
Department of Computer Science
George Mason University Technical Reports

4400 University Drive MS#4A5
Fairfax, VA 22030-4444 USA
http://cs.gmu.edu/ 703-993-1530

Future MASON Directions: Community Recommendations
Report of the 2013 MASON NSF Workshop

June 15–16, 2013, George Mason University Campus, Fairfax, Virginia

Nicolas Payette Northwestern University
Marius Bujorianu University of Birmingham

Glen Ropella and Ken Cline Tempus Dictum
Jeffrey Schank and Matt Miller University of California Davis

Sara Jonsson Royal Institute of Technology, Sweden
Laszlo Gulyas and Richard Legendi AITIA, Hungary

Olaf Bochmann Oxford University
Luı́s de Sousa Technical University, Lisbon

Vlasios Voudouris and Daniil Kiose London Metropolitan Business School
Przemyslaw Szufel Warsaw School of Economics

Steve Saul NOAA
John McManus University of Miami

Vittorio Scarano and Gennaro Cordasco University of Salerno
Chris Hollander, Paul Wiegand, and Vera Kazakova University of Central Florida

Brian Hrolenok Georgia Tech
J. Daniel Rogers Smithsonian Institution
Michael Schader Yellow House Associates

Sean Luke, Kenneth De Jong, Mark Coletti,
Paul Schopf, Claudio Cioffi-Revilla, Keith Sullivan,

Khaled Talukder, Ahmed Elmolla, and Ermo Wei George Mason University

Technical Report GMU-CS-TR-2013-9

Introduction

MASON is an open source multiagent simulation library
geared towards simulating very large numbers of rela-
tively lightweight interacting agents. MASON has been
used for a wide variety of simulation tasks in robotics,
the social sciences, biology, and animation.

On June 15 and 16, 2013, approximately two dozen
invitees convened at George Mason University to dis-
cuss future directions for MASON and needs of the MA-
SON community. This meeting formed the 2013 MA-
SON NSF Workshop, sponsored by the National Science
Foundation under CRI CI-P grant 1205626. The invitees
responded to a call for participation on the MASON com-
munity mailing list, among others, and those selected
for participation came from a broad spectrum of fields,
organizations, and countries.

During the Workshop, participants identified nine ar-
eas of interest to the community where they felt MASON
should be improved or extended. The participants then
divided up into working groups to discuss issues with
MASON improvements in those areas. This document
details the reports of those working groups. The nine
areas, and their basic proposals, were:

1. Language and Development Support Proposals:
to enable MASON to be accessed from non-Java lan-
guages; and to develop plugin support for MASON
in integrated development environments such as
Eclipse or NetBeans.

2. Output and Statistics Proposals: to develop a
plug-in architecture for simulation statistics and im-
proved run-time analysis of models.

1



3. Parallel and Distributed MASON Models Pro-
posals: to develop distributed facilities in MASON,
and to examine extensions to MASON to better use
massive multicore and GPU facilities.

4. Modern Java Facilities Proposal: to add various
post-1.5 Java features to MASON.

5. Testing Proposal: to add unit and integration test-
ing regimens to MASON.

6. MASON and STEM Proposal: to identify and de-
velop facilities which make MASON more useful in
a teaching context, with an eye towards STEM fields
from Kindergarten clear through undergraduate.

7. Collaborative Archives and Facilities Proposal:
to develop a facility (perhaps a website, or via MA-
SON integration) for the community to share MA-
SON models and code snippets to further commu-
nity interaction and support.

8. Validation via Optimization and Parameter
Sweeping Proposal: to develop optimization
facilities for MASON models and for internal
MASON agents, and facilities to enable large
parameter sweeps of complex MASON simulations.

9. MASON and GIS Proposal: to improve GeoMA-
SON’s performance and its network support; and
provide integration with distributed MASON facili-
ties.

Following are the reports of the working groups in
each of these areas.

1 Language and Development
Support

Working Group Nicolas Payette, Matt Miller, Chris
Hollander, Vera Kazakova, Ken Cline, Luı́s de Sousa,
and Glen Ropella

Skilled workers in the near future will need to be able
to program computers for a wide variety of tasks, from
setting up computer-assisted machining to creating engi-
neering software for scientific and industrial endeavors.
Agent-based models are well-suited both to applications
in many fields and to the instruction of those who will
write software in the future. MASON is well-placed to
address current use-cases for agent-based models and
the education of tomorrow’s programmers. However,
there is a two-way barrier of domain specialization that
must be overcome to optimize MASON’s usefulness in
these fields. Much of MASON’s power accrues from its
flexibility, but this flexibility requires explicit coding of
basic structures assuming domain expertise with mod-
eling, graphics, and MASON itself; nonetheless, much

of this substructure often amounts to “boilerplate” code.
On the other hand, agent-based models often provide
elegant solutions to problems in a wide variety of disci-
plines, but the domain expertise within these disciplines
is often limited to specific programming languages such
as Python, R, MATLAB, or Lisp.

Proposal Two overarching goals will improve MA-
SON’s utility both as an applied and as an educa-
tional tool. We propose adding multiple language
support to MASON and providing advanced develop-
ment/integrated development tools for MASON.

Multiple language support entails providing bridges
between MASON and other programming languages.
This will be accomplished by providing interface li-
braries for languages that are compiled to run on the
Java virtual machine (JVM), such as Jython (Python for
JVM), Scala, JRuby (Ruby for JVM), Kawa (Scheme for
JVM), Clojure (Lisp for JVM), and Rhino (JavaScript for
JVM). This will allow programs to directly use MASON’s
methods with minimal implementation obstacles.

Development tools would encompass plugins for the
Eclipse and NetBeans integrated development environ-
ments. Plugins would automate the production of boil-
erplate code and common coding tasks within MA-
SON such as event engine setup, spatial representations,
graphical portrayals, and data output facilities. These
code generators would include customizable fields as
well as opportunities for the developer to idiomatically
code simulation elements that did not meet standard
application parameters.

Justification Multiple language support brings do-
main expertise from multiple disciplines to MASON.
Domain experts often are familiar with programming
only in the language preferred in their domains; for ex-
ample, psychology researchers frequently have exposure
only to R and MATLAB. Furthermore, well-established
models and libraries for specific disciplines are often
written in a specific language; for example, some physics
libraries rely on NumPy, which is written in Python. Fi-
nally, some users may need to use modules written in
languages other than Java to achieve their goals; for
example, one author of this white paper reports, “My
model of liver function includes a module written by
EPA developers in R. Any changes in that module ren-
der it non-functional.”

Support for other languages and development tools
both improve MASON’s utility as a teaching tool. Agent-
based models are often used to teach students in the
sciences about programming and about emergent dy-
namics. The presence of individual software agents, as
instances of encapsulated classes, often can be used to
clarify concepts in object-oriented programming, com-
munication between modules, and the emergence of un-
expected patterns from non-linear dynamics. However,

2



not all programming classes are taught using Java; thus,
multiple language support would increase MASON’s
applicability to a wider range of instructors. Further,
MASON models achieve power and flexibility by al-
lowing users to implement highly customized spatial
structures, scheduling mechanisms, graphical interface
elements, and graphical representations of model run-
time; however, the code for these structures for basic
models and for almost any model as a teaching tool
are basic themes on a pattern. This code, though fol-
lowing basic patterns, is generally beyond the ability of
the beginning programmer; therefore, a development
tool that simply provides the basic background structure
would improve MASON’s usability as a teaching tool
in beginning stages. One white paper author relates,
“When I teach introductory classes on modeling, the boil-
erplate code gets in the way of the essence of models
and algorithms. Only after I’ve taught these basics, often
including general programming, can I bootstrap a basic
understanding of the setup code and graphics configu-
ration.”

Development tools will also accrue benefits to those
implementing models for research purposes. Producing
template code automatically will increase development
speed and reduce opportunities for errors in basic model
machinery. Furthermore, template code will provide
more consistent models with more consistent interfaces
and output. Finally, graphical development tools will
allow contributions from team members with little or
no programming experience and will facilitate model
explanation to those lacking time, motivation, or ability
to review the code in detail.

2 Output and Statistics

Working Group Mark Coletti, Paul Wiegand, Sara Jon-
sson, Vlasios Voudouris, and Daniil Kiose

Currently MASON provides a variety of mechanisms
with which to display, monitor, and track quantitative
values of simulations occurring within the system. These
include visual monitoring of individual values using
the GUI interface inspectors tied to simulation objects,
graphical plotting of values via programmatic access
to the JFreeChart API, and simple textual output to the
standard output stream or a file.

However, there are severe limitations to these ap-
proaches. For one, JFreeChart has limited capabilities
and does not produce production level plots, the inspec-
tors are not useful for aggregate and statistical mecha-
nisms, and almost any serious statistical output and re-
porting requires at least some additional programming
above and beyond the programming of the simulation.
Additionally, these existing mechanisms focus mainly
on individual simulation runs and do not make it easy

to collect aggregate information between multiple runs
of the simulation.

On the reverse end, there is a desire from some users
that MASON have better facilities for interactive simula-
tion — for use of MASON as a computational laboratory.
Inspectors are the only extant mechanisms for any kind
of interactive access to simulation data during a run, but
these are not sufficient for a deeper analysis of what is
happening.

The majority of users with which the working group
members are familiar (including themselves) choose to
produce quantitative output to a text file or a database,
where it is post-processed by some other tool (e.g., R)
for statistical analysis and data visualization purposes.
Indeed, this is so common that many users have writ-
ten general classes for data output purposes in a lot of
different simulations. This has been done, for example,
by inserting Steppable objects into the scheduler whose
sole function is to collect and report quantitative data
about the simulation. Unfortunately, many different MA-
SON users have designed and implemented their own
individual versions of these kinds of facilities, which is
wasteful of effort and unhelpful to newer MASON users.

This working group suggests the development of a
plug-in architecture that provides users with more facil-
ities regarding common workflows within MASON in
terms of the collection and output of quantitative infor-
mation about simulations. This architecture would allow
users to output data regarding a variety of individual
run quantitative information, as well as data regarding
aggregate information over many runs. It would also
support a number of common data formats, such as
greppable text files, CSV files, or various SQL databases.

To support a computational laboratory point of view, we
suggest MASON might benefit from providing a suite of
GUI controls and widgets that can be embeded directly
in the simulation or interface with a known dynamic
visualization tool or service, such as Processing. One
goal of such an interface would be to have to ability to
pause the simulation, then follow some kind of link to
a service where a deeper analysis of the data might be
done. Another would be to improve data visualization
such as allowing the embedding of legends and similarly
informative widgets into the display.

3 Parallel and Distributed
MASON Models

Working Group Vittorio Scarano, Gennaro Cordasco,
John McManus, Przemyslaw Szufel, Richard Legendi,
and Claudio Cioffi-Revilla

The current situation of MASON is that, in several dif-
ferent contexts, the limitations of being run on a single
host appear evident as the model increases in size and

3



complexity. As the size of the model increases, the mem-
ory bound of a single host quickly becomes a serious
limitation, and the increasing computational complex-
ity of the agents impacts on the execution speed of the
simulation. On the technological side several computing
options (not necessarily tightly coupled as High Perfor-
mance Computing systems) are available to researchers,
using multiple heterogeneous machines capable of mas-
sive simulations. At the same time the nature of the
single host is changing, including multi-core (with sev-
eral tens of cores to be packed in one processor) and
many-core facilities in low-end machines; and Graphical
Processing Units (GPUs) widely available for generic
processing.

In this heterogeneous scenario, MASON should be
able to leverage the distributed/parallel facilities now
available to researchers, in order to speed-up simulations
(allowing more extensive testing), to enlarge the size of
the model (offering access to emergent behaviors that
may appear only after a threshold), to increase agents’
computational complexity (allowing more intelligence to
be embedded into the single agent), and to offer facilities
for parameter space exploration in parallel (significantly
speeding up model tuning and validation).

Complications Several problems and complications
are faced with along the road to making MASON dis-
tributed/parallel. As a premise, it appears that differ-
ent architectures serve differently well different kinds
of simulations. Among the possible architectures, we
distinguish:

• Parallel architectures, where tightly-coupled, of-
ten homogeneous, centrally managed, dedicated
computers are connected with dedicated, high-
speed/bandwidth networks, and dedicated, high-
speed storage facilities.

• Distributed architectures, where heterogeneous,
loosely-coupled computers, are possibly spread in
different local networks, with no centralized control
and management, and often devoted only partially
to simulations.

• Many-core architectures, where a single PC is
equipped with several traditional cores and with a
GPU (or more than one) that provides very large
number of small cores, with some limitations on the
memory size but with very high performance with
respect to data movement and computation.

• Hybrid architectures, which combine all the preced-
ing three architectures.

Several issues can be identified:

• Flexibility and the Design of Architecture-Aware
Models Depending on the requirements in size,
locality of communications, and complexity of the

model, different architectures may behave very effi-
ciently or not, or may not allow massive simulations
to be run at all. A parallel/distributed version of
MASON must address these scenarios, providing
not only technological and scientific solutions but
also templates and guidelines to model developers
to guide them through the perils and hardships of
making a simulation that is intended to be efficiently
executed in a parallel/distributed environment.

• Partitioning Depending on the kind of architec-
ture, different partitionings of the simulation can be
used. In general, two main categories are common
from the literature: a partitioning may be space-
based (depending on an agent’s location) or agent-
based (ignoring physical positions). The former
may be preferred when local (space-based) commu-
nication occurs frequently; but if communications
are global, but seem to cluster in time, the latter can
be a winning strategy. Different strategies must be
possible in order to deal with the inherent diversity
of simulations.

• Load Balancing When spatial partitioning is used,
it may happen that the simulation produces an un-
balanced usage of computational and communica-
tion resources, overloading some hosts while leav-
ing others significantly underutilized. In this case,
methods and techniques for dynamic load balanc-
ing must be employed. Examples of problems with
these problems can be as simple as ant-generation
and fish schooling, or as complex as disaster recov-
ery simulations focused on a specific region.

• Optimization for Different Communication Pat-
terns Mixed communication patterns offer partic-
ular challenges. When a simulation is consistently
using only one particular local or global communi-
cation pattern, it may be possible to choose an ap-
propriate architecture to increase the performance
and scalability of the simulation. But the situation
is complicated when communication occurs both
locally and globally, or at in different moments of
the simulations. A loss in performance can possi-
bly be mitigated if the global interactions are not
frequent and a space-based partitioning is used, but
general methods and techniques to improve the per-
formance of a parallel/distributed simulation are
a challenging problem and would be a significant
achievement for the agent-based modeling simula-
tion community. Any parallel/distributed MASON
must address different fields, such as 2D, 3D grids,
networks with all their possible variants and over-
lapping.

• Fault Tolerance Especially in the distributed set-
ting, fault-tolerance with respect to partial failures
of the system must be supported and integrated

4



with mechanisms for automatic roll-back and recov-
ery to meaningful simulation states. Solutions to
fault-tolerance can also be adapted easily to provide
for dynamic changes in the hardware configuration,
when nodes are made available or made unavailable
during the simulation.

• Management and Control In such a complex set-
ting, a parallel/distributed MASON model becomes
hard to manage and control. It is important to pro-
vide an easy-to-use console to researchers, in order
to facilitate the management and make sustainable
the effort of controlling such a complex computa-
tional facility with moderate technical skills.

• Leveraging Hybrid Architectures Hybrid archi-
tectures can be efficiently leveraged by models that
are architecture-aware. As an example, when Agent-
Based Models are combined with cognitive model-
ing, the simulation may require expensive single-
agent computation that could be given to a GPU
while agents are distributed on various CPUs. An-
other example: when equation-solvers are placed
on GPUs and pulled up by MASON agents from
time to time.

Conclusions We think that the proposed MASON
work should first identify the commonality of chal-
lenges in biological, ecological, social, and other MA-
SON models and how they could benefit from using
a parallel/distributed MASON framework. Then, the
issues outlined above may be driven by the needs of
the experts in these domains, leveraging existing open-
source solutions and freely available libraries that in-
clude D-MASON (an initial distributed MASON at-
tempt), CUDA, Globus, and other parallel and dis-
tributed computational frameworks.

4 Modern Java Facilities

Working Group Przemyslaw Szufel, Chris Hollander,
Ken Cline, Luı́s de Sousa, Vlasios Voudouris, and Matt
Miller

The goal of this section is to discuss the modern Java
facilities and language features introduced into the Java
language from the version 1.5. MASON tends to be
backward-compatible with Java 1.4. We discuss how
these later facilities would improve a modeler’s experi-
ence with MASON and code readability.

Several motivations support the introduction of these
facilities into the MASON library. Firstly the MASON
should evolve along its surrounding world — and new
Java facilities are nowadays common in Java programs.
New students are being taught Java with generics and
annotations being there and they expect it in MASON.

The new language facilities will also make it easier to
integrate MASON with GUI tooling and will allow for
easier integration with data import-export tools.

We believe that the following three types of new Java
features should be included in the MASON framework.

• Generics

• Annotations

• enums

The document is divided into three sections — each
section corresponding to discussion of a particular Java
feature and its impact on the MASON library

Generics MASON does not use generics at all. Cur-
rently the explicit type casting occurring right now could
be easily avoided through use of the diamond opera-
tor. This change can be carried out while preserving
full backward compatibility in the MASON library and
will greatly increase code readability. This change will
require a rewrite of several MASON components includ-
ing simulation engine and tooling libraries. However
the change will be backward-compatible and will enable
more concise and readable source code.

Annotations Annotations are another new feature in-
troduced in Java 1.5, and MASON does not use them.
Annotations can play important role in extending the
MASON framework and in increasing developer pro-
ductivity. The following areas can be enhanced by anno-
tations in MASON:

• Describing Java bean objects for the GUI MA-
SON employs an extension of the Java Bean protocol
(setFoo(...) and getFoo() or isFoo()) to add additional
functionality for inspection widgets. For example,
MASON has a “domFoo()” method which returns
the domain of legal values with which Foo may be
set. This can be used to define a slider or a pop-up
menu which constraints possible user inputs to the
Foo property. MASON has a number other gizmos
as well. Currently in the worst case scenario up to
six methods (six methods might be used to manage
a single field. The introduction of annotations may
lead to a cleaner code in this scenario, and code
that will be less prone to developer mistakes. As
Java Bean properties are very important and com-
mon in simulation visualization, we think this will
significantly increase developer productivity.

• Managing data collection processes Annotations
could easily allow one to assign data sinks to partic-
ular fields in a model and and to provide a logging
framework for simulation models.

5



• Model debugging Debugging of multiagent sim-
ulation models is a complex multi-stage process.
Simulation could be run in “debug” and “produc-
tion” modes, where the debug mode triggers debug-
ging annotations to be processed.

Enum support Enums are an example of various small-
scale Java changes which MASON could support better
at this stage, and unlike annotations or generics, many
of them can probably be addressed fairly quickly.

As to enums: the current object inspector in MASON
does not support the use of enums. This necessitates cod-
ing fragile getter and setter methods that involve using
an integer variable. It would be preferable if the inspec-
tor natively handled enums. The get method currently
operates as might be desired (returning the toString

value for the enum) but enums are not supported for
set methods. A set method that presented a JComboBox
selection field would be desirable, both to allow for more
robust coding of getter/setter methods and to avert the
need of writing a separate getter method when the enum
return type is desired. Additionally, extending this func-
tionality with an optional domFoo() facility (see earlier)
to present friendlier strings for the JComboBox could be
implemented.

5 Testing

Working Group Glen Ropella, Richard Legendi, and
Daniil Kiose

Software is distinct from other engineered artifacts
in that the languages used to form each layer of the
stack are highly expressive. From general purpose hard-
ware, through compiler back-ends, all the way up to the
structures assembled by the end user, the opportunities
abound for misunderstanding a component or allowing
anomalous behavior to slip by unnoticed. MASON has
been constructed according to very tight specifications.
However, as yet, no automated testing infrastructure has
been provided to ensure and advertise that each compo-
nent adheres its specifications. Herein, we propose the
development of a multi-scale testing infrastructure to
cover both atomic and composite MASON components.

What is Proposed The tests for many components will
be straightforward to implement, e.g. MutableDouble,
Schedule, and neighborhood lookup operations. Partic-
ularly difficult to test are graphical visualization compo-
nents like Portrayals and Movie Capture. Examples of
testing infrastructure for such do exist, however. Netl-
ogo takes checksums of graphical renderings for each
release. Whether or not GUI interaction should be tested
(with tools like Abbot or Jemmy) is an open question
and any such testing will build upon the higher priority
underlying test suite for the core components.

This proposal includes both internal consistency asser-
tions and cross-release regression testing. And testing
will be automatically triggered following a continuous
integration server methodology where a high priority
test suite is executed when code is checked into the
source code repository. The test suite will be granular,
allowing multiple testing patterns, perhaps including ev-
ery check-in, nightly, weekly, or on demand execution of
partial test suites. If such methodology proves infeasible
due to project constraints, a compromise can be adopted
where intensive test suites are only engaged at public
releases or when new code or components are included.

Every attempt should be made to build upon standard
testing tools, particularly for Java development, includ-
ing JUnit, TestNG, and FindBugs. However, where such
standards would interfere with established project ob-
jectives and needs, they will be abandoned or forked to
provide MASON-specific functionality.

Justification Software verification provides methods
to ensure adherence to a specification. MASON is de-
signed as a hacker-friendly toolkit. I.e., it is intended to
provide a modeler not only with high level constructs
with which to easily construct models, but also with
access to internal, perhaps obtuse, constructs that are
easily used and misused. MASON provides the user
with enough rope to hang yourself, as it were.

This project objective provides an interesting chal-
lenge in that a higher, more opaque wall between tool
producer and tool consumer would provide tighter con-
trols and, hence, a more straightforward testing strategy.
It is easier to ensure the code lives up to its contract
with the user if the tool developers maintain tight con-
trol. However, this conflicts with both the motivation
behind open source and the pragmatic efficacy of open-
ended, extensible tools where the user decides the most
appropriate way to use the tool. As such, the testing
framework will be as open and hackable as the code be-
ing tested, allowing the user to see into and build upon
the testing idioms put in place by the MASON team.

This not only guarantees the usual benefits of a test
suite (adherence to an implicit, evolvable specification,
predictable effect and performance, and efficient devel-
opment and debugging), but also provides a set of “best
practices”, a guideline for how MASON does testing.
This helps both expert users transition to MASON, users
who may be more familiar with how other tools do test-
ing and novice users who may not be familiar with how
testing is or should be done at all. In this sense, MA-
SON’s test suite will provide both a counterpart to other
testing methods as well as educational content for those
who are just learning.

Most importantly, the extent to which a layered tool-
chain can be trusted to achieve it’s composite objectives
depends fundamentally on the trustworthiness of each
tool in that chain. Because agent-based models, the dom-
inant application domain for MASON, are explicitly de-

6



signed to target concrete, detail-oriented models of com-
plicated and complex systems, it is critical for the trusta-
bility of those models that MASON have a transparently
accessible, coherent, and complete testing framework.
Such a framework will allow and facilitate explicit deci-
sion making and project tracking not only for MASON,
but for any tool-chain in which MASON is used.

6 MASON and STEM

Working Group Vittorio Scarano, Claudio Cioffi-
Revilla, Dan Rogers, Vera Kazakova, Sara Jonsson, John
McManus, and Paul Wiegand

The United States is experiencing decreasing STEM
literacy from kindergarten to university-level education.
We believe that Agent-Based Models (ABMs), which are
often exciting for students to build, can help reverse the
trend by enhancing complex critical thinking, by encour-
aging multi-disciplinarity, and by making exploratory
learning a common skill. Many misconceptions of scien-
tific facts among students could be easily tackled by an
exploratory approach via models and their simulation.

Complications Models in general are often intimidat-
ing for students, as they often have a steep learning
curve. With a common lack of programming skills in
many scientific disciplines, and the lack of multidisci-
plinary programs, this impacts on the popularity of mod-
eling and simulation as a learning tool, since students
(and teachers) often don’t understand how models can
help their students learn, especially in K–12. But we
think that agent-based models can leverage kids’ inter-
ests in simulation via playing simulation games, such
as those many students are familiar with (SimCity, etc.).
Even learning experts do not all realize that models are
not used only for prediction, but are also used as a tool
to understand, test assumptions, and look for missing
information. ABMs may represent a 21st century way to
explore the world and help understand it. Another sub-
stantial complication is the potential lack of high-quality
visualization in simulations since it significantly affects
the impact of models as teaching and learning aids.

Resolution We suggest developing teaching tools to
help teachers to use MASON in a learning environment,
in order to broaden educational usage of MASON in
K–12 and to promote the benefits of modeling. MASON
could be revised to fit educational needs for STEM edu-
cation in order to allow learners to explore the dynamic
world in first person. ABMs can be helpful in realizing
that math and stats, alone, are insufficient to understand
complex phenomena. By making MASON more user-
friendly, i.e., by simplifying its interface, there could be
a consistent effect on the STEM education, encourag-
ing novices and young people to use (the educational

version of) a professional simulation environment as
teaching and learning aid.

To help the diffusion, first, there should by several
ABM pilot programs in one or more high schools, in or-
der to collaboratively design MASON around learning
needs. Then, possibly, MASON developers might have a
workshop and tutorials for enhancing the value of ABMs
and MASON in non-modeling communities. Also help-
ful would be a catalogue of MASON simulations that
correct the misconceptions of scientific facts,or that can
be useful for motivation and engagement for learners in
the class. ABMs (and MASON) could also be a way to
teach both Java and ABMs to non-computer scientists’
introductory programming course.

Use Cases An example use case is Thomas Jefferson
High Schools, which has a collaboration with the MA-
SON development team, and has in some cases had
students contributing directly to MASON.

7 Collaborative Archives
and Facilities

Working Group Nicolas Payette, Chris Hollander,
Vera Kazakova, Sara Jonsson, Richard Legendi, Paul
Wiegand, and Vittorio Scarano

MASON is a powerful environment, useful for solv-
ing complex scientific problems, but the system is hard
to approach for new users. The new MASON manual
mitigates that problem to a certain extent, but it is a refer-
ence work that can be daunting for a beginner. Examples
are few, and there is no obvious, active community to
which to reach out. The mailing list, while active and
helpful, is often concerned with technical problems that
can be intimidating for new users and provides limited
interaction and search capabilities.

Because MASON is challenging to learn, it is less likely
that people are going to use it to address their scientific
problems. And those that do adopt it spend a lot of time
overcoming the initial learning curve — time that they
could be spending solving scientific problems.

Coming up with a precise plan regarding a collabo-
ration space is outside the scope of this brief strawmen
proposal. We have, however, identified several things
that would need to be made easily sharable between MA-
SON users. There are, of course, other existing tools that
overlap with what we have in mind here (for example,
StackOverflow, the OpenABM website, the Modeling
Commons for NetLogo models), but there still needs to
be a collaboration space that would be specific to the
MASON community and bring it together: something
that could serve as a bridge into the MASON world.

The main thing that people need to share is models.
But these can range from whole scientific models to small

7



and useful code snippets (the “cookbook” model was
often mentioned in user group discussions). Examples
that have pedagogical value (perhaps shared by MASON
teachers) would be especially desirable. To be useful, this
repository of community resources must be well struc-
tured. Two main forms of organization were suggested:
by application domain and by level of complexity. These
two are not mutually exclusive, and other dimensions
could be added as well.

The social aspect is crucial for the community to main-
tain itself. Whatever artifacts end up being shared, peo-
ple need to be able to comment on them, propose modi-
fications (maybe fork them), share them, etc. That kind
of interaction can also foster collaboration on larger sci-
entific projects.

One issue that is related to the social aspect of the com-
munity is that of trust: we need to know if a proposed
model or other artifact is safe to run or is scientifically
valid. Having some expert (or team of experts) do this
is unrealistic, as it is a time consuming job, but perhaps
it could be done by the community, through a reputa-
tion system similar to that of StackOverflow or some
other community-distributed mechanism for trust and
certification.

8 Validation Via Optimization
and Parameter Sweeping

Working Group Claudio Cioffi-Revilla, Keith Sullivan,
Glen Ropella, Przemyslaw Szufel, Vlasios Voudouris,
Sean Luke, and Daniil Kiose

Agent-based models are complex, involving large
numbers of interaction rules, model parameters, and
agent behaviors. This makes model validation and
verification challenging, particularly when the proper
settings of some of these rules or parameters are not
known ahead of time. We identify four kinds of parame-
ters/rules. First, there are those parameters/rules which
are known to be true based on observation of real-world
phenomena. Second, there are parameters/rules whose
settings are based on the canonical theory or hypoth-
esis which the model is designed to support or verify.
Third, there are parameters/rules for which the model-
developer does not have a good idea as to what the
proper setting should be. We call these hidden parame-
ters. Finally, there are parameters/rules over which the
model designer wishes the model to be insensitive. We
call these the foil parameters.

The question is how to validate such models. We be-
lieve one approach is to apply optimization techniques
to attempt to optimize the hidden parameters regardless
of settings of the foil parameters. The objective function
for optimization is the difference in output statistics of
the model when compared to expected results drawn

from historical or real-world known behavior. Ideally
the optimizer would find settings of the hidden parame-
ters which optimize this objective function regardless of
how the foil parameters are set.

The most obvious techniques for modeling complex
models such as these are stochastic optimization or
metaheuristics methods such as evolutionary algorithms.
Evolutionary algorithms have the additional advantage
of being highly distributable to multiple machines (im-
portant because models are costly to run and test); and
so-called coevolutionary methods, among others, can find
solutions which are insensitive to foil parameters.

An optimization package may also be useful within
a model. Agent behaviors often involve a degree of
bounded rationality and/or expectations. In other
words, agent’s develop rules by forming expectations
and then optimize their decision space given their expec-
tations. By developing an optimization package within
MASON, applied modelers will be better positioned to
develop “realistically rendered” agent-based models.

MASON also would benefit from a good parameter-
sweep functionality, particularly over distributed ma-
chines. This will significantly enhance model validation,
model calibration and systematic exploration of the de-
cision space to discover unanticipated results in parts of
the space which can have important implications and
consequences on the underlying theory. It is also helpful
to have dynamic parameter sweeping so that the param-
eters settings change as a function of the model perfor-
mance. Therefore, the modeling of flexible conditional
distributions is important in order to better capture the
tails of the decision space.

For this reason MASON could benefit significantly
from the development of external and internal model
optimization tools, and from parameter sweep facili-
ties, particularly ones which can be distributed or paral-
lelized.

9 MASON and GIS

Working Group Mark Coletti, Ken Cline, John Mc-
Manus, and Luı́s de Sousa

GeoMASON is an extension to MASON that makes
it easier for practitioners to implement simulations that
occur on the Earth’s surface. Examples of these kinds of
simulations include modeling wildfires, traffic, flooding,
animal migration, refugee movement, disease propa-
gation, and climate change effects. Writing MASON
code to support this functionality without GeoMASON
would be difficult, time consuming, and error prone;
that is, practitioners would have to implement their own
means of reading, writing, and manipulating geospatial
data to support these kinds of simulations, which is the
kind of functionality that GeoMASON provides.

8



Currently GeoMASON provides a number of prim-
itives for querying and manipulating geospatial data.
For example, a user could determine what political en-
tity contains a given agent, find the nearest road, count
the number of diseased agents in a country, and move
agents along a path, among other things.

We feel that GeoMASON can be greatly improved. For
one, the available geospatial operators are fairly primi-
tive such that the user is left to assemble these operators
to support higher level functions. For example, GeoMA-
SON would greatly benefit from having better support
for networks, such as finding the closest edge, shortest
path, and moving along routes. Another area of im-
provement would be in performance, particularly with
regards to geospatial operations. We would need to do
a detailed assay of hotspots via profilers and address
those as they are found. Another means of performance
improvement would be better support for D-MASON,
which would allow spreading geospatial-related compu-
tational burden across separate CPUs.

9


