actually modified, but rather the pre-
viously extracted feature sets are modified. Specifically,
the mean and standard deviation of the benign obser-
vations is calculated and the values for the malicious
documents are replaced with random values which fit a
normal distribution with the same mean and standard
deviation. Note that this method may result in doctored
features that are inconsistent or illogical. The six most
important features, as ranked by the mean decrease in
accuracy measurement, were selected for evasion testing.
These features are ranked above the others with some
amount of separation, as shown in Figure 6.

count_javascript_obs
len_stream_max
pos_box_avg
producer_oth
title_lc
pdfid0_lc
ratio_imagepx_size
moddate_tz
count_stream
title_len
createdate_tz
count_endobj
len_stream_min
creator_len
producer_len
pos_eof_max
pos_eof_avg
pdfid0_mismatch
count_obj
image_totalpx
pos_box_max
count_js
count_stream_diff
count_javascript
count_font
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Figure 6: Variable Importance (ben/mal)

By causing the malicious samples to mirror the top
six features of the benign, the benign-malicious classifier

9



error rate can be raised a great degree, as shown in Ta-
ble 12. The average of the results of 3 independent trials
using 10-fold cross validation is presented.

Table 12: Mimicry: Classifier Error Increase
Features Mimicked Classification Error (%)

None 0.12
count font 13.61

(+) count javascript 18.90
(+) count stream diff 18.99

(+) count js 21.35
(+) pos box max 23.27

(+) image totalpx 23.30

By manipulating the most heavily used or distinctive
features, it is possible to severely curtail the detection
capabilities of the classifier.

6.2 Countering Mimicry

The best reaction to changes in document attributes lead-
ing to mis-classification is to retrain the classifier, causing
the classifier to adjust how it treats the mimicked fea-
tures. If retraining the classifier it is not adequate to raise
classification rates to an acceptable level, additional fea-
tures can be discovered and utilized instead. This tactic
is reactionary at best and cannot ensure detection of doc-
uments that are very dissimilar to historical examples
of documents of the same class. To be able to detect
intentional evasion, proactive measures must be taken.

An obvious reaction to mimicry attacks on the features
heavily employed by the classifier is to remove them al-
together and rely on the other features. An important
distinction is that variable importance, as reported by
random forests, is an indication of the value of the fea-
ture as used in the classifier. However, that a feature
has a high importance does not necessarily mean that
the feature is a useful for classification on it’s own nor
does it mean that the classifier has to rely heavily on
that feature for successful classification. Table 13 shows
the increase in classification error as the top features are
removed. The average of the results of 3 independent
trials using 10-fold cross validation is presented. Note
that there are small discrepancies in all Tables. These
differences occur due to the variance introduced by use
of random values in classification and data perturbation.

Removing the top ranked features has a surprisingly
low affect on classification error because so many other
useful features are retained. If the attacker is able to only
modify a few attributes of malicious documents, and the
defender is able to anticipate these, removing features
may be an acceptable counter-measure. It is desirable
to be able to counter evasion without fully negating the
predictive value of variables targeted for evasion. One
method of achieving this result is to vary (perturbate)
the training set such that the resulting classifier is no

Table 13: Classifier Error with Features Removed
Features Removed Classification Error (%)

None .13
count font .20

(+) count javascript .27
(+) count stream diff .27

(+) count js .31
(+) pos box max .32

(+) image totalpx .32

longer as susceptible to evasion. The perturbation is
performed by artificially modifying the features of a
subset of the malicious observations in the training set
to increase the variance of these features thus making
them less “normal” . The loss of a focal point due to
the increased variance reduces the importance of these
features without fully eliminating them.

Table 14: Classification Error with Training Data Pertur-
bation

% Perturbation Original Data Mimicry Data
0 .13 25.68

.05 .15 17.02
.1 .18 11.37
.5 .20 1.63
1 .20 1.17
5 .25 .57

10 .27 .48
50 .34 .16

100 2.14 .12

To test the effectiveness of perturbation, the same
method used to simulate evasion is used to modify a
subset of the observations in the training set. The top
six features of a subset of the malicious observations is
set to values taken from a randomly generated normal
distribution mirroring the mean and standard deviation
of the benign observations. Table 14 shows the results
of testing using the perturbation method. The average
of the results of 3 independent trials using 10-fold cross
validation is presented. The training data is perturbated
and the resulting classifier is used both on the remaining
unmodified training data and the same training data
modified to simulate mimicry evasion. The percentage
of the training data perturbated is varied, demonstrating
a trade-off between accuracy with historical data and
evasion resistance.

7 Future Work

As an extension to the presented results, It would be
valuable to determine how well the same detection and
classification techniques apply to other documents types.
Another potential research avenue would be to deter-
mine how well the features used for PDF documents can
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be used for grouping malicious documents by malware
family and potentially across different file types.

The research presented here focused on identifying
and utilizing features sufficient for high fidelity classifi-
cation. Future areas of research could include investigat-
ing the value of other features, determining the optimal
set of features, etc. Another option would be to study
the features used in this study with other features, such
as features derived from content analysis of the docu-
ment, those derived from transport of the document
over the network, recipient oriented features, and at-
tacker oriented features. Lastly, the performance of this
mechanism could be systematically compared to other
techniques.

8 Conclusion

In this paper, we presented a classification approach for
PDF documents that have embedded malicious code.
We showed that by carefully extracting a wide-range
of feature sets we can create a robust malware detector
and classifier that yields very high rates of true positives
(TP) while maintaining a low rate of (FP). We evaluated
different machine learning techniques and we show that
random forest appears to be the most effective. The ex-
perimental results that we run using more than 5,000
malicious documents and 100,000 benign ones yield clas-
sification rates above 99% while maintaining low false
negative rates of 0.01% or less. We can also achieve clas-
sification of the malware documents into opportunistic
and targeted with varying success depending on the de-
tector objective (malware detection vs separation into
classes), dataset, and training parameters.

Furthermore, our approach is robust against evasion
and mimicry attacks that target the top classification fea-
tures. We achieve that by artificially varying the ranges
of the top features effectively reducing their influence
on the detection. The result is that classification depends
more equally on a very large number of features, mak-
ing evasion much more difficult. Our experiments show
that this strategy is still effective in detecting and clas-
sifying malware documents allowing for a defender to
create bags of random features that he can use to expose
malware that attempts to mimic the normality of the
documents in the training set.
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Appendices
A Examples of Malicious PDF Structure

Table 15: Example Structure: Targeted

Location Content Description

000000

000020

000040

%PDF-1.5..%......1 0 obj..<</Pag

es 2 0 R /Type/Catalog/OpenActio

n 8 0 R >>..endobj..2 0 obj..<</

PDF header and OpenAction object which executes
javascript when document is opened

000140

000160

j..4 0 obj..<</Type/Font/BaseFon

t/Times-Roman/Subtype/Type1>>..e

Font object: Times Roman.

000180

0001A0

...

000390

ndobj..5 0 obj.. <</Length 471/Fi

lter/FlateDecode >>stream..x.U..n

...

....endstream..endobj..6 0 obj<<

(Decoded, extracted raw text):

Financial Reform Puts Republicans

on the Spot

(April 26) -- Even as they lost

today’s Senate vote

Object containing formatted text.
The victim never sees this content. This content is
not consistent with rest of social engineering used in
attack.

0003E0

000400

000420

.endobj..7 0 obj..<</Type/Font/S

ubtype/Type1/BaseFont/Helvetica/

Encoding/WinAnsiEncoding>>..endo

Font object: Helvetica.

000500

000520

000540

000560

000580

n..trailer..<</Size 9/Prev 01906

97/Root 1 0 R/ID[<5181383ede9472

7bcb32ac27ded71c68><5181383ede94

727bcb32ac27ded71c68>]>>..startx

ref..0..%%EOF..8 0 obj..<</Type

Document trailer and PDF metadata (PDF IDs). These
are likely artifacts of an existing benign document
that was used in creation of this malicious document.

0005A0

0005C0

...

0007D0

...

000AC0

/Action /S /JavaScript /JS (..fu

nction re(count, what) {...var v

...

...this.media.newPlayer(sgo);}..

...

..Func8x9();..)..>>..endobj..9 0

Malicious javascript object. This javascript exploits
CVE-2009-4324.

000AE0

000B00

...

000F80

obj<</Filter /FlateDecode/Lengt

h 1062>>stream..iPh4Code........

...

....endstream..endobj..10 0 obj<

(Decoded, Extracted, and Disassembled shellcode):

jmp short 0x12

pop edx

dec edx

xor ecx,ecx

mov cx,0x40f

xor byte [edx+ecx],0x8e

loop 0xa

jmp short 0x17

call 0x100000002

Object containing purported compressed stream. This
stream is not compressed and contains shellcode. The
excerpt shows a JMP-CALL-POP sequence followed
by an XOR decryption loop that decodes more shell-
code.
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000FA0

000FC0

...

3FF920

</Filter /FlateDecode/Length 114

688>>stream....l.............D..

...

..endstream..endobj..xref..9 4..

(File Extracted and Decrypted using XOR key of 0xFC,
location 000FCD to 0079CD):

Type: PE32 executable for MS Windows

(GUI) Intel 80386 32-bit

Name: update.exe

Compiled: Wed Dec 29 02:37:00 2010

(File Extracted and Decrypted using XOR Key of
0xFC, location 007A15 to 3FF921):

Type: PDF document, version 1.5

CreationDate: D:20110125105603+08’00’

Producer: PDFlib 7.0.3 (C++/Win32)

PdfID0: D19C9464650960655B0FB612FD9702E0

PdfID1: D19C9464650960655B0FB612FD9702E0

(Decoded, extracted raw text):

Rovos rail - Pride of Africa

Object containing purported compressed stream. This
stream is not valid compressed data. The majority
of the stream contains two encrypted payloads: a PE
executable and a PDF document.
The PE executable is decrypted, installed on system,
and executed. This malware provides remote access
trojan capabilities.
The PDF document is decrypted and opened for user.
This PDF’s content is consistent with rest of social en-
gineering in the attack. When considered in isolation,
this dropped PDF is benign.

3FF9A0 12>>..startxref ..1092..%%EOF..
End of document.

Table 16: Example Structure: Opportunistic

Location Content Description

000000 %PDF-1.0..1 0 obj<</Type/Catalog
Document header.

000120

000140

000160

000180

...

000690

>>endobj..7 0 obj..<</Creator 8

0 R>>..endobj..8 0 obj..<</Lengt

h 1299 /Filter /FlateDecode..>>.

.stream..x..Y...(..R.‘...k:.‘..?

...

.........bw...endstream..endobj.

(Deflated and un-escaped to reveal javascript ex-
cerpt):

function a(){util.printd(’p@1111

11111111111111111111 : yyyy111’,

new Date());}var h = app.plugIn

...

d + e;}a();a();try {this.media.n

ewPlayer(null);} catch(e) {}a();

(Further un-escaped to reveal shellcode excerpt):

t....URLMON.DLL. URLDownloadToFil

eA.pdfupd.exe.crash.php.http://1

11.gosdfsdjas.com/l.php?i=16..

Reference to, definition of object representing the
”Creator” metadata item. This object contains a com-
pressed stream. The compressed stream contains ob-
fuscated javascript and which contains obfuscated
shellcode.
The javascript exploits CVE-2009-4324.
The shellcode downloads more malicious content
from the Internet.

0006B0

0006D0

...

000770

.111611 0 obj<</Filter/FlateDeco

de/Length 142>>..stream..x...J.*

...

a........endstream..endobj..trai

(De-obfuscated by removing comments to reveal
javascript):

var b=this.creator;var a=unescap

e(b);eval(unescape(this.creator.

replace(/z/igm,’%’));

Compressed javascript object. This obfuscated
javascript un-escapes and executes javascript in ”Cre-
ator” stream above.
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000790

0007B0

ler<</Info 7 0 R /Root 1 0 R /Si

ze 11>>

End of document (without %EOF footer).

B Feature Descriptions
Name Description Name Description
size Size of document (bytes) version PDF version as extracted from header
count obj Count of object markers count endobj Count of end of object markers
count stream Count of stream markers count endstream Count of end of stream markers
count xref Count of cross reference table markers count trailer Count of trailer markers
count startxref Count of cross reference table markers count eof Count of end of file markers
count page Count of page markers count objstm Count of object stream markers
count js Count of JS object markers count javascript Count of JavaScript object markers
count action Count of action (AA and OpenAction) ob-

ject markers
count acroform Count of Acroform object markers

count font Count of Font object markers count stream diff Difference of count stream and
count endstream

moddate ts Modification timestamp (seconds–Unix
epoch)

moddate tz Modification timezone (seconds–UTC off-
set)

createdate ts Creation timestamp (seconds–Unix
epoch)

createdate tz Creation timezone (seconds–UTC offset)

createdate version ratio Ratio of creation date to version (days
since Jan 1 1993 / version)

moddate version ratio Ratio of modification date to version
(days since Jan 1 1993 / version)

createdate dot Count of dot characters in creation date moddate dot Count of dot characters in modification
date

pdfid0 len PDFid0: Count of characters pdfid0 lc PDFid0: Count of lower case characters
pdfid0 uc PDFid0: Count of upper case characters pdfid0 num PDFid0: Count of numeric characters
pdfid0 oth PDFid0: Count of other characters pdfid0 dot PDFid0: Count of dot characters
pdfid1 len PDFid1: Count of characters pdfid1 lc PDFid1: Count of lower case characters
pdfid1 uc PDFid1: Count of upper case characters pdfid1 num PDFid1: Count of numeric characters
pdfid1 oth PDFid1: Count of other characters pdfid1 dot PDFid1: Count of dot characters
pdfid mismatch pdfid0 different from pdfid1 (binary) title len Title: Count of characters
title lc Title: Count of lower case characters title uc Title: Count of upper case characters
title num Title: Count of numeric characters title oth Title: Count of other characters
title dot Title: Count of dot characters author len Author: Count of characters
author lc Author: Count of lower case characters author uc Author: Count of upper case characters
author num Author: Count of numeric characters author oth Author: Count of other characters
author dot Author: Count of dot characters producer len Producer: Count of characters
producer lc Producer: Count of lower case characters producer uc Producer: Count of upper case characters
producer num Producer: Count of numeric characters producer oth Producer: Count of other characters
producer dot Producer: Count of dot characters creator len Creator: Count of characters
creator lc Creator: Count of lower case characters creator uc Creator: Count of upper case characters
creator num Creator: Count of numeric characters creator oth Creator: Count of other characters
creator dot Creator: Count of dot characters subject len Subject: Count of characters
subject lc Subject: Count of lower case characters subject uc Subject: Count of upper case characters
subject num Subject: Count of numeric characters subject oth Subject: Count of other characters
subject dot Subject: Count of dot characters keywords len Keywords: Count of characters
keywords lc Keywords: Count of lower case characters keywords uc Keywords: Count of upper case charac-

ters
keywords num Keywords: Count of numeric characters keywords oth Keywords: Count of other characters
keywords dot Keyworks: Count of dot characters count page obs Count of obfuscated page markers
count objstm obs Count of obfuscated object stream mark-

ers
count js obs Count of obfuscated JS object markers

count javascript obs Count of obfuscated JavaScript object
markers

count action obs Count of obfuscated action object markers

count acroform obs Count of obfuscated Acroform objects count font obs Count of obfuscated Font object markers
delta ts Difference between creation and modifi-

cation timestamps
delta tz Difference between creation and modifi-

cation timezones
moddate mismatch Count of differences in modification

timestamp values
createdate mismatch Count of differences in creation times-

tamp values
pdfid0 mismatch Count of differences in PDFid0 values pdfid1 mismatch Count of differences in PDFid1 values
title mismatch Count of differences in title values author mismatch Count of differences in author values
producer mismatch Count of differences in producer values creator mismatch Count of differences in creator values
company mismatch Count of differences in company values subject mismatch Count of differences in subject values
keywords mismatch Count of differences in keywords values count box a4 Count of A4 sized boxes
count box letter Count of US letter sized boxes count box overlap Count of A4-width, letter-height boxes
count box legal Count of legal sized boxes count box other Count of other boxes
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box other only Boxes are all other sized (binary) box nonother types Count of page sized (A4, letter, etc) boxes
image totalpx Sum of image pixels count image total Count of image objects
count image xsmall Count of images between 0 and 4096 pix-

els
count image small Count of images between 4097 and 64000

pixels
count image med Count of images between 64001 and

786432 pixels
count image large Count of images between 786433 and

12582912 pixels
count image xlarge Count of images over 12582912 pixels image mismatch Count of differences in image dimensions
ratio imagepx size Ratio of image totalpx to size ratio size obj Ratio of count obj to size
ratio size stream Ratio count stream to size ratio size page Ratio of count page to size
len obj min Minimum difference between position of

obj and next endobj markers
len obj max Maximum difference between position of

obj and next endobj markers
len obj avg Average difference between position of

obj and next endobj markers
len stream min Minimum difference between position of

stream and next endstream markers
len stream max Maximum difference between position of

stream and next endstream markers
len stream avg Average difference between position of

stream and next endstream markers
pos eof min Normalized position of first EOF marker

(% of size)
pos eof max Normalized position of last EOF marker

(% of size)
pos eof avg Average of normalized positions of last

EOF marker (% of size)
pos page min Normalized position of first page marker

(% of size)
pos page max Normalized position of last page marker

(% of size)
pos page avg Average normalized positions of page

markers (% of size)
pos acroform min Normalized position of first acroform

marker (% of size)
pos acroform max Normalized position of last acroform

marker (% of size)
pos acroform avg Average normalized positions of page

markers (% of size)
pos box min Normalized position of first box marker

(% of size)
pos box max Normalized position of last marker (% of

size)
pos box avg Average normalized positions of box

markers (% of size)
pos image min Normalized position of first image marker

(% of size)
pos image max Normalized position of last image marker

(% of size)
pos image avg Average normalized positions of image

markers (% of size)
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