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ABSTRACT
The rise of drug-resistant bacteria has brought attention
to antimicrobial peptides (AMPs) as targets for novel an-
tibacterial drug research. Many machine learning methods
aim to improve recognition of AMPs. Sequence-derived fea-
tures are often employed in the context of supervised learn-
ing through Support Vector Machines (SVMs). This can
be useful for expediently screening databases for AMP-like
peptides. However, AMPs are characterized by great se-
quence diversity. Moreover, biological studies focusing on
AMP modification and de novo design stand to benefit from
computational methods capable of exposing underlying fea-
tures important for activity at the amino-acid level position.
We take the first steps in this direction by considering an
extensive list of amino-acid physico-chemical features. We
gradually narrow this list down to relevant features in the
context of SVM classification. We focus on a specific AMP
class, cathelicidins, due to the abundance of documented se-
quences, to improve their recognition over carefully-designed
decoy sequences. Analysis of the features important for the
classification reveals interesting physico-chemical properties
to preserve when modifying or designing novel AMPs in the
wet laboratory.

Keywords
antimicrobial peptides, cathelicidins, aaindex, feature ex-
traction, support vector machines, machine learning.

1. INTRODUCTION
Increased drug resistance in bacteria is now a worldwide

concern, resulting in calls from the World Health Organiza-
tion for the development of new antibacterial drugs [39, 2,
6, 48]. Antimicrobial peptides (AMPs) are currently gain-
ing attention as potential targets for novel antibacterial drug
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research. AMPs constitute a number of protein families in-
volved with innate immune responses against bacteria and
fungi [16]. These short peptides have generalized but ef-
fective modes of attack that have been shown to outperform
conventional drugs in warding off bacterial resistance [4, 50].

AMPs interfere with DNA replication, disable membrane
receptors, and signal adaptive immune responses [11, 49,
36]. Many α-helical AMPs utilize membrane permeabiliza-
tion to attack targets [42]. A variety of models have now
been proposed to explain how AMPs can induce lysis at the
membrane surface. These include the carpet, barrel-stave
pore, and toroidal pore models [13, 37]. Similarities have
also been noted between amyloid fibrils and the temporin B
and L AMPs, suggesting that amphipathic AMPs may form
a ”leaky slit” in the membrane surface [29].

The diverse killing mechanisms and activity against a broad
spectrum of bacteria make AMPs desirable targets as novel
antibacterial drugs [30, 35]. Understanding what confers to
AMPs their antibacterial activity at a sequence level is cen-
tral to wet-laboratory efforts on modification or design of
novel AMP-based antibacterial drugs [45].

In this paper, we present a method to support such efforts.
The method is based on machine learning, and its goal is to
elucidate activity-related features in AMPs. We do so in the
context of improving recognition of cathelicidins, a specific
class of AMPs, over carefully-designed decoy sequences. Our
reason for focusing on cathelicidins is two-fold. First, it is
challenging to find a common set of activity-related features
among different classes of AMPs that have different modes of
action, different structures, diverging sequences, and differ-
ent levels of activity against different classes of bacteria [49].
Second, from a practical point of view, cathelicidins repre-
sent a populous class of AMPs that is well-studied and doc-
umented [43]. Datasets can actually be constructed for the
purpose of supervised learning, which we employ here.

Cathelicidins are an important family of α-helical AMPs
present in mammals, birds, fish and reptiles. Cathelicidins
range between 15-55 amino acids in length [35]. This range
of lengths makes them amenable for simulation studies [1]. A
number of 3D structures are also available for cathelicidins in
the Protein Data Bank (PDB) [3], including the only human
member LL-37 peptide.

The term cathelicidin is often reserved for the mature
peptide that corresponds to the active domain in a catheli-
cidin precursor. Cathelicidin precursors are large proteins.
They are generally composed of an N-terminal signal do-
main, followed by the well-conserved cathelin domain, and



a C-terminal domain. The C-terminal domain is activated
upon cleavage, becoming a mature (cathelicidin) peptide.
Cleavage is performed by neutrophil elastase or an elastase-
like protease [40, 10, 30, 35, 50]. As the mature cathelicidin
peptide lacks significant sequence homology even amongst
family members, it provides a serious challenge for bioinfor-
matics approaches to aid drug design [10, 30, 35].

In this paper, we focus on characterization of the mature
cathelicidin peptides. The goal is to elucidate features that
are relevant for activity in these peptides. We consider a
large feature space constructed from physico-chemical prop-
erties of amino acids. The relevance of the features is de-
termined in the context of classification through Support
Vector Machines (SVMs), where the objective is to recog-
nize cathelicidins from a carefully-constructed set of decoy
sequences. Analysis of the top features important for the
separation of cathelicidins from decoy sequences elucidates
interesting physico-chemical properties to preserve at the
amino-acid level when modifying existing AMPs or design-
ing novel ones in the wet laboratory.

1.1 Related Work
While the attention of machine learning research on AMPs

is relatively recent, significant efforts have already been made.
In the following, we provide a brief overview of related work.
Since much of the related work, including the method pro-
posed in this paper, employs SVMs in the context of classi-
fication, we first provide a brief summary of SVMs.

The basic approach of a binary SVM is to draw a hyper-
plane between two classes of (labeled) training vectors in a
way that maximizes the margin of separation between the
two classes (negative and positive examples). New, unla-
beled, observation vectors from a test set can then be clas-
sified based upon which side of the hyperplane they fall on.
SVMs have wide applicability in machine learning and bioin-
formatics research for two main reasons. First, SVMs have a
solid theoretical foundation in statistical learning theory [9,
44]. Second, they are also applicable for classification of non-
vector data, such as text, graphs, and strings. Non-vector
data are mapped onto a vector space, typically of higher
dimensionality, through an intermediate feature space. An
effective mapping allows the positive and negative examples
of the training set to be linearly separable by a hyperplane
in the higher-dimensional space. The mapping is carried
out through kernel functions. Details covering the statisti-
cal theory behind SVMs can be found in [5, 18, 8, 31].

The success of SVMs relies on both the choice of the fea-
ture space and the mapping, or the kernel function. Well-
known successful kernels in diverse settings include the Lin-
ear, Radial Basis, Polynomial and Sigmoid functions [5].
The particular choice of a kernel is problem-specific and of-
ten determined experimentally. Choosing effective features
is crucial and also depends on the problem at hand. Gener-
ally, success depends heavily on the considered feature space.

A number of machine approaches already exist for au-
tomating the recognition of AMPs. Some employ simple
features based on composition of amino acids or amino-acid
types [26, 25, 33, 41]. Generally, such features have allowed
to discriminate between AMPs and decoy peptide sequences
with varying success; accuracies are in the 80−90% range. It
remains unclear, however, what the features are capturing.
AMPs are highly-constrained peptides in terms of physico-
chemical and structural properties. Depending on the family

under consideration, they can be α-helical, β-sheet, or coil-
like. Many are amphipathic. A training dataset of negative
sequences may bias the SVM towards features that capture
differences in characteristics other than activity.

AMPs do not have significant sequence homology. This
issue can be circumvented. For instance, work in [26, 25]
focuses on 15 N- and C-terminal amino acids rather than
the full peptide and finds that SVMs outperform both Ar-
tificial Neural Networks (ANNs) and Quantitative Matri-
ces (QM). Implementation is available through the AntiBP
server that predicts whether a sequence fed by the user is
AMP-like [26, 25]. Unlike the above methods, work in [41]
considers a larger feature space over properties suggested to
be important for bacterial membrane attraction and disas-
sociation activity from various biological studies. The fea-
tures include proclivity for α-helix formation, hydrophobic-
ity, isoelectric point, peptide length, and propensity for ag-
gregation. While ANNs are found to perform slightly bet-
ter, a five-degree polynomial kernel mapping vectors into an
enriched five-dimensional feature space distinguishes AMPs
from non-AMP sequences with 75% accuracy [41].

In this paper, we pay particular attention to feature de-
sign. Rather than relying on domain experts, we consider
a comprehensive list of physico-chemical properties docu-
mented for amino acids in the AAIndex [24]. We narrow
this list down to features relevant for activity in the context
of SVM classification of cathelicidins. In order for an SVM
to highlight features relevant for antimicrobial activity, we
carefully design the negative training dataset. The decoys
mimick characteristics of cathelicidins so that the features
found to be important for the SVM classification do not
exploit, for instance, structural differences between catheli-
cidins and decoys. We focus on fixed-length subsequences
of the N- and C-termini of mature cathelicidin peptides due
to studies that suggest the importance of these termini for
activity [50]. The results presented in this paper show that
accuracies of 93-94% and Matthews correlation coeffiecients
of 0.77-0.80 are obtained from the SVM classification.

F-scores obtained through the SVM allow ranking features
and elucidating the top features important for classification.
A statistical analysis compares the distribution of these fea-
tures with those present in amino acids found at cleavage
sites in order to weight down features found to play a role
in cleavage. This approach allows providing insight into fea-
tures of direct relevance for antimicrobial activity. The fea-
ture profiles presented in this paper are a first step towards
aiding the wet-lab modification or design of novel AMPs.

2. METHODS
The workflow of the method we present here is illustrated

in Figure 1. We now describe each of the components in
detail, starting with the preparation of the datasets.

2.1 Dataset Generation
We build two different SVM models and so construct two

different datasets. Since literature suggests that termini in
mature peptides play a primary role in antimicrobial activ-
ity [50], the first two positive datasets consist of 18-residue
long subsequences of N- and C-termini extracted from ma-
ture peptides of cathelicidins deposited in databases. The
reason for considering the termini individually in two dif-
ferent datasets (and building two different SVM models) is
due to the fact that a different subset of features may be



1: Workflow for selecting meaningful features.

relevant for each of the termini, as their specific role and
contribution to activity is unknown.

A third dataset is also constructed and employed in this
paper in order to weigh the top features reported for the N-
terminal region from the SVM with some additional informa-
tion. Since the first four N-terminal residues in a cathelicidin
are also important for cleavage, it is important to differen-
tiate top features that may be important for activity rather
than cleavage. A third dataset is employed for this purpose,
which consists of neutrophil elastase-cleaved substrates. A
statistical test detailed below identifies top features reported
by the SVM for the N-terminal regions of mature peptides
that are not statistically different from those found in this
third dataset of neutrophil elastase-cleaved substrates. This
information is used to essentially weigh down confidence into
such features, which is of particular use in a wet laboratory
study aiming to preserve features relevant for activity rather
than cleavage in the context of design.

2.1.1 Positive Datasets Extracted from Cathelicidins
A total of 45 mature cathelicidin sequences with no more

than 90% sequence identity were collected; 35 were extracted
from the Antimicrobial Peptide Database [47, 46], a repos-
itory of AMPs extracted from literature, and the rest from
UniProt [28]. Protegrin-1 and related sequences in UniProt
(UniRef90 P32194) were not included, as evidence suggests
these sequences form a β-sheet upon membrane contact [27].

While the mature peptides can be of varying lengths,
SVMs operate on fixed-length vectors. Our focus on the ter-
mini resolves this issue. Two datasets of 45 subsequences,
each 18 residues long, were constructed from the mature
peptides. One dataset contains the 18 consecutive residues
of the N-termini, and the other contains the C-termini. The
length limit of 18 residues is due to the maximum scan-
length allowed by HeliQuest, a server used in forming the
matching negative datasets detailed below.

2.1.2 Negative Datasets of Decoy Sequences
Two different negative datasets of 18-residue long sequences

are constructed for the two positive datasets of N- and C-
termini sequences extracted from the mature peptides as de-
scribed above. Rather than build these negative sequences
at random, the negative sequences are designed to be helical,
so they can share this structural characteristic with cathe-
licidins, and top discriminating features do not end up ex-
ploiting structural differences. We employed the HeliQuest

server (http://heliquest.ipmc.cnrs.fr) [14] for this purpose.
The reason for the two separate negative datasets is that
the server screens for matches based on a query with a max-
imum window size of 18 residues.

Cathelicidin consensus 18-residue long sequences were gen-
erated separately for N and C-terminal residues. For the first
18 N-terminal residues, a consensus pattern of
KRR[RL]GLF[RL][KR]KAR[KE] was determined (amino
acids in brackets represent an equal number of observations).
As such, 16 possible target sequences were considered based
on ties at positions 4, 8, 9, and 13. Each target was sub-
mitted to the HeliQuest ”sequence analysis module” (using
default settings) to identify important physiochemical prop-
erties, such as hydrophobicity, hydrophobic moment, and
net charge. These results were then passed to the screening
module, with ”proline accepted at i, i+3 / n−3, n” and re-
maining settings set to default. Results for all targets were
then pooled, identical UniProt entries were removed, and
the set was further reduced to a sequence identity of less
than 70%. From the remaining sequences, a total of 180
(resulting in a positive to negative sample ratio of 1 : 4)
sequences were drawn at random. UniProt sequence anno-
tations were manually checked to ensure the resulting decoy
sequences had no antimicrobial or antifungal activity. The
C-terminus was found to have a consensus pattern of
KIGQKIKDFLGI[LP]VPRTG, allowing for two possible tar-
get sequences. 180 C-terminal decoys were produced using
the same procedure described above.

A third negative dataset is constructed not for classifica-
tion but for feature analysis. The dataset consists of neu-
trophil elastase substrates obtained from the PMAP-CutDB
Proteolytic Event Database (http://cutdb.burnham.org) [20].
A total of 45 non-AMP substrates were extracted, provided
as 8-mers centered about the cleavage site. The 4 residues
upstream of cleavage were discarded. The analysis below
compares features of this set with those over the first 4 N-
terminal residues of the cathelicidin N-termini dataset de-
scribed above. For the cathelicidin dataset, 44 instead of
45 sequences are used in this analysis. Two mature peptides
have the same first four N -terminal residues; hence, only one
is used for the analysis. The objective is to discard features
that may be identifed as important by the SVM for discrimi-
nating between the positive and negative datasets described
above but are equally present in the substrate dataset. A
statistical analysis detailed below recognizes shared features
that essentially cannot be determined to be more relevant
for activity over cleavage. All the described datasets can be
provided upon request.

2.1.3 Feature Design over Physico-Chemical Prop-
erties of Amino Acids

Each sequence in the above datasets is converted into a
numeric vector by essentially expanding each amino acid po-
sition in the sequence into a list of considered features for
that amino acid. Our list of features uses all known physico-
chemical properties of amino acids documented in the AAIn-
dex (Vr.9) [24]. The AAIndex is a collection of 544 quan-
tified amino-acid physiochemical properties obtained from
the literature. Removing 13 entries containing ”NA” val-
ues leaves 531 features per amino acid. This feature set is
comprehensive, but it presents problems for long sequences.
While all 531 features can be employed for the neutrophil
elastase dataset that contains only 4-residue long sequences



(essentially converting each sequence into a numeric vec-
tor of 2124 = 531 × 4 elements), the feature list is reduced
for the datasets with 18 residue-long sequences. Remov-
ing entries found to share +/- 80% or greater correlation
reduces the feature set down to 299 features, which now al-
lows mapping each 18-residue long sequence into a vector of
5382 = 299 × 18 elements. We include some more informa-
tion into the vectors, by arranging them as follows:

{C, (R1, X1), . . . , (Rn, X1), (R1, X2), . . . , (Rn, X531)},

where C is a class label, Ri is a residue over n positions, and
Xj is an AAIndex entry over the entries considered. This
format allows any feature to be traced back to a specific
physico-chemical property at a particular residue position.

2.2 SVM Classification and Feature Selection
Two SVM models are trained separately on the N-termini

and C-termini datasets. SVM training and classification is
implemented using LibSVM [12]. Both the Radial Basis
(RBF) (recommended in LibSVM help files [12]) and Linear
kernel functions are used and found to result in similar per-
formance. The kernel parameters and the SVM cost function
are tuned through the standard grid search mechanism [38]
using the grid.py provided in the LIBSVM package. The
features are scaled from -1 to 1, as recommended in the Lib-
SVM help files using the svm-scale script.

2.2.1 Cross-validation and Performance Measurements
The results reported in section 3 separately for the N- and

C-termini datasets are obtained after 3-fold cross-validation
on each of the training datasets. Essentially, the training
dataset is randomly divided into 3 subsets of equal size. The
model is then trained on 2/3 of the data and tested on the
remaining subset. Performance measurements are reported
as averages over the 3-fold validations. Two measures are
used, accuracy (ACC) and Matthew’s correlation coefficient
(MCC), respectively measured as:

TP + TN

TP + FP + TN + FN
,

(TP × TN)− (FN × FP )p
(TP + FN)× (TN + FP )× (TP + FP )× (TN + FN)

,

where TP, TN, FN and FP refer to the number of true
positives, true negatives, false negatives, and false positives.

2.2.2 Feature Selection Based on F-score Ranking
The F-score that SVM models associate with support vec-

tors provides another measure of the relative importance or
discriminating power of features. This score was a strong
performer in the Neural Information Processing Systems
2003 Feature Selection Challenge in ranking features and
creating a minimum feature set [7]. We employ the F-
score to elucidate the top ranking features. Briefly, as de-
scribed in [7], the F-score measures the discrimination of
two sets of real numbers. Given training vectors xk, where
k ∈ {1, . . . , m}, with n+ and n− denoting the number of
positive and negative instances, respectively, the F-score of
the ith feature is defined as:

F (i) =
(x̄+

i − x̄i)
2 + (x̄−i − x̄i)

2)
1

n+−1

Pn+
k=1(x

+
k,i − x̄+

i )2 + 1
n−−1

Pn−
k=1(x

−
k,i − x̄−i )2

In the above equation, x̄i, x̄+
i , and x̄−i are the average of

the ith feature of the whole, positive, and negative datasets,
respectively. Similarly, x+

k,i, is the ith feature of the kth

positive instance, and x−k,i is the ith feature of the kth neg-
ative instance. The numerator measures the discrimination
between the positive and negative sets, whereas the denom-
inator measures the discrimination within each of the two
sets. A higher score essentially means that the feature has
a higher discriminatory power.

We employ F-scores as a feature selection criterion to ob-
tain a minimum feature set as in [7]. Essentially, features
with the highest F-scores are added iteratively, and the clas-
sification performance is evaluated. The process continues
until a decrease in performance is detected. After repeated
trials, an average F-score threshold is determined for the
lowest validation error, and features below this cutoff are
removed to create a minimum feature set. Further details
into this protocol can be found in [7]. Implementation is
also freely available as fselect.py online
(http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/fselect).

2.3 Cleavage Site Analysis
A statistical approach is used to evaluate if features of

cleavage site amino acids (N-terminal residues 1−4) in cathe-
licidins are different from those in a set of natural, yet non-
AMP, neutrophil elastase substrates. The dataset of 45 sub-
strates was prepared as described above. The dataset of
cleavage sites of cathelidicins consists of the first 4 amino
acids of the N-termini subsequences in the N-termini posi-
tive dataset employed for SVM classification. The dataset
here contains one less sequence, as the first four N-terminal
residues are the same for two mature peptides.

Each feature is treated separately, and most are not nor-
mally distributed (data not shown). The Brown-Forsythe
test is conducted first [34] to assess the quality of variance
between the feature populations of the two datasets. We
employ the lawstat package to conduct this test [19]. Fea-
tures with differing variance (P < 0.05, α = 0.95), shown to
be statistically independent from this test, are removed.

Remaining features are then passed on to a second round
of assessment with the Mann-Whitney-Wilcoxon Test (using
the exactRankTests package [32]). Features shown to be sta-
tistically independent from the test (P < 0.05, α = 0.95) are
again removed. The final remaining features represent those
that cannot be confidently associated with antimicrobial ac-
tivity over protease specificity. Indentifying these features is
important, as they can now be removed from or marked in
the list of top features reported by the SVM-based feature
selection technique described above. This annotation allows
biologists to focus on features according to the confidence
with which they may be relevant for antimicrobial activity.

3. RESULTS
Experimental Setup: All experiments were conducted on

an Intel Core2 Duo machine with 4GB RAM and 2.66GHz
CPU. SVM performance is shown in the context of 3-fold val-
idation. Results are reported in terms of accuracy (ACC),
Matthew’s correlation coefficient (MCC), and receiver oper-
ating characteristic (ROC) curves. The ROC curve is ob-
tained as follows. A trained SVM outputs a ranked list of
predictions, ordered from most to least confident. Vary-
ing a threshold from the top to the bottom of the list al-



lows obtaining the rate of true and false positives change
with the threshold. An ROC curve plots the true positive
rate as a function of the false positive rate as this threshold
changes [17]. The ROC score refers to the area under the
curve. While random ranking is expected to yield a score of
∼ 0.5, the ROC score reaches 1 if the SVM correctly places
all of cathelicidins above the threshold.

3.1 Results of SVM Classification
The average cross-validation performance is summarized

in Table 1 in terms of ACC, MCC, sensitivity, and specificity.
Values are averaged over the 3 folds. Sensitivity is measured
as TP/(TP + FN), and specificity is TN/(FP+TN), where
TP, TN, FP, and FN refer to the number of true positives,
true negatives, false positives, and false negatives.

1: Results below show the average performance on the N-
and C-termini datasets.

Dataset Sen.(%) Spec.(%) ACC(%) MCC
N-Termini 92.68 94.15 93.73 0.7983
C-Termini 88.17 94.02 92.80 0.7665

Results reported in Table 1 on the N-termini dataset are
those obtained with the RBF kernel, which performs better
than the Linear kernel. Columns 3 and 4 show that an
ACC of 93.73% and an MCC of 0.7983 are obtained with
the RBF kernel. The best performance on the C-termini
dataset is achieved with the Linear kernel. Table 1 shows
that an ACC of 92.80% and MCC of 0.7665 are obtained
on the C-termini dataset with the Linear kernel. We note
that the difference in ACC and MCC values when employing
either kernel in this experiment is less than 2% for ACC and
less than 0.05 for MCC.

Average ROC curves on the N- and C-termini datasets are
shown in Figure 2. The results in Figure 2 agree with those
summarized in Table 1. We note that the average ACC val-
ues in Table 1 correspond to the area under the ROC curves
shown in Figure 2. Taken together, these results suggest
that the features employed in this work allow obtaining a
high SVM classification accuracy.

2: Sensitivity is plotted as a function of 1 - specificity.
Values are averaged over 10 runs.

3.2 Cleavage Site Analysis
The statistical analysis described in section 2.3 was used

to compare the first 4 residues of each N-terminal region in
the positive dataset with the dataset of non-AMP neutrophil
elastase-cleaved substrates (described in section 2.1). A to-
tal of 2124 (4×531) features were each independently tested.
The Brown-Forsythe test removed 471 out of the 2124 fea-
tures due to differing group variance (P<0.05). The remain-
ing 1652 features were fed to the Mann-Whitney-Wilcoxon
test (two-sided), and 77.86% were found not to be signifi-
cantly different (P ≥ 0.05). These 1286 features (aggregate
over the first four N-terminal residues) potentially encode
biological signals related to positive selection for protease
specificity rather than antimicrobial activity. These features
are marked if present in the list of top features identified
from the SVM F-score based selection process below.

3.3 F-score based Feature Reduction
The feature selection technique detailed in section 2.2.2

was applied to rank features reported by the SVM classifi-
cation on each of the N-termini and C-termini datasets and
obtain a minimum set of features with high discriminatory
power. We recall that 299 non-redundant features were used
initially for each residue position. On the N-termini dataset,
the F-score based selection technique reports a maximum
ACC of 98.83% with 32 features (out of 299 × 18). On the
C-termini dataset, a maximum ACC of 97.57% was obtained
with 121 features. Inspection of the full list of these features
(data not shown) reveals that features potentially impor-
tant for cleavage rather than activity (identified as described
above) can be present after rank 24. Table 2 shows the top
20 features (which, reassuringly, do not include cleavage-
related features) for each of the N-termini and C-termini
datasets due to space concerns. In addition to the datasets,
the full feature list for each dataset can be provided upon
request.

Column 2 in Table 2 shows the residue position in the
18-residue (N-terminal or C-terminal) region corresponding
to top features. The F-score is shown in column 3. Column
4 shows the AAIndex entry corresponding to the physico-
chemical property represented in each feature. A brief ex-
planation of each AAIndex entry, using source descriptions
from [24], is provided in column 5. Some additional infor-
mation is provided in Table 2 where available. While the
considered feature space for the SVM removes AAIndex en-
tries with ≥ 80% correlation, the table lists, where relevant,
additional unconsidered entries with 100% correlation to a
top feature. For instance, GOLD730102 (rank 9 for the N-
termini features in Table 2) is not in the 299 physio-chemical
properties used for the SVM; however, it is shown alongside
BIGC670101 with which it shares 100% correlation. Sim-
ilarly, JOND750101 is listed alongside ARGP820101 (rank
14) for the C-termini dataset in Table 2. We limit this ad-
ditional information to 100% correlation due to space limi-
tations. A list of other AAIndex entries which share ≥ 80%
correlation with the top features reported here can be found
by consulting the AAIndex [24].

None of the features listed below were found to share
cleavage sites overlap for their respective residue positions
(see Methods 2.3 for details). Moreover, an encouraging re-
sult is that a number of these features have been established
as important for AMP activity in the literature [42, 30].
Notably, both hydrophobicity and charge are involved with



2: We report here the top 20 features obtained through the feature reduction technique based on F-scores for the N-termini
(top) and C-termini (bottom) dataset. Column 2 shows the residue position corresponding to a reported top feature. A
negative position −i for a top feature reported for the C-termini dataset means that the feature corresponds to position
n−i on the mature peptide, where n is the length of the peptide. F-scores are shown in column 3. Column 4 shows the
AAIndex [24] entry corresponding to the physico-chemical property represented in each feature. Column 5 provides a brief
explanation of each AAIndex entry, using source descriptions from [24]. References to literature introducing the AAIndex
entry is removed from the descriptions due to space limitations.

Top 20 features for the N-termini dataset

Rank Pos. F-score AAIndex Entry Description
1 2 0.245271 WILM950102 Hydrophobicity coefficient in RP-HPLC, C8 with 0.1%TFA/MeCN/H2O
2 3 0.239608 RICJ880107 Relative preference value at N4
3 3 0.197591 GEIM800106 Beta-strand indices for beta-proteins
4 3 0.187098 CHAM820101 Polarizability parameter
5 3 0.186337 GRAR740103 Volume
6 3 0.186106 SNEP660103 Principal component III
7 3 0.165094 PRAM820101 Intercept in regression analysis
8 3 0.164989 WILM950102 Hydrophobicity coefficient in RP-HPLC, C8 with 0.1%TFA/MeCN/H2O
9 3 0.159688 BIGC670101/GOLD730102 Res. vol. (Bigelow, 1967)/Res. vol. (Goldsack-Chalifoux, 1973)
10 3 0.152462 RADA880106 Accessible surface area
11 3 0.151796 GEIM800110 Aperiodic indices for beta-proteins
12 3 0.149578 MCMT640101 Refractivity
13 15 0.145284 QIAN880129 Weights for coil at the window position of -4
14 15 0.145038 QIAN880125 Weights for beta-sheet at the window position of 5
15 12 0.143969 FAUJ880111 Positive charge
16 10 0.143667 QIAN880129 ”Weights for coil at the window position of -4 (Qian-Sejnowski, 1988)”
17 2 0.14312 GEOR030105 Linker propensity from small dataset (linker length < 6 residues)
18 10 0.13733 ARGP820101 Hydrophobicity index
19 2 0.136278 MEIH800103 Average side chain orientation angle
20 2 0.134372 CORJ870103 PRIFT index

Top 20 features for the C-termini dataset

Rank Pos F-score AAIndex Entry Description
1 -3 0.332351 BUNA790101 alpha-NH chemical shifts
2 -3 0.31425 GEOR030101 Linker propensity from all dataset
3 -3 0.305539 FINA910102 Helix initiation parameter at posision i,i+1,i+2
4 -3 0.25315 GEOR030109 Linker propensity from non-helical (annotated by DSSP) dataset
5 -3 0.252108 AURR980119 Normalized positional residue frequency at helix termini C’
6 -9 0.250269 VASM830103 Relative population of conformational state E)
7 -9 0.24835 QIAN880129 Weights for coil at the window position of -4
8 -3 0.243496 RACS820112 Average relative fractional occurrence in ER(i-1)
9 -9 0.241628 ZIMJ680101 Hydrophobicity
10 -3 0.222802 LAWE840101 Transfer free energy, CHP/water
11 -17 0.220446 KLEP840101 Net charge
12 -17 0.216189 EISD860102 Atom-based hydrophobic moment
13 -9 0.215304 SNEP660103 Principal component III
14 -9 0.214104 ARGP820101/JOND750101 Hydrophob.((Argos, 1982))/Hydrophob.(Jones, 1975)
15 -9 0.212866 TAKK010101 Side-chain contribution to protein stability (kJ/mol)
16 -6 0.211298 QIAN880129 Weights for coil at the window position of -4
17 -9 0.20925 LAWE840101 Transfer free energy, CHP/water
18 -15 0.208506 ISOY800106 Normalized relative frequency of helix end
19 -13 0.1941 BUNA790101 alpha-NH chemical shifts
20 -15 0.191099 GEOR030104 Linker propensity from 3-linker dataset



cationic AMP attraction towards bacterial membranes [16,
15, 30, 42]. While it is encouraging to see top features re-
ported by our analysis include those captured by wet lab
studies, verification by experiment is still required to con-
firm relevant AMP activity. The reduced set, essentially
a feature profile, we report here should facilitate the aided
modification or design of novel AMPs. This will in turn pro-
vide more data through which to fine tune machine learning
techniques and narrow the relevant feature space.

4. CONCLUSIONS
This paper has presented a method to elucidate activity-

related physico-chemical features in cathelicidins. The method
considers a large feature space constructed from a compre-
hensive list of amino-acid physico-chemical properties. The
list is narrowed down to a few features with high discrim-
inatory power in the context of SVM classification. The
negative datasets are carefully constructed and various sta-
tistical tests are conducted so that the features do not ex-
ploit trivial differences such as structure or cleavage. This
allows obtaining an informative profile of features that are
more relevant for activity than other AMP characteristics.

The features elucidated here are a first step towards aid-
ing wet laboratory efforts. We envision that biologists would
be interested in further analyzing the feature profiles eluci-
dated by our method for either preserving them when mak-
ing mutations to known AMPs or narrowing down the set of
relevant amino acids (that preserve top reported features) in
the context of design. All employed datasets and obtained
feature profiles are available upon request.

Various directions can be pursued for future research. The
availability of more AMPs will allow improving the accuracy
of this method and other related machine learning methods.
For instance, the work presented here is an important first
step that can be exploited to expedite the process of design-
ing or modifying cathelicidins so that cathelicidin-derived
peptides found to be active can in turn be used to narrow
down the activity-related feature profiles.

Other directions concern incorporating correlations be-
tween neighboring amino acids. Spectrum features can be
pursued to capture correlations between physico-chemical
parameters in a k-mer. However, the entire list of physico-
chemical properties, even if narrowed down to the 299 non-
redundant ones used here, is prohibitive. Even for a small
k = 3, the feature space would be large and contain 3299 fea-
tures. An obvious direction would be to employ only a few
top features reported for each amino-acid. Other directions
can be pursued to explore a larger feature space. Unlike
enumeration-based techniques for k-mer spectrum features,
stochastic algorithms we have proposed in other bioinfor-
matics applications [22, 23, 21] can be pursued to sample a
large high-dimensional feature space and evaluate the sam-
pled subset in the context of SVM classification.
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