
Department of Computer Science
George Mason University Technical Reports

4400 University Drive MS#4A5
Fairfax, VA 22030-4444 USA
http://cs.gmu.edu/ 703-993-1530

COVERT: Compositional Analysis of Android
Inter-App Vulnerabilities

Hamid Bagheri, Alireza Sadeghi, Joshua Garcia and Sam Malek
{hbagheri,asadeghi,jgarci40,smalek}@gmu.edu

Technical Report GMU-CS-TR-2015-1

Abstract

Android is the most popular platform for mobile devices.
It facilitates sharing of data and services among appli-
cations using a rich inter-app communication system.
While access to resources can be controlled by the An-
droid permission system, enforcing permissions is not
sufficient to prevent security violations, as permissions
may be mismanaged, intentionally or unintentionally.
Android’s enforcement of the permissions is at the level
of individual apps, allowing multiple malicious apps to
collude and combine their permissions or to trick vul-
nerable apps to perform actions on their behalf that are
beyond their individual privileges. In this paper, we
present COVERT, a tool for compositional analysis of
Android inter-app vulnerabilities. COVERT’s analysis
is modular to enable incremental analysis of applica-
tions as they are installed, updated, and removed. It
statically analyzes the reverse engineered source code
of each individual app, and extracts relevant security
specifications in a format suitable for formal verifica-
tion. Given a collection of specifications extracted in
this way, a formal analysis engine (e.g., model checker)
is then used to verify whether it is safe for a combina-
tion of applications—holding certain permissions and
potentially interacting with each other—to be installed
together. Our experience with using COVERT to exam-
ine over 200 real-world apps corroborates its ability to
find inter-app vulnerabilities in bundles of some of the
most popular apps on the market.

1 Introduction

Mobile app markets are creating a fundamental
paradigm shift in the way software is delivered to the
end users. The benefits of this software supply model
are plenty, including the ability to rapidly and effectively
acquire, introduce, maintain, and enhance software used

by the consumers. By providing a medium for reaching
a large consumer market at a nominal cost, app markets
have leveled the software development industry, allow-
ing small entrepreneurs to compete with prominent soft-
ware development companies. Application frameworks
are the key enablers of these markets. An application
framework, such as the one provided by Android, en-
sures apps developed by a wide variety of suppliers
can interoperate and coexist together in a single system
(e.g., a phone) as long as they conform to the rules and
constraints imposed by the framework.

This paradigm shift, however, has given rise to a new
set of security challenges. In parallel with the emergence
of app markets, we are witnessing an increase in the
security threats targeted at mobile platforms. This is
nowhere more evident than in the Android market (i.e.,
Google Play), where many cases of apps infected with
malwares and spywares have been reported [1]. Nu-
merous culprits are at play here, and some are not even
technical, such as the general lack of an overseeing au-
thority in the case of open markets and inconsequential
implication for those caught provisioning applications
with vulnerabilities or malicious capabilities.

In this context, Android’s security has been a thriving
subject of research in the past few years. Leveraging
program analysis techniques, these research efforts have
investigated weaknesses from various perspectives, in-
cluding detection of information leaks [2–4], analysis of
the least-privilege principle [5, 6], and enhancements to
Android protection mechanisms [7–9]. The majority of
these approaches, however, are subject to a common lim-
itation: they are intended to detect and mitigate vulnera-
bilities in a single app, but fail to identify vulnerabilities
that arise due to the interaction of multiple apps. Vul-
nerabilities due to the interaction of multiple apps, such
as collusion attacks and privilege escalation chaining [5],
cannot be detected by techniques that analyze a single
app in isolation. Thus, security analysis techniques in
such domains need to become compositional in nature.

1

This paper contributes a novel approach, called
COVERT, for compositional analysis of Android inter-
app vulnerabilities. Unlike all prior techniques that fo-
cus on assessing the security of an individual app in
isolation, our approach has the potential to greatly in-
crease the scope of application analysis by inferring the
security properties from individual apps and checking
them as a whole by means of formal analysis. This, in
turn, enables reasoning about the overall security pos-
ture of a system (e.g., a phone device) in terms of the
security properties inferred from the individual apps.

COVERT combines static analysis with formal meth-
ods. At the heart of our approach is a modular static
analysis technique for Android apps, designed to enable
incremental and automated checking of apps as they
are installed, removed, or updated on an Android de-
vice. Through static analysis of each app, our approach
extracts essential information and captures them in an
analyzable formal specification language. These formal
specifications are intentionally at the architectural level
to ensure the technique remains scalable, yet represent
the true behavior of the implemented software, as they
are automatically extracted from the installation artifacts.
The set of models extracted in this way are then checked
as a whole for vulnerabilities that occur due to the inter-
action of apps comprising a system. COVERT uses Alloy
as a specification language [10], and the Alloy Analyzer
as the analysis engine. Alloy is a formal specification
language based on first order logic, optimized for auto-
mated analysis.

Since COVERT’s analysis is compositional, it provides
the analysts with information that is significantly more
useful than what is provided by prior techniques. Our
experiences with a prototype implementation of the ap-
proach and its evaluation against one of the most promi-
nent inter-app vulnerabilities, i.e. privilege escalation,
in the context of hundreds of real-world Android apps
collected from variety of repositories have been very
positive. The results, among other things, corroborate
its ability to find vulnerabilities in bundles of some of
the most popular apps on the market.

Contributions. This paper makes the following con-
tributions:

• Formal model of Android framework: We develop a
formal specification representing the behavior of
Android apps that is relevant for the detection of
inter-app vulnerabilities. We construct this formal
specification as a reusable Alloy module to which
all extracted app models conform.

• Modular analysis: We show how to exploit the power
of our formal abstractions by building a modular
model extractor that uses static analysis techniques
to automatically extract formal specifications (mod-
els) of apps form their installation artifacts.

• Implementation: We develop a prototype implemen-

tation on top of our formal framework for composi-
tional security analysis of Android apps.

• Experiments: We present results from experiments
run on over 200 real-world apps, corroborating
COVERT’s ability in effective compositional analysis
of Android inter-app vulnerabilities in the order of
minutes.

Outline. The remainder of this paper is organized as
follows. Section 2 provides the background knowledge
required to understand the contributions of our work.
Section 3 motivates our research through an illustrative
example. Section 4 provides an overview of COVERT.
Sections 5 and 6 describe the details of model extraction
and formal analysis, respectively. Section 7 presents the
evaluation of the research. Finally, the paper concludes
with a discussion of limitations, and an outline of the
related research and future work.

2 Android Overview

This section provides an overview of the Android appli-
cation framework to help the reader follow the discus-
sions that ensue.

Application Components. Components are basic log-
ical building blocks of Android applications. Each com-
ponent can be run individually, either by its embody-
ing application or by system upon permitted requests
from other applications. Android applications can com-
prise four types of components: (1) Activity components
provide the basis of the Android user interface. Each
Application may have multiple Activities representing
different screens of the application to the user. (2) Service
components provide background processing capabili-
ties, and do not provide any user interface. Playing
a music and downloading a file while a user interacts
with another application are examples of operations that
may run as a Service. (3) Broadcast Receiver components
respond asynchronously to system-wide message broad-
casts. A receiver component typically acts as a gateway
to other components, and passes on messages to Activ-
ities or Services to handle them. (4) Content Provider
components provide database capabilities to other com-
ponents. Such databases can be used for both intra-app
data persistence as well as sharing data across applica-
tions.

Inter-Process Communication. As part of its protec-
tion mechanism, Android insulates applications from
each other and system resources from applications via
a sandboxing mechanism. Such application insulation
that Android depends on to protect applications requires
interactions to occur through a message passing mech-
anism, called inter-process communication (IPC). IPC
is conducted by means of Intent messages. An Intent
message is an event for an action to be performed along

2

with the data that supports that action. Component invo-
cations come in different flavors, e.g., explicit or implicit,
intra- or inter-apps, etc. Android’s IPC allows for late
run-time binding between components in the same or
different applications, where the calls are not explicit in
the code, rather made possible through event messaging,
a key property of event-driven systems.

Application Configuration. Each Android applica-
tion must declare upfront its configuration. Among
other things, it describes the principal components that
constitute the application, along with their types and
capabilities. Component capabilities are specified as a
set of Intent Filters that represent the kinds of requests a
given component can respond to. Such high-level appli-
cation descriptions are documented in a separate XML
file, called manifest, that accompanies the application.

Permissions. Enforcing permissions is the other mech-
anism, besides sandboxing, provided by the Android
framework to protect applications, by which restrictions
are placed on the specific operations that an applica-
tion can perform, such as interacting with the system
APIs and databases, as well as cross-application inter-
actions. Each application must declare upfront as part
of its manifest the permissions it requires, and the An-
droid system prompts the user for consent during the
application installation. Should the user refuse granting
the requested permissions to an application, the appli-
cation installation is canceled. No dynamic mechanism
is provided by Android for granting permissions after
application installation. The manifest file also declares
permissions enforced by the application or by any of
its components; the other applications thus must have
those permissions in order to interact with such pro-
tected components. Android platform provides over
130 pre-defined permissions, and applications can also
define their own permissions. Each permission is spec-
ified by a unique label, typically indicating the pro-
tected action. For instance, the permission label of
android.permission.SET WALLPAPER is required
for an application to change the wallpaper. The An-
droid permission mechanism has proved insufficient to
prevent security violations, since permissions may be
misused, intentionally or unintentionally, as illustrated
in the next section.

3 Motivating Example

To motivate the research and illustrate our approach, we
provide an example of a vulnerability pattern having
to do with Inter-Process Communication (IPC) among
Android apps. Android provides a flexible model of
IPC using a type of application-level message known
as Intent (cf. Section 2). A typical app is comprised of
multiple processes (e.g., Activity, Service) that commu-
nicate using Intent messages. In addition, under certain
circumstances, an app’s processes could send Intent mes-

sages to another app’s processes to perform actions (e.g.,
take picture, send text message, etc.). As an example,
Listing 1 shows CallerActivity belonging to a malicious
app sending an Intent message to PhoneActivity (List-
ing 2) belonging to a vulnerable app for placing a call to
a premium-rate telephone number.

1 public c l a s s C a l l e r A c t i v i t y extends A c t i v i t y {
2 public void onCreate (Bundle s a ve d I n s t an c e S t a te) {
3 . . .
4 S t r i n g a c t i o n ;
5 i f (selectedMenu == 1)
6 a c t i o n = ”PHONE CALL” ;
7 e lse
8 a c t i o n = ”PHONE TEXT MSG” ;
9 btnOK = (Button) findViewById (R . id . btnOK) ;

10 btnOK . se tOnCl ickLis tener (new OnClickListener () {
11 public void onClick (View v) {
12 I n t e n t i n t e n t = new I n t e n t (a c t i o n) ;
13 i n t e n t . setClassName (”com . phoneservice ” , ”com .

phoneservice . PhoneActivity ”) ;
14 i n t e n t . putExtra (”PHONENUM” , ”900−512−1677”) ;
15 s t a r t A c t i v i t y (i n t e n t) ;
16 }
17 }
18 }

Listing 1: Malicious app: sends an Intent to call a
premium-rate phone number.

The vulnerability occurs on line 30 of Listing 2,
where PhoneActivity initiates a system Intent of type
ACTION CALL, resulting in a phone call. This is a re-
served Android action that requires special access per-
missions to the system’s telephony service. Although
PhoneActivity has that permission, it also needs to en-
sure that the sender of the original Intent message has
the required permission to use the telephony service.
An example of such a check is shown in hasPermission
method of Listing 2, but in this particular example it
does not get called (line 15 is commented) to illustrate
the vulnerability. If CallerActivity does not have the per-
mission to make phone calls (i.e., it is not specified in
the corresponding app’s manifest file), it is able to make
PhoneActivity perform that action on its behalf. This is a
privilege escalation vulnerability and has been shown to
be quite common in the apps on the market [2]. It could
be exploited by a malware running on the same phone
to call premium-rate numbers.

The above example points to one of the most promi-
nent inter-app vulnerabilities, i.e. privilege escalation,
that we take as a running example from a class of vulner-
abilities that require compositional analysis to be able to
detect effectively.

4 Approach Overview

This section overviews our approach to automatically
identify such vulnerabilities that occur due to the in-
teraction of apps comprising a system, and determine
whether it is safe for a bundle of apps, requiring cer-
tain permissions and potentially interacting with each

3

Figure 1: Overview of COVERT.

1 public c l a s s MainActivity extends A c t i v i t y {
2 public void onCreate (Bundle s a v ed I n s t an c e S t a te) {
3 . . .
4 I n t e n t i n t e n t = new I n t e n t (this , PhoneActivity . c l a s s

) ;
5 s t a r t A c t i v i t y (i n t e n t) ;
6 }
7 }
8
9 public c l a s s PhoneActivity extends A c t i v i t y {

10
11 public void onCreate (Bundle s a v ed I n s t an c e S t a te) {
12 . . .
13 I n t e n t i n t e n t = g e t I n t e n t () ;
14 S t r i n g number = i n t e n t . g e t S t r i n g E x t r a (”PHONENUM”) ;
15 // i f (hasPermission ())
16 makePhoneCall (number) ;
17 e lse
18 . . .
19 }
20
21 void hasPermission () {
22 i f (checkCal l ingPermiss ion (” android . permission .

CALL PHONE”) ==PackageManager .
PERMISSION GRANTED)

23 return true ;
24 return f a l s e ;
25 }
26
27 void makePhoneCall (S t r i n g number) {
28 I n t e n t c a l l I n t e n t = new I n t e n t (I n t e n t . ACTION CALL) ;
29 c a l l I n t e n t . setData (Uri . parse (number)) ;
30 startActivity (callIntent); // privilege escalation vulnerability
31 }
32 }

Listing 2: Vulnerable app: receives an Intent and
makes a phone call.

other, to be installed together. As depicted in Figure 1,
COVERT consists of two parts: (1) Model Extractor that
uses static code analysis techniques to elicit formal spec-
ifications (models) of the apps comprising a system as
well as the phone configuration; and (2) Formal Analyzer
that is intended to use lightweight formal analysis tech-
niques to verify certain properties (e.g., known security
vulnerability patterns) in the extracted specifications.

COVERT relies on two types of models: 1) app model
that Model Extractor generates automatically for each
Android app; 2) Android framework spec. that defines a set
of rules to lay the foundation of Android apps, how they
behave (e.g., application, component, messages, etc.),
and how they interact with each other. The framework
specification is constructed once for a given platform
(e.g., version of Android) as a reusable model to which

all extracted app models must conform. It can be consid-
ered as an abstract specification of how a given platform
behaves.

Model Extractor takes as input a set of Android ap-
plication package archives (APK files1). To generate the
app models, it first examines the application manifest
file to determine its architectural information. Besides
such high-level, architectural information collected from
the manifest file, Model Extractor utilizes static analysis
techniques to extract other essential information from
the application bytecode. We have built a prototype im-
plementation of the model extractor component on top
of Soot [11] for static analysis and Dexpler [12] for reverse
engineering Android APK files. As a result, our proto-
type implementation of the approach only requires the
availability of Android executable files, and not the orig-
inal source code. COVERT, thus, can be used not only by
developers, but also by end-users as well as third-party
reviewers to assess the trustworthiness of their mobile
devices.

The set of app models extracted in this way are then
combined together with a formal specification of the
application framework, and checked as a whole for vul-
nerabilities that occur due to the interaction of apps
comprising a system. Finally, a report is returned to
the user describing the list of detected vulnerabilities.
Upon reviewing the report, end-users and third-party re-
viewers may choose to protect their devices in a variety
of ways, e.g., by disallowing the installation of certain
combination of apps, or dynamically restricting certain
inter-app communications.

In this research work, we rely on lightweight formal
analysis techniques [13] for modeling and verification
purposes. Such lightweight, yet formally-precise meth-
ods, bring fully automated analysis techniques to partial
models that represent the key aspects of a system [14].
The analysis is accordingly conducted by exhaustive
enumeration over a bounded scope of model instances.
These methods thus facilitate application of formal ana-
lyzers in development of software-intensive systems. In
our prototype tool implementation, we use Alloy [10],
as the specification language, and the Alloy Analyzer

1APKs are Java bytecode packages used to distribute and install
Android applications.

4

as the analysis engine. Alloy is a formal specification
language based on first order logic, optimized for auto-
mated analysis.

Our approach can be applied in an offline setting to
determine if a particular configuration for a system com-
prised of several apps harbors security vulnerabilities.
Although not the focus of this paper, we believe the ap-
proach could also be applied at runtime to continuously
verify the security properties of an evolving system as
new apps are installed, and old ones are updated and
removed.

In the following two sections, we describe the details
of static analysis used to capture essential application
information and formal analysis for verification.

5 Model Extractor

In order to automatically analyze vulnerabilities, we first
need a model of each application that would allow us to
determine the potential inter-process communications
and to also reason about the security properties. In our
approach, an app model is composed of the information
extracted from two sources: manifest file and bytecode.
This section first formally defines the model we extract
for each app, and then describes the extraction process.

Definition 1. A model for an Android application is a tuple
A =< C, I, F, P, S >, where

• C is a set of components, where each component
c ∈ C has a set of Intent messages intents(c) ⊆ I, a
set of Intent filters i f ilters(c) ⊆ F, a set of permis-
sions perms(c) ⊆ P required to access the compo-
nent c, and a set of sensitive (i.e., security relevant)
paths paths(c) ⊆ S. Each component is defined
as one of the four Android pre-defined component
types: Activity, Service, Broadcast Receiver, and Con-
tent Provider.

• I is a set of event messages that can be used for
both inter- and intra-app communications. Each
Intent i ∈ I has a sender component sender(i) ∈ C,
may have a recipient component, and three sets of
action(i), data(i) and categories(i), specifying the
general action to be performed in the recipient com-
ponent, additional information about the data to
be processed by the action, and the kind of compo-
nent that should handle i, respectively. If the set
component(i) is non-empty, the Intent i is called an
explicit Intent, as the recipient component is given
explicitly.

• F is a set of Intent Filters, where each filter i f ilter ∈
F is attached to a component c ∈ C, and describes
an interface (capability) of c in terms of Intents that
it can handle. Each i f ilter has a non-empty set
of actions(i f ilter) and two sets of data(i f ilter) and
categories(i f ilter).

• P is a union of required and enforced permissions,
P = PReq ∪ PEn f , where PReq specifies the permissions
to which the application needs to have access to run
properly and PEn f specifies the permissions required
to access components of the application under con-
sideration. We let the set of permissions actually
used within a component c as permUsed(c) ⊆ PReq.

• S is a finite set of vulnerable paths; each path be-
longs to a component c ∈ C, and is represented as a
tuple < Entry, Destination >, where Entry and Desti-
nation represent either permission-required APIs or
IPC calls.

As shown in Algorithm 1, the Model Extractor per-
forms three major steps to obtain a model of Android
app: Entity Extraction and Resolution (lines 4–13), Con-
trol Flow Augmentation (lines 14–16), and Vulnerable Paths
Identification(line 17). In the first step, the entities are
extracted from either the manifest file or the bytecode.
Second, COVERT builds an inter-procedural control-flow
graph augmented to account for implicit invocations.
The generated inter-procedural control-flow graph is
further annotated with permissions required to enact
Android API calls and Intents. Finally, in the last step,
a reachability analysis is performed over the generated
graph to determine the exposed components that con-
tain unguarded execution paths reaching permission-
required functionalities.

Details of each step, elaborated by Algorithms 2 and
3, are discussed in the rest of this section. To help explain
the approach, Figure 2 illustrates the steps of applying
our model extraction to the motivating example (cf. Sec-
tion 3).

Algorithm 1: Model Extractor
Input: app: Android App
Output: A: App’s Extracted Model

1 A←< {}, {}, {}, {}, {} >
2 ICFG ← {}
3 summaries← {}
// I Entity Extraction - cf. Sec. 5.1

4 A.C ← extractManifestComponents(app)
5 A.P← extractManifestPermissions(app)
6 A.F ← extractManifestFilters(app)
7 IFEntities← {}
8 foreach method ∈ app do
9 IFEntities← identifyIFEntity(method, summaries)

10 end
11 resolveIFEntityAttr(IFEntities)
12 A.I ← getIntents(IFEntities)
13 A.F ← getIntentFilters(IFEntities) ∪ A.F

// I ICFG Augmentation - cf. Sec. 5.2
14 G ← constructICFG(app)
15 E← extractImplicitCallBacks(app)
16 ICFG ← augmentICFG(G, E)

// I Vul. Paths Identification - cf. Sec.
5.3

17 A.S← findVulPaths(A.C, ICFG)

5

5.1 Entity Extraction and Resolution

As part of the entity extraction process, the Model Extrac-
tor first identifies the entities comprising the app by pars-
ing and examining the app’s manifest files. As shown
in Algorithm1 (lines 4–6), it can readily obtain informa-
tion such as the app’s components (C) and their types,
permissions that the app requires (PReq), and the en-
forced permissions (PermsEn f) that the other apps must
have in order to interact with the app components. It
also identifies some of the public interfaces exposed by
each application, which are essentially entry points de-
fined in the manifest file through Intent Filters (F) of
components. However, not all entry points can be ex-
tracted from the manifest file, as discussed further below.
Figure 2a shows the entities extracted at this stage of
analysis corresponding to our running example from
Section 3. Although the figure depicts the entities ex-
tracted for both apps, the reader should note that in
practice COVERT’s program analysis runs separately on
each app, the results of which are then transformed into
separate formal specification modules, as detailed in
Section 6.

After collecting these entities through examining the
application manifest file, the Model Extractor identifies
complementary information latent in the application
bytecode. In particular, we also need to extract Intents
and Intent Filters, which may be defined programmat-
ically in the bytecode, rather than in the manifest file.
Intent Filters for components of type Service and Activ-
ity must be declared in their manifest, but for Broadcast
Receivers, though, either in the manifest or at runtime.

For each method in an app’s component, the algo-
rithm detects and extracts Intents and Intent Filters, as
shown in lines 8–10. Android API reference documenta-
tion [15] is used in this step to associate specific entities
to framework-provided APIs defining or manipulating
these entities. In the motivating example (Section 3),
samples of entities are identifiable: an Intent entity
is created in line 12 of Listing 1; the framework API
getIntent is called in line 13 of Listing 2.

Intents and Intent Filters extracted this way need
to be further analyzed to obtain additional informa-
tion about their attributes. To that end, Model Ex-
tractor iterates over each method of the app and calls
identifyIFEntity, which applies a summary-based
iterative data-flow analysis [16] to detect entities and
their attributes. For each Intent message, for example, it
tracks the message’s sender, the target component, the
type of action it has (if any), data to be processed by the
action, and categories of components that should handle
the Intent. Note, however, that the values of attributes
are resolved through an additional analysis described
later in this section.
identifyIFEntity computes a method summary

for each analyzed method. The method summary de-
scribes information about entities that can be inferred

from a method. Method summaries make entity res-
olution inter-procedural, allowing an entire app to be
analyzed. Methods are analyzed in reverse topological
order with respect to the app’s call graph so that a given
method’s summary is computed before any methods
that call it are analyzed. Cycles in the call graph (e.g.,
from recursion) are handled in the standard manner, by
treating the involved methods as one “super method.”

The details of identifyIFEntity are shown in
Algorithm 2. identifyIFEntity outputs the set
IFEntities, which contains identified Intents and Intent
Filters that are defined and utilized in the Android app’s
source code. There are four types of statements that
need to be considered to retrieve entity properties: (1)
statements that create an entity, (2) statements that set
the attributes of an entity, (3) statements that consume
an entity, and (4) statements that invoke non-Android
API methods.

The first type of statement, handled in lines 10–15 of
Algorithm 2, correspond to the APIs creating an entity
(e.g., through the constructors). In this case, the newly-
created entity is added to the gen set in order to be used
in the other cases; any entities that are reassigned are
added to the kill set to prevent further propagation of
such entities; and IFEntities is updated with the new
entity.

The second type of statement, handled by the case
of lines 16–19, are the ones that set the attributes of
the entity under consideration (i.e., the action, cat-
egory, data, and target attributes). For example,
Intent.setClassName() sets the target component
for the given Intent.

The third type of statement, handled in lines 20–23 of
Algorithm 2, correspond to the APIs that consume enti-
ties. Entities are consumed in different ways. An Intent,
for example, is consumed when it is sent to a component:
startActivity(Intent) launches a new Activity by
sending an Intent that carries the Activity’s description.
An Intent Filter, however, is consumed when it is used in
registering a Broadcast Receiver. Since the attributes of
an entity cannot be set after consumption, the consumed
entity is added to the kill set.

Finally, for method calls that are not part of the An-
droid API, identifyIFEntity utilizes the summary
of an invoked method to determine the entities and their
attributes that are computed in the method (lines 24–
26 of Algorithm 2). In particular, identifyIFEntity
utilizes the summary of the method invoked in the pro-
gram statement stmt under analysis to update the gen,
kill, and IFEntities sets. For example, in line 16 of List-
ing 2, the non-Android API method makePhoneCall
is invoked, where a new Intent is created with action
and data attributes. identifyIFEntity utilizes the
method summary for makePhoneCall to determine
that the invocation of that method results in the creation
of a new Intent with action ACTION CALL and a data
attribute. In this case, updateFromSummary adds this

6

Figure 2: Extracted models for the apps described in
Listings 1 and 2 at different steps of analysis.

new Intent to the gen and IFEntities sets so that the new
Intent is recorded and will be propagated by the data-
flow analysis. The kill set is not modified in this case
since the new Intent is not assigned to an already-defined
Intent reference.

For aliasing in the case of entities and their attributes,
we utilize class hierarchy analysis [16], which produces
accurate results for our purposes (as shown in Section 7).
However, our algorithm can subsitute the class hierarchy
analysis for a more precise analysis (e.g., a points-to
analysis), possibly trading off efficiency for precision.

The overall algorithm (line 11 of Algorithm 1) then
calls resolveEntityAttr to resolve the values associ-
ated with the retrieved entity attributes (e.g., the action,
categories, and data types of Intents). To do this, it uses
string values obtained from string constant propaga-
tion [16], which provides a precise solution since, by
convention, Android apps use constant strings to define
these values. In cases where a string variable’s value
cannot be determined statically, we take a conservative
approach and assume the value to be any string. Despite
this conservative approach, our evaluation results (see
Section 7) show our technique to be significantly precise,
while remaining scalable.

It is also possible that a property is disambiguated to
more than one value. For instance, consider our run-
ning example, the Intent action could be assigned to two
different values at runtime, namely “PHONE CALL” and
“PHONE TEXT MSG” defined on lines 6 and 8 of Listing 1,
respectively. We take a conservative approach to handle
such an issue and generate a separate entity for each
of these values, as they contribute different exposure
surfaces or event messages in the case of Intent Filters
and Intents, respectively.

Figure 2b shows the extracted model corresponding
to our running example (recall Section 3) at this stage of
analysis. In this particular example, Intents, as well as
their properties (not depicted), are the only additional
entities extracted from the bytecode. For clarity of pre-
sentation, Figure 2b only depicts the Intents relevant to
the vulnerability in our example.

5.2 Control Flow Augmentation

Subsequent to extracting entities, Model Extractor needs
to determine control flow between methods in order to
detect vulnerabilities for privilege escalation. To that
end, Model Extractor constructs an inter-procedural
control-flow graph (ICFG) of the entire application. An
ICFG is a collection of control-flow graphs (CFGs) con-
nected to each other at call sites.

However, due to the event-driven structure of the
Android platform, the traditional ICFG generation meth-
ods do not connect CFGs at call sites corresponding to
implicit invocations. To generate an ICFG that takes
implicit invocation into account, we need to include call-
backs of an app. These are Android-API methods that

7

Algorithm 2: identifyIFEntity
Input: method, summaries
Output: IFEntities

1 IFEntities← {}
2 gen[entry]← {entities passed as parameters to method}
3 workList← {all statements of method}
4 repeat
5 stmt← workList.head
6 foreach stmt′ ∈ pred(stmt) do
7 in[stmt]← in[stmt] ∪ out[stmt′]
8 end
9 switch stmt.type do

10 case Intent or Intent Filter Constructors
11 entity← corresponding entity of statement
12 gen[s]← {entity}
13 kill[s]← set of reassigned entities
14 IFEntities← {entity} ∪ IFEntities
15 end
16 case Entity Attribute Assignment
17 entity← corresponding entity of statement;
18 updateAttr(entity)
19 end
20 case Intent Sender or Intent Filter Registration
21 entity← corresponding entity of statement
22 kill[s]← {entity}
23 end
24 case Non-Android API Method Call
25 updateFromSummary(gen, kill, IFEntities,

summaries)
26 end
27 endsw
28 prevOut← out[stmt]
29 out[stmt]← (in[stmt] \ kill[stmt) ∪ gen[stmt]
30 if prevOut 6= out[stmt] then
31 workList← workList ∪ succ(stmt)
32 until workList = ∅;
33 summarize(gen, kill, IFEntities, summaries)

no other part of the application explicitly invokes.
To connect the CFGs over implicit calls, we traverse

the nodes of each CFG in a depth-first manner, and con-
nect all implicit invocation nodes with the correspond-
ing call-back nodes. For example, in lines 11–15 of List-
ing 1, an anonymous inner-class is defined within the
onCreate method to handle the Click events triggered
by the btnOk button. Thus, an edge is added to the
app’s ICFG from the setOnClickListener invoca-
tion to the entry point of onClick.

Figure 2c shows some parts of ICFGs extracted for
each of the apps from Section 3. Here, the dashed line
between nodes M© and N© indicates an implicit invoca-
tion.

5.3 Vulnerable Paths Identification

The last step is to determine if there is a path from
each component’s IPC entry point to an invocation
of a permission-required functionality that is either
inappropriately-guarded or unguarded, which may lead
to IPC vulnerabilities. For this purpose, COVERT lever-
ages the reachability analysis described in Algorithm 3.

Here, the entry nodes are IPC calls, which represent

Algorithm 3: findVulPaths
Input: C: set of Components, ICFG
Output: Vulnerable Paths

1 Entry← {}
2 Dest← {}
3 foreach c ∈ C do
4 if isPublic(c) then
5 Entry← Entry ∪ getEntryPoints(c)
6 end
7 foreach n ∈ ICFG do
8 tagCheckedPerm(n)
9 if n.hasTag(Reqprm) ∧ !n.hasTag(Checkprm) then

10 Dest← Dest ∪ n
11 end
12 return pathFinder(Entry, Dest, ICFG)

methods in a component that handle Intents generated
by other components or the Android framework itself.
Specifically, all app components, including Activities
and Services, are required to follow pre-specified lifecy-
cles [17] managed by the framework in an event-driven
manner. Each component, thus, registers event handlers
that serve as the IPC entry points through which the
framework starts or activates the component once han-
dled events occur. An Activity, for example, generates
a StartActivity event that results in another Activ-
ity’s onCreate() method to be called. Moreover, for
each entry node, the corresponding component defini-
tion in the manifest file is also examined to ensure the
component is public (line 5 of Algorithm 3). Recall from
Section 2, a component is public, if its specification sets
the EXPORTED flag or declares Intent filter(s).

The destination nodes are defined as permission-
required API calls or Intent messages that are not prop-
erly checked. As shown in lines 7–11, to determine desti-
nation nodes, for each node in ICFG, tagCheckedPerm
marks it with two tags: (1) Reqprm tag denotes that
a statement is called at the node under consideration
that requires a particular permission of “prm”; and (2)
Checkprm tag shows the node is guarded by permission
“prm” checking. Thus, a vulnerable destination node is a
node tagged with Reqprm but not with the corresponding
Checkprm tag.

To identify Reqprm tags, tagCheckedPerm uses API
permission maps available in the literature, and in par-
ticular the PScout permission map [18], one of the most
recently updated and comprehensive permission maps
available for the Android framework. PScout specifies
mappings between Android API calls/Intents and the
permissions required to perform those calls. The nodes
tagged as permission-required are distinguishable in
Figure 2d by ! sign. For example, node F© is a tagged
node as it uses Telephony API that requires CALL PHONE
permission.

Identifying and applying Checkprm is trickier, since
permission enforcement for a component could be de-
fined at two levels. While the coarse-grained permis-
sions specified in the manifest file are enforced over a
whole component, a developer can also add permission
checks throughout the code controlling access to partic-

8

ular aspects of a component. The former can be readily
checked using the information extracted from the mani-
fest file (recall Section 5.1), but the latter requires further
program analysis.

To determine permission-check API invocations that
act as guards in code, tagCheckedPerm leverages a
context-sensitive analysis (i.e., it considers the calling
context of a method call) that handles the two most com-
mon cases. The first case occurs when a permission-
check API is called directly. For the second case,
tagCheckedPerm determines if a statement invokes
a method that results in a call to a permission-check API
(e.g., the commented permission check on line 15 of List-
ing 2). To handle aliasing in this case, tagCheckedPerm
utilizes class hierarchy analysis, which has proven suffi-
ciently precise for our purposes.

Once entry and destination nodes are identified, find-
VulPaths determines the paths between them (line 12 of
Algorithm 3). To achieve high precision in determin-
ing paths between entry and destination nodes, our ap-
proach is context-sensitive. In the interest of scalability,
COVERT’s analysis, however, is not path-sensitive (i.e.,
the analysis does not distinguish information obtained
from different paths). The results (see Section 7) indicate
no significant imprecision caused by path-insensitivity
in the context of Android vulnerability analysis.

Components that contain an entry→ destination path,
returned by findVulPaths, are vulnerable to various inter-
app attacks. For instance, in Figure 2d the red-colored
path of < A©, B©, D©, F© > is vulnerable, as there is a path
from an entry node A© to an invocation of a permission-
required API (i.e., Telephony API). As shown in Listing 1,
a malicious app can exploit this vulnerability and call
the Telephony API without having the proper privilege.

The Model Extractor produces an extended-manifest
file for each Android application. This extended-
manifest, documented in an XML format, encompasses
all information extracted from both the app bytecode
as well as the app manifest file. Once an app model is
extracted, it can then be reused for analysis within sev-
eral bundles of apps. Given a set of extended-manifest
files corresponding to a bundle of apps, COVERT gener-
ates a package of Alloy modules, which in turn enables
their compositional analysis. The next section details the
structure of generated Alloy models.

6 Formal Analyzer

In this section we show that our ideas for compositional,
formal, and automated analysis of Android apps can be
reduced to practice. Our approach automatically trans-
forms the models derived through static analysis into
an analyzable specification language, and verifies them
against certain properties using the automated analyzers
associated with such languages. As an enabling tech-
nology, we use the Alloy language [10], to represent a

model of Android framework, application models, and
to-be-analyzed properties.

There are four main reasons that motivate our choice
of Alloy for this work. First, its comprehensible, object-
oriented-like syntax, backed with logical and relational
operators, makes Alloy an appropriate language for
declarative specification of both applications and prop-
erties to be checked (i.e., assertions). Second, its ability
to automatically analyze specifications with no custom
programming is useful as an automation mechanism.

Third, and more importantly, its effective module sys-
tem allows us to split the overall, complicated system
model among several tractable modules. A simple mod-
ule system is not only convenient, but is an important
part of our approach, as it enables effective composi-
tional analysis of, among other things, impenetrable sce-
narios, where for example a malicious app can leverage
a chain of vulnerable components to leak sensitive data
or to perform actions that are beyond its individual priv-
ileges. Android apps and properties to be checked are
strictly separated and modularized in different specifica-
tions, which further facilitates reusability of such specifi-
cations, and this is clearly where much of the power of
our work comes from. Specifically, Android framework
specification, application specifications, and specifica-
tions of vulnerabilities to be analyzed are all reusable,
and this paper shows the promise of paying a one-time
cost to formally specify them to enable compositional
analysis of Android vulnerabilities.

Lastly, the extraction approach we take in COVERT
to generate bundle specifications is incremental. More
specifically, the Model Extractor produces a separate
extraction-output file for each Android application, in-
dependent of other apps in the bundle. The set of ex-
tracted app models are then combined together to check
for inter-app vulnerabilities. Hence, once an app model
is extracted, it can then be reused for analysis within
several bundles of apps. That means to add, update or
remove an app from the bundle, we only need to add,
update, or remove information for that particular app.

To appreciate COVERT’s approach, consider that an
alternative approach is to detect the inter-app vulnera-
bilities by performing the program analysis on a whole
set of apps simultaneously. But such an approach suf-
fers from two shortcomings. First, it would face serious
scalability issues, as a typical mobile device may have
tens or hundreds of apps installed on it, and the analysis
space grows exponentially with the number of apps to-
be-analyzed. Second, it would require such a complex
analysis to be performed every time any of the apps are
updated, added, and removed. COVERT does not suf-
fer from the same shortcomings because it analyzes the
apps in isolation, and relies on the declarative power of
formal specification languages (namely Alloy) to sepa-
rate the various models needed for the analysis, thereby
facilitating reuse of the models as well as the results.

In the rest of this section, we first provide a brief

9

overview of Alloy, and then describe how we use it in
modeling and thereby analysis of Android applications.

6.1 Alloy Overview

Alloy is a formal modeling language with a compre-
hensible syntax that stems from notations ubiquitous in
object orientation, and semantics based on the first-order
relational logic [10]. The Alloy Analyzer is a constraint
solver that supports automatic analysis of models writ-
ten in Alloy. The analysis process is based on a trans-
lation of Alloy specifications into a Boolean formula in
conjunctive normal form (CNF), which is then analyzed
using off-the-shelf SAT solvers.

The analyzer provides two types of analysis: Simula-
tion, in which the analyzer demonstrates consistency of
model specifications by generating a satisfying model
instance; and Model Checking, which involves finding a
counterexample—a model instance that violates a par-
ticular assertion. We use the former to compute model
instances, represented as satisfying solutions to the com-
bination of models captured from app implementations.
This shows the validity of such extracted models, con-
firming that the captured models are self-consistent, mu-
tually compatible and consistent with the Android spec-
ifications modeled in a separate module. The latter is
used to verify security properties of interest within the
models.

The Alloy Analyzer is a bounded checker, so a certain
scope of instances needs to be specified. The scope, for
example, states the number of app components. The
analysis is thus performed through exhaustive search
for satisfying instances within the specified scopes. As a
result, the analyzer is sound and complete within such
scopes. To take advantage of partial models, the latest
version of the analyzer uses KodKod [19] as its constraint
solver so that it can support incremental analysis of mod-
els as they are constructed. The generated instances are
then visualized in different formats such as graph, tree
representation or XML.

The essential constructs of the Alloy modeling lan-
guage include: Signatures, Facts, Predicates, Functions
and Assertions. Signatures provide the vocabulary of a
model by defining the basic types of elements and the
relationships between them. Facts are formulas that take
no arguments, and define constraints that any instance
of a model must satisfy. Predicates are parameterized
and reusable constraints that are always evaluated to be
either true or false. Functions are parameterized expres-
sions. A function similar to a predicate can be invoked by
instantiating its parameter, but what it returns is either a
true/false or a relational value instead. An assertion is a
formula required to be proved. It can be used to check a
certain property of a model.

1 module androidDeclarat ion
2
3 a b s t r a c t s i g Appl icat ion{
4 usesPermissions : s e t Permission ,
5 appPermissions : s e t Permission
6 }
7 a b s t r a c t s i g Component{
8 app : one Applicat ion ,
9 i n t e n t F i l t e r s : s e t I n t e n t F i l t e r ,

10 permissions : s e t Permission ,
11 paths : s e t Path
12 }
13 a b s t r a c t s i g I n t e n t F i l t e r {
14 a c t i o n s : some Action ,
15 data : s e t Data ,
16 c a t e g o r i e s : s e t Category ,
17 }
18 f a c t I n t e n t F i l t e r C o n s t r a i n t s{
19 a l l i : I n t e n t F i l t e r | one i . ˜ i n t e n t F i l t e r s
20 no i : I n t e n t F i l t e r | i . ˜ i n t e n t F i l t e r s in Provider
21 }
22 a b s t r a c t s i g I n t e n t{
23 sender : one Component ,
24 component : lone Component ,
25 a c t i o n : lone Action ,
26 c a t e g o r i e s : s e t Category ,
27 data : s e t Data ,
28 }
29 a b s t r a c t s i g Path{
30 entry : one Resource ,
31 d e s t i n a t i o n : one Resource
32 }
33 a b s t r a c t s i g Permission{}

Listing 3: Alloy specifications of essential Android
application elements.

6.2 Formal Model of Android Framework

To carry out the verification analysis, we begin by defin-
ing a common Alloy module, androidDeclaration, that
models the Android application fundamentals (e.g., ap-
plication, component, intent, etc.) and the constraints
that every application must obey. Technically speak-
ing, this module can be considered as a meta-model for
Android applications.

Listing 3 partially outlines androidDeclaration module,
representing Android application fundamentals in Alloy.
The essential element types (cf. Def. 1) are defined as top-
level Alloy signatures. As mentioned earlier, a signature
introduces a basic element type and a set of its relations,
called fields, accompanied by the type of each field.

There are six top-level signatures to model the
basic element types: Application, Component,
IntentFilter, Intent, Path, and Permission.
Note that these signatures are defined as abstract, mean-
ing that they cannot have an instance object without ex-
plicitly extending them. Containment relations (e.g., be-
tween Applications and Permissions) are defined
as Alloy relations.

According to lines 4–5, the Application signa-
ture contains two fields of usesPermissions and
appPermissions that identify two sets of permissions,
representing PReq and PEn f , respectively (cf. Def. 1).

The app field within the Component signature (line
8) identifies the parent application that a component
belongs to. The keyword one states that every Compo-

10

nent object is mapped to exactly one Application object.
Signature declarations of four core component types,
namely Activity, Service, Receiver and Provider, extend
the Component signature. In the interest of space, their
specifications are omitted from Listing 3. A component
may have any number of filters, each one describing a
different interface of the component. Such filters are
captured by the intentFilters field (line 9). The
permissions field represents a set of permissions re-
quired to access a component. The paths field then
indicates vulnerable paths within a component.

The IntentFilter signature contains three fields
of actions, data and categories. The multiplic-
ity keyword some in Alloy denotes that the declared
actions relation contains at least one element, and
the keyword set tells Alloy that data and categories
map each IntentFilter object to zero or more Data
and Category objects, respectively.

Properties of the IntentFilter signature are declared
as a fact paragraph (lines 18–21). The ∼ operator de-
notes the relational inverse operation, forming a new
relation by reversing the order of atoms in each tu-
ple of the relation. The statement of line 18, thus,
states that each IntentFilter belongs to exactly one
Component. Out of four core component types, three
of them can define IntentFilters. To exclude Content
Providers from having IntentFilters, we add a sepa-
rate fact constraint specification, represented in line 20.

The Intent signature contains five fields of sender,
component, action, data and categories. The
first one denotes the component sending the intent.
The component field identifies the recipient component.
The keyword lone indicates that this element is optional,
and an Intent may have one or no declared recipient
component. Recall from Section 5, if it maps to a non-
empty set, the Intent object is called an explicit Intent.
The Android intent-resolver delivers explicit Intents to
the designated component, without considering other
information of the Intent object.

To determine to which component an implicit Intent—
one that does not specify any recipient component—
should be delivered, three elements of action, data,
and categories are consulted. The action filed
names the general action to be performed in the recipient
component. The data field indicates additional infor-
mation about the data to be processed by the action, and
each Data instance consists of both the URI of the data
to be acted on and its MIME media type. Finally, the
categories field indicates the kind of component that
should handle the Intent object. Each of these elements
corresponds to a test, in which the Intent’s element is
matched against that of the IntentFilter. An IntentFilter
may have more actions, data, and categories than the
Intent, but it cannot contain less.

We define the entry and destination fields of the Path
signature based on canonical permission-required re-
sources identified by Holavanalli et al. for Android

Figure 3: A vulnerability identified by COVERT for the
apps described in listings 1 and 2. The red lines and
nodes indicate the vulnerable path.

applications [20]. Examples of entry and destination
resources are NETWORK, IMEI, and SDCARD. Among
others, the permission NETWORK, for example, allows
the app to access the Internet, through either WIFI or
cellular network. In addition to permission domains, the
IPC mechanism augments both entry and destination
sets, which allows apps to provide services to one an-
other. Figure 3 shows a path identified in VicApp with
an IPC as publicly accessible entry point.

Finally, the last top-level signature is Permission.
COVERT captures both the system-defined permissions—
declared within the system’s Android Manifest—and
application-defined permissions—declared within the
application manifest file, and documents them as a sepa-
rate Alloy model shared between Alloy modules of all
apps.

6.3 Formal Model of Apps

Three pieces of Alloy specifications are conjoined in the
process of modeling various parts of Android apps ex-
tracted from their APK files. First, a specification mod-
ule, called appDeclaration, that documents basic element
types, such as Action, Category and Permission, shared
between Alloy models of all apps. Second, an app model,
comprising Components that constitute the app, IntentFil-
ters of each Component, as well as required and enforced
Permissions of the app. This model is represented in a
separate Alloy module for each app. Third, an inter-
process communication (IPC) module that models all
Intent messages created within the apps under consider-
ation. All these models rely on the Android framework
specification module, presented in the previous Section.

We use snippets of the running example (cf. Section 3)
to explain each piece of our formal model. Let us begin

11

with the appDeclaration module.

module appDeclarat ion

open androidDeclarat ion

one s i g MAIN extends Action{}
one s i g CALL PHONE extends Permission{}
. . .

Listing 4: Part of the declaration of basic element types
automatically extracted from Android apps.

Consider the portion of the appDeclaration module,
shown in Listing 4. At the top, the specification imports
the Alloy module for the Android framework. It then
declares MAIN to be a singleton subset of Action. Typi-
cally, one activity in an app is specified as the “main” ac-
tivity, declaring it as the main entry point to the app, and
presented to the user when launching the app. In a signa-
ture declaration, the keyword one specifies the declared
signature to contain exactly one atom, thereby restricting
the signature to be unique. This naming scheme allows
us to reuse the term MAIN when we want to declare the
main activity of each application. The next statement
represents a permission example declared in a similar
way. For the sake of clarity, we use the permissions’
shorthand in our Alloy model. For example, here we
use CALL PHONE to model the particular permission of
android.permission.CALL PHONE.

Listing 5 partially delineates the generated specifica-
tion for the malicious app shown in Listing 1. It starts
by importing the appDeclaration module (line 3), and
then the MalApp is declared as an extension of the
Application signature. This app does not declare any
permission neither as required (usesPermissions)
nor as enforced (appPermissions). The MalApp has a
Component of type Activity, named CallerActivity,
which declares an IntentFilter with MAIN and LAUNCHER
settings, marking it as the main activity of the app.

The code snippet of Listing 6 represents the gener-
ated specification for the Victim app shown in Listing 2.
The VicApp has access to the CALL PHONE permission
(line 6), but declares no permission requirement for other
apps to access its own Components (line 7). This app
specification then declares the PhoneActivity compo-
nent, exposing a vulnerable path (path1) from its entry
point to a permission required resource (PHONECALL),
as represented in Figure 3.

Application interactions in Android occur through In-
tent messages. We record the interactions among app
Components in a separate Alloy module, called IPC. The
code snippet shown in Listing 7 represents part of the
generated specification for the IPC module. After im-
porting modules of the involved apps (lines 3–4), the
specification in lines 6–12 models the Intent of Listing 1,
where the CallerActivity Component sends an ex-
plicit Intent (i.e., intent1 as shown in Figure 3) to the
PhoneActivity Component, with specified action to

1 module MalApp
2
3 open appDeclarat ion
4
5 one s i g MalApp extends Appl icat ion{}{
6 no usesPermissions
7 no appPermissions
8 }
9

10 one s i g C a l l e r A c t i v i t y extends A c t i v i t y{}{
11 app in MalApp
12 i n t e n t F i l t e r = I n t e n t F i l t e r 1
13 no permissions
14 no paths
15 }
16
17 one s i g I n t e n t F i l t e r 1 extends I n t e n t F i l t e r {}{
18 a c t i o n s = MAIN
19 c a t e g o r i e s = LAUNCHER
20 no data
21 }

Listing 5: Part of the generated specification for
Malicious app shown in Listing 1.

1 module VicApp
2
3 open appDeclarat ion
4
5 one s i g VicApp extends Appl icat ion{}{
6 usesPermissions = CALL PHONE
7 no appPermissions
8 }
9

10 one s i g PhoneActivity extends A c t i v i t y{}{
11 app in VicApp
12 i n t e n t F i l t e r = I n t e n t F i l t e r 2
13 no permissions
14 paths = path1
15 }
16
17 one s i g path1 extends Path{}{
18 entry = IPC
19 d e s t i n a t i o n = PHONECALL
20 }

Listing 6: Part of the generated specification for Victim
app shown in Listing 2.

be performed and with extra data.

6.4 Checking Android Application Models

The previous sections present a formal model of An-
droid framework (Section 6.2), developed as a reusable
Alloy module to which extracted app models conform
(Section 6.3). Here, we describe the essence of this work:
how one can use the power of proposed formal abstrac-
tions to perform the compositional analysis of Android
apps.

To that end, we develop assertions that model a set of
security properties required to be checked. These asser-
tions express properties that are expected to hold in the
extracted specifications. Considering the privilege esca-
lation, Davi et al. [21] state it as follows: “An application
with less permissions (a non-privileged caller) is not restricted
to access components of a more privileged application (a privi-
leged callee).”

12

1 module IPC
2
3 open VicApp
4 open MalApp
5
6 one s i g i n t e n t 1 extends I n t e n t{}{
7 sender = C a l l e r A c t i v i t y
8 component = PhoneActivity
9 a c t i o n = PHONE CALL

10 no c a t e g o r i e s
11 extraData = Yes
12 }
13 . . .

Listing 7: Part of the generated inter-component
communication module.

Listing 8 formally expresses the privilege escalation
assertion in Alloy. In short, the assertion states that
the dst component (victim) has access to a permission
(usesPermission) that is missing in the src compo-
nent (malicious), and that permission is not being en-
forced in the source code of the victim component, nor
by the application embodying the victim component. Re-
call from Section 5 that there are two ways of checking
permissions in Android.

1 a s s e r t p r i v i l e g e E s c a l a t i o n{
2 no d i s j src , dst : Component , i : I n t e n t |
3 (s r c in i . sender) &&
4 (dst in i n t e n t R e s o l v e r [i]) && some dst . paths &&
5 (some p : dst . app . usesPermissions |
6 not (p in s r c . app . usesPermissions) &&
7 not ((p in dst . permissions) | | (p in dst . app .

appPermissions)))
8 }

Listing 8: privilegeEscalation specification in Alloy.

The specified assertion relies on the specification of an
intentResolver function, shown in Listing 9. The Compo-
nent, Intent and IntentFilter signatures are specified such
that they have all the necessary attributes required for
Intent resolution. We thus describe intent-resolver as
a function augmenting the aforementioned androidDec-
laration module. This function takes as input an Intent
and returns a set of Components that may handle the
Intent under consideration. Given the Intent is explicit,
it should be delivered to the recipient identified by the
component field of the Intent (line 3). Otherwise, the
resolver checks Components’ IntentFilters to find those
whose elements are matched against the given Intent.
Specifically, an implicit Intent must pass a matching test
with respect to each of the action, data, and categories el-
ements on the IntentFilters bound to a component (as
stated in lines 6–9). Seeing that a component can define
multiple IntentFilters, an Intent that does not match one
of a component’s IntentFilters may match another (lines
4–5).

If an assertion does not hold, the analyzer reports it as
a counterexample, along with the information useful in
finding the root cause of the violation. Counterexample
is a particular model instance that makes the assertion

1 fun i n t e n t R e s o l v e r (i : I n t e n t) : s e t Component{
2 {c : Component | some i . component
3 impl ies {c = i . component}
4 e l s e { some f : I n t e n t F i l t e r |
5 f . ˜ i n t e n t F i l t e r in c
6 && i . a c t i o n in f . a c t i o n s
7 && i . c a t e g o r i e s in f . c a t e g o r i e s
8 && (i . data . u r i = f . data . u r i
9 && i . data . type = f . data . type) }

10 }
11 }

Listing 9: Intent resolver specification in Alloy.

false. Given our running example, the analyzer automat-
ically generates the following counterexample:

. . . // omitted d e t a i l s of model i n s t a n c e s
p r i v i l e g e E s c a l a t i o n s r c ={MalApp/ C a l l e r A c t i v i t y}
p r i v i l e g e E s c a l a t i o n d s t ={VicApp/PhoneActivity}
p r i v i l e g e E s c a l a t i o n i ={ i n t e n t 1}
p r i v i l e g e E s c a l a t i o n p ={appDeclarat ion/CALL PHONE}

It states that the VicApp/PhoneActivity compo-
nent has access to the CALL PHONE permission, and is
resolved by the formal analyzer as the receiver of intent1
(as shown by a dashed line in Figure 3), which is be-
ing sent by the MalApp/CallerActivity component
lacking access to the CALL PHONE permission. The gen-
erated counterexample confirms that the composition
of Victim and Malicious apps could result in privilege
escalation.

7 Empirical Evaluation

To assess the effectiveness of our approach in revealing
Android inter-app vulnerabilities, we have conducted
an evaluation that addresses the following research ques-
tions:

RQ1. What is the importance of this research? To what
extent are Android apps overprivileged and unsafe
due to usage of permission-required APIs?

RQ2. How well does COVERT perform? Does it enable
compositional analysis of real-world Android apps?
How much manual effort is involved in the analysis
process?

RQ3. What is the overall accuracy of COVERT in detect-
ing inter-app vulnerabilities?

RQ4. How does compositional analysis compare to sin-
gle app analysis?

RQ5. What is the performance of our prototype tool
implemented atop SAT solving technologies and
static analyzers?

Our experimental subjects are a set of Android apps
drawn from three different app repositories. The first
sample set consists of a snapshot of the top 80 popular
free apps, available on the Google Play in late November

13

Figure 4: Distribution of select apps drawn from Google
Play and F-Droid app repositories.

2013. Our second set of test subjects is representative
of open source apps, and includes more than 100 apps
collected from the F-Droid open source repository. The
selected apps comprising these two sample sets are suf-
ficiently diverse as evidenced in Figure 4. The third
one is a collection of 44 malicious apps identified by the
MalGenome project [22].

To answer RQ1, we examine all of the aforementioned
subject apps, to obtain some evidence as to the likelihood
of encountering privilege escalation vulnerability in the
apps that are available in such markets (§ 7.1).

To address RQ2, we partition the set of apps under
study into 5 bundles, each containing 50 apps from three
repositories, except the last bundle whose apps are only
from the open source repository to enable manual analy-
sis. These bundles simulate collections of apps installed
on end-user devices, and we use them to conduct 5 in-
dependent experiments. We then report and analyze the
experimental results (§ 7.2).

To evaluate the accuracy of warnings reported by
COVERT (RQ3), we randomly select 50 apps from the
F-Droid open source apps and run our prototype tool on
them. We then manually analyze each warning to detect
the rate of tool error, i.e., false positive (§ 7.3).

To address RQ4 (single vs. compositional app anal-
ysis), we adopt a set of practical security rules, called
Kirin rules, for Android apps from Enck et al. [6], and
formally model each of these rules in such a way that
enables their applications for both “compositional” anal-
ysis as well as analysis of each “single” app in isolation.
We then analyze all the apps in the Malgenome reposi-
tory against these rules, and compare the results of single
and compositional app analysis (§ 7.4).

To address RQ5 (performance benchmarks), we mea-
sure the computation time required for both model ex-
traction and formal analysis activities (§ 7.5).

We use the COVERT apparatus we developed based on
the approach for carrying out the experiments. COVERT

is implemented as a publicly available tool2. We have
built a prototype implementation of the model extractor
component on top of the Soot [11] static analysis tools.
Soot is developed for analyzing Java bytecode [11]. We
thus first use the Dexpler transformer [12] to translate
Android’s dalvik bytecode into the Soot’s intermediate
representation language, called Jimple. As a result, our
prototype implementation of the approach only requires
the availability of Android executable files, and not the
original source code. COVERT, thus, can be used not
only by developers, but also by end-users as well as
third-party reviewers. The translation of captured app
models into the Alloy language is implemented using
the FreeMarker template engine [23].

7.1 Significance of Compositional Analysis

Table 1 outlines the amount of permissions requested by
apps in each repository, along with the fraction of which
is actually used through API calls, as well as enforced—
depicted as checked in Table 1—by the apps. Based on
the permission map provided by Au et al. [18], we an-
alyzed the fraction of permissions actually needed for
API calls performed by the apps under consideration
(cf. Section 5). The result shows that overall 28% of
acquired permissions are necessary for API calls. This
confirms previous studies that showed many Android
apps on the market are over-privileged [5, 18]. Appli-
cations having extraneous permissions violate the least
privilege principle. We also analyzed what fraction of
the obtained permissions are checked either within the
app manifest file or throughout the code. The difference
between the set of used and checked permissions are
important for privilege escalation. The extraneous per-
missions that result in overprivilege are not susceptible
to privilege escalation, unless they are actually used by
the permission holders. On average, each app has about
2 unchecked but used permissions that could lead to
exploitable vulnerabilities. Indeed, such an unsafe use
of permission-required APIs may lead to an exploitable
vulnerability provided that there is a path from the ex-
ported interface of the app component to the API use.
This analysis is the subject of next section.

7.2 Automated Analysis of Applications

The aim of RQ2 is to evaluate the automation level
when using COVERT for compositional analysis of real-
world Android apps, and how much manual effort is
involved in the analysis process. To that end, we eval-
uate COVERT on bundles of real-world Android apps
to determine its ability to detect inter-app vulnerabil-
ities for privilege escalation. Table 2 summarizes the
statistical results obtained through running COVERT

2Research artifacts and experimental data are available at
http://www.sdalab.com/projects/covert

14

Table 2: Summary of experimental results running COVERT over App bundles.

Components Intents Intent Exposed Total
Activities Services Receivers Providers explicit implicit Filters Comps Perms Warnings

691 456
Bundle 1 511 70 91 19 300 156 169 5 10 34

(%73.95) (%10.13) (%13.17) (%2.75) (%65.79) (%34.21)
603 432

Bundle 2 434 76 78 15 302 130 148 7 2 16
(%71.97) (%12.6) (%12.94) (%2.49) (%69.91) (%30.09)

592 312
Bundle 3 425 65 85 17 218 94 185 4 3 25

(%71.79) (%10.98) (%14.36) (%2.87) (%69.87) (%30.13)
582 366

Bundle 4 423 75 71 13 232 134 191 4 9 32
(%72.68) (%12.89) (%12.2) (%2.23) (%63.39) (%36.61)

660 527
Bundle 5 496 67 68 29 347 180 132 5 9 30

(%75.15) (%10.15) (%10.3) (%4.39) (%65.84) (%34.16)

Table 1: Summary of statistical information about Per-
missions in subject systems.

Permissions
Repository used checked

1317
GPlay 303 145

(%23.0) (%11.0)
488

F-Droid 241 35
(%49.0) (%07.0)

438
MalGenome 90 5

(%21.0) (%02.0)

on Android app bundles. The total number of com-
ponents defined by the apps in each bundle is shown in
the second column. Overall, Activities, Services,
Broadcast receivers, and Content providers
account for 73%, 11%, 13% and 3% of components, re-
spectively.

The Intents column delineates the fraction of implic-
it/explicit Intents out of total Intents in each bundle;
on average, about 32% of Intents are implicit, showing
that developers, by and large, make inter-component
communications explicit. This is promising as there is
no guarantee that the implicit Intent will be received by
the intended recipient. The next column represents the
number of components’ interfaces described in terms of
Intent filters.

The Exposed column shows the number of component
surfaces and permissions unsafely exposed to other ap-
plications. On average, COVERT detects 5 exposed com-
ponents in each Bundle. Such components have defined
Intent filters that make the components accept incoming
Intents, but do not properly enforce access permission,
neither in the manifest file nor in the source code. The
last column then presents the total number of warnings
generated by COVERT for applications of each bundle,

and each one represents a unique combination of source
and destination components that can lead to a privilege
escalation.

Note that reported warnings are about potential secu-
rity issues. As with other techniques relying on static
analysis, our approach is subject to false positives, which
could be due to two types of failures in model extraction:

• Strings are used extensively as identifiers in An-
droid apps. Intent properties such as actions, data
types, and permissions are all constructed from
strings, as shown in our examples. Such strings
could also be altered by stateful operations, such
as the append method, which makes their accurate
value elicitation quite challenging. In case an am-
biguous value is encountered, during the entity res-
olution step (Section 5.1), COVERT takes a conserva-
tive approach, and considers all possible assignable
values.

• COVERT performs reachability analysis (Section 5.3)
to determine the permissions actually used by each
component, thus ignoring permissions that are ob-
tained, but not used. Yet, there is a possibility that
at run-time the permission-required API call or Sys-
tem Intent is not actually reached due to some con-
ditional statements, for example.

The conservative approach we take to deal with non-
determinism thus may introduce unnecessary false posi-
tives. Encouragingly, this automated analysis still results
in a substantial reduction in subsequent manual analy-
sis. Specifically, less than 1% of application components
(cf. Table 2, exposed components vs. total components)
require further analysis by users. Also, the limitations of
the static analysis with respect to, among other things,
dynamically loaded code could lead to false negatives
as well. To facilitate the process of manual analysis,
COVERT provides the location of the potential vulnera-
bility (i.e., filename and method) within the source code.

15

The results also confirm that an approach combining
static analysis and model checking is effective in com-
positional analysis of Android apps. In this particular
case, the reported vulnerabilities provide crucial clues
to the security analyst tasked with assessing the security
properties of a complex system. Such analysis is not pos-
sible with state-of-the-practice tools (e.g., Fortify) that
analyze the source code of an application in isolation.

In the next section, we interpret the results through
manual analysis of a bundle of open-source applications.

7.3 Manual Analysis

We selected 50 applications from the F-Droid open
source repository, and then manually inspected
COVERT’s warnings for these applications to evaluate
how many warnings correspond to real exploitable vul-
nerabilities. Statistics of the selected app set are provided
as Bundle 5 in the Table 2. More details about the apps,
including their name and model can be found on the
project site3. In this section, we present the findings of
our manual analysis and discuss three representative
examples in detail.

COVERT generated 30 warnings for the 50 applications.
We manually reviewed all and categorized them accord-
ing to the classification provided by Chin et al. [2], where
each warning is classified as a vulnerability, not a vulner-
ability, or undetermined. We define a vulnerability to be
a component lacking a particular permission getting ac-
cess to a functionality requiring that permission through
an interface exposed by a vulnerable component. In or-
der to detect vulnerabilities, we reviewed the application
source code of both sides (sender and destination) for
each warning.

Among the 30 reported warnings, we discovered 18
definite vulnerabilities. This represents a 60% true posi-
tive rate, which is superior to the prior technique [2], that
aimed to identify inter-app vulnerabilities by analyzing
the source code of each app in isolation, with a true
positive rate of 27.6%. More interestingly, of the 5 appli-
cation components identified as exposing permissions,
all contain at least 1 exploitable vulnerability.

In the rest of this section, we describe a few represen-
tative applications and the vulnerabilities we discovered
in them.

Case 1: Aard Dictionary→ Podax.
The first app is Aard Dictionary, a simple dictio-

nary and an offline Wikipedia reader. It defines a We-
bViewClient interface for handling incoming urls, and
creates and sends an implicit Intent with the VIEW ac-
tion, should the scheme of the given url matches with
one of the specified schemes, such as http, https and ftp.

On the other hand, the app bundle contains the Podax
app, a podcast downloader and player application. This
app accepts Intents with the VIEW action, and http

3http://www.sdalab.com/projects/covert

scheme, which in turn can lead to message passing be-
tween the two apps. While the first app that sends the
Intent does not have the INTERNET permission, the re-
cipient app (Podax) has. In addition, the Podax app
does not check whether the caller has the appropriate
permission. This combination, thus, gives rise to a privi-
lege escalation vulnerability.

The sender app here is benign, but if it was malicious it
could use the other app’s unprotected capability, which
may lead to some security risks, such as phishing, by
bringing up a web page and enticing the user to enter
payment or other private information.

Case 2: Binaural beats therapy→ Ermete SMS.
Ermete SMS is a free web-based text messaging ap-

plication that has WRITE SMS permission. An Activity
component of this application exposes an unprotected
interface that receives Intents with SEND action. Upon
receiving an Intent, the ComposeActivity component
extracts the payload of the given Intent, and sends that
data via text message to a number specified in the pay-
load, without checking the permission of Intent sender.

The other app, Binaural beats therapy, is de-
signed for relaxation, creativity and many other de-
sirable mental states. This app does not have the
WRITE SMS permission, but it sends an Intent with SEND
action and text/plain payload data, which could be re-
ceived by the first app. This case represents a false
positive as the Intent sent by the Binaural beats
therapy app does not actually contain the fields re-
quired by Ermete SMS to send a text message, but
points to an important security risk, where a malicious
app could use the exposed messaging service.

Case 3: PurpleDock→ RMaps.
RMaps is an on- and off-line navigation tool. In addi-

tion to GPS permissions like ACCESS FINE LOCATION,
it has INTERNET permissions to work with online maps
such as Google and Microsoft maps. This application ex-
poses an activity, which receives VIEW Intents with geo
scheme, a URI scheme for geographic locations. On the
other hand, PurpleDock is a simple app that automat-
ically turns on when the handset is placed into the car
mount, and provides navigation as one of its features.
RMaps’s geo Intents are intended for internal use, and

other applications, including PurpleDock that sends a
geo message via Intent, should not be able to control
locations shown by the app interface. However, with
the current implementation, as it does not check the
permission of Intent senders, the exposed component
can be manipulated by a malicious application for GPS
spoofing (i.e., display a wrong location).

7.4 Compositional vs. Single App Analysis

Enck et al. [6] provide a set of practical security rules,
called Kirin rules, to prevent malwares from exploiting
Android applications. Each rule represents undesirable
security properties in terms of the configuration avail-

16

able in manifest files. Kirin rules, thus, decide whether
the security configuration bundled with a single app is
safe or not, but they do not consider the case in which
malicious apps collude to combine their permissions, al-
lowing them to perform actions beyond their individual
privileges.

To analyze these rules using our approach, we formal-
ized them in Alloy. Each rule is modeled as an assertion
to be analyzed independently. We also developed a com-
positional version of each rule, leveraging the privilege
escalation predicate. This in turn enabled us to apply
the two sets of rules and compare the results of isolated
analysis versus compositional analysis.

To make the idea concrete, we illustrate one of these
rules along with its formal representations for both com-
positional and single app analysis. Consider the follow-
ing Kirin security rule (KSR 6): “An application must not
have RECEIVE SMS and WRITE SMS permission labels [6].”

Listing 10 partially outlines the two Alloy assertions
specified to check the rule against either (a) a single app
or (b) a combination of apps that may collude to combine
their permissions. Assertion (a) states a direct represen-
tation of the aforementioned rule in Alloy, while asser-
tion (b) restates the same rule against multiple apps. It
uses the isPrivilegeEscalation predicate (line 16)
to check the occurrence of privilege escalation between
the two apps with respect to the p2 permission. The
p1 and p2 permissions could be either RECEIVE SMS or
WRITE SMS (lines 11–12), but they should be distinct as
enforced by disj keyword (line 11). The predicate takes
as input two components c1 and c2, an Intent, and a
permission. The c1 component belongs to the app1 and
c2 to the app2, omitted in Listing 10 (b) in the inter-
est of space. The assertion then at the very end of line
16 checks the case in which one app contains both per-
mission labels. Note that in practice developing two
different assertions is not necessary as the latter, in effect,
covers the former. Here, we developed the former for
experimental purposes, and to compare the results of
single versus compositional analysis.

We analyzed all the apps in the Malgenome reposi-
tory against each of these rules. Table 3 summarizes
the results. Rows represent Kirin security rules that we
formally modeled in Alloy to be analyzed using our
approach. Columns represent the analysis type, either
single app analysis (as performed by the Kirin tool [6]) or
compositional analysis. Each cell indicates the number
of vulnerabilities detected. As we can see, the compo-
sitional rule analysis detects more vulnerabilities, with-
out missing any vulnerability identified by single app
analysis. The experimental results indicate the overall
improvement of 73% in detecting vulnerabilities using a
compositional analysis approach.

1 // (a) s i n g l e app a n a l y s i s
2 a s s e r t Kir inRule6{
3 no p1 , p2 : Permission | {some app : Appl icat ion |
4 (p1 = RECEIVE SMS) and (p2 = WRITE SMS) and
5 (p1 in app . usesPermissions) and (p2 in app .

usesPermissions)
6 }
7 }
8 −−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 // (b) composi t ional app a n a l y s i s

10 a s s e r t KirinRule6 Compos{
11 no d i s j p1 , p2 : Permission | {some app1 , app2 :

Applicat ion ,
12 c1 , c2 : Component , i n t e n t 1 : I n t e n t |
13 (p1 in RECEIVE SMS+WRITE SMS) and
14 (p2 in RECEIVE SMS+WRITE SMS) and
15 (p1 in app1 . usesPermissions) and (p2 in app2 .

usesPermissions)
16 and (i s P r i v i l e g e E s c a l a t i o n [c1 , c2 , in tent1 , p2] or (app1

= app2))
17 }
18 }

Listing 10: Specification of a Kirin rule for (a) single
and (b) compositional app analysis.

Table 3: Compositional vs. Single App Analysis of Kirin
Rules over the Malgenome app repository.

Sec. Sing. App. Compositional
Rule Analysis Analysis
KSR 1 - -
KSR 2 - -
KSR 3 2 2
KSR 4 2 8
KSR 5 2 11
KSR 6 10 14
KSR 7 11 14
KSR 8 3 3
Overall 30 52

7.5 Performance and Timing

The final evaluation criteria are the performance bench-
marks of model extraction and formal analysis activities.
We used a PC with an Intel Core i7 2.4 GHz CPU proces-
sor and 8 GB of main memory, and leveraged Sat4J as
the SAT solver during the experiments.

Compositional Analysis of Android apps using our
approach consists of three steps: (1) The app models are
collected and documented as Alloy specifications. (2)
The extracted Alloy models are transformed into 3-SAT
clauses using the Alloy Analyzer. (3) An off-the-shelf
SAT solver explores the space to find counterexamples.
We measured the computation time required for each
step separately.

The scatter diagram shown in Figure 5 plots the time
taken to analyze the collected apps for model extrac-
tion in seconds. The results show that the analysis time
scales almost linearly with the size of apps in all three
repositories. However, as the set of most popular apps
collected from the Google Play repository—represented

17

Figure 5: Scatter plot representing analysis time for
model extraction of Android apps.

by dark blue in the diagram—are typically larger than
apps from the other two repositories, their model extrac-
tion takes more time. According to the diagram, our
approach is able to statically analyze and infer specifica-
tions for the largest apps in less than three minutes. As
our implementation separates model extraction analysis
from Alloy model generation, and each app bytecode is
analyzed independently (cf. Section 5), the total static
analysis time scales linearly with the total size of apps.

Table 4: Experiments performance statistics.

Construction Analysis
Time (Sec) Time (Sec)

Bundle 1 412 252
Bundle 2 226 123
Bundle 3 441 65
Bundle 4 158 57
Bundle 5 204 45

Table 4 shows the time involved in compositional veri-
fication of Android apps (steps 2 and 3). The first column
represents the time spent on transforming Alloy mod-
els into 3-SAT clauses, and the second the time spent in
SAT solving to find all counterexamples for each app
bundle. The timing results show that COVERT is able to
analyze bundles of apps containing hundreds of com-
ponents in the order of a few minutes (on an ordinary
laptop), confirming that the proposed technology based
on a lightweight formal analyzer is feasible.

8 Discussion and Limitations

There is a growing need for technologies that can sup-
port the security analysis of complex systems in a com-
positional manner, whereby the security of a system is
reasoned about in terms of the security properties in-
ferred from its constituents. We argue this is the holy

grail of software security analysis research. For the se-
curity analysis techniques to scale to ever-increasing
complex systems, they need to become compositional in
nature. COVERT takes an important step towards this
overarching objective in the context of Android apps,
but we envision the ideas set forth in this research to
find a broader application in other computing domains
as well.

Note that single app analysis and compositional analy-
sis have their own technical merits. From an application
developer’s perspective, analyzing each app in isolation
may provide sufficient feedback to fix the issues in the
code (i.e., remove the vulnerabilities). On the other hand,
when the purpose of analysis is to assess the trustwor-
thiness of a system, comprised of multiple proprietary
apps that may interact with one another, compositional
analysis is needed to detect vulnerabilities that may ex-
ist in the system. One can imagine an organization may
need to use a tool such as COVERT to analyze the secu-
rity properties of apps deployed on phones assigned to
its employees. Such an organization may not be in a
position to fix the issues in the apps, as the apps may be
proprietary, but it can control the apps that are installed
on the devices.

Our analysis indicates that IPC vulnerabilities are
ubiquitous, and demonstrates why prior techniques re-
lying only on single app analysis are insufficient for
detecting such vulnerabilities. Our experiences with a
novel approach for compositional app analysis and its
evaluation in the context of hundreds of real-world An-
droid apps collected from variety of repositories have
been very positive. The experimental data shows that
COVERT can effectively detect such inter-app vulnerabil-
ities in the order of few minutes.

8.1 Development Effort

The framework specification is not expected to be written
by individual users of COVERT, rather by the provider
of the framework or COVERT. The specification for a
framework, such as Android, is developed once and
can be reused by others. Thus, it poses a one-time cost,
and the required effort depends on the level of familiar-
ity with the framework and the specification language.
Using executable specification languages, one can also
immediately check the correctness of even partial spec-
ifications. In our own experience, Alloy helped us to
find errors early in specifying formal semantics. More
specifically, during the modeling process, its analyzer
performed syntactic checks to expose, for instance, inac-
curate use of signatures (such as accessing a nonexistent
field of a signature). We also used the analyzer to check
the conformance of automatically generated models of
apps derived through static analyzer to the framework
meta-model.

18

1 a s s e r t appCollusion{
2 no d i s j cmp1 , cmp2 : Component |
3 some cmp1 . paths && some cmp2 . paths &&
4 cmp1 . app != cmp2 . app &&
5 match [cmp1 . paths . d e s t i n a t i o n , cmp2 . paths . entry]
6 }
7
8 pred match (pathSink : s e t Resource+Intent ,
9 pathSource : s e t Resource+ I n t e n t F i l t e r){

10 SDCARD in pathSource & pathSink | |
11 LOG in pathSource & pathSink | |
12 (some i : In tent , f : I n t e n t F i l t e r |
13 i in pathSink && f in pathSource && matchIPC [i , f])
14 }

Listing 11: Specification of the application collusion
vulnerability in Alloy.

8.2 Other Types of Vulnerabilities

While privilege escalation vulnerability has been the fo-
cus of our research, we believe COVERT can be extended,
and significant components of it reused, for detecting
other types of inter-app vulnerabilities. For instance, an
important class of inter-app vulnerabilities are due to
information leakage. For these types of vulnerabilities,
COVERT’s program analysis needs to be extended to take
information flow into account for Android apps. While
not the focus of this paper, in an alternative configu-
ration, we augmented COVERT’s reachability analysis
described in Section 5.3 with a taint flow analysis ap-
proach (see [24]) to detect possible information leaks
between apps.

We illustrate the reuse and extension potential of
COVERT through an example of the application collu-
sion vulnerability. Consider two applications A and B; B
reads data from a particular folder in SD card and sends
the data out through Internet, and A writes data to the
folder that B reads from. Since B does not expose the
sending action through its interface (IntentFilter), it can-
not be detected by the privilegeEscalation check, specified
in Listing 8.

To extend COVERT for supporting the analysis of this
scenario, the only thing required is to model it as an
assertion, expressing properties to be checked in the
extracted specifications. Listing 11 expresses such an as-
sertion for the application collusion. The assertion states
that there are two components in different applications;
each contains a sensitive data flow path, where the sink
of one matches the source of the other. Recall from Sec-
tion 6 that the paths field denotes information paths
between permission domains for each component.

Continuing with our example, the apps A and B con-
tain the flow permissions: IMEI→ SDCARD and SDCARD
→ NETWORK, respectively. These two paths will set the
match predicate to be true (line 8), and thus COVERT iden-
tifies it as an instance of the application collusion. Note
that since applications specifications and properties to be
checked are strictly separated, arbitrary vulnerabilities
can be detected with minimal effort.

8.3 Limitations

There are of course limitations in our approach. Similar
to any approach based on static analysis, our approach is
subject to false positives. We believe a fruitful avenue of
future research is to complement COVERT with dynamic
analysis techniques. In principle, it should be possible to
leverage dynamic analysis techniques to automatically
confirm some of the vulnerabilities (e.g., by executing
the vulnerable code), further reducing and targeting the
manual analysis effort.

The other advantage of dynamic analysis is that it
can be used to address vulnerabilities in native code.
Android Apps may include native code in addition to
Java code, in the form of a Java Native Interface (JNI)
library. Although native code is also obligated to the
permission system [5], it may dynamically load code,
which cannot be sufficiently addressed through static
analysis techniques.

This paper provides substantial supporting evidence
for analyzing one of the most significant inter-app vul-
nerabilities, i.e. privilege escalation. It would be interest-
ing to see how our approach fares when applied to other
types of inter-app vulnerabilities [2,8,25], which forms a
thrust of our future work.

9 Related Work

Android security has received a lot of attention in re-
cently published literature, due mainly to the popularity
of Android as a platform of choice for mobile devices,
as well as increasing reports of its vulnerabilities [1, 25].
Here, we provide a discussion of the related efforts in
light of our research.

9.1 Android Program Analysis for Security

A large body of work [2, 3, 26–30] focuses on performing
program analysis over Android applications for secu-
rity, which can be categorized based on their underlying
static or dynamic analysis technique.

Chin et al. [2] studied security challenges of Android
communication, and developed ComDroid to detect
those vulnerabilities through static analysis of each app.
Octeau et al. [28] developed Epicc for analysis of In-
tent properties—except data scheme—through inter-
procedural data flow analysis. FlowDroid [24] intro-
duces a precise approach for static taint flow analysis in
the context of each application component. CHEX [31]
also takes a static method to detect component hijack-
ing vulnerabilities within an app. We share with this
approach the emphasis on separating model extraction
from vulnerability analysis, enabling extension/revision
of each, independent of the other. However, these re-
search efforts, like many others we studied, are mainly
focused on Intent and component analysis of one appli-
cation. COVERT’s analysis, however, goes far beyond sin-

19

gle application analysis, and enables compositional anal-
ysis of the overall security posture of a system, greatly
increasing the scope of vulnerability analysis. Doing this
requires application of verification techniques in a way
scalable to handle analysis of complex systems compris-
ing multiple apps interacting with each other. COVERT,
to our knowledge, is the first tool with this capability.

DidFail [32] introduces an approach for tracking data
flows between Android components to detect potential
data leaks. However, it does not target the problem we
are addressing, namely detecting the permission leakage.
Moreover, similar to many other techniques we studied,
DidFail is a purely program analysis tool, and does not
incorporate a formal verification technique.

Along the same line, AndroidLeak [26] statically an-
alyzes information leak in Android. Its analysis does
not cover Intents, nor cross-application flows. SCan-
Droid [33] statically analyzes data flows to detect per-
mission inconsistencies between applications that could
possibly allow malicious access to sensitive information.
It requires the source code of applications, and has never
been evaluated over real-world applications. Mann and
Starostin [29] also developed a framework to detect pri-
vacy leaks from the Android APIs. Similar to ScanDroid,
this framework was never tested against real-world ap-
plications. Zhou and Jiang [30] analyzed vulnerabili-
ties that are due to the existence of unprotected content
provider components. While this work is concerned
with the potential risks of passively leaking content, it
does not consider the problem that we address, the au-
tomation of inter-app vulnerability analysis.

Apart from techniques based on static analysis, sev-
eral tools use dynamic analysis to detect vulnerabilities
in smartphone applications. TaintDroid [3] detects in-
formation leak vulnerabilities using dynamic taint flow
analysis at the system level. IPC Inspection [34] prevents
privilege escalation at OS level. Recipients of IPC re-
quests are re-instantiated according to the privileges of
their callers, guaranteeing that the callee does not have
privileges more than that of the caller. However, main-
taining multiple instances of applications with modi-
fied privileges imposes a notable performance overhead.
Saint [35] analyzes configuration and runtime behavior
of Android apps to enforce security policy and to allow
only legitimate permissions.

These research efforts share our emphasis on leverag-
ing program analysis to capture some information from
application implementations. However, our work differs
in several ways. First, our approach is geared towards
the application of formal techniques to verify certain
properties in Android applications. A novel contribu-
tion of our work is the ability to bridge from application
implementations to formal specifications using static
code analysis techniques. Second, previous studies of
Android applications analyze a single app in isolation.
Our modular approach can be used to greatly increase
the scope of application analysis by inferring the security

properties from individual apps and checking them as a
whole for vulnerabilities that are due to the interaction
of apps comprising a system. Third, many of the previ-
ously proposed solutions [3, 6, 9, 34] require changes to
one or more components of the Android middleware,
such as Application Installer, Reference Monitor, and
Dalvik Virtual Machine. Our approach, in contrast, re-
quires no platform modifications.

9.2 Android Permissions

The other relevant line of research focuses on Android’s
permissions and their use across applications [6, 20, 36–
40]. Barrera et al. [36] examined permission require-
ments over a set of 1,100 Android applications to an-
alyze how permissions are used in such applications.
Their result shows that a small fraction of permissions
are extensively used. Kirin [6] extends the application in-
staller component of Android’s middleware to check the
permissions requested by applications against a set of
security rules. These predefined rules are aimed to pre-
vent unsafe combination of permissions that may lead
to insecure data flows. Whyper [40] is a tool that checks
the app’s requested permissions against its description,
thereby enabling the user to determine if certain re-
quested permissions are suspicious. Vidas et al. [39]
have developed a tool that scans the Android docu-
mentation to extract permission specifications. These
techniques typically rely only either on the Android doc-
umentation or permission requests specified within the
application manifest, rather than analyzing the code to
check whether or how such permissions are used by
applications.

Along the same line, another thrust of research stati-
cally analyzes the apps source code to study their permis-
sion use. Among others, Felt et al. [5] have developed
Stowaway, a tool for performing an over-privilege anal-
ysis on application source code. Applying automated
testing techniques on the Android API, they developed
a set of permission maps—documenting which APIs
require what permissions—used in detecting overprivi-
lege. Similarly, Au et al. [18] have developed PScout to
extract the permission specification from the Android OS
source code using static analysis, which led to a compre-
hensive set of permission maps for Android. We used
PSCout’s permission map in our tool implementation
to analyze whether applications under consideration
properly check permissions before calling APIs, thereby
reducing false positives in COVERT.

9.3 Formal Approaches

The other relevant thrust of research has focused on for-
mal modeling and automated verification of software
applications. Fragkaki et al. [7] proposed a formal frame-
work as an extension to the Android permission mecha-
nism. Chaudhuri [41] also proposed a formal language

20

to describe applications and a type system to reason
about information flows. This work, however, does not
provide any implementation for the proposed approach.
Martin et al. [42] developed PQL, which provides a spec-
ification language for querying Java applications to de-
tect errors and security flaws. PQL does not include
mechanisms for handling Intents, which require a flow-
sensitive analysis; the Android lifecycle; and bundles of
applications. Thus, PQL focuses on single applications,
while COVERT focuses on compositional analysis. Alloy
also has been widely used for modeling and analysis in a
variety of contexts, including checking code against par-
tial specifications [43–45], analysis of software architec-
ture [46,47], specification based testing [48], and security
[49,50]. Among others, Chen et al. [50] provided a logical
formulation of general security concepts, and modeled it
in Alloy. Their model is very abstract, and has not been
applied in any particular domain or application. Target-
ing a real-world banking system, Ramananandro [49]
used Alloy to model and check specifications of an elec-
tronic smart card system. However, unlike our work,
the translation to Alloy is not automated in this research
effort. To the best of our knowledge, COVERT is the first
formally-precise analysis technique leveraging Alloy for
automated compositional verification of Android apps.

10 Conclusion

This paper presents a novel approach for composi-
tional analysis of Android inter-app vulnerabilities. Our
approach employs static analysis to automatically re-
cover models that reflect Android apps and interactions
among them. It is able to leverage these models to iden-
tify vulnerabilities due to interaction of multiple apps
that cannot be detected with prior techniques relying on
a single app analysis. We formalized the basic elements
of our analysis in an analyzable specification language
based on relational logic, and developed a prototype
implementation, COVERT, on top of our formal analy-
sis framework. The experimental results of evaluating
COVERT against privilege escalation—one of the most
prominent inter-app vulnerabilities—in the context of
hundreds of real-world Android apps corroborates its
ability to find vulnerabilities in bundles of some of the
most popular apps on the market.

References

[1] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici,
S. Dolev, C. Glezer, Google android: A comprehen-
sive security assessment, Security & Privacy, IEEE
8 (2) (2010) 35–44.

[2] E. Chin, A. P. Felt, K. Greenwood, D. Wagner, Ana-
lyzing inter-application communication in android,
in: Proceedings of the 9th international conference

on Mobile systems, applications, and services, Mo-
biSys ’11, ACM, New York, NY, USA, 2011, pp.
239–252. doi:10.1145/1999995.2000018.

[3] W. Enck, P. Gilbert, B. g. Chun, L. P. Cox,
J. Jung, P. McDaniel, A. N. Sheth, Taintdroid: An
information-flow tracking system for realtime pri-
vacy monitoring on smartphones, in: Proc. of
USENIX OSDI, 2011.

[4] P. Hornyack, S. Han, J. Jung, S. Schechter, D. Wether-
all, These aren’t the droids you’re looking for:
Retrofitting android to protect data from imperious
applications, in: Proceedings of the ACM Confer-
ence on Computer and Communications Security
(CCS), 2011, pp. 639–652.

[5] A. P. Felt, E. Chin, S. Hanna, D. Song, D. Wagner,
Android permissions demystified, in: Proceedings
of the ACM Conference on Computer and Commu-
nications Security (CCS), 2011, pp. 627–638.

[6] W. Enck, M. Ongtang, P. McDaniel, On lightweight
mobile phone application certification, in: Proceed-
ings of the ACM Conference on Computer and
Communications Security (CCS), 2009.

[7] E. Fragkaki, L. Bauer, L. Jia, D. Swasey, Model-
ing and enhancing android’s permission system,
in: Proc. of ESORICS, 2012.
URL http://link.springer.com/chapter/
10.1007/978-3-642-33167-1_1

[8] S. Bugiel, L. David, Dmitrienko, T. A. Fischer,
A. Sadeghi, B. Shastry, Towards taming privilege-
escalation attacks on android, in: Proc. of NDSS,
2012.

[9] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, D. S. Wal-
lach, Quire: Lightweight provenance for smart
phone operating systems, in: Proc. of USENIX,
2011.

[10] D. Jackson, Alloy: a lightweight object modelling
notation, TOSEM 11 (2) (2002) 256–290.
URL http://portal.acm.org/citation.
cfm?doid=505145.505149

[11] R. Valle é-Rai, P. Co, E. Gagnon, L. Hendren, V. Lam,
P.and Sundaresan, Soot - a java bytecode optimiza-
tion framework, in: Proc. of CASCON’99, 1999.

[12] A. Bartel, J. Klein, Y. LeTraon, M. Monperrus, Dex-
pler:converting android dalvik bytecode to jimple
for static analysis with soot, in: Proc. of SOAP, 2012.

[13] J. Woodcock, P. G. Larsen, J. Bicarregui, J. Fitzger-
ald, Formal methods: Practice and experience,
ACM Comput. Surv. 41 (4) (2009) 19:1–19:36.
doi:10.1145/1592434.1592436.
URL http://doi.acm.org/10.1145/
1592434.1592436

21

http://dx.doi.org/10.1145/1999995.2000018
http://link.springer.com/chapter/10.1007/978-3-642-33167-1_1
http://link.springer.com/chapter/10.1007/978-3-642-33167-1_1
http://link.springer.com/chapter/10.1007/978-3-642-33167-1_1
http://link.springer.com/chapter/10.1007/978-3-642-33167-1_1
http://portal.acm.org/citation.cfm?doid=505145.505149
http://portal.acm.org/citation.cfm?doid=505145.505149
http://portal.acm.org/citation.cfm?doid=505145.505149
http://portal.acm.org/citation.cfm?doid=505145.505149
http://doi.acm.org/10.1145/1592434.1592436
http://dx.doi.org/10.1145/1592434.1592436
http://doi.acm.org/10.1145/1592434.1592436
http://doi.acm.org/10.1145/1592434.1592436

[14] P. Zave, A practical comparison of alloy and spin,
Tech. rep. (2012).

[15] Android api reference document,
http://developer.android.com/reference.

[16] A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman, Com-
pilers: Principles, Techniques, and Tools (2Nd Edi-
tion), Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2006.

[17] Android developers guide.
URL http://developer.android.com/
guide/topics/fundamentals.html

[18] K. W. Y. Au, Y. F. Zhou, Z. Huang, D. Lie, Pscout:
Analyzing the android permission specification, in:
Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2012.

[19] E. Torlak, A constraint solver for software engineer-
ing: Finding models and cores of large relational
specifications, PhD thesis, MIT (Feb. 2009).
URL http://alloy.mit.edu/kodkod/

[20] S. Holavanalli, D. Manuel, V. Nanjundaswamy,
B. Rosenberg, F. Shen, S. Y. Ko, L. Ziarek, Flow
permissions for android, in: Proceeding of the
28th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), 2013.

[21] L. Davi, A. Dmitrienko, A.-R. Sadeghi, M. Winandy,
Privilege escalation attacks on android, in: Proceed-
ings of the 13th international conference on Infor-
mation security (ISC), 2010.

[22] Malgenome project,
http://www.malgenomeproject.org.

[23] Freemarker java template engine,
http://freemarker.org/.

[24] S. Arzt, S. Rasthofer, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, P. McDaniel, Flowdroid:
Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps, in:
Proceedings of the 35th annual ACM SIGPLAN
conference on Programming Language Design and
Implementation (PLDI 2014), 2014.

[25] W. Enck, D. Octeau, P. McDaniel, S. Chaudhuri, A
study of android application security, in: Proc. of
USENIX, 2011.

[26] C. Gibler, J. Crussell, J. Erickson, H. Chen, Androi-
dleaks: Automatically detecting potential privacy
leaks in android applications on a large scale, in:
Trust and Trustworthy Computing, Springer, 2012,
pp. 291–307.

[27] M. Grace, Y. Zhou, Z. Wang, X. Jiang, Systematic
detection of capability leaks in stock android smart-
phones, in: Proceedings of the 19th Annual Sympo-
sium on Network and Distributed System Security,
2012.

[28] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden,
J. Klein, Y. L. Traon, Effective Inter-Component
Communication Mapping in Android with Epicc:
An Essential Step Towards Holistic Security
Analysis, in: Proceedings of the 22nd USENIX
Security Symposium, Washington, DC, 2013.
URL http://siis.cse.psu.edu/epicc/
papers/octeau-sec13.pdf

[29] C. Mann, A. Starostin, A framework for static de-
tection of privacy leaks in android applications, in:
Proceedings of the 27th Annual ACM Symposium
on Applied Computing, SAC’12, ACM, New York,
NY, USA, 2012, pp. 1457–1462.

[30] Y. Zhou, X. Jiang, Detecting passive content leaks
and pollution in android applications, in: Proceed-
ings of the 20th Network and Distributed System
Security Symposium (NDSS 2013), 2013.

[31] L. LU, Z. LI, Z. WU, W. LEE, G. JIANG, Chex: stati-
cally vetting android apps for component hijacking
vulnerabilities, in: Proceedings of the ACM Confer-
ence on Computer and Communications Security
(CCS), 2012.

[32] W. Klieber, L. Flynn, A. Bhosale, L. Jia, L. Bauer, An-
droid taint flow analysis for app sets, in: Proceed-
ings of the 3rd ACM SIGPLAN International Work-
shop on the State of the Art in Java Program Analy-
sis, SOAP ’14, ACM, New York, NY, USA, 2014, pp.
1–6. doi:10.1145/2614628.2614633.
URL http://doi.acm.org/10.1145/
2614628.2614633

[33] A. P. Fuchs, A. Chaudhuri, J. S. Foster, Scandroid:
Automated security certification of android appli-
cations (2009).

[34] A. P. Felt, H. Wang, A. Moshchuk, S. Hanna, E. Chin,
Permission re-delegation: Attacks and defenses,
in: Proc. of the 20th USENIX Security Symposium,
2011.

[35] M. Ongtang, S. McLaughlin, W. Enck, P. McDaniel,
Semantically rich application-centric security in an-
droid, in: Proc. of the 25th Annual Computer Secu-
rity Applications Conference (ACSAC), 2009.

[36] D. Barrera, H. Kayacik, P. Oorschot, A. Somayaji, A
methodology for empirical analysis of permission-
based security models and its application to an-
droid, in: Proceedings of the ACM Conference on
Computer and Communications Security (CCS),
2010.

22

http://developer.android.com/guide/topics/fundamentals.html
http://developer.android.com/guide/topics/fundamentals.html
http://developer.android.com/guide/topics/fundamentals.html
http://alloy.mit.edu/kodkod/
http://alloy.mit.edu/kodkod/
http://alloy.mit.edu/kodkod/
http://alloy.mit.edu/kodkod/
http://siis.cse.psu.edu/epicc/papers/octeau-sec13.pdf
http://siis.cse.psu.edu/epicc/papers/octeau-sec13.pdf
http://siis.cse.psu.edu/epicc/papers/octeau-sec13.pdf
http://siis.cse.psu.edu/epicc/papers/octeau-sec13.pdf
http://siis.cse.psu.edu/epicc/papers/octeau-sec13.pdf
http://siis.cse.psu.edu/epicc/papers/octeau-sec13.pdf
http://doi.acm.org/10.1145/2614628.2614633
http://doi.acm.org/10.1145/2614628.2614633
http://dx.doi.org/10.1145/2614628.2614633
http://doi.acm.org/10.1145/2614628.2614633
http://doi.acm.org/10.1145/2614628.2614633

[37] Y. Zhou, Z. Y. Wang, W. Zhou, X. Jiang, Hey, you,
get off of my market: Detecting malicious apps in
official and alternative android markets, in: Pro-
ceedings of the 19th Network and Distributed Sys-
tem Security Symposium (NDSS 2012), 2012.

[38] M. Grace, Y. Zhou, Q. Zhang, S. Zou, X. Jiang,
Riskranker: scalable and accurate zero-day android
malware detection, in: Proceedings of the Interna-
tional Conference on Mobile Systems, Applications,
and Services (MobiSys 2012), 2012.

[39] T. Vidas, N. Christin, L. Cranor, Curbing android
permission creep, in: Proceedings of the Web 2.0
Security and Privacy 2011 workshop (W2SP 2011),
2011.

[40] R. Pandita, X. Xiao, W. Yang, W. Enck, T. Xie,
Whyper: Towards automating risk assessment of
mobile applications, in: Proceedings of the 22Nd
USENIX Conference on Security, SEC’13, USENIX
Association, Berkeley, CA, USA, 2013, pp. 527–542.
URL http://dl.acm.org/citation.cfm?
id=2534766.2534812

[41] A. Chaudhuri, Language-based security on an-
droid, in: Proceedings of Programming Languages
and Analysis for Security (PLAS’09), 2009, pp. 1–7.

[42] M. Martin, B. Livshits, M. S. Lam, Finding appli-
cation errors and security flaws using pql: a pro-
gram query language, in: ACM SIGPLAN Notices,
Vol. 40, ACM, 2005, pp. 365–383.

[43] S. Khurshid, Darko Marinov, D. Jackson, An ana-
lyzable annotation language, in: Proceedings of
the 17th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and
applications, OOPSLA ’02, ACM, New York, NY,
USA, 2002, pp. 231–245. doi:10.1145/582419.
582441.
URL http://doi.acm.org/10.1145/582419.
582441

[44] D. Jackson, M. Vaziri, Finding bugs with a con-
straint solver, in: Proceedings of the International
Symposium on Software Testing and Analysis (IS-
STA), 2000.

[45] J. P. Near, A. Milicevic, E. Kang, D. Jackson, A
lightweight code analysis and its role in evaluation
of a dependability case, in: Proceedings of the 33rd
International Conference on Software Engineering,
ICSE’11, ACM, New York, NY, USA, 2011, pp.
31–40. doi:10.1145/1985793.1985799.
URL http://doi.acm.org/10.1145/
1985793.1985799

[46] J. S. Kim, D. Garlan, Analyzing architectural styles,
Journal of Systems and Software 83 (7) (2010) 1216–
1235.

[47] H. Bagheri, K. Sullivan, Monarch: Model-based
development of software architectures, in: Proceed-
ings of the 13th ACM/IEEE International Confer-
ence on Model Driven Engineering Languages and
Systems (MODELS), 2010, pp. 376–390.

[48] S. A. Khalek, B. Elkarablieh, Y. O. Laleye, S. Khur-
shid, Query-aware test generation using a rela-
tional constraint solver, in: Proceedings of the 23rd
IEEE/ACM International Conference on Automat-
edSoftwareEngineering, pp. 238–247.

[49] T. Ramananandro, Mondex, an electronic purse:
Specification and refinement checks with the alloy
model-finding method, Formal Asp. Comput. 20 (1)
(2008) 21–39.

[50] C. Chen, P. Grisham, S. Khurshid, D. Perry, Design
and validation of a general security model with the
alloy analyzer, in: Proceedings of the ACM SIG-
SOFT First Alloy Workshop, pp. 38–47.

23

http://dl.acm.org/citation.cfm?id=2534766.2534812
http://dl.acm.org/citation.cfm?id=2534766.2534812
http://dl.acm.org/citation.cfm?id=2534766.2534812
http://dl.acm.org/citation.cfm?id=2534766.2534812
http://doi.acm.org/10.1145/582419.582441
http://doi.acm.org/10.1145/582419.582441
http://dx.doi.org/10.1145/582419.582441
http://dx.doi.org/10.1145/582419.582441
http://doi.acm.org/10.1145/582419.582441
http://doi.acm.org/10.1145/582419.582441
http://doi.acm.org/10.1145/1985793.1985799
http://doi.acm.org/10.1145/1985793.1985799
http://doi.acm.org/10.1145/1985793.1985799
http://dx.doi.org/10.1145/1985793.1985799
http://doi.acm.org/10.1145/1985793.1985799
http://doi.acm.org/10.1145/1985793.1985799

	Introduction
	Android Overview
	Motivating Example
	Approach Overview
	Model Extractor
	Entity Extraction and Resolution
	Control Flow Augmentation
	Vulnerable Paths Identification

	Formal Analyzer
	Alloy Overview
	Formal Model of Android Framework
	Formal Model of Apps
	Checking Android Application Models

	Empirical Evaluation
	Significance of Compositional Analysis
	Automated Analysis of Applications
	Manual Analysis
	Compositional vs. Single App Analysis
	Performance and Timing

	Discussion and Limitations
	Development Effort
	Other Types of Vulnerabilities
	Limitations

	Related Work
	Android Program Analysis for Security
	Android Permissions
	Formal Approaches

	Conclusion

