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Abstract

We consider listing and counting all the solutions M to a
given Boolean 3SAT formula with n variables. This prob-
lem is known to be NP-hard (Garey and Johnson, 1979).
A straight-forward enumeration scheme to find M takes
worst-case running time O(2n). In this paper, we mini-
mize the total running time and memory requirement
by ordering the assignments of parallel values to the
literals. Our objective is to establish theoretical bounds
on an exponential running time O(ab) such that a < 2
and b < n for certain Boolean formulas. We also conduct
experiments to support our theoretical analysis.

1 Introduction

We consider Boolean operations over Boolean variables.
A Boolean variable can have its value either T (TRUE)
or F (FALSE). Let V denote a set of Boolean variables,
|V| = n. A Boolean variable or its negative is called a
literal. A clause is a disjunction of literals. A clause is
TRUE (or is called satisfied) if at least one of its literals are
TRUE. Let C denote a set of Boolean clauses of V. Let F
denote a Boolean formula as a conjunction of |C| clauses.
A Boolean formula is TRUE (or is called satisfied) if all of
its clauses are TRUE. Let a set of #SAT models that be
denoted M. If every clause has exactly 3 literals from 3
variables, then this problem is called the 3SAT problem.
We are going to calculate all the combinations M such
that #3SAT(F) = M. That is, we assign T/F values to V
such that all clauses C in F are satisfied.

In this paper, we consider listing and counting all
the solutions M to a given Boolean 3SAT formula in a
conjunctive normal form (CNF) with n variables. This
problem is a well-known NP-hard problem [3] such that
it is likely that no polynomial-time algorithm exists. A
straight-forward enumeration scheme to find M takes
worst-case running time O(2n). We take a new approach.
We minimize the total running time and memory require-
ment by ordering the assignments of values in parallel

to the literals. We establish theoretical bounds on an ex-
ponential running time O(ab), such that a < 2 and b < n
for certain |V|, |C|, and F. We also conduct experiments
to support our theoretical analysis.

This work is organized as follows. Section 2 summa-
rizes previous work. Our algorithms and their analysis
are introduced in Section 3. Section 4 shows some exper-
imental results of our algorithm.

2 Previous Work

The DPLL (initials of the authors Davis, Putnam, Lo-
gemann, and Loveland) algorithm [1, 2] is a complete,
backtracking-based search algorithm for deciding the
satisfiability of SAT problems. DPLL depends on the
choice of branching literal, which is the literal considered
in the backtracking step. As we can see, DPLL is not
exactly an algorithm, but rather a family of algorithms,
one for each possible way of choosing the branching lit-
eral. DPLL’s efficiency is strongly affected by the choice
of the branching literal. The worst-case running time
complexity is O(2n) and worst-case space requirement is
O(n). Our proposed algorithm in Section 3 adopts a core
heuristic of the DPLL-based #SAT solvers and it wisely
selects branching literals with reduced running time and
space requirement.

Sang, Beame, and Kautz [5] used a few widely known
branching heuristics from DPLL-based SAT solvers
which we summarize briefly here. Literal count heuris-
tics [6], which count the appearance of the positive or
negative literals or the sum or the difference of both,
and select the highest scoring literal at each successive
step. Heuristics for #SAT and SAT differ in their exper-
imental performance [5]. Randomization is a hallmark
of DPLL SAT solvers, but has no utility to DPLL-based
#SAT solvers as all sections of the search space must be
searched anyway [5]. Sang, Beame, and Kautz [5] also
tested randomization and discovered that it hurt per-
formance, and so we avoid it entirely in our algorithm
design and analysis. All DPLL-based SAT and #SAT
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solvers must employ backtracking of some variety. but
we have no use for this as both literal choices are made
in parallel.

The size of M can actually be loosely described, de-
pending on some parameters. In Krivelevich, Sudakov,
and Vilenchik’s work [4], they first discussed dense for-
mulas with a clause to variable ratio rF such that rF ≥ C0,
for a large constant C0. They showed that such formulas
cluster around solutions forming connected components.
For even denser formulas with a ratio rF ≥ C0 log n, they
show that such formulas have only one solution with a
high probability.

3 Algorithm and Analysis

Let mt denote the set of models that we have at time
t. Let vt denote the branching variable selected to be
assigned a value at time t and ct the number of clauses
selected at time t. In each time step, we will assign both
T/F values to a Boolean variable vt ∈ V. Initially, set
m0 = 0, v0 = ∅, and c0 = 0. When our algorithm
terminates, we will have mn = M, {v1, . . . , vn} = V,
and ∑n

t=1 ct = |C|.

3.1 Algorithm

Let us start from the enumeration method to develop
our ideas to deal with the #3SAT problem. At each step
t, we (a.) duplicate mt, (b.) assign TRUE to a branching
variable vt for one set mt and assign FALSE to the same
branching variable vt for the other set mt, and (c.) use ct
existing clauses to eliminate unsatisfiable models from
the two halves. Concurrently assigning TRUE and FALSE
to vt is to make our algorithm running in parallel. The
traditional approach is to assign values T or F and then
to proceed down one branch, keeping a configuration
with a maximum length |V| in memory and a maximum
running time of 2n steps. Instead we assign T and F in
parallel and proceed down both branches, keeping at
maximum 2n configurations in memory and taking |V|
steps, which is a transpose of the traditional approach.
After we assign values to a variable, double the models
and then eliminate some unsatisfiable ones, we have a
new set of models mt+1 and the running time for this
step is bounded by 2 · |mt| = O(|mt|). As we have n =
|V| variables, we conduct at most n steps during the
course of assigning Boolean values to variables. The
total running time is then

Z :=
n

∑
t=1
|mt|.

As we can see from the above enumeration method,
we should minimize the cumulative size |mt| of the mod-
els over time. How to order variables in the assignment

procedure determines the number of clauses and of mod-
els and thus, determines the total running time Z. Define

rt :=
mt+1

mt
rmax := max

t
rt.

Obviously, 0 ≤ rt ≤ 2. We have the total running time
Z bounded by n · (rmax)n−1. Our algorithm is based on
the ideas of wisely selecting vt+1 to assign a value such
that rmax is minimized.

One insight is that if there are sufficiently many
clauses per variable to effectively constrain each addi-
tional variable, then there exists a value-assignment path to
M where every additional variable includes at least one clause
satisfiable. The variable density or the variable connectivity
ordering determines the priority of selecting variables to
assign values.

We adapt a greedy approach to select variables to as-
sign values. The favored variables are those that occur in
the formula more often, also called literal count heuristic.
If we select the variables with the highest literal counts
first, then we can include more clauses with fewer variables.
Our algorithm is described in Algorithm 1.

Algorithm 1 Parallel Ordering
1: Duplicate mt from v0 to vt as mt+1.
2: Identify vt+1 based on the decreasing order of the

literal counts of V.
3: Set vt+1 to T in one copy of mt in mt+1 and F in the

other copy.
4: Use ct+1 clauses to remove unsatisfactory models

from mt+1.
5: return mt+1.

3.2 Analysis

In this subsection, we analyze Algorithm 1’s perfor-
mance in terms of expected running time and memory
requirement. Recall that in our algorithm and analysis,
we consider 3CNFs. We start with the preliminary re-
sults of random expectation and then study the effects
of our algorithm by means of dense regions and literal
expectation.

3.2.1 Preliminary results: random expectation

The expectation of a newly added variable adding
clauses is explained below using an example of a for-
mula with 10 clauses and 10 variables — each variable
appears as 3 literals in 3 clauses, a uniform distribution.

There are bounds for this expectation as the first two
variables will make 0 clauses satisfied or unsatisfied, and
the last variable added will make 3 clauses satisfied or
unsatisfied immediately. For our purposes the variable
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order within a clause does not matter, nor does the clause order
in the formula, not does the literal value.

The expectation of adding the third variable depends
on the possible filled clauses divided by the possible
configurations. For t = 3, there is a maximum of 1
clause that can be filled in but in 10 locations, with the
other variables in some combination of configurations;
and these are only a few of all of the configurations of
the two variables. For t = 4, there is a maximum of 3
clauses that can be filled but also possibilities for 2 or 1
or 0 clauses to be filled. So the probable filled clauses
are an average of the configurations with 3, 2, 1, and 0
clauses. The probability of these happening is predicated
on the probability of the placed variables being in their
combinations in clauses. For example, for 3 clauses to
be filled at t = 4, there is only 1 configuration. There is
1 configuration for 3 clauses to be filled, but there are 3
configurations for 2 clauses to be filled and 3 for 1 clause
as well and 1 for 0 clauses.

For each literal, it can be the variable itself or this vari-
able’s negative. Given V variables (that is, 2|V| literals),
there are 8 · (V

3) possible 3CNF clauses. For simplicity,
we use V to represent |V| and C for |C| in equations,
and we will drop the literal coefficients: so there are (V

3)
clauses (positive clauses) and |V| literals (sum of both
values).

Another view of the expectation of a newly added
clauses that come with an additional variable is as fol-
lows. We can assume that the addition of variables into
|C| will occur at the same rate as in the maximum avail-
able clauses, (V

3). Start with V variables, say 10, and
instead of 10 clauses we use (10

3 ), or 120 clauses. Now
the clauses, ct, added with each variable is ct = (t

2) with
c0 = 0 and {c1, c2, . . . , c9} = {0, 1, 3, 6, 10, 15, 21, 28, 36}.
And for each vt there is an accompanying percentage of
clauses from the total that accompany it. If the clauses
are distributed randomly from the set of total possible
clauses then their incremental addition should follow the
same percentages. The random expectation of clauses
from all possible clauses is (t

2)/(V
3) from 1 to |V| sum-

ming up to 1. So at a scaling of |C|, the expectation sums
to |C|.

E(ct) =
|C| · (t

2)

(V
3)

.

At vt = |V|
2 , ct = 0.75 · cavg clauses are added. At vt =

|V|√
3
, ct = cavg clauses are added. For max (mt) = ∏t rt,

ct > 1; we have max (mt) = 25n/9.
Figure 1 illustrates this random expectation of a uni-

form distribution of literals to variables, of clauses to
variables, and of rt to variables. The area under the L(v)
[l(v)] curve sums up to 3 · |V| · cavg. The area under the
ct [c(v)] curve sums up to |C|. The area under the rt
[r(v)] curve sums to the log of ∏t rt from 1 to |V|.

Figure 1: Uniform Distribution of l(v), c(v), and r(v)

3.2.2 Density expectation

There exist subsets of clauses that include fewer vari-
ables to form a dense region. The extent of the dense
region is directly proportional to the density of the for-
mula. This provides a path to M where every variable
includes at least one clause and results in a constraint on
a in O(ab) beyond the random expectation.

There are (V
2) pairs of variables and by combining

them in triples of pairs with 3 variables, there are no

more than (V
2 )

(3
2)

unique clauses that may be formed with-

out sharing more than 1 variable, R1. Thus (V
3) − (V

2 )
3

clauses have at least 2 variables in common with other
clauses, R2. We have

R1 :=
(V

3)
(V

2 )
3

=
1

V − 2
R2 := 1− R1

=
V − 3
V − 2

(1)

where R2 is a measure of the density of possible clauses
given V variables, which seems very dense.

Let us discuss Equation (1). It seems R is dense. How-
ever, only an extremely small subset of possible clauses
are present in a CNF formula. The Birthday Paradox il-
lustrates that this subset is not dense. For C clauses and
for 3 · C pairs of variables, the probability of 1 repeated

pair is (V
2 )!

(V
2 )

3C ·((V
2 )−3C)!

or ∏3C
k=1

(
1− k

(V
2 )

)
.

An example is that for 100 variables, 84 pairs or 28
clauses are required for an even chance of 2 clauses shar-
ing more than 1 variable. So how many repeats are
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within the clauses of a typical 3CNF formula? After 1
repetition has reached its 0.5 chance, given the current
variables how many additional variables provide the
next 0.5 chance? The log0.5 of the probability shows the
number of potential repetitions that produce pairs. Since
they all have 0.5 chance, we can expect half of them.

E(Pairs) ≈ 1
2

log0.5

(
3C

∏
k=1

(
1− k

(V
2)

))
A more precise estimate would take into account that

variables/pairs within a clause cannot repeat each other
so that pattern of

1 · n− 1
n
· n− 2

n
· n− 3

n
· n− 4

n
· · ·

adjusts to

1 · 1 · 1 · n− 3
n
· n− 3

n
· n− 3

n
· n− 6

n
· n− 6

n
· · ·

Also, repetitions do not generate additional pairs to
match, so probable repeating should be accounted to
subtract from the available matches. This yields the
following.

E(Pairsi) =

3
2

log0.5

 C

∏
k=1

1− k + E(Pairsi−1)
(V

2 )
3


In order to account for the fact that variables can not

repeat each other in the same clause, the 3 in 3C has
moved outside of the product and under (V

2). Also, the
previous E(Pairsi) has been added to k to account for
repeated pairs, turning this into a recursive algorithm.

3.2.3 Dense regions

For example, 100 variables in 430 clauses should expect
123 pair repetitions. This number of repetitions stabilizes
as |V| increases: for 500 variables and 2150 clauses the
expectation is 120 and for 1000 variables and 4300 clauses
as well. The expectation of pairs depends on the ratio of
|C| : |V| or cavg.

As stated before, there are around 120 pairs given that
cavg = 4.3. These pairs could be shared by a very few
variables or stretched to a chain of 120 variables. By
starting the addition of variables from variables in this
dense region, there will always be at least 1 clause per
variable. The chain’s form depends on F so we scale by
an unknown constant α, to produce the effect on rt:

rt = 2− ct

8
− α · 120
|V|

For formulas with a low |V|, α·120
|V| ≥ 0.25 and rt ≤ 1.75.

When t = |V|
6 , ct ' 1, so the path of variables with at

least one clause only has to reach 1/6 of the way. For
all t, ct > 1 with high probability while |V| < α · 720.
For such dense formulas this rt shifts the ct curve to the
left. The degree of the shift of ct is proportional to the
square of the increase in rt, and so a formula with x · |V|
variables and

√
x · |C| clauses has as many pairs per

variable as a formula with |V| and |C|. The reduction
of rmax to 1.75 is a constraint of a ≤ 1.75 on O(ab). The
effect on M is that max(mt) = 2

2n
5 or max(mt) = 1.75

n
2 .

3.2.4 Literal expectation

The majority of the literals reside in the minority of
the variables. By selecting them first, we include more
clauses early and further restrict the growth of M. In
this way, we result in a constraint on b in O(ab), which
beats a random expectation.

The expectation here is cast as the addition of literals.
In a uniform distribution, each variable adds 3·C

V literals.
For the expectation of a variable with a random number
of literals, L(vt), and a clause to variable ration of cavg,
we scale the expectation by its number of literals over
the random expectation, or L(vt)

3·cavg
.

In order to map the accumulation of literals to that
average variables we sum the literals and then di-
vide by the formulas average literal to variable ratio,

1
3·cavg

∑t
i=1 L(vi), to represent the closest vt, or the appar-

ent variable to substitute for t in (t
2). The expectation of

the literals, L(vt), depends on a normal distribution of
literals among variables. It can be modeled as the reverse
of the inverse of the cumulative distribution function,
i.e., for 100 variables adding the 4-th variable uses that
inverse at 0.96 and the 5-th variable uses 0.95.

E(ct) =
L(vt)
3·cavg

· |C| · (
1

3·cavg ∑t
i=1 L(vi)
2

)

(V
3)

We may also consider how many variables are re-
quired until half of the literals are present or how many
literals are present when the larger half of variables are
present and what those mean for clauses. Scaling the
literals shifts the ct curve to the left. Replacing variables
with a normal distribution of literals shifts the ct curve
to the left as well. The amount of left shift depends on
the standard deviation of the L(v). With cavg set to 4.3,
the mean literal to variable ratio is 12.9 and we use a
standard deviation of 3.2 from a test formula.

At vt = |V|
2 , ct > cavg clauses are added. If we redis-

tribute the addition of variables as a reflection of the ad-
dition of literals, then we get a new max(mt) = 1.75

2·n
5 .

In Figure 2 we see the left shift of L(v) and its effect
on ct and rt The sum of L(v) is still 3 · |V| · cavg and the
sum of ct is still |C|, but here rt takes a sharper dip and
then increases at the end. The area under the rt curve
from 1 until rt increases sums up to the log of ∏t rt at
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Figure 2: Inversion Cumulative Distribution of l(v), c(v),
and r(v)

maxt mt. The increase of rt at the end occurs because
L(v) decreases which also causes ct to decrease.

4 Experiments

For our tests we use an algorithm that uses the above
properties and a few more properties which may be
presented in later papers. The reason for this is that
O(ab) can still produce intractably large mt and in order
to expand the scope of tests, we need to reduce Z as
much as possible.

The maximum model count does not reach 2n, on the
contrary it only goes so far as 2n/5. We ran test sets for
n = 100 and n = 125. For the tests 100-109 on n = 100,
mt reached a maximum of 932152 or 219.8 on average
with a range of maximums from 148836 to 1596104. For
the tests 100-91 on n = 125, mt reached a maximum of
92674069 or 226.5 on average with a range of maximums
from 17811821 to 164137776. Notice that mt grows at a
decreasing exponential rate that tapers off. The graph in
Figure 3 is of n = 100, the y-axis is mt.

The decrease in growth in Figure 4 also proceeds at a
steady pace. The start at 1̃.75 (≈ 1.75) represents the ad-
dition of 1 clause with the addition of each variable. The
drop down to below 1.4 occurs at the partitioning and
creates a shelf of > 2 clauses per variable that persists
until it rejoins the regular slope. This slope crosses 1 at
around n/2.

We used this more efficient algorithm to run the fol-
lowing demonstration in a reasonable time for Figure 5.
To demonstrate the effect of dense regions we ran for-
mulas with various values for |C| while holding |V| con-
stant, which produces different values for cavg (y-axis),
and the x-axis is the maximum of mt on a logarithmic

Figure 3: An sample average mt over |V|

Figure 4: An sample average rt over |V|
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Figure 5: The effect of dense regions

Figure 6: Literal distributions

scale. The line for max(m1) represents the average of 10
tests for each value of cavg from 4 to 12. When cavg < 4,
mt becomes intractably large. The other three contour
lines represent the expectation of max(mt) where rmax is
set to simulate an effect of the dense regions. Shortly be-
low 4, max(mt) crosses the middle contour line. As cavg
increases, max(mt) moves left and crosses the 1.5 con-
tour line. The contour lines can be drawn at (1, 2]. Near
1, |C| represents all possible clauses of |V| variables, and
at 2 |C| is .

For a in O(ab), the density of the variables in the
clauses reduces it by .25 for every clause per variable
provided by the path to M along repeated pairs. So with
the function of the path p(F) = clause/variable · 0.25, there
is a big-O of O((a− p(F))b.

The next series of tests measure the effect of literals
in the formula; Figure 6. The noise of the points is due
to the differences in each test formula. As the literals
differentiate themselves farther with a larger standard
deviation, the maximum mt has a trend to decrease. As
the standard derivation increases, the number of vari-
ables that contain the majority of literals decreases.

For b in O(ab), there is an effect without such a clear
mathematical relationship. So for a function of the expo-
nent b, all we can say is that b = l(n, σ), for a big-O of
O((a− p(F))l(n,σ).
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