Department of Computer Science
Technical Reports

George Mason University

4400 University Drive MS#4A5
Fairfax, VA 22030-4444 USA
http://cs.gmu.edu/ 703-993-1530

Temporal Manufacturing Query Language (tMQL) for Domain
Specific Composition, What-if Analysis, and Optimization of
Manufacturing Processes With Inventories

Mohan Krishnamoorthy
mkrishn4@gmu.edu

Alexander Brodsky
brodsky@gmu.edu

Daniel A. Menascé
menasce@gmu.edu

Technical Report GMU-CS-TR-2014-3
Created: May 2014; Modified: May 2015

Abstract

Smart manufacturing requires streamlining operations
and optimizing processes at a global and local level. This
paper considers manufacturing processes that involve
physical or virtual inventories of products, parts and
materials, that move from machine to machine. The
inventory levels vary with time and are a function of
the configuration settings of the machines involved in
the process. These environments require analysis, e.g.,
answering what-if questions, and optimization to deter-
mine optimal operating settings for the entire process.
The modeling complexities in performing these tasks
are not always within the grasp of production engineers.
To address this problem, the paper proposes the tempo-
ral Manufacturing Query Language (tMQL) that allows
the composition of modular process models for what-if
analysis and decision optimization queries. tQML sup-
ports an extensible and reusable model knowledge base
against which declarative queries can be posed. Addi-
tionally, the paper describes the steps to translate the
components of a tMQL model to input data files used by
a commercial optimization solver.

1 Introduction

In the past few years, there has been significant techno-
logical advancements in different areas of process anal-
ysis and optimization. Examples of processes include
manufacturing processes, such as assembly lines, and
supply chain. These processes often involve physical
or virtual inventories of products, parts and materials
that are used to anticipate uncertainties on supply or
throughputs of machines. Over time, the state of the
machines, inventories and the whole process changes

until process completion. We use the term Buffered Tem-
poral Flow Processes (BTFP) to describe them. BTFP can
be found in many different areas of manufacturing and
supply chain. A particularly important BTFP is in the
area of discrete manufacturing such as in automotive,
furniture, smartphones, airplanes and toys. The BTFP
formalism presented in this paper can be used to model
problems that deal with inventories whose state varies
at discrete time intervals.

Due to increased global competition, manufacturing
companies look toward ways to reduce their cost and
increase efficiency of operations. This results in a greater
need for analysis and optimization of the operation re-
sults on the manufacturing floor while taking into ac-
count sustainability metrics. To support analysis and
optimization of BTFP, there is a need to accurately model
machines, systems and processes. These models need
to capture (a) metrics of machines (such as cost, energy
consumption, and emission) as a function of control
variables, (b) process routing that describes the flow
of materials thorough the manufacturing floor, and (c)
work-in-progress for inventories. In BTFP, this needs
to be modeled over a temporal sequences and include
stochasticity of machines throughput and supply.

Using these models, it is desirable to allow manufac-
turing and process engineers to perform a variety of
analysis and optimization tasks including what-if pre-
diction and optimization. For example, as a prediction
question, a process engineer may ask: given a particular
planned machines’ throughput, and load-distribution
among the machines, what would be production output,
work-in-progress inventories, for each time interval over
the time horizon, as well as overall manufacturing key
performance indicators (KPIs) such as cost, efficiency
and carbon emissions. Or, as an optimization question,
a process engineer may ask: given the process design

(which includes the flow of work pieces through var-
ious stages of processing), which machines should be
on and off, and how to set-up controls of every opera-
tional machine, and distribute processing load among
the machines, as to minimize the total production cost,
while satisfying the demand for every time interval over
a planning horizon, and within a limitation on the capac-
ity of work-in-progress inventories? Given the diversity
of manufacturing processes, it is highly desirable to have
a system that would allow the flexible specification of
manufacturing processes, and able to answer declarative
analysis and optimization queries to end users.

There has been extensive research on analysis and
optimization of BTFP like processes (e.g., see [1], [2],
[3] for overview). Broadly, the work can be classified
into three broad categories: (1) customized domain-
specific solutions for optimization of manufacturing pro-
cesses, (2) simulation-based systems, and (3) optimiza-
tion solvers and modeling languages based on mathe-
matical programming (MP) and constraint programming
(CP). Customized domain-specific solutions for BTFP are
designed for specific, limited setting of a manufacturing
process, and would typically provide a graphical user
interface that is easy to use by the end users. Examples
include [4] and [5]. The implementation of domain spe-
cific solutions may use optimization tools based on math-
ematical programming, and integrate them with other
systems such as Enterprise Resource Planning (ERP).
However, while these solutions may be both efficient (in
terms of optimality of results and computational time),
they are (1) typically not extensible to additional aspects
of machines, processes and metrics, and (2) perform a
“silo” optimization, which would not achieve the global
optimum if an extended underlying system needs to be
optimized.

Simulation-based systems allow to accurately model
a system and its inner workings. It is object-oriented,
modular, extensible, and reusable. Furthermore, many
simulation tools provide an easy-to-use graphical user
interface. Tools like SIMULINK [6] and Modelica-based
ones [7] like JModelica [8], Dymola [9], and MapleSim
[10] allow users to model complex systems in mechani-
cal, hydraulic, thermal, control, and electrical power. For
example, Modelica comes with over 1000 generic model
components that can all reused. However, simulation-
based optimization is significantly inferior to optimiza-
tion solutions based on MP/CP in terms of optimal-
ity of results and computational complexity. This is
because simulation-based optimization amounts to a
heuristically-guided trial and error search, which does
not utilize the mathematical structure of the underlying
problem the way MP/CP methods do.

Optimization solvers and modeling languages based
on MP and CP are often the technology of choice, when
optimality and computational complexity are the prior-
ity. Many classes of MP, such as linear programming
(LP), mixed integer linear programming (MILP), and

non-linear programming (NLP), have been very suc-
cessful in solving real-world large-scale optimization
problems. CP, on the other hand, has been broadly used
for combinatorial optimization problems like scheduling
and planning. To use these tools, one would have to use
an algebraic modeling language such as AMPL [11], OPL
[12], GAMS [13], or AIMMS [14]. However, MP and CP
modeling present a significant challenge for engineers
and business analysts to model. It would require an OR
expert to model a problem and express it in an algebraic
modeling language like the ones mentioned. Addition-
ally, these formal models are typically difficult to modify,
extend, or reuse. This is comparable to “spaghetti” code
versus an object-oriented approach.

Sustainable Process Analytics Formalism (SPAF) [15]
was recently proposed to target modularity and reusabil-
ity of optimization models, yet designed to use MP/CP
algorithms via a reduction of an SPAF model and a
declarative optimization query to formal MP/CP mod-
els and solving them using commercial solvers. In turn,
SPAF is based on the ideas of modular representation
of constraints and reductions to formal optimization
models from [16], [17], [18], [19], [20], and [21]. How-
ever, being a general modeling language, SPAF did not
address the problem of building a high-level domain spe-
cific language for BTFP processes, i.e., over a temporal
domain, and involving product and work-in-progress
inventories. This is exactly the focus of this paper.

In this paper, to address the limitation of current ap-
proaches, we propose tMQL - the temporal manufactur-
ing query language and framework - for modular com-
position, manipulation, what-if analysis and optimiza-
tion of BTFP processes, machines and work-in-progress
inventories. More specifically, the contributions of this
paper are as follows:

o We propose the tMQL language, define its syntax
and semantics

e We describe the tMQL framework for the manage-
ment of a centralized knowledge-base of reusable
tMQL components, and performing what-if analysis
and decision optimization tasks using a declarative
end-user language.

o We present a graphical notation to model the compo-
nents of the BTFP problem as a process interaction
diagram.

e We report on and describe the implementation of
tMQL using the Optimization Programming Lan-
guage (OPL).

The rest of this paper is organized as follows: an example
motivating the tMQL framework is given in section 2.
The tMQL framework is explained in section 3 followed
by the tMQL language in section 4. Section 5 gives and
informal description of the syntax and semantics of the
tMQL language. Section 6 describes the implementation
of deterministic tMQL, and finally, section 7 concludes.

Plywood

Sanding1 Sanding2
Screws Nails Roller
Cutting1 Cutting2 Cutting3
Paint & Dry1 Paint & Dry2 Paint & Dry3 Accessory Gathering
* ? * LEGEND
Finishing1 Finishing2 Finishing3
Input Quantity
Aggregator
Output
Quantity
Aggregator
Inventory
Assembly1 Assembly2 Aggregator
Packaging \:I Process
—> Item Flow

Packaged Book Shelves
\

Assembled Book Shelves ¢

Figure 1: A graphical notation for the bookshelf manufacturing floor

2 Motivating example

This section introduces an example BTFP problem to de-
scribe the challenges motivating the tMQL framework.
The example consists of a simplified bookshelf packag-
ing and assembly system. For simplicity, we consider
that the bookshelf consists of a left plank, a right plank,
and three shelves, is supported through screws and nails,
and is provided with rollers for easy movement.

A graphical notation for the process interaction is
shown in Fig. 1. The machines, shown as rectangular
boxes, are interleaved with buffers used to store and/or
distribute the items produced by one machine to an-
other. The concept of buffer is explained in greater detail
in the section 4. Raw materials for the bookshelf manu-

facturing floor consist of plywood logs and accessories
such as nails, screws, and rollers. The plywood goes
first through two sanding machines where the plywood
logs entering the floor are sanded to smoothen the wood.
Next, the left plank, right plank and the shelves are cut
by their own respective machines. This stage involves
the wood first undergoing the rough cutting of appro-
priate size from the log of plywood, precise cutting of
the edges, and sanding of the edges. After this, the left
plank, right plank and shelves are painted and dried by
their respective machines. After the drying is complete,
a finishing touch is given to the left plank, right plank,
and the shelves by their respective machines. This in-
volves drilling holes and cleaning the respective pieces
of wood so that they are ready for use. In parallel, the ac-

cessories are gathered by a machine. Then, the finished
left plank, right plank, shelves and the accessories are
either packaged in a box to be sent to a warehouse or
they are assembled into a bookshelf by a machine to be
put on display.

The system could include controllable and non-
controllable parameters from all the machines. Exam-
ples of controllable parameters include the speed of the
sanding machine and the temperature of the painting
and drying machines. In addition, all machines along
with the heating and cooling auxiliary devices consume
energy.

Machines output parts to be used by succeeding ma-
chines, which may not be able to immediately work on
these parts. Hence, all machines are interleaved with
physical buffers that can hold parts until the succeeding
machine(s) are ready to take these parts as input. These
buffers are constrained by their capacity. Also, there
may be multiple machines working at different speeds
and efficiencies, at the same stage of production. Finally,
the flow of items between the machines and buffers is
bounded by the number of items that the machines can
handle and/or by the number of items that can be stored
in the buffers.

tMQL allows various queries to be asked against the
process interaction. Optimization queries can be of
the form maximize the number of bookshelves pack-
aged or minimize the energy consumed or minimize the
time taken to assemble one bookshelf. What-if analysis
queries can be of the form what is the throughput of the
manufacturing floor, in packaged bookshelves/hour, for
a given setting of the speed of the various machines?

3 tMQL Framework

This section provides a high level description of tMQL
which allows one to model the components of a manu-
facturing floor and perform queries on this model (see
Fig. 2). The framework consists of the tMQL query lan-
guage, the tMQL knowledge base (KB), tMQL roles, and
the tMQL engine. A Buffered Temporal Flow Processes
system can be described as a set of components, which
can be processes, aggregators, and the flows that con-
nect them. These components are stored in the tMQL
KB. For instance, in the bookshelf example, the tMQL
KB will have all the sanding, cutting, paint & dry, fin-
ishing, packaging, assembly and accessory gathering
processes as well as the aggregators al - aC. In addition,
the KB will also contain the flows shown as one direction
arrows in Fig. 1. The tMQL KB acts as a repository of
components. The KB can contain compositions of more
than one component as well as components with their
metrics evaluated so that they can be composed into
other components and used in a other queries.

The tMQL queries are: a) compose: used to compose
two or more components from the KB, b) specialize: used

to specialize the value of the metric of a component,
c) compute: used to compute metrics of a component
and d) optimize: used to optimize a numeric metric of a
component subject to constraints, and e) new: used to
create a copy of a component from the KB. The new query
can be used along with the specialize query to compose
components.

There are two tMQL roles: process modeler and pro-
cess operator. The process modeler is responsible for
composing components to support the needs of the BTFP
problem. The process modeler stores these composed
components in the KB. The process operator can special-
ize the components and perform computation or opti-
mization queries on the components from the KB. The
process operator can store the results of tMQL queries
back in the KB for future use. Although the process mod-
eler and process operator are described as two separate
roles, it is possible for a single person to play both roles.

The tMQL engine takes existing components from the
tMQL KB and the queries on these components and ap-
plies efficient techniques to generate answers for these
queries. An optimization solver such as IBM’s CPLEX
optimizer may be used to solve deterministic optimiza-
tion queries. Simulation solvers may be used to compute
metric values, perform metric calibration and what-if
analysis. Some other techniques such as embedded opti-
mization solvers may be used to perform optimization
in a stochastic environment.

4 Query Language for tMQL frame-
work: tMQL

tMQL is a modular query language for the tMQL frame-
work. The language has both a graphical notation, ex-
emplified in section 2, and a textual notation. tMQL
allows for any discrete, buffered, manufacturing process
to be modeled, analyzed, and optimized. Because tMQL
allows for process refinement, complex manufacturing
processes can be easily modeled. This section describes
tMQL by example. The formal syntax and semantics of
the language are provided in appendices A and B.

Consider the example in Fig. 3, which is a smaller
version of the bookshelf example described in Fig. 2. In
this example, a part of the plywood goes to the sand1l
machine and the remaining goes to the sand2 machine.
The sanded plywood is then buffered and redistributed
among the cutl and cut2 machines. The sanded plywood
is cut in these machines and finally, the cut plywood is
collected and provided as output from the sand and cut
manufacturing floor. We assume that time is divided
into time intervals of duration At and that time intervals
start and end at time points. We assume without loss of
generality that At = 1. A time interval (also known as a
period) is denoted by p;11 = (#;, t;11). For this example,
we consider that there are three time points and therefore
two time intervals.

Manufacturing
Floor

Process Modeler

Optimization Solver (CPLEX) Compositon [«
Simulation Solver Specialize
Embedded Optimization Solver l«—» Compute :s
Optimize \
p *—\s‘x Process Operator
tMQL Engine tMQL Query
I tMQL Roles
-
tMQL Knowledge “ Store
Base

Figure 2: tMQL Framework

The tMQL KB contains built-in components that do
not have any values associated to metrics. The KB also
contains user-defined components that can be gener-
ated from built-in components by specializing them with
characteristics and data from the manufacturing floor.
User-defined components include process components
that either model individual machines, a subset of the
manufacturing floor, or the entire manufacturing floor.
These components can be stored back into the KB. For
instance, the component used to model the sandl ma-
chine provides metrics such as the speed of the machine,
number of inputs required per output produced and to
compute the cost of production. The component used
to model the sand and cut manufacturing floor encap-
sulates all the process, flow and aggregator components
of the floor. The components in the KB also include
aggregators such as input quantity aggregator (IQA), in-
ventory aggregator (IA), and output quantity aggregator
(OQA).

The IQA (e.g., al) allows for the input plywood to be
distributed among the sand processes. The IA (e.g., 42)

is the buffer that allows the sanded wood from the two
sand processes to be stored and/or distributed among
the cut processes. The OQA (e.g., a3) allows for the cut-
wood from the cut processes to be collected and output
as single collection. Finally, the KB has flow component
such as the flows going out of IQA a1 that contains in-
formation of how the items flow among a1 and sand
process. Assume that the KB already contains all the pro-
cess components for the sand1, sand2, cut1, cut2 processes.
These processes have their in and out flows specialized
to the respective machine’s inputs and outputs on the
floor. In addition, these processes also have some of their
metrics specialized. A snapshot of this specialized sand1
process is described in subsection 4.2.

4.1 Composition of tMQL components

A process modeler can now compose the manufacturing
floor model. This can be done by invoking the specialize
query on the built-in component of the manufacturing
floor called compositeProcess to update its inputs, outputs,

V plywood

sand1

cuti

sand2

sandedwood

LEGEND

Input Quantity
Aggregator

o>

cut2

Output

cutwood

e

Quantity
Aggregator

Inventory
Aggregator

Process

—

|

—> Item Flow

Figure 3: A graphical notation for the sand and cut manufacturing floor

flows, processes, aggregators, and metrics. An example
of the specialize query for the sand and cut floor (Fig. 3)
is shown in Fig. 4. The input and outputs of the floor
are the plywood and cutwood flows. They are first cre-
ated by calling the new query on the built-in itemFlow
component and then the input, I, and output, O, of the
compositeProcess component is specialized. Then, the
individual sand and cut machines are installed using the
new query on the respective process components in the
KB. Similarly, the IQA, IA and OQA are installed as al,
a2, and a3, respectively, with their inputs and outputs
specialized. Finally, the composite process contains the
cost metric defined as the sum of the cost incurred by
each base process. In this way, different components
from within the KB are used to compose the sand and
cut composite process. This specialized composite pro-
cess is stored in the KB as SandCutProcess using the insert
command.

Intuitively, the above model captures the metrics and
constraints of the sand and cut process, the aggrega-
tors used to store and/or distribute the wood, and the
flows that enable the processes and aggregators to in-
teract with each other. The metrics specific to the sand
and cut manufacturing floor are incorporated into each
component that is copied (via the new query) or special-
ized from the KB. In addition, the constraints in these

components enable the composite process to restrain the
decision metrics within the metrics specific to the sand
and cut manufacturing floor.

4.2 tMQL components

Before showing the queries that can be run on the com-
posite model created above, this subsection describes
the mathematical definitions of the tMQL components
used to model individual machines, aggregators and
flows with respect to the sand and cut manufacturing
floor shown in Fig. 3. The formal syntax of the compo-
nents can be found in appendix A. The mathematical
definition of the constraints associated to components is
discussed in section 5.

Metrics initialized by “...” are parameters of the
model and will need to be specialized later. The metrics
with value “...” in the flows and aggregators of Fig. 5
can be specialized as constants or expressions specific
to the respective component or be left to be specialized
later. A specialization of this kind for the sand and cut
manufacturing floor was shown in Fig. 4. Metrics ini-
tialized by a “?” are decision variables (dvar) that can
be specialized as constants, expressions, be specialized
later, or be used as decision variables for optimization
queries.

insert SandCutProcess = specialize compositeProcess {

// Global inputs and outputs
itemFlow plywood = new itemFlow;
itermFlow cutwood = new itemFlow;
{itemFlow} | = {plywood};
{itemFlow} O = {cutwood};

// Base Processes

Process sand1 = new sand1;
Process sand2 = new sand2;
Process cut1 = new cuti;
Process cut2 = new cut2;

{Process} pvars = {sand1, sand2, cut1, cut2};

// Aggregators

IQA a1 = specialize IQA{

h

{itemFlow} | = {plywood};
{itemFlow} O = {sand1.plywood, sand2.plywood};

1A a2 = specialize 1A{
{itemFlow} | = {sand1.sandedwood, sand2.sandedwood};
{itemFlow} O ={cut1.sandedwood, cut2.sandedwood};

3

OQA a3 = specialize OQA{

j

{IA} iavars = {a2};

{itemFlow} | = {cut1.cutwood, cut2.cutwood};
{itemFlow} O = {cutwood};

{IQA} iqavars = {al};
{OQA} ogavars = {a3};

//Metircs

{string} metrics = {cost};
float mValues[cost] = sum(p in pvars) p.cost;

Figure 4: Specialize query on compositeProcess to create a sand and cut composite process

We first describe the mathematical definitions of flows
and aggregators. A flow is a tMQL component of type
itemFlow. An example in the sand and cut process is the
sandl.plywood flow that carries plywood from IQA a1 to
sandl process. The mathematical definition of a built-in
flow component is shown in Fig. 5(a). The number of
items that the flow contains in each period is given by
the periodQty metric of this flow. These items are con-
strained by the tp Alloc metric. This constraint ensures
that the number of items flowing through this compo-
nent are within the bounds of what can be handled by
the aggregators and the processes at either end of the
flows.

An aggregator of type IA is a tMQL component that
stores and distributes items on the floor (see e.g., a2
in our example and Fig. 5(b) for its mathematical def-
inition). The IA stores and distributes items coming
in from processes via its input flows and going out to
processes via its output flows. The IA has a storage
capacity that is the maximum number of items that the
IA can physically store. This IA may not require to
use this capacity entirely because either the inputs are
flowing slowly or there is a high demand on the output
flows or the demand on the manufacturing floor is low.

Hence the total space used during the time the IA is
active is captured by the total Qty metric and is upper
bounded by the capacity metric. An IA uses the input
allocation ratio (inAllocRatio) and output allocation ra-
tio (out AllocRatio) to determine the upper bound on the
number of input items to take and the amount of these
items to be distributed among the output processes. The
number of items stored in the IA at each time point is
captured by the inventory quantity metric (invQty) cal-
culated as the difference between the number of items
brought in by the input flows and taken out through the
output flows.

An aggregator of type IQA is a tMQL component that
distributes inputs to two or more processes (see e.g., al
in our example and Fig. 5(c) for its mathematical def-
inition). The IQA takes all the items entering via its
input flow and distributes them among all its output
flows in a way that maintains an output allocation ratio
(outAllocRatio) for all its outputs. Based on the distri-
bution scheme used, the sum of all input allocations
(total TPAlloc) is distributed among its outputs. Because
the IQA does not have storage, all incoming items into
the IQA need to be distributed among processes.

An aggregator of type OQA is a tMQL component

itemFlow builtinitemFlow 1A builtinlA = IQA builtinlQA = OQA builtinOQA =
{ { { {
stringmt = ..; stringmt=...; stringmt=_..; stingmt=...;
int tpAllocft] = ?; {itemFlow} | =...; {itemFlow} | = ...; {itemFlow} | = ...;
int periodQty[p] = ?; {itemFlow}O = ...; {itemFlow} O = ...; {itemFlow}O = ...;
/f constraints on periodQty, int capacity = ...; float outAllocRatio[O] = ...; float inAllocRatio[l] = ...;
tpAlloc int initinv = ._.; int totalTPAlloc[t] = ?; int totalTPAlloc[t] = ?;
H float inAllocRatiofl] = ...; constraint totalTPAllocConstraint; constraint totalTPAllocConstraint;
} float outAllocRatio[O] = ...; constraint outputAllocationConstraint; constraint inputAllocationConstraint;
iint invQty[t] = ?; constraint inputQtyConstraint; constraint outputQtyConstraint;
int totalQty = ?; // constraints on outAllocRatio, // constraints on inAllocRatio,
// constraints on capacity, // totalTPAlloc / totalTPAlloc
initinv, inAllocRatio, H :
// outAllocRatio, invQty, } }
totalQty
}
(a) (b) (c) (d)

Figure 5: Mathematical Definitions for the built-in components of (a) item flow (b) inventory aggregator, (c) input

quantity aggregator, and (d) output quantity aggregator

Process baseProcess =
{
{itemFlow} | = ...;
{itemFlow} O = ...;
float throughputControl[p] = ?;
float capacity = ...;
int inputPerOutput(l] = ...;
float accumAmt[p] = ?;
float leftOver[t] = ?;
{string} metrics = ...;
float mValues = ?;
// constraints on capacity,
// throughputControl, accumAmt,
// leftOver, inputPerOutput }

{itemFlow} | = {plywood};

{string} metrics = {cost};

(a) (b)

insert Sand1 = specialize baseProcess

itemFlow plywood = new itemFlow;
itemFlow sandedwood = new itemFlow;

{itemFlow} O = {sandedwood};

float accumAmt{p] = f(leftOver[p-1],
throughputrControl[p],
periodLength),

float leftOver(t] = flaccumAmt[p],

sandedwood1.periodQty[p]);

float mValues([cost] = f(throughputControl);

Process Sand1 =
{
itemFlow plywood = new itemFlow;
itemFlow sandedwood = new itemFlow;
{itemFlow} | = {plywood};
{itemFlow} O = {sandedwood};
float throughputControl[p] = ?;
float capacity = ...;
int inputPerQutput(l] = ...;
float accumAmt[p] = f(leftOver[p-1],
throughputrControl[p],
periodLength);
float leftOver[t] = f(accumAmt[p],
sandedwood1.periodQty[p]);
{string} metrics = {cost};
float mValues[cost] = f(throughputControl);
/ constraints on capacity,
// throughputControl, accumAmt,
// leftOver, inputPerOutput

(c)

Figure 6: Defining Process components for machines: (a) mathematical definitions for the built-in components of
baseProcess, (b) specialize query on the baseProcess to map the Sand1 machine (c) the result of the specialize query

that collects outputs from two or more processes (see
e.g., 43 in our example and Fig. 5(d) for its mathematical
definition). The OQA collects items from two or more
processes via its input flows in a way that maintains
the input allocation ratio (inAllocRatio) for all its inputs.
Based on the distribution scheme used, the sum of all
output allocations (total TPAlloc) is distributed among
its inputs. The processes will use this as a guide to
produce and output the items to the OQA. Because the
OQA does not have storage, all items coming into the
OQA must leave the floor.

A base component, known as the baseProcess, is used
to map the machines on the manufacturing floor by cap-
turing their metrics and constraints and their interaction
with aggregators via flows. The mathematical definition
of the baseProcess component is described in Fig. 6(a).
The baseProcess component can be reused to conceive
the user-defined components for different machines. For
example, instead of defining the Sand1 process directly,
it can be defined as a specialization of the baseProcess

(see Fig. 6(b)).

Figure 6(c) shows the Sand1 process, which is an out-
put of the specialize query on the baseProcess. The Sand1
process is used for sanding the plywood coming in as
input and providing sanded plywood as output. As
stated previously, the Sandl process is specialized from
the baseProcess with new objects of the input and output
itemFlows. The flows are installed as the inputs, I and
the outputs, O using the new query. The speed of sand-
ing the plywood is controlled by the throughputControl
metric at each time period. This metric is initialized by a
“?”, which makes it a decision variable (dvar). The speed
of the machine is constrained by its maximum speed
called the capacity. This capacity could be the maximum
speed possible for the process or may be constrained
by some sustainability metric. The sand process also
has the input per output metric (inputPerOutput) that
captures the amount of plywood that the sand process
requires per sanded wood. This restraints the amount of
plywood required per period. The values of the capacity

and the inputPerOutput metrics are initialized as ...,
which means that they will need to be specialized later.
The amount of sanded wood accumulated at each time
period is captured by the accum Amt metric. The amount
of leftover sanded wood at each time point is captured
by the leftOver metric. Finally, metrics and mValues are
used to capture the cost of the sandl process. The to-
tal cost incurred by the Sandl process is a function of
the throughputControl value at each time period. Other
sand and cut processes can be specialized similarly.

4.3 Queries on the composite process

The previous subsection described the specialize and
the new queries. This subsection introduces two other
queries supported by tMQL: compute and optimize. Once
the manufacturing floor has been composed into the
composite model shown in subsection 4.1, a process op-
erator may decide to specialize some of the parameters
and/or decision variables of the processes and aggre-
gators discussed in subsection 4.2. See Fig. 7(a) for an
example of using the specialize query on the SandCutPro-
cess. Also, the syntax and semantics of the queries are
provided in appendices A and B.

The sand1 machine will sand at a speed of 2.2 and 3.2
plywoods in the two time periods. Hence, the operator
will specialize the throughputControl metric of the sand1
process with these values. Also, the maximum amount
of plywood that can be sanded in each time period by the
sand1 machine is 5.5 and one plywood is required to pro-
duce one sanded wood. Thus, the operator specializes
the capacity and inputPerOutput metric with these val-
ues, respectively. The other metrics of the sand1 process
are not specialized here and hence their values remain
the same as shown in Fig. 6. Similarly, other sand and
cut process metrics are also updated by their respective
values. In addition, the operator may update the metrics
of the aggregators. For the IA, 42, its maximum capacity
(capacity) and initial inventory quantity (initInv) met-
rics are specialized as 10 and 1, respectively. Also, the
proportion of sanded wood taken as input at each time
point by a2 from both sand1 and sand 2 machines is 0.5.
Similarly, the proportion of sanded wood given as out-
put at each time point by a2 to the cutl machine is 0.4
and to cut2 machine is 0.6. These values are specialized
by the operator in the inAllocRatio and out AllocRatio
metrics of IA a2. For the IQA, al, the distribution of
plywood to sand1 and sand2 machines are 40% and 60%
whereas the OQA 43 accepts 50% of the cut wood from
the cutl machine and 50% of the cut wood from the cut2
machine at each time point. These values are specialized
by the operator in the a1 and a3 aggregators, respectively.
Finally, the result of this specialized metric composite
process is stored as SandCutProcessDuvarless into the KB.

The specialized composite process stored as SandCut-
ProcessDuvarless in the KB captures the current state of the
sand and cut manufacturing floor. If all the metrics are

initialized as constants or expressions in terms of other
metrics, we say that the component is dvarless. Due
to the specializations performed on the process compo-
nents in subsection 4.2 and in this subsection, the process
components are dvarless. Also, because of the specializa-
tions performed in subsection 4.1 and in this subsections,
the flow and aggregator components are dvarless. It is
now possible to compute the expressions and variables
of the components for the three time points. In order to
do this, the operator issues the following tMQL query
called compute on the composite process SandCutProcess-
Duoarless:

Process computedProcess = compute
SandCutProcessDvarless

For the configuration of the processes and the aggre-
gators in Fig. 7(a), the compute query gives the output
shown in Fig. 7(b). The result of the compute query is
a grounded component where all expressions and con-
straints are evaluated to respective constants. Since the
computation does not change any constants in the input
component, the constants that were specialized in this
subsection are not shown. The mValues show the total
cost incurred due to production in the two time periods.
The IA a2 has one sanded wood that was initially present
in the inventory for the first time point. For the two sub-
sequent time points, five and three sanded wood were
collectively produced by the two sanding machines and
thus stored in the intermediary buffer. This computed
value is reflected in the invQty metric of a2. Also, the
total Qty metric in a2 reflects the maximum size of the
inventory that was used during these three time points,
which in this case, was five. The total TPAlloc metric
computed for the IQA a1 signifies the maximum num-
ber of plywoods available to be distributed among the
two sanding machines according to the outAllocRatio
metric in each time point. Analogously, the fotal TPAlloc
metric computed for the OQA a3 signifies the maximum
amount of cut woods that can be output from the floor.
The OQA a3 fetches the cut wood from the two cut ma-
chines distributed according to the inAllocRatio metric,
the total of which is upper bounded by the total TPAlloc
metric of 3. Finally, as shown in the formula in Fig. 4,
the mValues metric of the composite process is just the
total cost of both the cut and sand processes.

Another way to query the composed model is to ask
optimization queries against it. In order to do so, the
process operator will have to first specialize the original
composed sand and cut composite process (SandCutPro-
cess) as shown in Fig. 8 (a). The composite model is
specialized in a similar way as SandCutProcessDvarless
shown in Fig. 7(a) with two differences. The first is that
the speed of the machines here remain as decision vari-
ables (throughputControl metric has the value of “?”). The
second difference is that the composite process metrics
and mValues metrics are further specialized to include
the demand value. The specialization here indicates that
at least five cut woods should be produced by this man-

insert SandCutProcessDvarless =
specialize SandCutProcess {
//Process Metrics

float sand1.throughputControl = [2.2,3.2];

float sand2.throuputControl = [4.2,1.1];
float cut1.througputControl =[2.1,1.5];

float cut2.throughputControl =[1.2,3.

float sand1.capacity = 5.5;
float sand2.capacity = 4.2;
float cut1.capacity = 3.1;

float cut2.capacity = 4.1;

int sand1.inputPerQutput = [1];
int sand2.inputPerOutput = [1];
int cut1.inputPerQutput = [1];
int cut2.inputPerOutput =[1];

QA Metrics
string mt = "plywood";
float a1.outAllocRatio = [0.4,0.6];

int totalTPAlloc[t] = sand1.plywood.tpAlloc[t] +
sand2.plywood.tpAlloclt];

//IA Metrics

string mt = "sandedwood";

int a2.capacity = 10;

int a2.initlnv = 1;

float a2.inAllocRatio = [0.5,0.5];
float a2.outAllocRatio = [0.4,0.6];
int invQty[t] = invQty[t-1] +

sand1.plywood.periodQty[p] +
sand2.sandedwood.periodQty[p] -
cut1.cutwood.periodQty|[p] -

3l

cut2.cutwood.periodQty|[p];

int totalQty = max (t in 1..3) invQty[t];

//OQA Metrics
string plywood = "cutwood";
float a3.inAllocRatio = [0.5,0.5];

Process computedProcess {
// Base Processes
Process sand1 ={
float mValues[cost] = 32.4;

%
Process sand2 ={
float mValues[cost] = 45.86;

I3
Process cutl ={
float mValues[cost] = 61.2;

h
Process cut2 ={
float mValues[cost] = 54.2;

%

Il Aggregators
IQAal ={
int total TPAlloc = [2,5,1];

I3

IAa2 ={
int invQty =[1,5,3]
int totalQty = 5

¥
OQAa3 ={
int total TPAlloc = [0,4,3];

%

/Metircs
float mValues[cost] = 193.4

int totalTPAlloc[t] = cut1.cutwood.tpAlloc[t] +
cut2.cutwood.tpAlloc(t]

(a)

(b)

Figure 7: Compute query: (a) specialize query on the sand and cut composite process to update process and
aggregator metrics, (b) partial output of the compute query on the SandCutProcessDvarless component

ufacturing floor during the three time points. The result
of this specialized metric composite process is stored as
SandCutProcessParameterless into the KB.

If all the metrics of the composite process are special-
ized as constants or expressions in terms of other metrics
or as decision variables, we say that the component is
parameterless. Optimization queries can only be issued
on parameterless components. Due to specializations
performed on the components in subsection 4.1, sub-
section 4.2 and this subsection, all components for this
example are parameterless. The process operator can
now issue the following optimization query called min
on the composite process, SandCutProcessParameterless to
minimize the total production cost subject to constraints:

Process optmizedProcess = min

SandCutProcessParameterless.mValues[cost]

The output of the min optimization query is shown in
Fig. 8 (b). This query finds the speeds for the sanding

10

and cut machines such that all the constraints are satis-
fied. If many such speeds are found by the optimizer,
then the one that computes to the least cost is returned
as the result. In this case, the result is a grounded com-
ponent where all expressions are evaluated to constants
and the constraints are evaluated to true. If no such
speeds can be found for which all the constraints of the
components are satisfied, then the original component is
returned with an in feasible or unbounded status. In our
example, a feasible solution is found for the speeds of
the machines shown in Fig. 8 (b). In this case, all the con-
straints of the components have a true value (not shown
here). For the demand of five cut woods, the minimum
cost incurred of running the two sanding and two cut
machines is $163.5.

insert SandCutProcessParameterless =
specialize SandCutProcess {

//Process Metrics
float sand1.capacity = 5.5,
float sand2.capacity = 4.2,
float cut1.capacity = 3.1,
float cut2.capacity = 4.1,
int sand1.inputPerOutput = [1],
int sand2.inputPerOutput = [1],
int cut1.inputPerQutput = [1],
int cut2.inputPerQutput = [1],

/A Metrics

int a2.capacity = 10,

int a2.initinv =1,

float a2.inAllocRatio = [0.5,0.5],
float a2.outAllocRatio = [0.4,0.6],

/NQA Metrics
float a1.outAllocRatic = [0.4,0.6],

/IOQA Metrics
float a3.inAllocRatio = [0.5,0.5],

//SanCutProcess Metrics
{string} metrics = {cost, demand},
float mValues[cost] =

sum(p in Process) p.cost
float mValues[demand] =5

(a)

Process SandCutProcessParameterless {

// Base Processes
Process sand1 = {

float throughputControl = [1.4,0.6];
float mValues[cost] = 31.8;

Process sand2 = {

¥

float throughputControl = [1.6,1.4];
float mValues[cost] = 51.9;

Process cut1 ={

%

float throughputControl = [1.1,1.9];
float mValues[cost] = 44.3;

Process cut2 ={

¥

float throughputControl = [0.8,1.2];
float mValues[cost] = 35.5;

I/ Aggregators
IQAal ={

int totalTPAlloc = [2,5,1];

¥
1Aa2 ={

%

int invQty =[1,2,2];
int totalQty = 2;

OQA a3 = {

int totalTPAlloc = [0,4,3];

¥
//Metircs
float mValues[cost] = 163.5;

(b)

Figure 8: Optimize query query: (a) specialize query on the sand and cut composite process to update process
and aggregator metrics with troughputControl as decision variable, (b) partial output of the min query on the

SandCutProcessParameterless component

5 tMQL Syntax and Semantics

This section provides an informal description of the syn-
tax and semantics of the tMQL language. This descrip-
tion builds upon the description of the syntax and se-
mantics provided in the previous section. The formal
mathematical outline of the syntax and semantics are
provided in appendices A and B, respectively.

An overview of the syntax model of the tMQL lan-
guage is shown in Fig. 9. This syntax model is made
up of four parts. The first part is the tMQL KB. This is
the knowledge base that holds the data objects of the
allowed type. New entries of the KB are generated using
the insert command and each entry of the KB can be
reused in queries to populate more entries of the KB.

The second part is concerned with the data types al-
lowed in tMQL. The tMQL language allows for three
subsets of types. First, there are OPL types that may
be used to define simple number or string type values
or for a more complex set or array type of values. Sec-
ond, there are the tMQL component types that may be
the itemFlow, 1A, IQA, OQA, or the Process types. As

11

mentioned before, they are used to map physical enti-
ties of the manufacturing floor and the queries can only
be applied to objects of these component types. Finally,
there is a constraint type that are expressions that can be
reduced to either true or false.

The third part consists of the values accepted by the
data types. The objects accepted by the number and
the string types are trivial. When the data type is a set,
it means their value is a set of tMQL component types
and when the data type is an array, it means that the
array is indexed on some tMQL component. The tMQL
component type values contain metrics and constraints
to enable the capturing of the manufacturing floor data
and bounds. They are the built-in component types de-
scribed in subsection 4.2. Some metrics are modifiable
(via the specialize query) while some metrics are not. In
Fig. 9, modifiable metrics start with a + while the un-
modifiable metrics start with a -. Component constraints
cannot be modified at this time. Each modifiable metric
or OPL value may be of one of the following forms: (a)
parameter (...) that can specialized later, (b) dvar (?)
that can either be specialized later or left as a dvar in an

tMaL KB
+ Tvar=W

+ insert{string. W}

tMOL Values (W)

QL Types (T)

T /LR
tMOL Component

+ O: {itemFlow}
+ metrics: {string}
+ mValues: floatfmetrics]

+ 1 : {itemFlow}
+ O: {itemFlow}
+ capacity: int

- tpAlloc: intfH
- periodQty: int[p]
- gtyAllocConstraint:

+ | : {itemFlow}

+ O {itemFlow}

- total TP Alloc: intfi]

+ outAllocRatio: float[O)]

QBLIypes Type Constraint
| int || float | |s‘tring || {R} || T[R] | | 1A ||i1emFIOw||Pr0cess|| 10A ||C|QA | ||:Dn51raim
’_thypcf_;)f‘ryp(‘:’;f‘[yp?'_‘of‘rypd "e)ftypcr "__,»-‘ 5 S - L - - ; cm;m
| 1|| 0.1”||"ab;:|| {IAS’H!Iua:[iten:il‘:Iuw” ’_,"'WF’“" /,D“Wé‘ _‘.’””’:3 C’f.“‘l’” D”IV.‘DE
A itemFlow Process oA OQA
+ mit: string + mit: string + I: {itemFlow} + mit: String + mit: String

+ 1 : {itemFlow}

+ O {itemFlow}

- total TP Alloc: intft]

+ inAllocRatio: fioat[l]

- tiotalTPAlloC: constraint

- inputAllocationConsiraint:
constraint

- outputQtyConstraint:
constraint

+ new({OQA): OQA
+ specialize (OQA):OQA

+ throughputControl: floatp]

+ capacity: int

+ inputPerOutput: int[l]

- accurmAmt float[p]

- leftOver = floatft]

- throughputConstraint: constraint
- accumAmiConstraint: constraint
- cutputQiyConstraint: constraint
- inputCtyConstraint: constraint

- leftOverConstraint: constraint

+ new(lA): 1A
+ specialize (1A):1A

+ initlnw: int constraint
- inwQty: int[t] + new(Process}): Process - total TPAlloc: constraint
+ totalQry: int + new(itemFlow): + specialize (Process): - outputAllocationConstraint:
+ inAllocRatio: float(l] itemFlow Process constraint
+ outAllocRatio: float[0] + specialize (itemFlow): ||+ compute (Process): - inputQyConstraint:
- initinvContraint: itemFlow Process constraint
constraint + sat (Process): Process
- totalQyConstraint: + min {Process): Process + new(IQA): 10A
constraint + max (Process): Process + specialize (IQA):IQA
- invOyConstraint:
constraint
- inputAllocationRatio:
constraint
7 ou[pumllocatlonﬁallq: baseProcess compositeProcess
constraint

+ ifvars: {itemFlow}
+ pvars: {Process}
+ iavars: {l1A}

+ igavars: {IQA}

+ ogavars: {0OQA}

Figure 9: tMQL Syntax Model

optimize query, (c) expression using the metrics of the
component or KB that belong to the same declared type,
and (d) constants of the appropriate type. Each compo-
nent value may be in three states at any times. These
states are: (a) parameterless, when all OPL types in the
component are initialized by a constant, expression or
parameter and all component types in the component
are also parameterless, (b) dvarless, when all OPL types
in the component are initialized by a constant, expres-
sion, dvar or parameter and all component types in the
component are also dvarless, and (c) grounded, when
all OPL types in the component have values that are
constant and all component types in the component are
also grounded.

Finally, the syntax model consists of the queries. The

new and specialize queries can be used on all tQML com-
ponent type values to either create a copy or update
some metrics of the components. The compute and opti-
mize (sat/min/max) queries can only be used on com-
ponents of Process type. Thus, either a machine’s met-
rics can be computed or optimized or the metrics of
the machine composed of other processes, aggregators,
and flows may be computed or optimized. A compute
query can be applied on a dvarless component while
the optimize queries can be applied on a parameterless
component.

The semantics of the new query is to make a copy of
the component value for one of entries in the KB. The
specialize query updates the modifiable metrics of the
components and returns the updated component. The

12

semantics of the compute and optimize queries is to find
values for the metrics that satisfy the constraints. There-
fore, we first describe the mathematical definitions of the
constraints in the components. In Fig. 9, unique names
were provided to the constraints within the components.
Each of these constraints are described below.

The itemFlow constraints include the qgtyAlloc-
Constraint, which is the number of items that the flow
can carry at each time period (periodQty) is the upper
bounded by the amount of items that the aggregators can
accept at each time period (tpAlloc) shown in equation
1.

v periodQty(p] < tpAlloc[p —1] (1)
p

The Process components have five constraints: (1)
throughputConstraint: The speed of the machine is con-
strained by the maximum speed that the machine can be
operated at as shown in equation 2, (2) outputQtyCon-
straint: The number of items produced by the process
for a time period is the minimum of the amount of items
that the aggregators can accept (output allocation), and
the sum of any left over items from the previous time
periods and the number of items produced during the
current time period (throughputControl) as shown in
equation 3, (3) leftOverConstraint: The number of items
left over at a time period is the sum of any left over
items from the previous time periods and the number of
items produced during the current time period (through-
putControl) but not the number of items that left the
process via its output flows as shown in equation 4, (4)
accumAmtConstraint: The number of items accumu-
lated in the process at each time period is the sum of
any left over items from the previous time periods and
the number of items produced during the current time
period (throughputControl) as shown in equation 5, and
(5) inputQtyConstraint: The number of items the process
requires at its input is the number of outputs that need
to produced times the number of particular input re-
quired per output produced (inputPerOutput) as shown
in equation 6.

v throughputControl[p] < capacity ()
p
v O.periodQty[p] == min(O.alloc[p — 1],
:)
|leftOver[p — 1] + throughputControl[p]) |
v leftOver[p] = (leftOver[p — 1]+
s 4)

throughputControl[p]) — O.periodQty|p]

v accumAmt[p] = leftOver[p — 1]+
i (5)
throughputControl [p]
v V i.periodQty[p] == O.periodQty[p] x
piel (6)
inputPerOutput]i]

The IA components have five constraints: (1) initIn-
vConstraint: Initially, the number of items in the IA
(invQty) is set externally via the initInv metric as shown
in equation 7, (2) totalQtyConstraint: The total number
of items is upper bounded by the physical capacity of
the IA as shown in equation 8, (3) invQtyConstraint: At
each time point, the number of items in the IA is the sum
of the items remaining from the previous time intervals
and the items that came in via the input flows but not
the items that were dispensed via its output flows as
shown in equation 9, (4) inputAllocationConstraint: At
each time point, the number of items that the IA accepts
from an input flow is the product of the ratio allocated
to that input and the space remaining in the IA as shown
in equation 10, and (5) outputAllocationConstraint: At
each time point, the number of items that the IA dis-
penses via an output flow is the product of the ratio
allocated to that output and the number of items in the
IA as shown in equation 11.

invQty[0] == initInv (7)
total Qty < capacity 8
vinoQty(t] == invQty[t — 1] + Y _i.periodQty|t]—

t i€l ©9)
Y o.periodQty[t]
0€0

vV i.tpAlloc[t] == inAllocRatio[i] x
tiel (10)

(total Qty — invQty[t])

v v o.tpAlloc[t] == out AllocRatio[i] x
t 0€0 (11)

(invQty[t])

The IQA components have three constraints: (1) totalT-
PAllocConstraint: At each time point, the total allocation
of the inputs is the sum of allocations on all the inputs
as shown in equation 12, (2) outputAllocationConstraint:
At each time point, the output allocation on each output
is the product of the ratio allocated to that output and
the total allocation of the inputs as shown in equation
5, and (3) inputQtyConstraint: At each time period, the
number of outputs coming out of the IQA should be the
same as the number of inputs coming into the IQA as
shown in equation 14.

v total TPAlloc[t] ==Y _i.tpAlloc[t] (12)
t iel
vV V o.tpAlloc[t] ==

t 0€O (13)
outAllocRatio[o] x total TPAlloc|t]

\Z (Z o.periodQty[p] ==) o.perionty[p}> (14)

iel 0€0

The OQA component also has three constraints. The
total TPAllocConstraint is the same as the one described

in IQA. In addition, OQA also has constraints on the in-
put allocation and the output quantity. These constraints
are symmetrical to those described for IQA and hence
have been left out here.

The semantics of the compute query is that given a
dvarless component, all its expressions and the expres-
sions in any internal components are evaluated to con-
stants and all the constraints are computed to be true
or false. The semantics of the sat query is that given a
parameterless component, the possible values for the
decision variables in the component is found. If any
of these values result in making the constraints in this
component and all of its internal components true, then
the first such satisfied component is returned. If no such
component can be found for all possible values then
the original component object is returned with an un-
bounded or infeasible status. Similarly for min or max
queries, all possible values for the decision variables are
found and the values that makes all constraints true and
minimizes or maximizes a numeric metric is returned.
If no such value can be found for the decision variables,
then the original component object with an infeasible or
unbounded status is returned.

6 Implementation of deterministic
tMQL

This section describes the implementation of the deter-
ministic tMQL model. We describe the implementation
of the tMQL components to Optimization Programming
Language (OPL) by IBM [12]. OPL is an optimization
software package that solves integer programming and
very large linear programming problems. The optimiza-
tion results are then provided as decision guidance to
decision makers. Each tMQL component is modeled in
OPL as a generic module. Here, these generic modules
are described with the help of code-snippets from OPL.
Then, we describe the method of using these modules to
run an optimization query by showing how the data file
is manually generated for any tMQL model.

First the global time points and the period metrics are
generalized. Here it is assumed that all time points start
from 0 and periods start from 1. The periodLength met-
ric is used to describe the length of each period. Given
the number of periods (noPeriods), the last time point
(lastTP) is the same as the number of periods. Except
that the time points range from 0 to lastTP and the peri-
ods range from 1 to noPeriods as shown by the following
OPL code snippet.

int periodLength = ...;

int noPeriods = ...;

int lastTP noPeriods;

range timeRange = 0..lastTP;
range periodRange 1. .noPeriods;

In order to generalize the components, the Process,

14

itemFlow, IA, IQA and OQA are stored as an array of
their respective ids. The metrics of each module are
indexed on their respective ids. If the metric is also
indexed on other units such as time points or periods,
then the metric is stored as a 2D array, first indexed
on the component ids and then indexed on the units.
Further, the metrics of the components whose values are
defined as parameters (...) in Fig. 5 and Fig. 6 have the
values of ... in the implementation. This is to indicate
that OPL will search for the values of these metrics in the
data file. The metrics of the components whose values
are defined as decision variables (?) in Fig. 5 and Fig.
6 are defined as dvar variables in the implementation.
These variables are decision variables in the optimization
problem and will be determined by OPL while satisfying
the constraints and/or optimizing some numeric value.
An example of this strategy is shown via the code snippet
of the itemFlow metric definition in OPL.

{string} itemFlowIds = ...;
string itemFlow_mt[itemFlowIds] = ...;

dvar int+ itemFlow_tpAlloc[itemFlowIds] [timeRange];
dvar int+ itemFlow_periodQty[itemFlowIds] [periodRange];

Here the itemFlow component is described as ids. The
match type (mt) variable is indexed on these ids and
it is shown as a parameter. The tpAlloc and periodQty
variables are shown as decision variables that will be
calculated by OPL in the optimization problem.

The constraints for each component is shown using
their mathematical definitions shown in section 5. As
an example, the gty AllocConstraint expression for the
itemFlow component is show below.

forall(id in itemFlowIds){
forall(p in 1..noPeriods){
itemFlow_periodQty[id] [p] <=
itemFlow_tpAlloc[id] [p-1];

}

For all indexes in the itemFlow component ids and for all
periods, this constraint expression bounds the periodQty
value by the respective tpAlloc value. Since the
periodQty value is indexed on the periods and tpAlloc
value is indexed on the time points, the periodQty value
at period p is upper bounded by the tpAlloc value at
the previous time point, p — 1. The other constraints are
expressed similarly in OPL.

In order to manually translate a system layout to an
OPL data file that can be run with the OPL model, the
following steps are taken.

1. Convert the system layout to the graphical language
by generating a composite process graph for the
manufacturing floor like the one shown in Fig. 3 for
the sand and cut example.

Divide the composite process graph into one or
more composite process modules

For each composite process module, identify the
tMQL components: aggregators (IA, IQA, OQA),
the atomic processes (baseProcess) and then the
flows that connect them.

Add each itemFlow identified as a unique itemFlow
id to the data file.

Provide the inputs and outputs for each of the other
components (IA, IQA, OQA and baseProcess) as the
same ids added as itemFlow ids thus connecting
them manually with each other. Add these compo-
nents to the data file.

Provide the other interface constants for IA,
IQA,OQA and baseProcess. This could be done
in tMQL by using the specialize query.

Perform steps 3-6 for all the composite process mod-
ules identified in #2.

Connect the different composite process modules
by using the same itemFlow id as inputs/outputs
to these modules

Run the satisfy or min/max query on the composed
model in OPL.

7 Conclusion and future work

This paper described an analytical modeling and query
language for composing different functions on a man-
ufacturing floor. In order to perform this composition,
we provide the following tMQL components: itemFlow,
Process, IA, IQA, and OQA. In addition, the compos-
ite process can encapsulate one or more of the other
components such that the itemFlow acts as an interface
among them. Each component comes with a rich set of
metrics and constraints such that there is a flexibility to
represent the data and bound it appropriately. The rep-
resentation components are simple assignments stored
into a tMQL KB. This allows for reusing already created
components by simply using the left var of its assign-
ment in the tMQL KB or by creating a copy of these
assigned components using the new query. In order to
analyze the composed data we present queries that can
create a new component, specialize the assignments of a
component, compute values for a component, find deci-
sion variables that satisfy constraints and /or minimize
or maximize numeric values. This allows for the compo-
sition data to be queried in variety of ways to ask what-if
questions, metric optimization or metric computation
queries. Once a component has been queried, the lan-
guage also allows for the result object to be inserted as a
new assignment into the tMQL KB using the insert com-
mand. In this paper we also provide the formal syntax
and semantics of the model composition and querying
language (Appendices A and B).

15

We demonstrate the workings of the tMQL by using
an example bookshelf manufacturing floor. We show
how to convert the manufacturing floor functions into
tMQL Components. Then, we demonstrate how the
different components can be connected using the left
vars of type itemFlow from the tMQL KB. Then, one can
run the compute, sat or min/max query on these com-
posed models so as to obtain meaningful results for these
queries. We demonstrate this by manually converting
the bookshelf composite model into a deterministic OPL
model and the associated data file (tMQL KB) and then
running optimization tasks to ask metric calibration and
what-if analysis queries. This paper shows the results of
running these queries (Appendix C).

We are currently investigating: (a) a simulation algo-
rithm to accompany the current optimization queries so
that the composed model can be run as a simulation, (b)
heuristic techniques to design and run tMQL on stochas-
tic manufacturing floor functions, (c) a library of the
components discussed here for different manufacturing
scenarios, and (d) sustainability metrics functions that
can be incorporated into the tMQL.

Acknowledgements

This work is partially supported by NIST grant No.
70NANB12H277.

Appendices

A tMQL syntax

A1 tMQL Types
Variables in tMQL KB can be of the following types T
1. tMQL Component types

(a) itemFlow : item flow type that connects two
other tMQL Component type.

(b) IA: Inventory aggregator type

(c

d

(e) Process : Process type for the base components
and composite process type

IQA : Input quantity aggregator type

)
)
) OQA : Output quantity aggregator type
)

2. OPL Types: We adopt the OPL atomic types, set,
and array types, including:

(a) int : Integer numbers

(b) float : Floating point numbers

(©

(d) {R} : A setof type R where R is a tMQL Com-
ponent type

string : Strings of characters

(e) T[R] : An array indexed on components of
type R where R is a tMQL Component type
with elements of type Tin T

3. Constraint type: An expression evaluates this type
to either true or false.

A.2 tMOQL Values
The types in T have the following values:

1. A value of tMQL Component type is a symbolic
expression of the form {t; lvy =ey,...,t, v, = ey}
where:

e t;{(1 < i < n) is one of the types in T and
represents the type of expression ¢;

e [v;(1 <i < n)isaunique left var name within
the component

e ¢;(1 <i < n)isan expression and can be one
of the following
— aconstant of type t;
- avar vy from tMQL KB defined previously
(1<k<j—1)oftypet;
- aparameter denoted as . ..

— a decision variable or dvar denoted as ?, if
t; is a numeric type: int or float

(a) A value of type itemFlow is tMQL Component
value of the form:

{
string mt = ... or a string constant,
int tpAlloc[t] = ?,
int periodQty[p] = 7,
constraint gty AllocConstraint[p] = expr:
returns true or false

}

e A component of type itemFlow is a compo-
nent where none of the expressions ¢;(1 <
i < n) are vars in tMQL KB
e We say that itemFlow component is
i. parameter-less if none of the expres-
sionse;(1 <i<m)are”...”
ii. dvar-less if none of the expressions
e;(1<i<mn)are”...” or”?”
iii. grounded if all expressions ¢;(1 < i <
n) are constants

(b) A value of type IA is tMQL Component value
of the form:

{

string mt = ... or string constant,

{itemFlow} I = ...
components,

or a set of itemFlow

16

}

{itemFlow} O = ... or a set of itemFlow
components,

int capacity = ... or integer constant,

int initlnv = ... or integer constant,

int totalQty = ... or ? or integer constant,

float inAllocRatio[I] = ... or integer con-
stant indexed on itemFlows in I,

float outAllocRatio[O] = ... or integer con-
stant indexed on itemFlows in O,

int invQty[t] =2,

constraint initInvConstraint = expr: re-
turns true or false,

constraint totalQtyConstraint = expr: re-
turns true or false,

constraint invQtyConstraint = expr: re-
turns true or false,

constraint inputAllocationConstraint =
expr: returns true or false,

constraint outputAllocationConstraint =
expr: returns true or false,

We say that IA component is

i

ii.

ii.

parameter-less if none of the expressions
e;(1 <i<mn)are”...” and all itemFlows
(on the sets assigned to I and O) used in
the component is also parameter-less

dvar-less if none of the expressions e;(1 <
i<mn)are”...” or “?” and all itemFlows
(on the sets assigned to I and O) used in
the component is also dvar-less

grounded if all expressions e;(1 < i < n)
are constants and all itemFlows (on the
sets assigned to I and O) used in the com-
ponent is also grounded

(c) A value of type IQA is tMQL Component

value of the form:

{

string mt = ... or string constant,

{itemFlow} I = ... or a set of itemFlow
components,

{itemFlow} O = ... or a set of itemFlow
components,

float outAllocRatio[O] = ... or integer con-

stant indexed on itemFlows in O,

int totalTPAlloc[t] = ?,

constraint totalTPAllocConstraint = expr:
returns true or false,

constraint outputAllocationConstraint =
expr: returns true or false,

constraint inputQtyConstraint = expr: re-
turns true or false,

We say that IQA component is

i.

ii.

iii.

parameter-less if none of the expressions
e;(1 <i<mn)are”...” and all itemFlows
(on the sets assigned to I and O) used in
the component is also parameter-less
dvar-less if none of the expressions e;(1 <
i <n)are”...” or “?” and all itemFlows
(on the sets assigned to I and O) used in
the component is also dvar-less

grounded if all expressions e;(1 < i < n)
are constants and all itemFlows (on the
sets assigned to I and O) used in the com-
ponent is also grounded

(d) A value of type OQA is tMQL Component
value of the form:

{

}

string mt = ... or string constant,

{itemFlow} I = ... or a set of itemFlow
components,

{itemFlow} O = ... or a set of itemFlow
components,

float inAllocRatio[O] = ... or integer con-

stant indexed on itemFlows in O,

int totalTPAlloc[t] = ?,

constraint totalTPAllocConstraint = expr:
returns true or false,

constraint inputAllocationConstraint =
expr: returns true or false,

constraint outputQtyConstraint = expr:
returns true or false,

We say that OQA component is

i.

ii.

iii.

parameter-less if none of the expressions
e;(1 <i<mn)are”...” and all itemFlows
(on the sets assigned to I and O) used in
the component is also parameter-less
dvar-less if none of the expressions e;(1 <
i <n)are”...” or “?” and all itemFlows
(on the sets assigned to I and O) used in
the component is also dvar-less

grounded if all expressions e;(1 < i < n)
are constants and all itemFlows (on the
sets assigned to I and O) used in the com-
ponent is also grounded

(e) A value of type Process is tMQL Compo-
nent value that contains the following types
and variables: {itemFlow} I, {itemFlow} O,
{string} metrics and float mValues[metrics].
There may be two types of values of type
Process: baseProcess and compositeProcess.

i.

A baseProcess is a tMQL Component
Process value of the form:

{

17

{itemFlow} I =... or a set of itemFlow
components,

{itemFlow} O = ...
Flow components,

or a set of item-

float throughputControl[p] = ? or ...
or array of floats indexed on noPeri-
ods,

float capacity = ...
constant,

or floating point

int inputPerOutput[l] ... or integer
constant indexed on itemFlows in I,

float accumAmt[p] =?,
float leftOver[t] = ?,
{string} metrics = ... or set of strings,

float mValues[metrics] = ... or array
or floats indexed on the set of metrics,

constraint throughputConstraint =
expr: returns true or false,

constraint accumAmtConstraint[p] =
expr: returns true or false,

constraint outputQtyConstraint[p] =
expr: returns true or false,

constraint inputQtyConstraint[p] =
expr: returns true or false,

constraint leftOverConstraint[t] =
expr: returns true or false,

}

We say that baseProcess component is

A. parameter-less if none of the expres-
sions ¢;(1 < i < n) are “...” and all
itemFlows (on the sets assigned to I
and O) used in the component is also
parameter-less

B. dvar-less if none of the expressions
ei(1 < i < n)are”..” or “?” and
all itemFlows (on the sets assigned to
Iand O) used in the component is also
dvar-less

C. grounded if all expressions ¢;(1 < i <
n) are constants and all itemFlows (on
the sets assigned to I and O) used in
the component is also grounded

ii. A compositeProcess is a tMQL Compo-

nent Process type value of the form:

{

{itemFlow} I =... or a set of itemFlow
components,

{itemFlow} O = ...
Flow components,

or a set of item-

{itemFlow} ifvars = ... or set of item-
Flow components

{Process} pvars = ... or set of Process
components

{IA} iavars = ... or set of IA compo-

nents

{IQA} iqavars = ... or set of IQA com-
ponents

{OQA} oqgavars = ... or set of OQA
components

{string} metrics = ... or set of strings,
float mValues[metrics] = ... or array

or floats indexed on the set of metrics,

}

We say that compositeProcess component
is
A. parameter-less if none of the expres-
sions ¢;(1 < i < n) are “...” and all
itemFlows (on the sets assigned to I, O,
ifvars), Processes (on the sets assigned
in pvars), IAs (on the sets assigned in
iavars), IQAs (on the sets assigned in
iqavars), IQAs (on the sets assigned
in iqavars) and OQAs (on the sets as-
signed in oqavars) used in the compo-
nent are also parameter-less
dvar-less if none of the expressions
e;(1<i<mn)are”...” or“?” and all
itemFlows (on the sets assigned to I, O,
ifvars), Processes (on the sets assigned
in pvars), IAs (on the sets assigned in
iavars), IQAs (on the sets assigned in
iqavars), IQAs (on the sets assigned
in iqavars) and OQAs (on the sets as-
signed in oqavars) used in the compo-
nent are also dvar-less
C. grounded if all expressions e(1<i<
n) are constants and and all item-
Flows (on the sets assigned to I, O, if-
vars), Processes (on the sets assigned
in pvars), IAs (on the sets assigned in
iavars), IQAs (on the sets assigned in
igavars), IQAs (on the sets assigned
in igavars) and OQAs (on the sets as-
signed in oqavars) used in the compo-
nent are also grounded

(f) Finally the value for the tMQL Component
e can be a parameter denoted as . ..
typ p

2. OPL type values

(a) A value of type int is a positive integer or neg-
ative integeror ... or?

(b) A value of type float is a positive decimal num-
ber or negative decimal number or ... or?

(c) A value of type string is a sequence of charac-
tersor...

(d) A value of type {R} is a set of components of
type R where R is a tMQL Component type or

18

(e) A value of type T[R] is an array of elements of
type T in T indexed by an index set of elements
of typeRor...

3. Constraint type values: A value of type constraint
is an expression that evaluates to true or false

A3 tMQL KB

tMQL KB is a sequence of assignments of the form:
Tl 01 ‘= Wy
T2 U = Wy

'Tn Uy = Wy, Wwhere:

e T;(1 <i < n)isone of the tMQL types in T.

° vi(l <i< n) is a unique var names

e w;(1 <i<mn)isatMQL value of type T;
One can add new query assignments into the tMQL KB.
An insert is used to put new variables into the tMQL KB

;'nsert newVar := g;, where:
e newVar is a new tMQL var name
o the type of newVar is that of g;
e g;is a tMQL Query

The insert operator computes the query g; resulting in a
tMQL value , w of type T (determined implicitly from
g;) and adds “T newVar = w” as the last entry in the KB.

A4 tMQL Query
A tMQL Query (or just query) is one of the following:

1. Create a copy of the tMQL component.
new vj, where

e v;is a tMQL Component in tMQL KB
Returns in a copy of the tMQL Component v;

2. Specialize a tMQL component
specialize v]-{tl lv1 :=eq;...;t; log := ex;}, where:

e vjisa tMQL Component in tMQL KB,
o (t;,1v;) (1 <i<k)is the type/var pair used in
?Jj,
e ¢, (1<i<k)is:
(a) if lv; type in v; is a tMQL Component type
T (Process, itemFlow, IA, IQA, OQA), then
e; is a query that returns type T
(b) if type of [v; in vj is {T} (set of T) where T
is a tMQL Component type, then ¢; is of
the form {e;1, ..., e; } whereej, ..., e are
tMQL Query of type T

(c) if lv; type in v} is numeric (int or float) then
e; is either a numeric constant or ... or ?

(d) for Iv; of any other type (not tMQL Com-
ponent type nor numeric), ¢; can be a con-
stant of that typeor ...

e Everye; (1 < i < n) must be more specialized
than the previous ¢; in v; where “more special-
ized” denoted as -, is a partial order defined
as follows:
constant = expression > --- >=?

e The query type is that of v;
Note that specialize vj{ } is equivalent to new v;

3. Compute query on a tMQL component
compute vj, where:

e vjisa dvar-less tMQL Component in tMQL
KB,

e Returns in a grounded tMQL Component of
the type of v; where all the expressions are
computed into constants

4. Satisfy constraints query on a tMQL component
sat vj, where:

e v; is a parameter-less tMQL Component in
tMQL KB,

Returns in a grounded tMQL Component of
the type of v; where all the constraints are true
and expressions are computed into constants
or an INFEASIBLE object where some of the
constraints are false (see precise semantics def-
inition)

5. Optimize a numeric variable on a tMQL Component
min/max vj.numVar, where:

e v; is a parameter-less tMQL Component in
tMQL KB

numVar is one of the variables in v; that is to
be minimized or maximized

Returns in a grounded tMQL Component of
the type of v; where all the constraints are true
for a minimum or maximum numVar value
and expressions are computed into constants
or an INFEASIBLE object where some of the
constraints are false (see precise semantics def-
inition)

B tMOQL semantics

The semantics is a function:
QK — U x Status

where:

19

e QKis a set of all valid query-KB pairs (g, KB). Here
“valid” means that one of the queries from tMQL
Query is called on a tMQL Component type variable
present in tMQL KB.

e Uis a set of all tMQL Component values.

e Status is a set of relevant status. Status informs
the state of the returned value U. Some status in-
clude success, infeasible, unbounded, optimal and
feasible.

In the following definitions, we assume that a KB is of
the form Ty vq := wy ... Ty vy := Wy

1. Sem(new v) = (w, success) if v = v; in KB, where w
is a tMQL value constructed by making a copy of
the value w;. A success status is also returned.

. Sem(specialize v{ty lvy = ey,... tx lvy = e}) =
(w', success), if v = v; in KB, where w’ is a tMQL
value constructed from w; by replacing the RHS of
lvq, ..., lvp withel, ..., e, that must be more spe-
cialized. A success status is also returned.

. Sem(compute v{t; lvy = ey,... tx lvy = e}) =
(w’, success), if v = v; in KB, where v’ is a tMQL
value constructed from w; such that:

(a) if w; is a dvar-less component value like the
one of type itemFlow that does not contain
any other vars from tMQL KB then, @' is a
grounded component value where each expres-
sion in w; is replaced by a constant of the ap-
propriate type by computing the expression

(b)

if w; is a dvar-less component like the one
of type IA, IQA, OQA or Process that con-
tain other vars from tMQL KB then, w’ is a
grounded component value where each expres-
sion is replaced by a constant of the appropri-
ate type by computing the expression and each
component value within w; is also computed
to obtain a grounded component value. The
components within w; are computed in the fol-
lowing order of tMQL Component types:

i. itemFlow
ii. TA

iii. IQA

iv. OQA

v. Process

A success status is also returned.

4. Sem(sat v{t) lvy = eq,..., 1 lvp = e¢}) is a tMQL
value constructed as follows:

(@) If v = v; in KB and all constraints in w’ are
satisfied, then
Sem(sat v{t; lvy = eq,..
(w', feasible)

b o = €k}) =

(b) Otherwise, Sem(sat v{t; lvy =eq,...,t; lvy =
ex}) = (w, infeasible or unbounded)

This query takes the following steps:

(a) Find the possible instances for the dvar vari-
ables in the parameter-less component value
w;. For each such instances do the following

i. Run specialize on the component value w;
to replace the dvar variables with the in-
stance

ii. Run compute on the specialized compo-
nent value to obtain a grounded compo-
nent value. This resulting value follows
the semantics of the compute query.

iii. If all the constraints in the computed com-
ponent value are satisfied then this compo-
nent value is returned as w’ with a feasible

status

(b) If some the constraints in the computed com-
ponent remain unsatisfied, then the original
component value (w) is returned with with the
unbounded or infeasible status.

5. Sem(min/max v{t; lvp er ...t lug
ex }.numVar) is a tMQL value constructed as fol-

lows:

(@) If v = v; in KB and all constraints in w’ are
satisfied for a min/max numVar, then
Sem(min/max v{t; lvy = ey ...t lyy =
ey }.numVar) = (w', optimal)

Otherwise,

Sem(min/max v{t; lv; ep ... b lopy =
ex }.numVar) = (w, in feasible or unbounded)

(b)

This

(a)

query will take the following steps:

Find the possible instances for the dvar vari-
ables in the parameterless component w;. For
each such instances do the following:

i. Run specialize on the component w; to re-
place the dvar variables with the instance

ii. Run compute on the specialized compo-
nent value to obtain a grounded compo-
nent value. This resulting value follows
the semantics of the compute query.

(b) In all such computed component values where
all constraints are satisfied, the value with min-
imum or maximum numVar value is returned

as w' with a optimal status

(c) If some the constraints in all the computed
component values remain unsatisfied, then the
original component value (w) is returned with

with the unbounded or in feasible status.

20

C Application example

This section presents the workings of tMQL via the book-
shelf example application introduced in section 2. Here
we model the bookshelf example and ask appropriate
queries against the model. This section demonstrates
how the data model for a complex manufacturing floor
can be built one module at a time and queries can be
asked against it. Table 1 shows some parts of the data
model that define the connections of the components
for the bookshelf component diagram of Fig. 1. These
include the match types, input flows and output flows of
the IA, IQA and OQA. For the itemFlow, these include
the match type and for the baseProcess, these include
the input flows and the output flows. The itemFlows are
not explicitly listed but they have the same match types
of the aggregator they originate or end in.

The remainder of this section show how to query the
model. This can be done in two ways: computation and
optimization.

Optimization allows us to perform metric optimiza-
tion and constraint satisfaction queries. Using these
queries one can perform what-if analysis and metric
calibration. As described in section 6, we use OPL to
describe the model and optimize the decision variables.
The convention of <matchType>From<componentName>
is used to for itemFlow ids. Due to lack of space, the
connections for all components and match types for ag-
gregators of only some of the components in the book-
shelf example are shown in Table 1. The connections and
match types for the remaining components are similar.
The other parts of the data model are described below:

o The global metrics used were: noPeriods = 10, peri-
odLength =2

IQA al has an equal outAllocRatio among its out-
puts

For all baseProcesses, accumAmt, leftOver and
throughputControl are decision variables (dvar)

Base processes Packaging, Assemblyl and Assem-
bly2 have inputPerOutput of one finished left plank,
one finished right plank, three shelves and one ac-
cessory package. The accessory gathering process
packages 12 screws, 10 nails and four rollers. Other
processes require one input per every output pro-
duced.

Each baseProcess has its own capacity and it is pro-
vided in Table 2

Each baseProcess also has a process cost that is com-
puted as a function of the dvar throughputControl.
{cost : (5 < x(p) < 10 — 5xx(p)) A (10 <
x(p) <20 = 55 xx(p)) A (20 < x(p) < 30 —
6 x x(p)) A (x(p) > 30 — 7.5 x x(p))} where x is
the throughputControl for period p.

Table 1: Component connections data for the bookshelf example

Type Component Connection Data
Name
IQA al mt = plywood
I = {plywoodToAl}
O = {plywood1FromA1l, plywood2FromA1}
Process Sandingl I = {plywood1FromA1}
O = {sandedwoodFromSanding1}
IA a2 mt = sandedwood
I = {sandedwoodFromSanding1, sandedwoodFromSanding?}
O = {sandedwood1FromA?2, sandedwood2FromA2, sandedwood3FromA2}
Process Cutting1 I = {sandedwood1FromA2}
O = {cutwoodFromCutting1}
Process Paint & Dryl I = {cutwoodFromA3}
O = {pdwoodFromPaintDry1}
Process Finishing1 I = {pdwoodFromA5}
O = {finishedwoodFromFinishing1}
Process Packaging I = {packagedAccessorylFromAB, finishedwoodlFromAS, finished-
wood1FromAY, finishedwood1FromAA}
O = {packagedwoodFromPackaging}
Process Accessory Gath- | I = {screws, nails, roller}
ering O = {packaged Accessory}
IA aB mt = accessoryPackaged
I = {packagedAccessory}
O = {packagedAccessorylFromAB, packagedAccessory2FromAB, pack-
agedAccessory3FromAB}
Process Assemblyl I = {packagedAccessory2FromAB, finishedwood2FromAS, finished-
wood2FromAY, finishedwood2FromAA}
O = {assembledBookShelf1}
OQA aC mt = assembledBookShelf
I = {assembledBookShelf1, assembledBookShelf2}
O = {assembledBookShelf}

Each baseProcess also has a carbon emission value
that is computed as a function of the dvar through-
putControl. {CO; : (5 < x(p) <10 — 2 x x(p)) A
(10 < x(p) <20 = 3 x x(p)) A (20 < x(p) <30 —
4xx(p)) A (x(p) > 30 — 5x x(p))} where x is the
throughputControl for period p. Carbon emissions
are measured in kg.

Each IA has its own capacity provided in Table 2.
The initInv of each IA is set to 0.

For each IA, totalQty and invQty are dvar.

The inAllocRatio and outAllocRatio for each IA
is set to distribute the inputs and outputs equally
among the flows entering and exiting the IA.

OQA aC has an equal inAllocRatio among its in-
puts.

Each query below show the total quantity (totalQty) of
items that the IA needs to hold. Also, each query shows
the optimized values of the state (cost or carbon emis-
sions) for each process. Finally, the total optimized value
obtained for each query is:

1. Minimize the process cost such that at least four
bookshelves are assembled and one bookshelf
packaged

The model was run on OPL and the following opti-
mization and what-if analysis queries were analyzed.

7.5, Assembly2 = 2.5

21

o TotalQty: a2 = 29,43 = 42,44 = 40,a5 =
42,06 = 40,a7 = 40,a8 = 40,49 = 40,aA =
40,aB = 40

o Cost: Sandingl = 35,Sanding2 =
37.5,Cutting1 = 15, Cutting?2 =
40, Cutting3 = 15, Paint&Dryl =
15, Paint&Dry2 = 40, Paint&Dry3 =
15, Finishing1 = 15, Finishing2 =
40, Finishing3 = 15, AccessoryGathering =
15, Packaging = 2.5, Assemblyl =

Table 2: Capacity values for the baseProcesses and IAs in the bookshelf example

| Type | ComponentName | Capacity || Type | ComponentName [Capacity |

Process Sanding1 5 Process Sanding?2 5
Process Cuttingl 15 Process Cutting?2 12
Process Cutting3 11 Process Paint & Dry1l 13
Process Paint & Dry2 12 Process Paint & Dry3 9
Process Finishing1 8 Process Finishing? 10
Process Finishing3 9 Process Accessory Gathering 4
Process Packaging 3 Process Assemblyl 4
Process Assembly2 2 IA a2 45
IA a3 42 IA ad 40
IA ad 40 IA ab 42
IA a7 40 IA a8 40
IA a9 40 IA aA 40
IA a9 40

e TotalCost =310

. Minimize carbon emissions such that at least four
book shelves are assembled and one bookshelf
packaged

o TotalQty: a2 = 28,43 = 42,44 = 40,a5 =
42,06 = 40,a7 = 40,48 = 40,49 = 40,0A =

40,aB = 40

e Carbon Emissions: Sanding1 =
14, Sanding2 = 15, Cuttingl = 6, Cutting2 =
16, Cutting3 = 6, Paint&Dryl =
6, Paint&Dry2 = 16, Paint&Dry3 =
6, Finishingl = 6, Finishing?2 =
16, Finishing3 = 6, AccessoryGathering =
6, Packaging = 1, Assemblyl =

1, Assembly2 =3

e TotalCarbonEmisssions = 124

. Minimize the process cost such that the carbon
emission is at most 100 kg and at least four book-
shelves are assembled and one bookshelf pack-
aged

o TotalQty: a2 = 45,a3 = 42,44 = 40,a5 =
42,06 = 40,a7 = 40,a8 = 40,49 = 40,aA =

40,aB = 40

o Cost: Sandingl = 40,Sanding2 =
17.5, Cuttingl = 12.5, Cutting2 =
37.5, Cutting3 = 5, Paint&Dryl
12.5, Paint&Dry2 = 37.5,Paint&Dry3 =
5, Finishing1 = 12.5, Finishing?2 =
37.5, Finishing3 = 5, AccessoryGathering =
15, Packaging = 2.5, Assemblyl =

5, Assembly2 = 5
o TotalCost = 250

22

4. Optimize (maximize) the number of bookshelves
that can be produced such that the total cost is at
most $500 and carbon emissions is at most 180 kg

TotalQty: a2 = 44,43 = 42,24 = 40,45 =
42,06 = 40,a7 = 40,a8 = 40,a9 = 40,aA =
40,aB = 40

Carbon Emissions: Sanding1 =
22,Sanding2 = 22,Cuttingl = 8, Cutting2 =
24, Cutting3 = 9, Paint&Dryl =
8, Paint&Dry2 = 24, Paint&Dry3 =
8, Finishingl = 8, Finishing2 =
24, Finishing3 = 8, AccessoryGathering =
8, Packaging = 4, Assemblyl =

2, Assembly2 =1

TotalCarbonEmisssions = 180

Cost: Sandingl = 55,Sanding2 =
55, Cuttingl = 20, Cutting2 = 60, Cutting3 =
22.5,Paint&Dryl = 20, Paint&Dry2 =
60, Paint&Dry3 = 20, Finishingl =
20, Finishing?2 = 60, Finishing3 =

20, AccessoryGathering = 20, Packaging =
10, Assemblyl = 5, Assembly2 = 1.5

TotalCost = 450
BookShelf Packaged: 4
BookShelf Assembled: 3

These queries shows how a model for the bookshelf
composite model can be used to ask what-if analysis
queries by using optimization and metric calibration
queries. The model gives the flexibility to use differ-
ent process metrics as decision variables while allow-
ing the constraints to bound the physical specifications
of the manufacturing floor. The same model composi-
tion and connection data can be used to ask different
queries against the model. Metric calibration can be

performed by repeatedly performing the constraint sat-
isfaction queries against the data. When in some cases,
we cannot provide exact data to quantify a metric, it is
possible to provide them as a function of another metric.
This is shown in the model and query above via the cost
metric, which is a function of the throughputControl. It
is also possible to add the solutions to these queries into
the component repository and use them in the composi-
tion of other more complex composite models.

References

[1] M. Fu, E Glover, and J. April, “Simulation opti-
mization: a review, new developments, and appli-
cations,” in Simulation Conference, 2005 Proceedings
of the Winter, pp. 13 — 95, Dec 2005.

[2] M. C. Fu, C.-H. Chen, and L. Shi, “Some topics for
simulation optimization,” in Proceedings of the 40th
Conference on Winter Simulation, pp. 27-38, Winter

Simulation Conference, 2008.

[3] M. Goossens, F. Mittelbach, and A. Samarin, Ad-
vanced Modeling and Optimization of Manufacturing
Processes. Springer Series in Advanced Manufactur-

ing, Springer London, 2011.

[4] S. Melouk, N. Freeman, M. Miller, and M. Dunning,
“Simulation optimization-based decision support
tool for steel manufacturing,” International Journal
of Production Economics, vol. 141, no. 1, pp. 269 - 276,

2013.

[5] P. Raska and Z. Ulrych, “Simulation optimiza-
tion in manufacturing systems,” 23rd International
DAAAM Symposium, vol. 23, no. 1, pp. 221 — 224,

2012.

[6] J. B. Dabney and T. L. Harman, Mastering
SIMULINK 4. Upper Saddle River, NJ, USA: Pren-
tice Hall PTR, 1st ed., 2001.

[7] P. Fritzson, Principles of object-oriented modeling and
simulation with Modelica 2.1. Piscataway, NJ, USA:
Wiley-IEEE Press, 2004.

[8] J. Akesson, M. Gifvert, and T. Tummescheit,
“Jmodelica-an open source platform for optimiza-
tion of modelica models,” in Proceedings of MATH-
MOD 2009-6th Vienna International Conference on
Mathematical Modelling, 2009.

[9] D. Briick, H. Elmqvist, S. E. Mattsson, and H. Ols-
son, “Dymola for multi-engineering modeling and
simulation,” in Proceedings of Modelica, 2002.

[10] J. Hiebitek and M. Reza¢, “Modelling with maple
and maplesim,” in Proceedings of the 22nd European
Conference on Modelling nad Simulation ECMS, pp. 60—
66, 2008.

23

[11] R. Fourer, D. Gay, and B. Kernighan, AMPL: a model-
ing language for mathematical programming. Cengage
Learning, 2002.

[12] P. Van Hentenryck, The OPL optimization program-
ming language. Cambridge, MA, USA: MIT Press,
1999.

[13] R. F. Boisvert, S. E. Howe, and D. K. Kahaner,
“Gams: A framework for the management of sci-
entific software,” ACM Transactions on Mathematical
Software), vol. 11, no. 4, pp. 313-355, 1985.

[14] J. Bisschop and R. Entriken, AIMMS: The modeling
system. Paragon Decision Technology, 1993.

[15] A.Brodsky, G. Shao, and F. Riddick, “Process ana-
lytics formalism for decision guidance in sustain-
able manufacturing,” Journal of Intelligent Manufac-
turing, pp. 1-20, 2014.

[16] A.Brodsky, N. E. Egge, and X. S. Wang, “Support-
ing agile organizations with a decision guidance
query language,” Journal of Management Information

Systems, vol. 28, no. 4, pp. 39-68, 2012.

[17] A. Brodsky, M. M. Bhot, M. Chandrashekar, N. E.
Egge, and X. S. Wang, “A decisions query language
(DQL): High-level abstraction for mathematical pro-
gramming over databases,” in Proceedings of the
2009 ACM SIGMOD International Conference on Man-
agement of Data, (New York, NY, USA), pp. 1059—

1062, ACM, 2009.

[18] A. Brodsky, “Constraint databases: Promising tech-
nology or just intellectual exercise?,” Constraints J.,

vol. 2, no. 1, pp. 3544, 1997.

[19] A. Brodsky and V. E. Segal, “The C3 constraint
object-oriented database system: An overview,” in
Second International Workshop on Constraint Database
Systems, Constraint Databases and Their Applications,
(London, UK, UK), pp. 134-159, Springer-Verlag,
1997.

[20] A. Brodsky and H. Nash, “CoJava: Optimization
modeling by nondeterministic simulation,” in Prin-
ciples and Practice of Constraint Programming-CP 2006,

pp- 91-106, Springer, 2006.

[21] A. Brodsky and H. Nash, “CoJava: A unified lan-
guage for simulation and optimization,” in Prin-
ciples and Practice of Constraint Programming - CP
2005 (P. van Beek, ed.), vol. 3709 of Lecture Notes
in Computer Science, pp. 877-877, Springer Berlin

Heidelberg, 2005.

