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Abstract

Software as a Service (SaaS) allows companies and in-
dividuals to use software, hosted and managed by a
SaaS provider, on a pay-per-use basis instead of paying
for the entire upfront, maintenance, and upgrade cost.
SaaS providers can lease their computing infrastructure
to instantiate VMs that run their software services from
Infrastructure as a Service (IaaS) providers on a pay per
use basis. SaaS customers can subscribe to and unsub-
scribe from a software service at anytime. Thus, the SaaS
cloud provider should dynamically determine the num-
ber of needed VMs to run software services as a function
of the demand in a way that minimizes the SaaS cost of
using VMs from an IaaS but at the same time guarantee-
ing an agreed upon Quality of Service (QoS) to the SaaS
customers. This paper presents two heuristic techniques
that can be used by SaaS providers to determine the type
and quantity of VMs to be leased in order to best satisfy
customer demands for software services. Our experi-
ments showed that the number of states visited by the
proposed method is very low (on the order of 10−4 of
the entire space) while the solution obtained is 2% more
expensive in most cases, 13% more expensive in a few
cases, and 31% more expensive in only one case, when
compared with the optimal solution.

1 Introduction

Software as a Service (SaaS) [10] allows companies and
individuals to use software, hosted and managed by a
SaaS provider, on a pay-per-use basis instead of hosting
software in their own datacenters and paying for the
entire upfront, maintenance, and upgrade cost. SaaS
providers can lease their computing infrastructure to
instantiate VMs that run their software services from
Infrastructure as a Service (IaaS) [10] providers on a pay
per use basis. We assume that SaaS customers can sub-
scribe to and unsubscribe from a software service at any-

time. Thus, the SaaS cloud provider should dynamically
determine the number of needed VMs to run software
services as a function of the demand in a way that min-
imizes the SaaS cost of using VMs from an IaaS but at
the same time guaranteeing an agreed upon Quality of
Service (QoS) to the SaaS customers.

Providing an individual VM dedicated to each cus-
tomer to run a software service could lead to substantial
waste of resources and high infrastructure costs. Thus,
an efficient way for resource utilization and cost reduc-
tion is for SaaS providers to employ a multi-tenancy
approach [18, 12] where several customers (tenants) can
subscribe to the same application that is already running
on a specific VM, such that this application behaves for
each tenant as if this tenant were the sole user of the
application. Consequently, SaaS providers can run the
same application for multiple customers in the same
computing environment to increase the utilization of re-
sources. At the same time, SaaS providers should main-
tain response time SLAs and other resource constraints
at all times.

This paper solves the problem of determining how
SaaS providers can optimally manage the dynamic na-
ture of customer requests in a heterogeneous environ-
ment in which VMs are of different capacities, cost, and
computing power. SaaS providers need to determine
how many and what type of VMs to instantiate in order
to satisfy a given demand for software services while
meeting response time SLAs.

The main contributions of this paper are (1) a heuristic
solution, called ScaleUpDown, which is based on hill-
climbing and provides a near optimal solution very
close to the optimal solution while visiting a very small
fraction of the solution space; (2) a simpler heuristic
called FillSlotsFirst that does not perform as well as
ScaleUpDown but has a lower computational complex-
ity. The two heuristics were extensively evaluated and
compared.

The rest of this report is organized as follows. Sec-
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tion 2 presents the notation and assumptions used in the
paper. The next section formalizes the optimization prob-
lem. Section 4 describes the two heuristics presented in
the paper. The next section describes the results of the
experiments. Section 6 discusses related work. Finally,
section 7 presents concluding remarks.

2 Problem Formalization and Nota-
tion

We assume that customers of a SaaS provider can sub-
scribe/unsubscribe to software applications offered by
the SaaS provider (see Fig. 1). Each application pro-
vided by the SaaS provider is offered at different QoS
levels. With each request to the SaaS provider, a cus-
tomer informs about the application it wants, its desired
QoS level, and the number of users to be added or re-
moved from the subscription of that application at that
QoS level. For example, customer s may send a request
(a, q, u, s) to add u users as subscribers of application a at
QoS level q. A positive value for u represents additional
subscribers to the application and a negative value a
decrease in the number of subscribers.

Figure 1: Customers subscribe/unsubscribe to software
services at requested QoS for a requested number of
users. The SaaS provider determines a near optimal
number of VMs to be requested from an IaaS provider
to run these software services.

The SaaS provider uses VMs from an IaaS provider
to instantiate the software applications it offers to its
customers. The IaaS provider offers several types of
VMs with different capacities and different cost per unit
time. The goal of the SaaS provider is to minimize what
it has to pay the IaaS provider while meeting the QoS
goals of all its subscribers.

We also assume that a VM is only used to run a single
application at a given QoS level. It is assumed that the
service demands (see [11]) at the CPU and I/O of an
application running at each VM type are known and/or
can be easily measured by the SaaS provider. This allow
us to use analytic queuing network (QN) performance
models to determine the maximum number of concur-

rent users that running the application at that VM while
meeting the desired QoS level.

Some notation is in order.

• (a, q, u, s): a request to the SaaS provider from cus-
tomer s to add (subtract) u users as subscribers to
application a at QoS level q (q ∈ {p, g, s, b}), where
p = Platinum, g = Gold, s = Silver, and b = Bronze.

• t: type of a VM (t = 1, · · · , T).

• nt: number of VMs of type t used by application a
at QoS q.

• mt: total number of users allocated to VMs of type t
hosting application a at QoS q.

• mp(a, q): value of ∑T
t=1 mt prior to adding (subtract-

ing) the u users in the (a, q, u, s) request.

• ct: amount (in dollars) the SaaS provider has to pay
per time unit (in seconds) to the IaaS provider to
use one instance of a VM of type t. We assume that
the IaaS provider prorates the charges of VMs in the
last fractional hour on a per second basis.

• C(a,q,u,s): cost differential (negative or positive) of
changing the subscription level by u users for a
(a, q, u, s) request.

• mmax (a, q, t): maximum number of users supported
by a VM of type t running application a at QoS level
q with a maximum response time R∗(a, q). We also
refer to mmax (a, q, t) as the maximum number of
slots available at a VM of type t to run application
a at QoS q. The value of mmax (a, q, t) is easily com-
puted by solving a single-class closed QN model
for a VM of type t running application a starting
from a concurrency level n = 0 to the highest value
of n such that R ≤ R∗(a, q). See e.g., [11] for the
Mean Value Analysis equations needed to solve
such closed QN models.

• st: slack for type t VMs, i.e., the number of available
slots on VMs of type t. According to the algorithms
presented here, these slots have to reside on a sin-
gle VM, otherwise one could obtain a lower cost
solution by consolidating slots across several type t
VMs and potentially reducing the number of VMs
needed.

• X(a,q,s) = ((n1, m1, s1), · · · , (nt, mt, st), · · · ,
(nT , mT , sT)) subset of states of the SaaS provider
for (a, q, s). Note that nt can be written as
dmt/mmax(a, q, t)e and st can be written as
mod (mt, mmax(a, q, t)). Therefore, the state X(a,q,s)
can be expressed more succintly as (m1, · · · ,
mt, · · · , mT).

• ϕ =
{
X(a,q,s) ∀ a, q, s

}
: set of all states of the SaaS

provider.
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3 Optimization Model

To optimally satisfy each incoming request, we need
to determine how many VMs of each type are needed,
and the number of users in each VM subject to response
time constraints with the goal of minimizing the total
cost. To satisfy a request (a, q, u, s) the SaaS provider
needs to do a combination of the following actions. If
u > 0, the actions include adding more users to the
already allocated VMs for (a, q) and/or adding more
VMs to support the additional number of users. If u < 0,
the actions include reducing the number of users in the
already allocated VMs for (a, q) and/or reducing the
number of allocated VMs. In either case, because of the
assumption that a VM cannot run different applications
or an application at different QoS levels, satisfying a
request (a, q, u, s) does not interfere with allocations for
different values of a, q, and s.

Therefore, the cost optimization problem faced by a
SaaS provider when receiving an (a, q, u, s) request can
be expressed as: Given a request (a, q, u, s), the values of
mmax(a, q, t) ∀ t ∈ {1, · · · , T}, and mp(a, q).

Minimize C =
T

∑
t=1

ct · dmt/mmax(a, q, t)e (1)

s.t.

T

∑
t=1

mt = mp(a, q) + u. (2)

mt ∈ Z ∀ t ∈ {1, · · · , T}. (3)

The decision variables for this optimization problem
are mt ∀ t ∈ {1, . . . , T}, i.e., the total number of users
allocated to each VM type.

The QoS level q used throughout the rest of this paper
determines the response time of the application R(a, q).
In order to compute mmax(a, q, t), we need to solve a
single-class closed Queuing Network (QN) model [11]
for each VM type using the service demands of the ap-
plication in each of the VM resources as parameters.
Because of our assumption that a VM hosts a single ap-
plication a at a QoS level q, we can use a single-class QN
model. In a closed QN, the number of customers in the
QN is fixed and represents the concurrency level, which
in our case indicates the number of users using applica-
tion a at a VM at QoS level q. The input parameters of
a closed QN model are the number of customers in the
QN, and the service demands at each resource, defined
as the total average service time provided by a resource
to a given class of requests. We denote the processing
(i.e., CPU) and I/O service demands of application a at
a VM of type t as Dt

cpu,a and Dt
I/O,a, respectively. Thus,

the maximum number of users in a VM of QoS q run-
ning application a can be determined using a single-class
queuing network because we assume that a VM cannot
run different applications or an application at different
QoS levels.

Due to the highly combinatorial and non-linear nature
of the problem, we develop a heuristic-based combina-
torial search method to find a near-optimal solution to
this optimization problem.

4 Heuristic Search

The optimization problem described in the previous sec-
tion has a feasible state space that grows in a combinato-
rial way. The number of feasible states is given by(

T − 1 + mp(a, q) + u
T − 1

)
. (4)

Equation (4) represents the number of ways in which we
can allocate the mp(a, q) + u users to the T types of VMs.
Thus, a request for 100 users (i.e, u = 100) that finds
4,000 users (i.e., mp(a, q) = 4, 000) allocated to four VM
types (i.e., T = 4) results in approximately 11.5× 109

states. Therefore, an efficient heuristic is required to
find a near-optimal solution to this optimization prob-
lem, which must be solved by the SaaS in almost real-
time. Our heuristic solution, called ScaleUpDown, uses
the hill climbing search technique [14] to determine how
many VMs of each type are needed, and how many users
should be allocated to each VM type.

4.1 The ScaleUpDown Algorithm

A high-level description of the ScaleUpDown algorithm
(see Algorithm 1) is as follows. If the request is for remov-
ing users, it removes users from each of the VM types
and releases VMs that became empty back to the IaaS.
If the request is for adding users it tries to add all new
users to empty slots in already allocated VMs. If more
slots are needed, the algorithm obtains these slots from
new VMs of type 1 (the cheapest) and then uses a hill-
climbing method to re-balance the allocation to achieve a
near-optimal solution. Note that this algorithm is differ-
ent from existing auto-scaling methods offered by IaaS
providers such as Amazon EC2. IaaS providers are able
to measure the utilization and availability of a user’s
VMs. However, these cloud providers are not able to
monitor application response time in order to respond to
that. This can only be done by a SaaS provider because
it has visibility of the application.

A more detailed description of the ScaleUpDown algo-
rithm is the following. It receives a request (a, q, u, s)
and starts by invoking the AddRemoveUsers function de-
scribed in Algorithm 2. This algorithm determines if the
request is for removing users (i.e., u < 0) or adding users
(i.e., u > 0). If it is a removal request, AddRemoveUsers
removes u users starting from the smallest capacity VMs
to the largest capacity ones (lines 4-15). This is done
in order to expedite the release of more VMs. The re-
moval of users for a given VM type is done with the
RemoveUsers algorithm invoked in lines 8 and 13 of the
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Algorithm 1 ScaleUpDown Algorithm
1: ScaleUpDown (a, q, s, m, u, T, ϕ)
2: /* If u < 0 remove users starting from partially

filled VMs. If u > 0 add as many users as possible
to partially filled slots */

3: AddRemoveUsers (a, q, s, m, u, T, ϕ);
4: if u > 0 then
5: /* Allocate remaining users in new VMs of type 1

*/
6: ExtraVMs← du/mmax(a, q, 1)e;
7: n1 ← n1+ ExtraVMs;
8: AddUsers (a, q, u, 1); /* See Algorithm 4 */
9: X(a,q,s) ← SaaSHill (X(a,q,s), T, MaxRestarts, Max-

Iterations) ;
10: end if
11: Return (ϕ)

AddRemoveUsers algorithm. If the request is for user al-
location, the AddRemoveUsers algorithm loops over all
VM types from the least costly to the more costly and
fills available slots in these VM types using the AddUsers
algorithm (line 20). This algorithm receives as input the
number u of users to be added to type t VMs and returns
in u the remaining number of users yet to be allocated.
If all users can be allocated into available slots, the algo-
rithm breaks from the loop (line 22) and returns u (line
25). Note that allocating users to empty slots does not
increase the cost to the SaaS provider because these VMs
are already being paid to the IaaS.

After executing the AddRemoveUsers algorithm, the
ScaleUpDown algorithm checks if there are still users to
be allocated (i.e., u > 0). If that is the case (lines 6-9), the
algorithm computes the number of extra VMs of type 1
(the cheapest) needed for the remaining users (lines 7-
8). The AddUsers algorithm is invoked to allocate these
users to these additional VMs (line 8). Finally, the cloud
is rebalanced using a hill-climbing algorithm, SaaSHill
(line 9), to be described later.

The RemoveUsers algorithm (see Algorithm 3) checks
if all VMs of type t are full (st = 0). In that case (lines 5-7),
the number of users u to be removed is used to deter-
mine the number of VMs to be returned back to the IaaS
provider and to update nt (line 6). The slack st is also
updated (line 7). If there is a type t VM with available
slots (i.e., st > 0) (lines 9-16), nt and st are updated tak-
ing into account the number of users, mmax(a, q, t)− st,
in the partially full VM.

Algorithm AddUsers (Algorithm 4) adds users to avail-
able slots in type t VMs if there are any and returns the
number of users that remain to be added after all avail-
able slots have been filled (line 18). If the users to be
added fit into the available slots (i.e., u ≤ st), then the
number of available slots is decremented by the number
of users to be added (line 7), the number of users added
(ua) is made equal to u (line 8), and the number of re-
maining users to add is set to zero (line 9). Otherwise,

Algorithm 2 AddRemoveUsers Algorithm
1: AddRemoveUsers (a, q, s, u, T, ϕ)
2: if u < 0 then
3: /* remove u users */
4: u← −u;
5: for all t= 1 to T do
6: /* remove u users from VMs of type t */
7: if st ≥ u then
8: /* remove a total of u users from type t VMs

*/
9: RemoveUsers (a, q, u, t); /* See Algorithm 3

*/
10: Break
11: else
12: /* remove all users allocated to VMs of type t

*/
13: u = u− st;
14: RemoveUsers (a, q, u, t); /* See Algorithm 3

*/
15: end if
16: end for
17: Return (u, ϕ)
18: end if
19: /* Need to add users into empty slots */
20: for all t = 1 to T do
21: AddUsers (a, q, u, t); /* See Algorithm 4 */
22: if u = 0 then
23: Break;
24: end if
25: end for
26: Return (u, ϕ)

Algorithm 3 RemoveUsers Algorithm
1: RemoveUsers (a, q, u, t)
2: /* remove u users from VMs running application a

at QoS level q */
3: mt ← mt − u;
4: if st = 0 then
5: /* all VMs of type t are totally full */
6: nt ← nt − bu/mmax(a, q, t)c; /* deallocate these

VMs */
7: st ← mod (u, mmax(a, q, t))
8: else
9: FSLots← mmax(a, q, t)− st /* no. filled slots */

10: if u < FSlots then
11: st ← st + u
12: else
13: /* deallocate these VMs */
14: nt ← nt − (1 + b(u− FSlots)/mmax(a, q, t)c);
15: st ← mod (u− FSlots, mmax(a, q, t))
16: end if
17: end if
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Algorithm 4 AddUsers Algorithm
1: AddUsers (a, q, u, t)
2: /* add users to available slots of VM of type t that

host applications of the type (a, q). */
3: if st > 0 then
4: /* there is a partially filled VM */
5: if u ≤ st then
6: /* all users can be added to the partially filled

VM */
7: st ← st − u;
8: ua← u; /* users added */
9: u← 0;

10: else
11: /* not all users fit in the partially filled VM */
12: u← u− st;
13: ua← st; /* users added */
14: st ← 0;
15: end if
16: end if
17: mt ← mt + ua;
18: Return (u); /* return remaining number of users to

be added */

not all users fit into available slots (lines 11-14). The
number of users tha remain to be added is computed
as the number of users intended to be added minus the
number of available slots (line 12). The number of added
users is equal to the number of available slots (line 13)
and all available slots become full (line 14).

The SaasHill algorithm (Algorithm 5) starts from a
current state X(a,q,s) and iteratively explores a fraction of
the solution space by creating neighborhoods of states us-
ing the Neighborhood function described in Algorithm 6.
The SaasHill algorithm performs MaxRestarts local
searches (line 2) to reduce the possibility that the global
search be stuck in a local optimum, a well-known draw-
back of this type of search. The first search starts from
X(a,q,s) and iterates over NumIterations neighborhoods
(line 3). The other searches start from a feasible state (i.e.,
that satisfies the response time constraint) obtained by
the function NewState (line 14) not shown in detail here.

Each local search (lines 3-11) finds a neighborhood
of the state X(a,q,s) and returns the state X ∗(a,q,s) in the
neighborhood with the minimum cost (line 5). If there
is no cost improvement, the local search terminates
and restarts from a new state (line 14). Once the lo-
cal search ends (line 11), another is restarted until the
limit of restarts, MaxRestarts, is reached. After all local
searches are executed, the algorithm returns the state
with the minimum cost among those identified by all
local searches (line 16).

The Neighborhood algorithm (see Algorithm 6) builds
a neighborhood of a stateX(a,q,s) by adding states accord-
ing to two methods: (1) For each VM of type t (t from
2 to T) add a new VM of this type and move as many
users as possible from lower capacity VMs to the new

Algorithm 5 Hill Climbing
1: SaaSHill (X(a,q,s), T, MaxRestarts, MaxIterations)
2: for all NumRestarts= 1 to MaxRestarts do
3: for all NumIterations = 1 to MaxIterations do
4: /* Perform local search */
5: X ∗(a,q,s) ← Neighborhood (X(a,q,s), T) ; /* Re-

turns the state with lowest cost in the neigh-
borhood */

6: if Cost(X ∗(a,q,s)) = Cost(X(a,q,s)) then
7: Break; /* No Improvement */
8: else
9: X(a,q,s) ← X ∗(a,q,s); /* Cost is reduced */

10: end if
11: end for
12: LocalOpt[NumRestarts]← X(a,q,s);
13: /*New Restart*/
14: X(a,q,s) ← NewState (X(a,q,s));
15: end for
16: Return argminLocalOpt[i]{Cost(LocalOpt[i])}

VM of type t (lines 4-13). In the process, VMs of lower
capacity that become empty are released back to the IaaS
provider. The function Increase (invoked in line 6 and
implemented by Algorithm 7) performs this step. (2) For
each VM of type t (t from 2 to T) remove a VM of this
type and move its users to lower capacity VMs (lines
14-24). In the process, it may be necessary to add VMs of
lower capacity. The function Decrease (invoked in line
17 and implemented by Algorithm 8) performs this step.
The functions Increase and Decrease return a new state.
If the cost of that new state is less than the minimum
cost obtained so far, the returned state becomes the state
with the minimum cost and its cost becomes the current
minimum cost (lines 7-11 and 18-22 of the Neighborhood
algorithm). Finally, the Neighborhood function returns
a state with the minimum cost in the neighborhood.

The Increase and Decrease methods use the
AddUsers and RemoveUsers functions described previ-
ously.

4.2 ScaleUpDown Algorithm Example

The following example shows different states visited
by the hill climbing search to find a near optimal solu-
tion. However, none of the states visited, except for the
near-optimal solution found by the hill climbing method,
result in actual reallocation of VMs. Consider the case
of an application a with platinum (q = p) QoS. Suppose
there are three VM types (T = 3) and that each VM type
has the following maximum number of users to not vi-
olate the response time constraint: mmax(a, p, 1) = 10,
mmax(a, p, 2) = 12, and mmax(a, p, 3) = 25 as shown in
Table 1. Suppose that the cost of operating each VM type
is as follows: c1 = $5 per hour, c2 = $6.5 per hour, and
c3 = $9 per hour. The fourth row of the table shows the
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Table 1: Allocation Example.
c1 = 5 c2 = 6.5 c3 = 9

mmax(1, p, 1) = 10 mmax(1, p, 2) = 12 mmax(1, p, 3) = 25
Type 1 VMs Type 2 VMs Type 3 VMs

Current State 10 7 12 8 19
Request to add 30 users

Filling the slots 10 10 12 12 25
State 1: $42, add VMs t=1 10 10 10 7 12 12 25

Increase phase
State 2: $43, add VMs t=2 10 10 5 12 12 12 25
State 3: $41, add VMs t=3 10 2 12 12 25 25
State 4: $37, add VMs t=3 10 2 25 25 24

Decrease phase
State 5: $37, remove VMs t=2 10 2 25 25 24
State 6: $43, remove VMs t=3 10 10 10 5 2 25 24
State 7: $47.5, remove VMs t=3 10 2 12 12 1 25 24

current allocation of two VMs of type 1 with 10 users in
the first VM and 7 users in the second, two VMs of type
2 with 12 users in the first VM and 8 users in the second,
and one VM of type 3 with 19 users.

Each row of Table 1 shows the states tested by the
ScaleUpDown algorithm. At each state, the cost is calcu-
lated and the state with the minimum cost is selected.
Note that no changes are committed to the cloud envi-
ronment until this search is over and a better solution
is found. When a request arrives for 30 new users, the
sixth row shows the occupation of the 13 empty slots
across all VMs of all types. State 1 in the table shows the
state resulting by allocating the remaining 17 users to the
smallest type VM, which is of type 1. The cost of state
1 is $42. Then, the Increase process starts by adding a
VM of type 2 and moving 12 users from VMs of type 1
as shown in state 2 resulting in a cost of $43. State 3 adds
a VM of type 3 and moves 25 users from VMs of type 1
based on state 1 since it has the lowest cost so far. The
cost of state 3 is $41, which is the current minimum cost,
so it is going to be the base state for further states. State
4 adds a VM of type 3 and moves 24 users from VMs of
type 2 based on state 3. The cost of state 4 is $37. Thus,
state 4 has the minimum current cost and therefore will
be the base state for further states. Now, the Decrease

process starts with state 5 by removing users from a VM
of type 2 and moving them into VMs of type 1. But since
there are no VMs of type 2, no change happens in this
state. State 6 removes one VM of type 3 and moves 25
users into VMs of type 1 based on state 4. The cost of
state 6 is $43. State 7 removes a VM of type 3 and moves
25 users from a VM of type 3 to VMs of type 2 based
on state 4. The cost of state 7 is $47.5. Up to this point,
all states have been tested and only the state with the
lowest cost is returned as the lowest cost solution for this
neighborhood, which is state 4.

4.3 The FillSlotsFirst Algorithm

We also designed an experimented with another heuris-
tic called FillSlotsFirst (see Algorithm 9), which is
much simpler than the ScaleUpDown method described
above. The FillSlotsFirst algorithm starts by adding
users to available slots for the same (a, q) pairs using the
same AddRemoveUsers as the ScaleUpDown algorithm
(line 5). Then, if there are still remaining users to be
allocated, the method allocates them to the VM type
that provides the least cost (lines 9-10). The number of
available slots in the VM type chosen to allocate the
remaining users is computed in lines 11-15. One of
the main differences between the FillSlotsFirst and
ScaleUpDown methods is that the former does not use
a hill-climbing method to rebalance the cloud. There-
fore, FillSlotsFirst is simpler to implement and has
a low computational complexity of O (T). On the other
hand, the computational complexity of the ScaleUpDown
algorithm is O (MaxRestarts×MaxIterations× T2).

4.4 Comparison With the Optimal Solution

To compare our algorithm with the optimal solution,
we perform an exhaustive search of the entire solution
space for a small problem. The implementation shown in
Algorithm 10 works for three VM types. It is easy to see
how it can be extended to more VM types. The algorithm
tests all different combinations of the total number of
users allocated to each VM type (lines 3-9). Then, the
algorithm calculates the number of VMs used of each
type for a specific allocation (lines 10- 13). After that, the
algorithm calculates the cost of each allocation (lines 15
-18) and returns the allocation with the minimum cost
(line 21). Clearly, as we indicated before, the optimal
algorithm is only practical for a very small problem sizes.

6



Algorithm 6 Neighborhood
1: Neighborhood (X(a,q,s), T )
2: MinCost← Cost(X(a,q,s));
3: /* Increase the number of VMs */
4: for all t=2 to T do
5: for all v=1 to t-1 do
6: X Temp

(a,q,s) ← Increase ( X(a,q,s), t, v);

7: if Cost(X Temp
(a,q,s)) < MinCost then

8: /* Change to the allocation with lower cost
*/

9: MinCost← Cost(X Temp
(a,q,s));

10: X(a,q,s) ← X
Temp
(a,q,s) ;

11: end if
12: end for
13: end for
14: /* Decrease the number of VMs */
15: for all t=2 to T do
16: for all v=1 to t-1 do
17: X Temp

(a,q,s) ← Decrease (X(a,q,s), t, v)

18: if Cost(X Temp
(a,q,s)) < MinCost then

19: /* Change to the allocation with lower cost
*/

20: MinCost← Cost(X Temp
(a,q,s));

21: X(a,q,s) ← X
Temp
(a,q,s) ;

22: end if
23: end for
24: end for
25: Return (X(a,q,s))

5 Experimental Results

Our experiments consider a Poisson arrival stream of
user allocation or deallocation requests for software
services at a rate of 2 req/sec. Every time a request
arrives, a new near-optimal state is computed using
the ScaleUpDown and FillSlotsFirst algorithms de-
scribed in the previous section.

Table 2 shows the parameters used in the experiments.
There are 2 different applications, 3 VM types, 2 differ-
ent customers. The maximum response time SLA, R∗,
given in the table is the same for both applications and
is different for each of the four QoS levels. The value
of MaxUsers is the maximum number of users of a cus-
tomer that will use each application at a given QoS level.
In the experiments, according to the table, we assume
this value to be the same for the two applications. So, for
example, each customer can have up to 1,150 employ-
ees using any of the two applications of platinum QoS
level. TargetUsers is a value such that once reached,
customer requests can be for either increase or decrease
of users. For the experiments we consider TargetUsers
to be 90% of MaxUsers. The cost ct given in the table is
typical of IaaS providers such as Amazon’s EC2. The val-

Algorithm 7 Increase
1: Increase (X(a,q,s), t, j)
2: /* Add a new VM of type t and move users from

VMs of type j to the new VM of type t (t > j). Re-
move the unused VMs of type j.

3: nt ← nt + 1;
4: u← AddUsers (a, q, mmax(a, q, t), t);
5: RemoveUsers (a, q, mmax(a, q, t), j);
6: Return (X(a,q,s))

Algorithm 8 Decrease
1: Decrease (X(a,q,s), t, j)
2: /* Remove a VM of type t and move its users to VMs

of type j (t > j). */
3: NumUsers← maxj(Xt[j]);
4: RemoveUsers (a, q, NumUsers, t);
5: u← AddUsers (a, q, NumUsers, j);
6: Return (X(a,q,s))

Algorithm 9 FillSlotsFirst
1: FillSlotsFirst ( a, q, u, T)
2: /* Finds the optimal allocation for (a, q, u, s)*/
3: /* If u < 0 remove users starting from partially filled

VMs. */
4: /* If u > 0 add as many users as possible to partially

filled slots */
5: AddRemoveUsers (a, q, s, m, u, T, ϕ);
6: /* u contains the number of remanining users to be

added after filling available slots. */
7: if u > 0 then
8: /* at this point all st are zero for all VM types */
9: tmin ← argminT

t=1{du/mmax(a, q, t)e × ct}
10: ntmin ← ntmin + du/mmax(a, q, tmin)e
11: if u < mmax(a, q, tmin) then
12: stmin ← mmax(a, q, tmin)− u
13: else
14: stmin ← mmax(a, q, tmin)
15: −mod (u, mmax(a, q, tmin))
16: end if
17: end if
18: Return (ϕ)

ues of MaxIterations and MaxRestarts determine the
behavior of the hill-climbing aspect of the ScaleUpDown

method. The CPU and service demands used in the
experiments for each VM type are given in Table 3.

We randomly generated 30 workloads composed of
600 requests each for a total of 18,000 requests by simu-
lating a real cloud environment using Matlab. In each
workload, the number of users u for each request was
randomly generated between 1 and 70 from a random
customer s. The applications are chosen between applica-
tions 1 and 2 with equal probability. Initially, all requests
are allocation requests (i.e., u > 0). At each request gen-
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Algorithm 10 Optimal algorithm: tests all possible states
and returns the state with minimum cost

1: OptimalAlg (a, q, s, u, X(a,q,s))
2: MinCost← ∞;
3: for all j=0 to u do
4: for all y=0 to (u− j) do
5: i = u− (j + y)
6: /* Use different combinations of the number of

users in each VM type */
7: m1 ← j;
8: m2 ← y;
9: m3 ← i;

10: /* Update the number of VMs used */
11: n1 ← dm1/mmax(a, q, 1)e;
12: n2 ← dm2/mmax(a, q, 2)e;
13: n3 ← dm3/mmax(a, q, 3)e;
14: /* Compute the total cost and test if it is the

minimum */
15: if Cost(X Temp

(a,q,s)) < MinCost then

16: MinCost← Cost(X Temp
(a,q,s));

17: X(a,q,s) ← X
Temp
(a,q,s) ;

18: end if
19: end for
20: end for
21: Return (X(a,q,s), MinCost)

eration, the number of allocated users for each (a, q, s)
is calculated. If this number exceeds TargetUsers, the
request becomes an allocation (i.e., u > 0) with a 50%
chance or a deallocation request (i.e., u < 0).

We used the same 30 workloads to compare the
ScaleUpDown and the FillSlotsFirst strategies and
computed the average per-request cost and the cumula-
tive cost averaged for all 30 workloads and all requests.
All graphs described in what follows show several met-
rics as a function of time in seconds.

The three curves of Fig. 2 represent average values
over all 30 workloads and all requests versus time. The
top curve shows the value of MaxUsers, the middle one
TargetUsers, and the bottom curve shows the average
number of users. As shown, the bottom curve starts

Table 2: Parameter values used in the experiments.
Parameter Value
A 2
T 3
S 2
R∗ (97,77,67,57) ∀ a, ∀q ∈ {p, g, s, b}
MaxUsers (1150,1170,1190,1200) ∀q ∈ {p, g, s, b}
TargetUsers 0.90 ×MaxUsers
c1, c2, c3 0.036, 0.070, 0.226 $/hour
MaxIterations 20
MaxRestarts 2

Table 3: CPU and I/O service demands (in sec) for each
VM type.

VM type 1 VM type 2 VM type 3
CPU 0.044 0.019 0.001
I/O 0.019 0.002 0.0102

with allocation requests until the total number of users
reaches the value of TargetUsers. After that, there is an
equal probability of generating deallocation or allocation
requests.
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Figure 2: Average values over all 30 workloads and all
requests. Top: MaxUsers, Middle: TargetUsers, and
Bottom: Number of users.

Figure 3 compares the current cost (in 10−3 $/sec)
to the SaaS provider when using ScaleUpDown versus
FillSlotsFirst to lease all needed VMs including the
ones required to satisfy the arriving request. The graph
shows a slight decrease in cost after about 1,900 sec
because by that time some requests are for user deal-
locations as can be seen in Fig. 2. As shown, there
is a clear difference between the two curves. The
maximum cost/sec observed for ScaleUpDown during
the experiment is approximately 2.1 × 10−3 $/sec or
close to $5,500/month. The corresponding value for
FillSlotsFirst is $7,800/month, or 40% higher. The
reason is that FillSlotsFirst does not try to re-balance
the allocation across VMs after slots are filled.

Figure 4 compares the accumulated cost of leasing
all VMs including the VMs needed to satisfy the arriv-
ing request for ScaleUpDown and FillSlotsFirst. The
separation between the two algorithms is obvious. The
accumulated cost for FillSlotsFirst increases at a rate
of 0.22 ¢/ sec at the end of the experiment while the
accumulated cost for ScaleUpDown grows at the smaller
rate of 0.18 ¢/ sec during the same interval. At time
3,000, the accumulated cost of FillSlotsFirst is close
to $5,300/month, 30% higher than that of ScaleUpDown.

8



0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

x 10
-3

Time (sec)

C
u

rr
e

n
t 
c
o

s
t 
p
e

r 
s
e
c
o

n
d
 

 

 

ScaleUpDown

FillSlotsFirst

Figure 3: Current cost (in 10−3 $/sec) vs. time for
ScaleUpDown (bottom) and FillSlotsFirst (top).
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Figure 4: Accumulated cost (in $) for ScaleUpDown (bot-
tom) and FillSlotsFirst (top)

Figure 5 shows the average number of users per VM
in each VM type for ScaleUpDown. The figure shows that
after about 1,000 sec, the average number of users per
VM type stabilizes at around 400 for type 3 VMs, 90 for
type 2 VMs and 25 for type 1 VMs. The average number
of users per VM for all VM types is then approximately
515 users after 1,000 sec have elapsed. Table 2 shows
the maximum number of users, R∗, for both applications
and all QoS levels. Since all four QoS levels are equally
likely and the two applications are also equally likely to
be requested, the total maximum number of users per
VM for all VM types if all slots were filled would be
2× (97 + 77 + 67 + 57) = 596. So, 515 users represents
an average utilization of 86% for all VM types. It is also
interesting to observe that type 3 VMs account for 78%

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

350

400

Time (sec)

A
v
g
. 

n
u
m

b
e

r 
o
f 

u
s
e

rs
 p

e
r 

V
M

 f
o

r 
e

a
c
h
 V

M
 t

y
p

e

 

 

Users in per VM of Type1

Users in per VM of Type2

Users in per VM of Type3

Figure 5: ScaleUpDown: Average number of users per
VM in each VM type. At time 3000: Type 3 (top), Type 2
(middle), Type 1 (bottom).
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Figure 6: ScaleUpDown: Average number of used VMs
of each type. At time 3000: Type 3 (top), Type 2 (middle),
Type 1 (bottom)

(=400/515) of users per VM, type 2 account for 17%, and
type 1 for the remaining 5%.

The number of VMs of each type used by ScaleUpDown

is shown in Fig. 6. Figure 7, the equivalent of Fig. 5 for
FillSlotsFirst, shows the average number of users
per VM in each VM type using FillSlotsFirst. As
we can see, FillSlotsFirst, at least for the parameters
used in the experiments, avoids the most expensive type
3 VMs because it prefers VM types that provide the
lowest cost per user at all times.

Figure 8 shows the total number of users in each VM
type for ScaleUpDown. As the number of requests in-
creases over time, more users are allocated to type 3
VMs and less users are allocated to type 1 VMs. The
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Figure 7: FillSlotsFirst: Average number of users per
VM in each VM type: Type 2 (top) and Type 1 (bottom).

reason is that type 3 VMs can accommodate more users
at a lower cost than multiple smaller size VMs of type 1.
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Figure 8: ScaleUpDown: Average total number of users
in each type of VM. At time 3000: Type 3 (top), Type 2
(middle), Type 1 (bottom).

We also compared the results obtained from
ScaleUpDown with the optimal results otained by run-
ning the Optimal algorithm (see Algorithm 10). The re-
sults are summarized in Table 4. The first column shows
the request. The second column shows the number of
users in each VM type as (Max/ScaleUpDown/Opt)
which stands for the maximum number of users in
each VM type, the number of users allocated using
ScaleUpDown, and the number of users allocated using
the optimal solution. The third column is the cost of the
ScaleUpDown (SUD) solution. The fourth column is the
cost of the optimal solution. The fifth column is the SUD
cost divided by the cost of the optimal solution. The

sixth column shows the fraction of the total number of
states visited by ScaleUpDwown. As shown, the number
of states visited by ScaleUpDwown is very low (on the
order of 10−4 of the entire state space) while the solution
obtained is 2% more expensive in many cases, 13% more
expensive in others, and 31% more expensive in only
one case.

6 Related Work

There has been significant work on resource allocation in
IaaS cloud providers but relatively little work on the re-
source allocation problem faced by SaaS cloud providers.
Some examples of resource allocation work for IaaS
providers include [1, 2, 4, 13, 7, 3, 9, 16]. In [6], the
reader can find a survey of recent cloud resource manage-
ment techniques. Frameworks for minimizing the cost
of resources were presented in [18, 5, 21, 22, 15, 17, 16].
In [18], resource allocation algorithms were presented for
SaaS providers to minimize infrastructure cost and SLA
violations such as in response time. Their algorithms
are based on mapping and scheduling mechanisms and
policies for translating the customers QoS requirements
to infrastructure level parameters and allocating VMs to
serve their requests. However, they do not use heuristic
algorithms. In [21], the authors present evolutionary al-
gorithms to minimize resource usage for SaaS providers
and improve execution time. The goal of [22] is to min-
imize the resources used by the SaaS by clustering its
components without violating specific constraints. Their
algorithm considers the SaaS resource and communi-
cation requirements. The authors in [15] and [17] min-
imized the infrastructure cost by using a multi-tenant
SaaS model where a single instance of a software appli-
cation serves multiple customers (tenants). But they did
not use heuristics for optimization. In [20], the authors
present an optimal algorithm that minimizes energy con-
sumption in the context of MapReduce applications. The
work in [23] uses simulation to address the problem
of minimizing an infrastructure for running a MapRe-
duce job given a completion time target for the job. A
cost minimization solution is provided in [19], which
presents the design, implementation, and evaluation of
a resource management system for cloud computing ser-
vices used to allocate data center resources dynamically
based on application demands and optimizing the num-
ber of servers in use. In their algorithms, they use the
skewness metric to combine VMs with different resource
characteristics to physical resources. The authors in [8]
provide capacity planning heuristics that use a utility
model for a SaaS. Their utility model considers business
aspects related to offering a SaaS application with a goal
of increasing the profit.

None of the above mentioned solutions use heuristic
search techniques for minimizing the cost of SaaS cloud
providers with response time SLAs constraints.
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Table 4: Comparison of the ScaleUpDown algorithm with the optimal solution
(a,q,u) (VM1, VM2, VM3) SUD Opt SUD/Opt Visited
(1, 1, 420) (41/0/8, 100/99/0, 412/321/412) 8.28E-05 7.28E-05 1.14 2.14E-04
(1, 2, 100) (41/100/1, 100/0/99, 412/0/0) 3.00E-05 2.94E-05 1.02 1.55E-03
(1, 3, 105) (41/105/6, 99/0/99, 411/0/0) 3.00E-05 2.94E-05 1.02 1.41E-03
(1, 4, 122) (40/122/23, 99/0/99, 410/0/0) 3.00E-05 2.94E-05 1.02 7.99E-04
(2, 1, 450) (41/0/38, 100/99/0, 412/351/412) 8.22E-05 7.28E-05 1.13 1.86E-04
(2, 2, 412) (41/0/0, 100/99/0, 412/313/412) 8.22E-05 6.28E-05 1.31 2.22E-04
(2, 3, 430) (41/0/19, 99/99/0, 411/331/411) 8.22E-05 7.28E-05 1.13 2.04E-04
(2, 4, 451) (41/0/41, 99/99/0, 410/352/410) 8.22E-05 7.28E-05 1.13 1.85E-04
(1, 1, 115) (41/115/16, 100/0/99, 412/0/0) 3.00E-05 2.94E-05 1.02 1.18E-03
(1, 2, 441) (41/0/30, 100/99/342, 412/0/411) 8.22E-05 7.28E-05 1.13 1.94E-04

7 Concluding Remarks

SaaS cloud providers dynamically scale the number of
needed VMs to run software services depending on the
demand. They need to optimally manage the dynamic
nature of customer requests in a heterogeneous environ-
ment in which VMs are of different capacities, cost, and
computing power. Therefore, due to the highly combi-
natorial and non-linear nature of the problem, we devel-
oped a heuristic-based combinatorial search method to
find a near-optimal solution to this optimization prob-
lem subject to response time constraints with the goal of
minimizing the total cost.

Our heuristic solution is based on hill climbing and
provides a near optimal solution within 13% of the mini-
mum cost in most cases by visiting around 10−4 of the
search space. We ran experiments to test our heuristic
and compared it with FillSlotsFirst which allocates
users to the lower cost per users VMs. Our heuristic
algorithm outperformed FillSlotsFirst dramatically
as shown in the experiments.
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