
Department of Computer Science
George Mason University Technical Reports

4400 University Drive MS#4A5
Fairfax, VA 22030-4444 USA
http://cs.gmu.edu/ 703-993-1530

Document Content Layout Based Exploit Protections

Charles Smutz
csmutz@gmu.edu

Angelos Stavrou
astavrou@gmu.edu

Technical Report GMU-CS-TR-2014-7

Abstract

Malware laden documents are a common exploit vector,
especially in targeted attacks. Most current approaches
seek to detect the malicious attributes of documents
whether through signature matching, dynamic analy-
sis, or machine learning. We take a different approach:
we perform transformations on documents that render
exploits inoperable while maintaining the visual inter-
pretation of the document intact. Our exploit mitigation
techniques are similar in effect to address space layout
randomization, but we implement them through permu-
tations to the document layout.

Using document content layout randomization, we
randomize the data block layout of Microsoft OLE files
in a manner similar to the inverse of a file system de-
fragmention tool. This relocates malicious payloads in
both the original document file and in the memory of the
reader program. We demonstrate that our approach in-
deed subdues in the wild exploits by manual validation
of both Office 2003 and Office 2007 malicious documents
while the transformed documents continue to render
benign content properly. The document transformation
can be performed offline and requires only a single docu-
ment scan while the user-perceived delay when opening
the transformed document is negligible. We also show
that it is possible to thwart malicious heap sprays by
injecting benign content in documents. This approach,
however, comes at an expense of computational and
memory resources.

1 Introduction

Leveraging documents as a vehicle for exploitation re-
mains a very popular form of malware propagation that
is sometimes more effective than mere drive-by down-
loads [20]. Malicious documents are documents that
have been modified to contain malware, but are engi-
neered to pose as benign documents with useful content.
For this reason, they are often called trojan documents

or maldocs. Malware-bearing documents typically ex-
ploit a vulnerability in the document reader program,
but they can also be crafted to carry exploits in the form
of an embedded object such as a media file. Another
class of malicious documents are used as a stepping
stone and while they do not take advantage of a soft-
ware flaw, they rely on the user to execute a macro or
even a portable executable. Often, as part of the delivery
vector, social engineering is used to enhance likelihood
that victims will execute the malware contained within
the document.

For years, client side exploits, including attacks
against document readers, have become more preva-
lent [13]. Despite efforts at improving software security,
new vulnerabilities in document readers are still present
today. For instance, there were 17 CVEs issued for Mi-
crosoft Office in 2013, many of which were severe vulner-
abilities facilitating arbitrary code execution. Document
file types, such as PDF and Microsoft Office documents,
are consistently among the top file types submitted to
VirusTotal [3], which implies current widespread con-
cern over the role of documents as malware carriers.

Targeted attacks rely heavily on malicious documents,
especially in the case of spear phishing where they serve
as the ruse [39, 15]. A recent study of targeted attacks
against non-governmental organizations [8] showed that
most attacks occur through malicious documents at-
tached to emails highly customized to the recipient.
Since 2010, when Adobe PDF exploits began to taper
off in popularity, Microsoft Office has been the most fre-
quently abused. The impetus to stop Trojan documents
is elevated due to their pervasive use in espionage cam-
paigns.

Numerous approaches have been proposed to detect
malicious documents. Signature matching, dynamic
analysis, and machine learning based approaches have
been proposed and are used widely in practice. Despite
these many approaches, malware authors continue to
evade detection and exploit computers successfully. Op-
erating system based mitigations such as address space
layout randomization (ASLR) and data execution pre-

1



vention (DEP) have been implemented which seek to
mitigate many classes of memory misuse based exploits.
However, these protections are commonly circumvented
and exploitation is still possible [34]. Despite extensive
research and significant investments in protective tech-
nology, document exploits continue to remain a viable
and popular vector for attack.

Our primary contribution is to design a defense that
is fairly simple but effective. Indeed, we demonstrate
that modifications to documents between creation and
viewing can hinder misuse of document content, adding
additional exploit protection, while leaving them se-
mantically equivalent with very little end-user impact.
The proposed approach is inspired by operating system
based exploit protections. Instead of seeking to detect
the exploits in documents, we seek to defeat exploits by
making the location of malicious content unpredictable.
While address space layout randomization is performed
by the operating system, we induce exploit protections
in the reader program through modifications in the in-
put data. We modify documents at the file format level,
resulting in a transformed document, which will render
the same as the original, but in which malicious content
is scrambled and inoperative. The transformed docu-
ment is used in place of the original document. The
document transformation should occur between the doc-
ument creation and document open. Network gateways,
such as web proxies or mail servers, or network clients
such as web browsers or mail clients are ideal places
to utilize our mechanisms. Hence, deployment of our
technique requires no modification to the vulnerable
document reader or client operating system.

The most successful technique is document content
layout randomization (DCLR) where we rearrange the
the layout of blocks in a document file, without mod-
ifying the extracted data streams. We show that it is
possible to relocate malicious content in both the docu-
ment file and document reader memory. In the face of
ASLR circumvention techniques, such as heap sprays
and egg hunts, content randomization provides an ad-
ditional useful constraint on malicious payload size. In
addition to DCLR, we demonstrate that we can utilize
document modifications to influence memory location
through memory consumption. For example, we can
spray the heap with inert content. However, the memory
consumption approach requires a large amount of CPU
and RAM as well as modifications to user discernible
document representation.

We demonstrate the strength of our approach primar-
ily through equations showing the likelihood of deter-
mining the position of a relocated malicious payloads.
We follow the pattern of other studies of probabilistic ex-
ploit defenses, such as ASLR, by using entropy (in bits)
as a measure of difficulty of overcoming the location
obfuscation. However, we also perform manual valida-
tion on a small number of maldocs to confirm that our
methods work on current malware samples. Specifically,

we will provide examples of DCLR breaking exploits by
randomizing content in the document file of Office 2003
files and randomizing content in process memory while
rendering Office 2007 files. The malicious documents
used in this study were taken from VirusTotal [3] includ-
ing documents used in apparent targeted attacks against
industry [16] and non-governmental organizations [8].
Furthermore, we measured the performance of docu-
ment transformation and found it to be comparable to
an anti-virus scan. The performance impact of opening a
transformed document is too small to be measurable. We
also validated that the transformed document rendered
the same as the original document.

DCLR is likely to be effective with a relatively low
amount of entropy because it is difficult to retry docu-
ment based attacks. Since DCLR can operate on small
block sizes, it does have the potential to combine with
ASLR to increase the difficulty of locating malicious data.
DCLR is limited to foiling exploits that attempt to access
exploit material in a manner inconsistent with the way
the document reader accesses document data. Potential
issues with DCLR include breaking intrusion detection
system signatures and cryptographic signatures applied
to the raw document file.

2 Related Work

Detection of malicious documents using signature
matching or byte level analysis have long been studied
and used in practice despite recognized weaknesses in
detecting new or polymorphic samples [23, 31, 35, 33, 25].
The very obfuscation methods used to evade signature
matching can be detected using probable plaintext at-
tacks [43], but this approach is limited to situations
where weak cryptography is used.

Dynamic analysis of documents can provide addi-
tional detection power, but it comes with computational
cost, difficulty of implementation, and ambiguity in dis-
cerning malware [38]. Applying machine learning to
various features extracted from documents, such as struc-
tural properties, has been shown to be effective but has
also been challenged by mimicry attacks and adversarial
learning [11, 21, 32, 40, 24]. We differ from most docu-
ment centric defenses. Instead of seeking to detect the
malicious content, we modify documents to foil exploit
progression.

Our work builds upon years of research in probabilis-
tic exploit mitigations typically implemented in the op-
erating system. Address space layout randomization
(ASLR) [37] is adopted widely. It is effective in de-
feating many classes of exploits, but is circumvented
through limitations in implementation [30], use of heap
sprays [41, 7], or data leakage [28]. As return oriented
programming and similar techniques [42, 29] have be-
come popular, mechanisms to relocate or otherwise miti-
gate code (gadget) reuse have been proposed [26, 44, 17].

2



ALSR incurs little run time overhead because it relies on
virtual memory techniques where address translation
and relocation are already performed.

Code level approaches such as instruction set random-
ization have also been proposed but are computationally
prohibitive [18]. Data space randomization enciphers
program data with random keys, but this method is not
feasible in practice due to deployment difficulty and
computational expense [6]. Other policy enforcing tech-
niques, such as executable space protections (DEP or
W⊕X), are used widely. Despite the many proposed ex-
ploit mitigations, exploits are still practical on modern
systems [34].

3 Our Approach

Existing exploit protections that leverage random devi-
ations, such as ASLR, are used widely. The intuition
behind this class of protection techniques is to increase
the difficulty of exploitation by making memory loca-
tions unpredictable. Moreover, often these protections
are implemented in the vulnerable program or the exe-
cution environment of the vulnerable program and do
not alter the functionality or compatibility of the target
program or system.

Inspired by the simplicity and generality of ASLR-like
techniques, we seek to obtain similar exploit mitigation
outcomes through transformations to input data. The at-
tributes of a document can often directly and predictably
influence various run time attributes of the opening ap-
plication. The contents the memory of a reader program
often are necessarily influenced by the file which it opens.
We demonstrate how documents can be modified to in-
troduce variability in the programs which open them,
making exploitation more difficult. We show that we
can create these exploit breaking relocations in both the
raw document file and in the memory of the document
reader.

Like existing probabilistic memory protections, our
aim is to reduce the predictability of the location of ex-
ploit content. We also show that it is possible to fragment
malicious payloads which places additional constraints
on the size of malicious payload. While inefficient, we
show that through simple memory consumption we can
displace or dilute malicious content also. The end re-
sult of our method is a transformed document where
legitimate document content remains intact, but mali-
cious content is relocated or scrambled. The transformed
document is used in place of the original, potentially ma-
licious document.

Our proposed transformations are envisioned to op-
erate on documents and other file types during transfer
between the malicious source and the intended victim.
They could be employed in network gateways such as
email relays or web proxies where modification is al-
ready supported. In practice, filtering based on black-

lists and anti-virus scanning is already common at these
points. The modifications to the document could also be
implemented on client. For example, the web browser
could employ the mechanisms presented here at down-
load time, similar to other defenses such as blacklists
and anti-virus.

One of the goals of this work is to demonstrate how
files can be re-structured so that exploit mitigations are
introduced into the reader program. We will focus on
describing methods to implement DCLR, which can de-
feat exploits in many ways. We will also provide exam-
ples, using samples gathered from contemporary attacks,
demonstrating how these document modifications miti-
gate practical exploits. However, many forms of exploit
content are potentially affected by these mitigations in-
cluding traditional shellcode, heap sprays, and ROP
chains.

We focus on Office documents, but most of the high
level principles discussed here apply to other file for-
mats with minor or no changes. To demonstrate the
mechanisms discussed, We draw examples from two
document formats: the OLE based file format used in Of-
fice versions 97 to 2003 (.doc) and the OOXML based file
format introduced in Office 2007 (.docx). While we refer
to these file formats by their file extension (.doc/.docx)
for brevity, we also included the spreadsheet (.xls/.xlsx)
and presentation (.ppt/.pptx) files in this study. In prac-
tice, our exploit prevention mechanisms operated on the
container level of these file formats and was therefore
essentially the same across all of them.

3.1 File Access Protections

Other than restrictions levied by the document file for-
mats themselves, there are relatively few file access
based exploit mitigations, especially when compared
to memory access protections. However, malicious con-
tent is often stored in the raw document file and accessed
through the file system during exploitation. Typically,
file level access of malicious content occurs later in the
exploitation phase and this content is usually malicious
code, whether it be shellcode or a portable executable.
Sourcing malicious content from the file is extremely
common in document based exploits.

The authors observed obfuscated portable executables
embedded in the raw document file of 96% of the mali-
cious Office 2003 documents in the contagio document
corpus [27]. This set of malicious documents observed
in targeted attacks includes files that were 0 day attacks
when collected. Retrieving additional malicious content
from the raw document file is also the norm in PDF files.

File level access most frequently is achieved through
standard file access mechanisms, such reading the file
handle. Because most client object exploits, including
document exploits, are triggered by opening a malicious
file, a handle to the exploit file is usually already avail-
able in the reader application. In many instances, the file-

3



name and path of the malicious document is not known
in advance.

Depending upon the characteristics of the file format,
there is usually a broad spectrum of options for disrupt-
ing malicious file level access, assuming the malicious
data access does not occur through the file format pars-
ing routines. The indirect access and semantically equiv-
alent layout options provided by document file formats
parsers are analogous to the virtual memory and code re-
location techniques that enable ASLR. We can rearrange
the raw layout of the document file without disrupting
access to streams parsed out of the document. We use
this disparity in access methods to unpredictably rear-
range the raw access to the file content while maintaining
the same reassembled content streams.

We focus on Microsoft Office documents for this study,
but other document formats, such as PDF have mech-
anisms that permit the modification of documents in
ways that break exploitation but still permit legitimate
use. For example, the PDF format generally allows de-
viations in white space, PDFs are made of independent
objects and streams that can be re-ordered, and data
streams can be encoded or compressed in a few different
ways. Much of our mitigation capability for Microsoft
Office documents stems from characteristics that are very
similar to a filesystem, allowing blocks of a stream in the
document to be laid out independently without need
for contiguous arrangement. An important result of the
ability to fragment document content is that malicious
payloads can be scrambled, forcing multiple indepen-
dent pieces of the payload to be located individually or
constraining the size of malicious payloads.

3.2 Memory Access Protections

Document content and structure can also influence the
opening process’s memory layout, paving the way for ex-
ploit protections through permutations that foil memory
access misuse. These mechanisms rely on predictable
processing of document data. This processing of docu-
ment data can be as simple as direct loading of document
data into memory but can also be much more complex.
We focus on inducing changes in the program heap, as
it is generally the most feasible to reliably and meaning-
fully modify using document data. Microsoft Office has
long implemented barriers to malicious use of scripting
such as document macros, including disabling execution
of macros by default. Therefore, the most sophisticated
malicious Office documents do not use macros, and load
data into memory without using scripts. These non-
scripted mechanisms for loading malicious content into
memory are generally more constrained and easier to
foil with content layout modifications than scripted con-
tent. Our exploit protection is applicable for content
used directly in exploits, but generally does not apply to
script generated content.

Permutations to document reader heap layout is obvi-

ously useful for addressing exploits that use heap sprays.
We will provide an example of using DCLR to defeat
heap sprays. Beyond traditional heap sprays, modern
exploits often utilize heap data for object and memory
corruption exploits, ASLR bypasses, malicious payloads
that are egg hunted, among other techniques.

In addition to DCLR, we explore using memory con-
sumption to influence reader process memory. It is pos-
sible to reliably influence process memory using doc-
ument data, and therefore, it is possible to displace or
dilute malicious payloads in memory. However, this
technique incurs extremely high CPU and RAM use.

Exploit mitigations that are induced in the reader pro-
gram through document content are therefore focused at
preventing anomalous file and memory access. Funda-
mentally, the entropy introduced by the document seeks
to make access to malicious content difficult by obscur-
ing its location or scrambling it through fragmentation.

4 Exploit Content Location

Randomizing the location of exploit content is the core
tenet of ASLR and similar exploit prevention mecha-
nisms. This variability is usually introduced by the oper-
ating system and is usually measured by the amount of
entropy that can be introduced.

Similarly, exploit counter-measures can be imple-
mented by re-structuring documents so that they intro-
duce entropy into the reader program. The intuition and
primary goal of this variability is to make the location of
exploit content unpredictable. The core difference is that
instead of controlling the entropy through the execution
environment, the entropy is introduced by unpredictable
changes in the document that is the carrier of the exploit
code.

Also analogous to mechanisms such as ALSR, docu-
ment induced exploit prevention mechanisms are imple-
mented such that they do not impact normal operation–
benign content is used normally and is not impacted.
This is possible to achieve in documents when the same
fundamental assumption that enables traditional en-
tropy based mechanisms holds: the exploits involve data
access patterns that are different than normal operation.
The key is the ability to probabilistically disrupt the ab-
normal data access patterns used in exploits while still
keeping normal data access intact. This is possible to
achieve when exploits access data at a different level of
processing than the data used by the benign program
flow.

Exploit protections that are implemented in the execu-
tion environment are limited primarily by factors such as
the size of the space to randomized and the lower bound
on size of the objects to be randomized. The limits in doc-
ument induced entropy are bound by the number blocks
inside the document that can be randomized. The exact
nature of these objects and upper bound on quantity

4



A B C D 

A B C D 

A C D B 

A D B C 

A 

A 

B C 

C B 

B C A 

B C A 

B C A 

B C A 

Figure 1: Object Layout Permutations

differ greatly by file format.
The lower bound of the entropy introduced by objects

that are randomly arranged is based on the number of
objects. This is represented as:

E = log2(n)

Where E is the entropy measured in bits and n is the
number of objects randomized (benign or malicious).

While this represents the lower bound for entropy
based on object re-ordering, this assumes that the ob-
jects are distributed among a number of fixed positions,
usually because the objects to be re-ordered are done at
fixed size blocks. However, in many cases the objects of
are different size and are not arranged at fixed offsets.
Therefore, the upper bound on the amount of entropy
for a single malicious payload is derived from the sum
of all the combinations of object sequences because an
object can be placed at the end of any combination of n -
1 objects:

E = log2(2
n−1) = n − 1

Note that to achieve this upper bound requires that the
various chains of combinations of objects have unique
lengths which is a stricter requirement than all of the
objects being of different size.

To further demonstrate the lower and upper bound of
object order randomization, Figure 1 shows some of the
permutations of two sets of objects that are randomized
resulting in two bits of entropy each. The lower bound
requires 4 objects while the upper bound requires only
3 objects. In both cases, any given object can reside in 4
unique locations.

These measures of entropy refer to the location of
the beginning of a malicious payload and assume a sin-

gle malicious payload. If the malicious payload is frag-
mented such that it consists of multiple blocks that must
be located independently, the difficulty of guessing the
location of all fragments is the product of the difficulty of
each fragment. Therefore, the overall entropy expressed
in bits, is the sum of entropy caused by each fragment:

E = m log2(n)
Where E is the entropy measured in bits, n is the num-

ber of blocks randomized, and m is the number of blocks
that house the malicious payload. In practice, malicious
payloads embedded in document files are done with-
out provisions for fragmentation. Section 5 discusses
malicious payload fragmentation and the inherent limi-
tations on exploit payload size in more detail.

4.1 OLE File Content Layout Randomiza-
tion

To demonstrate the effectiveness of DCLR, we provide
an example based on Microsoft Office 2003 (.doc) files. In
this example we focus on modifications to the document
that provide location obscurity at the file level, prevent-
ing access to malware embedded in the file while still
allowing normal interpretation of the document. This
example is chosen because it is one of the most straight-
forward and widely applicable examples of document
induced exploit protections.

In many cases, exploits refer back to data in the raw
document for more malicious content. For example,
shellcode may extract and execute more shellcode or
a portable executable embedded within the document.
This occurs by locating the raw file data for the document
and accessing the malicious content at a predetermined
fixed offset, often reading this data from the already
open file handle. Other similar techniques include per-
forming an egg hunt either through the file handle or a
copy of the file in memory. Once the additional malicious
content is accessed, it often requires de-obfuscation or
decryption. It is common for there to be multiple levels
of shellcode access and de-obfuscation, with the con-
tent increasing in size and complexity during the exploit
malware bootstrap process.

The core mitigation proposed to defeat raw file re-
flection by malware is to perform file level document
content layout randomization (DCLR). This general tech-
nique is possible in many file formats because most data
files include multiple segments of data and often the
layout of this data can be modified. Object Linking and
Embedding (OLE) based file formats such as Microsoft
Office documents (.doc) are particularly amenable to this
technique.

The OLE structured storage format is a data format
that allows compilation of multiple data streams and
types into a single file. This general format is also called
Compound File Binary Format or COM Structured Stor-
age. OLE files implement mechanisms very similar to

5



a FAT file system which allows multiple files or objects
to be included in the container file. OLE files include a
header which is similar to a superblock, containing off-
sets to key data structures and definitions such as block
sizes. A directory entry is included for each independent
stream in the file and supports hierarchical layouts of
objects embedded into the OLE file. A file allocation
table (FAT) is used to track allocation of blocks to each
stream in the file. In fact, there are two major FATs used
to track normal sized blocks (typically 512 bytes) and
small blocks (typically 64 bytes), in addition to other op-
tional elements. Due to this flexible, if not complicated
structure, OLE files can have numerous file level rep-
resentations of data that are interpreted the same way.
Beyond Office documents, there are many file formats
based on the OLE container. For example, ActiveX ob-
jects also use an OLE container as discussed in Section
6.1.

Typically, the steams in an OLE file are sequentially
stored. However, re-ordering can occur and is expressly
allowed. Reordering data blocks in an OLE provides a
consistently effective and quantifiable way to prevent ac-
cess to malicious content in raw document files without
impacting normal use.

To verify the effectiveness of this approach we built
an OLE file block randomizer. It simply creates a new
OLE file functionally equivalent to the original except
that the layout of the data blocks is randomized. This is
accomplished by randomizing the location of the data
blocks, and then adjusting the FAT and directory data
structures accordingly. This is essentially the opposite of
running a file system defragmentation utility.

The entropy introduced by OLE file randomization
is very straightforward. If reasonable simplifications
and assumptions are made, the entropy is based on the
number blocks in a file which is simply the quotient
of the size of the file and the block size. This can be
represented as:

E = log2(
S f

Sb
)

Where Sf is the size of the file and Sb is the block size
used. If the typical 512 byte block size is used, then a
128KB file would have 8 bits of entropy and a 1MB file
would have 11 bits of entropy for each file level access. If
the malicious payload is larger than a single block, then
the entropy increases with the count of malicious pay-
load block. This makes the extraction of a large payload
intractable in the face of file level DCLR.

4.2 OLE File DCLR Validation

In practice, the Office 2003 document content layout ran-
domization utility performs as expected. The document
content layout is fragmented in the transformed docu-
ment, but the documents continue to render the same as
the original document.

The ability to mitigate typical exploits was validated
by manual dynamic analysis of real world malicious
document samples in a virtual machine. About 20 mali-
cious documents were selected to provide representative
vulnerabilities, malware families, and exploitation tech-
niques. Samples included vulnerabilities in Microsoft
Office (CVE-2012-0158), vulnerabilities in other file for-
mats embedded in office documents (CVE-2011-0609),
and pure social engineering attacks. The files included
documents, spreadsheets, and presentations.

It was observed that the document fragmentation was
effective at preventing final malware execution for all
documents that used an exploit. These maldocs all relied
on malicious payloads embedded in the document file.
Most malicious documents triggered a crash instead of
malware execution, but some trojan documents resulted
in a what appeared to be a an infinite loop instead of a
crash. Since the pure social engineering documents do
not involve any spurious file access to retrieve malware,
these maldocs continued to function. However, these
social engineering based maldocs required the user to
change security settings or click through multiple warn-
ings to enable the malicious content.

To test the performance impact of document content
randomization, many known benign documents were
converted to PDF using Microsoft Office and power-
shell scripting to simulate document open and render-
ing. 1000 documents were randomly selected from the
Govdocs corpus [14]. There were 39 documents that
were removed from this set because they required user
input to open or printing was prohibited by Office. The
most common cause of failing to print was invocation
of protected view, which limits printing, apparently be-
cause they were created by old versions of Office. Other
reasons including prompting for a password or prompt-
ing the user as a result of automated file repair actions.
In addition, following OLE file format fragmentation,
an additional 125 documents opened in protected view
which prevented printing. These files apparently trig-
gered some file validation heuristics in Office. The same
mechanisms used to break exploits can also be used for
malicious intent, such as evading virus scanners. All
content was present, and it was discovered that the vali-
dation heuristic did not trigger reliably on independent
formulations of the same original document–some trans-
formations would trigger this protected view and some
would not. Ergo, this protection built into Office must
trigger on some particular block layouts but the exact
criteria was not discovered by the authors.

The test data set therefore contained 836 documents
totaling 197 MB. It took about 15 minutes for the docu-
ments to be converted to PDFs which equals just over 1
second per document. Performing multiple trials, there
was no consistent difference in speed between the origi-
nal and the fragmented documents. The differences in
mean between the two sets of trials is about 1/50th of the
95% confidence interval as shown in Table 1. Therefore,

6



Table 1: Document Corpus Rendering Time
Mean (s) Std dev 95% Conf.

Original 930.3 35.4 ±26.2
Transformed 929.7 42.5 ±31.5

the randomized documents take no longer to open and
render. This is expected as there is no additional work
required to reassemble the randomized streams. Any
effects resulting from less efficient read patterns seem to
be masked by file caching.

Having converted both the original and fragmented
documents to PDF documents, the resulting PDFs were
compared for similarity. Since the PDFs had unique
attributes such as creation times, none of the PDFs gener-
ated from rendering the original documents were identi-
cal to those generated from the fragmented documents.
However, they were very similar in all respects. The
average difference in size of the resulting PDFs was 40
bytes, with 513 of the PDF pairs having the exact same
size. The average binary content similarity score of these
derivative document pairs was 87 (out of 100) using the
ssdeep utility [19]. Manual review of a small number
of samples also confirmed the same content in the frag-
mented documents as in the original documents.

To evaluate the computational expense of performing
the document content layout randomization, we mea-
sured the time to perform this operation on the 1000
document, 249 MB corpus. The average time to perform
this task was 28.9s using a single thread on a commod-
ity server. This equates to 68.9 Mbps of throughput.
Preforming this content fragmentation on a single 248K
sample (close to average document size) yielded an av-
erage 0.028s execution time. To put this execution time
in perspective, we scanned the same corpus with Cla-
mAV [1] which required an average 28.7s to complete.
Hence, the operations we perform on these documents
is extremely close in cost to that incurred by a common
anti-virus engine.

OLE block layout randomization results in files that
are semantically the same but which protect against raw
file access without adversely affecting reader program
performance. Our implementation requires computing
resources competitive of a common anti-virus engine to
perform DCLR.

5 Exploit Payload Size

Another constraint on exploits that can be levied by the
document is a limit on the malicious payload size. Docu-
ment induced payload size restrictions can be considered
a special case of location obfuscation.

When content layout randomization is employed, ma-
licious payloads are fragmented if they use non-standard
data access mechanisms. Even if the first block of mali-
cious payload is located, whether by chance or by mech-

anism such as egg hunting, the subsequent blocks are
not located in order, breaking the malicious payload.
The chance of arriving at each of the fragments in order
is inversely proportional to the number of fragments.
As stated before, this makes locating a single large frag-
mented payload through chance infeasible.

One of the common responses to ASLR is to use a heap
spray. When a heap spray is employed, the exact loca-
tion of the malicious payload is no longer critical as the
target area is filled with copies of the malicious payload,
any of which will advance the exploit successfully. Heap
sprays can defeat ALSR in practice. Mechanisms such
as heap sprays also effectively diminish the power of
DCLR. Repetition increases the chance of encountering
each fragment. This reduces the problem of locating a
malicious payload to ensuring the proper of the frag-
ments within the heap spray area.

The entropy induced when relying on malicious con-
tent random block ordering within an area where mali-
cious content is repeated exclusively, such as is the case
in a heap spray, is as follows:

E = log2((
Sm

Sb
)2)

Where Sm is the size of the malicious payload and Sb
is the block size used for content fragmentation. Hence,
the fundamental constraint enforced by DCLR is on the
size of the malicious payload. This technique provides
strong mitigation capability when the block size used for
content layout re-ordering is smaller than the malicious
payload. The limitations imposed on malicious payload
size is most critical when the beginning of the malicious
payload(s) can be located with ease and the malicious
payload exclusively exists in the target area.

Content fragmentation provides an effective limit on
the size of the shellcode in content based heap sprays,
which will be discussed in Section 5.1. The OLE objects
used in these heap sprays use a default block size of 64
bytes which is much smaller than the shellcode required
for a meaningful exploit.

Table 2 lists the names and sizes of shellcode compo-
nents provided in the metasploit framework [2]. Some
of these schellcode components are intended to be com-
bined with other components to implement full shell-
code functionality. For example, the block api compo-
nent provides access to the windows API via hashes
as identifiers. Most of the single and stager shellcode
items implement a practically useful shellcode chain.
The average size of all of these components is 289 bytes.
In most situations, these shellcode blocks will be ex-
tended a small amount with exploit specific register
setup and shellcode encoding. The size of the larger
shellcode components is on par with the approximately
500 byte shellcode observed in the heap sprays used in
CVE-2013-3906 .docx exploits which we use as examples
in the following sections. All but the smallest shellcode
components would require multiple 64 bytes content

7



Table 2: Metaploit Windows Shellcode Sizes
Name Size (bytes)
stage shell 240
stage upexec 398
single shell hidden bind tcp 341
single service stuff 448
single shell reverse tcp 314
single shell bind tcp 341
single loadlibrary 190 +

len(libpath)
single exec 192 +

len(command)
single create remote process 307
createthread 167
apc 244
executex64 75
migrate 219
block service change description 448
block service 448
block exitfunk 31
block api 137
block create remote process 307
block service stopped 448
stager sysenter hook 202
stager reverse tcp rc4 405
stager reverse https proxy 274
stager bind tcp nx 301
stager reverse ipv6 tcp nx 298
stager reverse https 274
stager reverse tcp nx 274
stager bind tcp rc4 413
stager reverse tcp dns 274
stager reverse tcp nx allports 274
stager reverse tcp dns connect only 274
stager reverse http 274
stager reverse tcp rc4 dns 405

blocks. The smallest components provide simple build-
ing blocks that are not useful on their own. For example,
the block exitfunk component provides functionality to
terminate a process and requires the inclusion of the
block api component to function. Shellcode that pro-
vides enough malicious content to be useful in a real
exploit is invariably larger than can fit within the 64 byte
default size restriction imposed DCLR in these examples.

5.1 OOXML Memory Content Layout Ran-
domization

We use Office 2007 documents (.docx) to demonstrate
DCLR in reader memory. The docx format is based on
the Office Open XML (OOXML) file format which uti-
lizes a zip archive to contain the document components.
The majority of OOXML documents components are

XML documents, but it also supports other embedded
objects. DCLR is trivial to implement at the file level
through methods including reordering and modifying
metadata in zip file entries. However, unlike .doc files
where file level malicious payload access is the norm,
the authors have not observed frequent use of file sys-
tem access of raw .docx documents in current exploits.
Therefore, DCLR is much more useful as a mitigation
when applied memory access than file access in .docx
files.

Furthermore, we use heap sprays in .docx files be-
cause these are easiest to demonstrate the importance of
size based constraints levied by content fragmentation
in memory. We focus on the non-script heap spray tech-
nique first utilized in CVE-2013-3906 exploits and also
described in Section 6.1.

In this heap spray technique, many ActiveX objects
containing primarily heap spray data are read when the
document is opened and loaded into the heap. These
objects are loaded into memory raw, without interpre-
tation or parsing, and are, therefore, a highly desirable
way to load arbitrary data into memory. Since ActiveX
objects use the same OLE container format that Office
2003 documents use, we can use the same OLE fragmen-
tation techniques that were described in Section 4.1. In
addition to embedded Office 2003 documents and Ac-
tiveX controls, many other items that are embedded in
Office 2007 documents also use the OLE format. These
items, which include embedded objects such as equa-
tions, media files, office documents, and executables,
can also be fragmented such that they operate as normal
under typical use but are scrambled when raw access is
employed. Dynamic analysis by the authors confirmed
that that these embedded OLE objects are loaded directly
in memory, while most other data from the document is
not loaded into memory wholesale.

This example is focused predominately on shellcode.
Document induced memory fragmentation could po-
tentially disrupt other exploit mechanisms such as data
used in ROP chains, object corruption exploits, etc. In
each of these cases, the upper bound on the size of a
single block of malicious content may prevent successful
exploitation depending upon circumstances.

5.2 OOXML Content Layout Randomiza-
tion Validation

To validate the efficacy of fragmenting objects to be used
in heap sprays, a utility was created which randomized
the layout of object embedded in Office 2007 Documents.
The block randomizer created for OLE based .doc files
was extended to reorder all OLE objects embedded in a
.docx file. In practice, this transformation would occur
between document creation and the document being
opened.

Multiple samples of documents using the ActiveX ob-
ject based heap spray implemented in CVE-2013-3906

8



were modified by fragmenting all the embedded OLE
objects. The heap spray data is repeated every 4096 bytes
and is about 500 bytes in length in these exploits, padded
with instructions do not modify program flow. When
fragmented in 64 byte blocks, the 8 blocks of shellcode
are scrambled. If some simplifications are made, such
as forgetting the overhead of the OLE format and as-
suming that all the data outside the actual payload is
an effective NOP, there is a best case chance of 1/64 of
the exploit continuing to work because of the fragments
being reached in order. This equates to 8 bits of entropy.

Using manual validation, it was not reasonable to
perform enough permutations and observations to con-
firm the predicted success rate due to its very low value.
There were no successful exploits observed after docu-
ment content layout randomization. In the samples used
for validation, much of the malicious content in the OLE
object was not in a valid OLE stream and was replaced
with null data by the OLE fragmenter which does not
change file size. Therefore, while some of the malicious
content was randomized and loaded into memory, most
of the data loaded by these transformed objects was
merely null data. The chance of successful exploitation
after payload fragmentation was orders of magnitude
lower than the potential best case for these samples. The
functionality to remove data found outside valid OLE
streams is a side benefit of the content layout random-
izer. It should be noted that putting the heap spray data
in valid OLE streams certainly would be possible with a
trivial amount of effort, which would cause the content
to be fragmented instead of removed.

Similar to that of the .doc content layout randomiza-
tion, the computational cost of performing .docx em-
bedded content randomization compares favorably to
that of a virus scanner. We only randomize some of the
objects inside of a .docx file–the binary objects that are
are useful for predictably populating memory. However,
since reliably determining the type of the file in the .docx
zip container requires unzipping and inspecting all the
contents, the majority of the cost is unavoidable even if
none of the objects in the document are modified.

To measure the cost of performing our embedded ob-
ject layout randomization, we compiled a corpus of be-
nign .docx files from the Internet, using a web search
with the sole criteria of seeking .docx files. The search
yielded a wide diversity of sites with no known relevant
bias on the part of the researchers.

This corpus consisted of 341 files weighing in at 76
MB. Executing our utility required an average 13.8s from
which we derive a single threaded bandwidth of 44.2
Mbps. Scanning the same corpus with ClamAV required
28.0s, very close to double the time required for our
mechanism. The time to execute on a single 225K docu-
ment, which was approxiamately an average size docu-
ment in this corpus, was 0.032s.

The vast majority of the documents in this benign cor-
pus were not modified. Of the 341 documents, only 10

documents had objects on which layout randomization
was performed. Since this number was so small, these
samples were validated manually. Both the original and
the modified document were opened and compared. In
all cases there was no observable difference in the time
required to open the document and the content of the
document appeared pristine. As with .doc DCLR, the
.docx embedded content layout randomization did not
cause measurable performance differences. Randomiz-
ing the OLE objects embedded in .docx files maintained
the integrity of the original document content, while
breaking illegitimate memory access.

5.3 Omellete Shellcode

While not commonly seen in the wild, the documented
countermeasure to limits on payload size is to perform
an egg hunt per payload block, which has been styled
omelette shellcode [9]. Omelette shellcode locates and
combines multiple smaller eggs into a larger buffer,
reconstructing a malicious payload from many small
pieces. The omelette approach adds at least one more
stage to exploit, in exchange for accommodating frag-
mentation of the malicious content.

A typical heap spray involves filling a portion of the
heap with the same malicious content repeated many
times, with each repetition being a valid entry point.
This approach would be altered for an optimal omelette
based exploit. One would spray the heap with the
omelette code solely, then load a single copy of the ad-
ditional shellcode eggs into memory outside the target
region for the spray.

When multiple egg hunts are used to defeat mali-
cious payload fragmentation, then the primary mitiga-
tion power is shifted to the size of a block in which the
reassembly code must reside. Each egg containing the
partitioned payload could have an arbitrarily small size
with a few bytes overhead for a marker used to locate
the egg and often an identifier to facilitate proper re-
ordering. The size of the omelette code is invariably the
bottleneck of the technique. If the omelette code can
fit fully within a fragmentation block, then malicious
payload fragmentation will not be effective.

Therefore, for omelette shellcode to operate, it must
be loaded in a single 64 byte block or it will be frag-
mented and re-ordered. Most openly available examples
of omelette shellcode, which are designed specifically to
be as compact as possible, are about 80-90 bytes [4, 36].
Of course, it may be possible to shrink the size of the
omelette functionality in a given exploit. There is an
example of one omelette implementation that compiles
to 53 bytes [12] but this implementation relies on the
eggs being loaded in memory in sequential order, which
could be defeated by document induced randomization
as well.

It is also not likely that merely the bare omelette code
would exist in a contiguous block. NOPs, additional

9



obfuscation code, register setup, etc. code would likely
need to exist in the same 64 bytes block. However, even
if it is possible to successfully implement an omelette
based exploit in the default 64 byte block size, this block
size could be dropped to a level rendering any sort of
egg hunt infeasible. The size of these blocks in OLE files
is tunable. It is also noteworthy that the cutoff between
normal and small block stream and that the block size
for the normal streams are also tunable, such that this
flexibility in size applies generally to both normal and
small OLE streams.

Because DCLR is not used widely, no examples of ma-
licious documents could be found in the wild that used
countermeasures such as omelette code. However, obser-
vations made during the manual validation performed
for current exploits indicate that DCLR would still be
successful.

6 Memory Displacement Based Mit-
igations

We explored alternatives for influencing process mem-
ory in Office. Another approach involves including addi-
tional non-visible content to consume memory and shift
subsequent memory allocations. We sought for ways
to re-arrange existing content, but could not find any
practical way to influence memory load order without
changing the representation of the document.

Attacking the same problem as Section 5.1, we sought
to defeat .docx heap sprays. One direct counter to heap
sprays is to thin out or decrease the concentration of the
spray, making it less likely for malicious content to be
found even if the access attempt is made in the section
of the heap flooded by the spray.

To decrease the concentration of the heap spray, one
injects benign content in the midst of the malicious con-
tent. Because most documents, especially malicious doc-
uments, have a relatively small amount of content com-
pared to heap sprays which are often 10s of MB or larger,
additional otherwise useless benign content must be
added to the heap. When benign content is added to
dilute heap sprays, the concentration of the heap spray
is simply the ratio of the malicious content to the total
content:

φ =
Sm

Sm + Sb

Where φ is the malicious payload density, Sm is the
size of the malicious content, and Sb is size of the benign
content.

This approach, while functional, has many limitations.
The primary shortcoming is that it requires loading a
large amount of useless content into memory which
comes at great cost. Many heap sprays have very poor
performance, in and of themselves. To be effective, one
has to drown out the malicious content with even more

inert content. This insertion of content must occur on all
documents, including benign ones for this technique to
be effective. However, maldocs are free to create very
large heap sprays. We sought for alternative mecha-
nisms to dilute heap spray, but we could devise no way
to consume virtual memory space without incurring
resource sapping data copies into memory. Using this
technique incurs considerable overhead and is probably
often not feasible due to performance impacts.

In addition to the cost of all the benign content needed
to dilute a heap spray, there are other challenges. For
this technique to be effective, the benign content must
be interspersed with the malicious content. Proper align-
ment can be challenging depending upon how the heap
spray is created and keeping the assumption that the
part of the document that implements the heap spray
cannot be known a priori. In the case of Office 2007
.docx files, adding additional content required changing
some semantic meaning of the document, unlike OLE
file fragmentation.

6.1 OOXML Heap Spray Dilution Valida-
tion

To demonstrate the effectiveness of heap spray dilu-
tion, a utility was created to modify .docx files such that
when opened, the heap was sprayed with benign con-
tent. This method of spraying inert content without use
of scripting is similar to that used in contemporaneous
exploits [5]. This technique was pioneered in CVE-2013-
3906 exploits, but has since been used in connection with
other vulnerabilities and file formats [22].

ActiveX controls, with a large amount of benign su-
perfluous content, are inserted into the document at ran-
dom locations in the document. These items are set to be
hidden so that they do not impact normal content. No
method of adding benign content to the heap without
making additions to the document could be found. How-
ever, under normal conditions, these items are hidden
so the document does render as usual.

Inspection of the memory using dynamic analysis
showed that the benign and malicious sprays were both
loaded in memory. The individual benign and malicious
objects were shuffled together such that the two sprays
were interspersed according to the location of these ob-
jects in the document.

Performing manual validation via dynamic analysis
on CVE-2013-3906 samples, it was confirmed that the
malicious heap sprays were diluted as the ratio of ex-
ploit success matched that expected. For example, when
the benign content was equal in size to the malicious
heap data, the exploit success rate was consistent with
the estimated rate of 50%. When the benign content was
increased, the exploit success rate dropped proportion-
ally. It was also demonstrated that in practice ensuring
proper alignment and therefore optimal mixing of the
benign and malicious sprays is challenging, resulting in

10



deviations from the anticipated exploit success rate.
Adding content to influence memory layout resulted

in generally poor performance. Due to compression
and the ability to reference data stored in the document
multiple times, it was possible to incur only minor file
size increases. However, to influence memory layout,
memory had to be used, and the processing to consume
the memory space was expensive. We found that opti-
mal memory displacing benign objects added about 10
seconds of load time per 100MB of memory filled.

The performance characteristics of influencing mem-
ory layout through memory consumption, the difficulty
of ensuring benign content is interspersed with mali-
cious content, and the difficulty of overpowering po-
tentially large heap sprays with benign content make
heap spray dilution extremely computationally expen-
sive. Document content based mitigations using dis-
placement would be similar to operating system based
memory protections that instead of using virtual mem-
ory based techniques to implement ALSR, used actual
allocations that consumed memory to introduce entropy
in memory addresses.

Despite high cost, interspersing malicious content
with insert content is possible using document content
modifications. The ability to dilute heap sprays and drop
exploit success rates has been demonstrated. Since it is
relatively easy to ensure that inert objects are loaded
early in the document, reliable shifts to the heap are
possible. While the document had to be modified, the
objects used to consume memory were be marked as
hidden, such that they did not change the rendering of
the document.

It is possible that other exploit tactics, including mem-
ory corruption, use after free, ASLR bypass techniques,
or ROP may provide situations where a limited content
based memory dilution or shift could break exploits that
would not be mitigated by OS level mitigations [10]. If
situations are found where a small shift in they heap is
useful for defeating exploits, the memory consumption
based technique could be useful in practice.

7 Environmental Factors

Document content induced exploit mitigations are de-
signed to compliment execution environment exploit
protections such as ASLR. Document induced protec-
tions could provide protection against many exploit tech-
niques if operating environment protections were not
used, but this is not a plausible scenario as at least basic
operating system based memory protections are used
ubiquitously. Some document induced protections stand
on their own but some only come into effect when at-
tackers try to circumvent operating system exploit pro-
tections. For example, some content based protections
defeat heap sprays which are only present if mechanisms
such as ASLR are employed by the operating system.

The interactions between the operating environment
and content driven protections are hard to generalize.
Even seemingly independent mitigation strategies can
operate together in ways that are difficult to quantify. For
example, file based content re-ordering is generally inde-
pendent from other existing protection mechanisms but
file access may be preferred by attackers because other
methods of retrieving malicious payloads are more diffi-
cult. Circumvention of file level content randomization
could certainly be possible, but the difficulty of imple-
menting these mechanisms is not obvious.

In the most straightforward situations, the entropy
caused by operating system and document based protec-
tions could be combined, but this is not a simple combi-
nation. Imagine a situation where the operating system
provides 16 bits of entropy for a malicious payload and
the document layout provides 10 bits. The result is not
as good as a simple 26 bit search space for some content
loaded from the document into the heap. Typically, the
operating system allocation entropy is limited by a 4k
page size and the document induced entropy is limited
by a default 64 or 512 byte block size. Given a 256K
document using 512 byte blocks, the operating systemp
provides variability in bits 12 to 27 and the document in
bits 9 to 18. The following demonstrates this combina-
tion and overlap. Bits that represent location variability
are represented by a 1 and the combination is a logical
OR operation:

0000 1111 1111 1111 1111 0000 0000 0000 OS

0000 0000 0000 0111 1111 1110 0000 0000 Doc

0000 1111 1111 1111 1111 1110 0000 0000 Both

Combining these two ranges results in variability in
bits 9 through 27 or 19 bits of entropy total. Note that
the area of overlapping random location, bits 12 through
18, does not improve or diminish the randomness in
this range. In this example, the size of the document,
which dictates the entropy caused by content fragmen-
tation is irrelevant because the same randomization is
already provided by the operating system. However
the granularity below the OS page size provides addi-
tional entropy. Content based protections also permit
malicious payload fragmentation which is generally not
possible with operation system approaches.

The manner in which malicious documents are em-
ployed also serves to further strengthen document con-
tent based protections. A fundamental difference with
attacks that defeat entropy through brute force attempts
is that many repeated attacks are not feasible with most
document based exploits. It is often possible to issue
thousands of malicious requests to a vulnerable network
daemon, but sending thousands of socially engineered
emails with malicious attachments is not feasible. A
much lower level of entropy is required for practical and
useful defenses if the cost per attempt is very high.

11



Malicious documents are very frequently used in situ-
ations where the attacker has to make the exploit fully
self-contained and has very little ability to tailor the at-
tack to the specific end host. Conversely, in web based
exploits, the attacker can often depend on being able
to load many types of content from multiple locations
in a single exploit and can often make dynamic deci-
sions about serving content based on criteria such as
client software checks. The file based content fragmen-
tation is very effective on a large number of documents
due to the apparent desire to keep exploits using doc-
uments self contained. The lack of pre-exploit client
information forces most document based exploit writ-
ers to generalize their exploits. Lastly, when document
readers implement protections against scripting, making
it more difficult for attackers to load arbitrary data in
memory, then content based approaches are more likely
to be applicable.

8 Discussion

Brute forcing malicious content location randomization
seems unlikely through remote means due to the diffi-
culty of repeat attempts. Usually, a user must explicitly
open the document each time an exploit is attempted.
This might be overcome if exploits could be formulated
in a way that multiple permutations could be attempted
per document open.

The most likely path to overcome DCLR seems to be
circumventing it completely. If document file or docu-
ment reader memory is accessed in exploits through the
same means as the the reader program, then our mech-
anism has no affect. We consider this analogous the
the return-to-libc approach to overcoming stack smash-
ing techniques. In order to succeed, the exploit must
use the data access mechanisms used as the document
reader or not use relocatable document content in the
exploit directly. Not all exploits are directly impacted
by DCLR and many vulnerabilities may be formulated
to circumvent DLCR. For example, the malicious docu-
ments foiled through OLE File Randomization in Section
4.2 could be modified to load the final malicious exe-
cutable through a web download instead of extracting
it from inside the document file. Similarly, the OOXML
documents defeated through memory content location
randomization as discussed in Section 5.1 could use a
scripted heap spray instead of the scriptless heap spray
relying on document content loaded into memory. How-
ever, these changes might cause the exploit to run afoul
of additional mitigations such as restrictions on ability to
download executables or restrictions on the execution of
macros. Even if DCLR can be circumvented, it increases
the difficulty of many document based exploits while
incurring little performance overhead.

This work demonstrates effectiveness on some popu-
lar exploitation techniques. However, it would be ben-

eficial to demonstrate how other techniques, such as
ROP or object corruption techniques can be foiled by
document content induced mechanisms. For example,
it is likely that some sort of modifications made to doc-
uments could influence the stack and therefore break
ROP chains. Demonstrating additional document con-
tent based protections is a promising thread for future
research.

DCLR is an attractive mitigation technique because
it incurs a very low performance impact. Transform-
ing the document requires a level of computational re-
sources that are already commonly employed to perform
anti-virus on both network servers and client programs.
DCLR incurs no measurable performance penalty when
the transformed document is opened because this mech-
anism leverages the file stream reassembly routines al-
ready executed by the document reader. It seems that file
system caching makes up for any potential performance
impact occurred by accessing document file blocks in
random order. Just as virtual memory mechanisms en-
able ASLR with little overhead, the parsing and reassem-
bly that enables multiple file level representations of
the same logical document allows for efficient DCLR.
Any situation where data is referenced indirectly provid-
ing for multiple possible low level representation could
potentially be used to implement exploit protections sim-
ilar to DCLR. We focus on content layout randomization
because the file formats studied here support a large
degree of layout changes. However, other document
and media formats might not support the same level
of data fragmentation but may support arbitrary encod-
ing or compression. Encoding or data randomization
techniques generally have been unsuccessful due to com-
putational overhead and the difficulty of deploying the
technique which requires modifying system libraries as
well as applications. It is likely that some document in-
duced analogs to data randomization, using decoding
or decompression, can be used to defeat exploits with
low overhead also.

While DCLR does not impact the content of the docu-
ment as interpreted by the document reader and viewed
by the user, it does change the raw document file. This
could potentially impact some signature matching sys-
tems which operate on raw files instead of interpreting
as the document reader does. Also, cryptographic sig-
natures such as those used in signed emails would not
validate correctly on the transformed document. Solu-
tions to these issues have yet to be elaborated, but po-
tential solutions are promising. For example, signature
matching systems can implement file parsing. Signa-
tures validation systems can operate on an invariant
logical representation of the parsed document, instead
of a potentially arbitrary file level representation.

12



9 Conclusions

We designed and evaluated exploit protections using
transformations performed on documents. Document
content layout randomization is effective in relocating
malicious content in document files and in document
reader process memory. We demonstrate the ability to
mitigate current exploits in Office 2003 and Office 2007
documents. The overhead of transforming documents
is comparable in run time to a common anti-virus en-
gine and the added latency of opening a content layout
randomized document appears to be negligible. The
transformed documents are functionally equivalent to
the original documents, barring the exploit protections
that are induced.

The proposed protections complement operating sys-
tem based defenses by providing higher granularity in
relocation and through content fragmentation which cre-
ates an additional constraint on malicious payload size.
Memory consumption based approaches can be used
to reliably safeguard document reader memory but it
seems that such approaches require significant amounts
of computational and memory resources. In general,
transformation based approaches are applicable where
indirect data access and arbitrary layout is used by the
reader but exploits misuse direct access to data. Other
file formats and exploitation techniques could possibly
benefit from this approach.

References
[1] Clam AntiVirus. http://www.clamav.net/ .

[2] Metasploit. http://www.metasploit.com/ .

[3] VirusTotal - Free Online Virus, Malware and URL Scanner.
http://www.virustotal.com/ .

[4] Hacking/Shellcode/Egg hunt/w32 SEH omelet shell-
code. http://skypher.com/wiki/index.php?title= Hack-
ing/Shellcode/Egg hunt/w32 SEH omelet shellcode (July 2009).

[5] 5 Attackers & Counting: Dissecting The ”docx.image” Exploit
Kit. http://www.proofpoint.com /threatinsight/posts/dissecting-docx-
image-exploit-kit-cve-exploitation.php (Dec. 2013).

[6] BHATKAR, S., AND SEKAR, R. Data Space Randomization. In
Detection of Intrusions and Malware, and Vulnerability Assessment,
D. Zamboni, Ed., no. 5137 in Lecture Notes in Computer Science.
Springer Berlin Heidelberg, Jan. 2008, pp. 1–22.

[7] BLAZAKIS, D. Interpreter Exploitation. In WOOT (2010).

[8] BLOND, S. L., URITESC, A., GILBERT, C., CHUA, Z. L., SAXENA,
P., AND KIRDA, E. A Look at Targeted Attacks Through the Lense
of an NGO. In 23rd USENIX Security Symposium (USENIX Security
14) (San Diego, CA, 2014), USENIX Association, pp. 543–558.

[9] BRADSHAW, S. The grey corner: Omlette egghunter shellcode.

[10] CHEN, X. ASLR Bypass Apocalypse in Recent Zero-Day
Exploits. FireEye Blog http://www.fireeye.com /blog/technical/cyber-
exploits/2013/10/aslr-bypass-apocalypse-in-lately-zero-day-
exploits.html (Oct. 2013).

[11] CROSS, J. S., AND MUNSON, M. A. Deep PDF Parsing to Ex-
tract Features for Detecting Embedded Malware. Tech. Rep.
SAND2011-7982, Sandia National Laboratories, Sept. 2011.

[12] CZUMAK, M. Windows Exploit Development – Part 5: Locating
Shellcode With Egghunting. http://www.securitysift.com/windows-
exploit-development-part-5-locating-shellcode-egghunting/ (Jan.
2014).

[13] DHAMANKAR, R., PALLER, A., SACHS, M., SKOUDIS, E., ES-
CHELBECK, G., AND SARWATE, A. Top 20 Internet Security Risks
for 2007.

[14] GARFINKEL, S., FARRELL, P., ROUSSEV, V., AND DINOLT, G.
Bringing science to digital forensics with standardized forensic
corpora. Digit. Investig. 6 (Sept. 2009), S2–S11.

[15] HARDY, S., CRETE-NISHIHATA, M., KLEEMOLA, K., SENFT, A.,
SONNE, B., WISEMAN, G., GILL, P., AND DEIBERT, R. J. Tar-
geted threat index: Characterizing and quantifying politically-
motivated targeted malware. In Proceedings of the 23rd USENIX
Security Symposium (2014).

[16] HYPPONEN, M. How We Found the File That Was Used to Hack
RSA. http://www.f-secure.com /weblog/archives/00002226.html (Aug.
2011).

[17] KANTER, M., AND TAYLOR, S. Attack Mitigation through Di-
versity. In MILCOM 2013 - 2013 IEEE Military Communications
Conference (Nov. 2013), pp. 1410–1415.

[18] KC, G. S., KEROMYTIS, A. D., AND PREVELAKIS, V. Countering
Code-injection Attacks with Instruction-set Randomization. In
Proceedings of the 10th ACM Conference on Computer and Commu-
nications Security (New York, NY, USA, 2003), CCS ’03, ACM,
pp. 272–280.

[19] KORNBLUM, J. Identifying almost identical files using context
triggered piecewise hashing. Digital Investigation 3, Supplement
(Sept. 2006), 91–97.

[20] LABS, S. Security Threat Report 2014: Smarter, Shadier, Stealthier
Malware.

[21] LASKOV, P., AND ŠRNDIĆ, N. Static detection of malicious
JavaScript-bearing PDF documents. In Proceedings of the 27th
Annual Computer Security Applications Conference (New York, NY,
USA, 2011), ACSAC ’11, ACM, pp. 373–382.

[22] LI, H., ZHU, S., AND XIE, J. RTF Attack Takes Advantage of Mul-
tiple Exploits. http://blogs.mcafee.com/mcafee-labs/rtf-attack-takes-
advantage-of-multiple-exploits (Apr. 2014).

[23] LI, W.-J., STOLFO, S., STAVROU, A., ANDROULAKI, E., AND
KEROMYTIS, A. D. A Study of Malcode-Bearing Documents. In
Detection of Intrusions and Malware, and Vulnerability Assessment,
B. Hämmerli and R. Sommer, Eds., vol. 4579. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007, pp. 231–250.

[24] MAIORCA, D., CORONA, I., AND GIACINTO, G. Looking at the
bag is not enough to find the bomb: an evasion of structural
methods for malicious PDF files detection. In Proceedings of the
8th ACM SIGSAC symposium on Information, computer and com-
munications security (New York, NY, USA, 2013), ASIA CCS ’13,
ACM, pp. 119–130.

[25] MAIORCA, D., GIACINTO, G., AND CORONA, I. A Pattern Recog-
nition System for Malicious PDF Files Detection. In Proceedings of
the 8th International Conference on Machine Learning and Data Min-
ing in Pattern Recognition (Berlin, Heidelberg, 2012), MLDM’12,
Springer-Verlag, pp. 510–524.

[26] PAPPAS, V., POLYCHRONAKIS, M., AND KEROMYTIS, A. Smash-
ing the Gadgets: Hindering Return-Oriented Programming Us-
ing In-place Code Randomization. In 2012 IEEE Symposium on
Security and Privacy (SP) (May 2012), pp. 601–615.

[27] PARKOUR, M. 11,355+ Malicious documents
- archive for signature testing and research.
http://contagiodump.blogspot.com/2010/08/malicious-documents-
archive-for.html (Apr. 2011).

[28] SERNA, F. J. The info leak era on software exploitation. Black Hat
USA (2012).

13



[29] SHACHAM, H. The Geometry of Innocent Flesh on the Bone:
Return-into-libc Without Function Calls (on the x86). In Proceed-
ings of the 14th ACM Conference on Computer and Communications
Security (New York, NY, USA, 2007), CCS ’07, ACM, pp. 552–561.

[30] SHACHAM, H., PAGE, M., PFAFF, B., GOH, E.-J., MODADUGU,
N., AND BONEH, D. On the Effectiveness of Address-space
Randomization. In Proceedings of the 11th ACM Conference on
Computer and Communications Security (New York, NY, USA, 2004),
CCS ’04, ACM, pp. 298–307.

[31] SHAFIQ, M. Z., KHAYAM, S. A., AND FAROOQ, M. Embedded
Malware Detection Using Markov n-Grams. In Proceedings of the
5th international conference on Detection of Intrusions and Malware,
and Vulnerability Assessment (Berlin, Heidelberg, 2008), DIMVA
’08, Springer-Verlag, pp. 88–107.

[32] SMUTZ, C., AND STAVROU, A. Malicious PDF Detection Using
Metadata and Structural Features. In Proceedings of the 28th Annual
Computer Security Applications Conference (New York, NY, USA,
2012), ACSAC ’12, ACM, pp. 239–248.

[33] STOLFO, S., WANG, K., AND LI, W. Fileprint analysis for mal-
ware detection. ACM CCS WORM (2005).

[34] SZEKERES, L., PAYER, M., WEI, T., AND SONG, D. SoK: Eternal
War in Memory. In 2013 IEEE Symposium on Security and Privacy
(SP) (May 2013), pp. 48–62.

[35] TABISH, S. M., SHAFIQ, M. Z., AND FAROOQ, M. Malware
detection using statistical analysis of byte-level file content. In
Proceedings of the ACM SIGKDD Workshop on CyberSecurity and
Intelligence Informatics (New York, NY, USA, 2009), CSI-KDD ’09,
ACM, pp. 23–31.

[36] TEAM, C. Exploit notes-win32 eggs-to-omelet.
https://www.corelan.be/index.php /2010/08/22/exploit-notes-win32-
eggs-to-omelet/ (Aug. 2010).

[37] TEAM, P. PaX address space layout randomization.
http://pax.grsecurity.net/docs/aslr.txt (2003).

[38] TZERMIAS, Z., SYKIOTAKIS, G., POLYCHRONAKIS, M., AND
MARKATOS, E. P. Combining static and dynamic analysis for
the detection of malicious documents. In Proceedings of the Fourth
European Workshop on System Security (New York, NY, USA, 2011),
EUROSEC ’11, ACM, pp. 4:1–4:6.

[39] VILLENUEVE, N., WALTON, G., GROUP., S., AND FOR INTER-
NATIONAL STUDIES. CITIZEN LAB., M. C. Tracking GhostNet
investigating a cyber espionage network, 2009.

[40] ŠRNDIĆ, N., AND LASKOV, P. Detection of malicious pdf files
based on hierarchical document structure. In Proceedings of the
20th Annual Network & Distributed System Security Symposium
(2013), Citeseer.

[41] WEI, T., WANG, T., DUAN, L., AND LUO, J. Secure Dynamic
Code Generation Against Spraying. In Proceedings of the 17th
ACM Conference on Computer and Communications Security (New
York, NY, USA, 2010), CCS ’10, ACM, pp. 738–740.

[42] WOJTCZUK, R. The advanced return-into-lib(c) exploits: PaX
case study. Phrack Magazine, Volume 11, Issue 58 (2001).

[43] WRESSNEGGER, C., BOLDEWIN, F., AND RIECK, K. Deobfuscat-
ing Embedded Malware Using Probable-Plaintext Attacks. In
Research in Attacks, Intrusions, and Defenses, S. J. Stolfo, A. Stavrou,
and C. V. Wright, Eds., no. 8145 in Lecture Notes in Computer
Science. Springer Berlin Heidelberg, Jan. 2013, pp. 164–183.

[44] ZHANG, C., WEI, T., CHEN, Z., DUAN, L., SZEKERES, L., MC-
CAMANT, S., SONG, D., AND ZOU, W. Practical Control Flow
Integrity and Randomization for Binary Executables. In 2013 IEEE
Symposium on Security and Privacy (SP) (May 2013), pp. 559–573.

14


