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Abstract

This paper deals with stochastic temporal manufactur-
ing processes with work-in-process inventories in which
multiple products are produced from raw materials and
parts. The processes may be composed of subprocesses,
which, in turn may be either composite or atomic, i.e.,
a machine on a manufacturing floor. We assume that
machines’ throughput is stochastic and so are work-in-
process inventories and costs. We consider the problem
of optimizing the process, that is, finding throughput
expectation setting for each machine at each time point
over the time horizon as to minimize the total cost of
production subject to satisfying the production demand
with a requested probability. To address this problem,
we propose an efficient iterative heuristic algorithms
that is based on (1) producing high quality candidate
machine settings based on a deterministic approxima-
tion of the stochastic problem, and (2) running stochastic
simulations to find the best machine setting out of the
produced candidates using optimal simulation budget
allocation methods. We conduct an experimental study
that shows that our algorithm significantly outperforms
four popular simulation-based optimization algorithms.

1 Introduction

In the past few years, there has been significant techno-
logical advancements in different areas of process anal-
ysis and optimization. Examples of processes include
manufacturing processes, such as assembly lines, and
supply chain management. These processes often in-
volve physical or virtual inventories of products, parts
and materials that are used to anticipate uncertainties
on supply or throughputs of machines. Over time, the
state of the machines, inventories and the whole pro-

cess changes until process completion. We use the term
Buffered Temporal Flow Processes (BTFP) to describe
these types of processes. BTFP can be found in many
different areas of manufacturing and supply chain. A
particularly important BTFP occurs in the area of dis-
crete manufacturing such as in vehicles, furniture, smart-
phones, airplanes and toys.

Due to increased global competition, manufacturing
companies look toward ways to reduce their cost and
increase efficiency of operations. Thus, there is a greater
need for analysis and optimization of the operation re-
sults on the manufacturing floor while taking into ac-
count sustainability metrics. In addition to this, the
metrics in the manufacturing model may contain noise
that makes them stochastic. To support analysis and
optimization of BTFP with stochastic variables, there
is a need to accurately model machines, systems and
processes so that they can provide accurate results in a
stochastic environment. These models need to capture
(a) stochastic control variables; (b) metrics of machines
(such as cost, energy consumption, and emission) as a
function of these control variables; (c) process routing
that describes the flow of materials through the manufac-
turing floor; and (d) intermediate material storage and
distribution (work-in-progress) for inventories. In BTEP,
this needs to be modeled over a temporal sequence and
include stochasticity of machine throughput and supply.

Using these models, it is desirable to allow manufac-
turing and process operators to perform a variety of anal-
ysis and optimization tasks including what-if prediction
and optimization. For example, as a prediction question,
a process engineer may ask: given a particular planned
machine’s expected throughput and load-distribution
among the machines, what would be the production
output and work-in-progress inventories for each time
interval over the time horizon, as well as overall manu-
facturing key performance indicators (KPIs) such as cost,



efficiency and carbon emissions? Or, as an optimiza-
tion question, a process engineer may ask: given the
process design (which includes the flow of work pieces
through various stages of processing), which machines
should be on and off, and how to set up the controls of
every operational machine, and distribute processing
load among the machines, as to minimize the total pro-
duction cost, while satisfying the demand for every time
interval over a planning horizon, and within a limitation
on the capacity of work-in-progress inventories?

There has been extensive research on analysis and op-
timization of BTFP-like processes (e.g., see [1], [2], [3]
for an overview). Prior work can be classified into three
broad categories: (1) customized domain-specific solu-
tions for optimization of manufacturing processes; (2)
simulation-based solutions; and (3) use of optimization
solvers based on mathematical programming (MP) and
constraint programming (CP).

Customized domain-specific solutions for BTFP are
designed for a specific, limited setting of a manufactur-
ing process, and would typically provide a graphical
user interface. Examples include [4] and [5]. The im-
plementation of domain specific solutions may use op-
timization tools based on mathematical programming,
and integrate them with other systems such as Enter-
prise Resource Planning (ERP). However, while these
solutions may be both efficient (in terms of optimality of
results and computational time), they are typically not
extensible to additional aspects of machines, processes
and metrics (e.g., stochastic variables), and perform a
“silo” optimization, which would not achieve the opti-
mal outcome if the extended system is to be optimized
as a whole, as opposed to optimizing a series of “silo”
subproblems.

In order to accurately model a system and its inner
workings, a simulation-based system can be used. Such
systems are typically object-oriented, modular, extensi-
ble, and reusable. Furthermore, many simulation tools
provide an easy-to-use graphical user interface. Tools
like SIMULINK [6] and Modelica-based ones [7] like
JModelica [8], Dymola [9], and MapleSim [10] allow
users to simulate models of complex systems in mechani-
cal, hydraulic, thermal, control, and electrical power. For
example, Modelica comes with over 1000 generic model
components that can all be reused. In addition, tools
like OMOptim [11], Efficient Traceable Model-Based Dy-
namic Optimization (EDOp) [12], and jMetal [13] use
simulation models to heuristically-guide a trial and er-
ror search for the optimal answer. However, this search
approach does not utilize the mathematical structure of
the underlying problem in the way MP/CP methods
do. Due to this, simulation-based optimization tools are
significantly inferior to optimization solutions based on
MP/CP in terms of optimality of results and computa-
tional complexity for problems that can be expressed
using MP/CP formulation.

Optimization solvers and modeling languages based

on MP and CP are often the technology of choice, when
optimality and computational complexity are the prior-
ity. Many classes of MP, such as linear programming
(LP), mixed integer linear programming (MILP), and
non-linear programming (NLP), have been very suc-
cessful in solving real-world large-scale optimization
problems. CP, on the other hand, has been broadly used
for combinatorial optimization problems like scheduling
and planning. To use these tools, one would have to
use an algebraic modeling language such as A Model-
ing Language for Mathematical Programming (AMPL)
[14], Optimization Programming Language (OPL) [15],
General Algebraic Modeling System (GAMS) [16], or Ad-
vanced Interactive Multidimensional Modeling System
(AIMMS) [17]. However, MP and CP present a signif-
icant challenge for engineers and business analysts. It
requires an OR expert to model a problem and express
it in an algebraic modeling language like the ones men-
tioned. Additionally, these formal models are typically
difficult to modify, extend, or reuse. This is comparable
to “spaghetti” code versus an object-oriented approach.

Temporal Manufacturing Query Language
(tMQL) [18] was recently proposed to target modularity
and reusability of manufacturing floor components for
deterministic BTFP processes. In turn, tMQL is based on
the Process Analytics Formalism [19][20], by extending
it to BTFP process components. In turn, SPAF is based
on the ideas of modular representation of constraints
and reductions to formal optimization models from
[21], [22], [23], [24], [25], and [26]. These models can be
reused to perform analysis and optimization tasks that
use declarative computation and optimization queries.
Computation queries are reduced to simulation models,
while optimization queries are reduced to Mixed Integer
Linear Programming (MILP) model and solved using
a commercial solver. However, tMQL in [18] is limited
to a deterministic setting, whereas process variables
and metrics are often stochastic. While extending the
definition of the tMQL process optimization problem
to a 1-stage stochastic programming problem is easy,
developing efficient algorithms to solve it is not. This is
exactly the focus of this paper.

We are concerned with BTFP that can be described
with tMQL, extended with stochasticity of machines’
throughput. That is, we consider stochastic temporal
manufacturing processes with work-in-process invento-
ries in which multiple products are produced from raw
materials and parts. The processes may be composed of
subprocesses, which, in turn may be either composite
or atomic, i.e., a machine on a manufacturing floor. We
assume that machines’ throughput is stochastic and so
are work-in-process inventories and costs. We consider
the problem of optimizing the process, that is finding
throughput expectation setting for each machine at each
time point over the time horizon as to minimize the total
cost of production subject to satisfying the production
demand with a requested probability.



The key technical contributions of this paper are

twofold. First, we propose an efficient heuristic algo-
rithm, called Iterative Heuristic Optimization Simula-
tion (IHOS) based on (1) producing a set of high quality
candidate machine settings based on deterministic ap-
proximations of the given stochastic problem, and (2)
running stochastic simulations to find the best machine
setting out of the candidate set, using optimal simula-
tion budget allocation methods. Second, we conduct
an initial experimental study to compare the proposed
algorithm with four popular simulation-based optimiza-
tion algorithms: Nondominated Sorting Genetic Algo-
rithm 2 (NGSA?2) [27], Indicator Based Evolutionary Al-
gorithm (IBEA) [28], Strength Pareto Evolutionary Algo-
rithm 2 (SPEA2) [29], and Fast Pareto Genetic algorithm
(FastPGA) [30]. The experimental study demonstrates
that IHOS significantly outperforms the other algorithms
in terms of optimality of results and computation time;
in particular, in 64 seconds the cost achieved by IHOS is
5% of the cost achieved by competing algorithms, and
is not matched by them in 1500 seconds (total run time),
while the cost achieved by IHOS in 1500 seconds is 80%
of the competing algorithms and 87% of the cost reached
by IHOS in 64 seconds.
The rest of this paper is organized as follows: Section 2
motivates the reader on the need for solving models on
manufacturing processes with stochastic variables. Sec-
tion 3 gives details about the IHOS algorithm. In Section
4 the experimental setup and results of the comparison
between IHOS and other metaheuristic algorithms is
explained. Finally, Section 5 concludes and discusses
further work.

2 Motivating Problem

Manufacturing processes can be complicated to model
and may contain very complex structures. Addition-
ally, the parameters in the manufacturing model may be
stochastic. We explain one such manufacturing process
in this section and illustrate the challenges in obtaining
meaningful answers from the floor. Consider the sand
and cut manufacturing processes shown in Figure 1 that
takes plywood as its input. In this example, part of the
plywood goes to the sand1 machine and the remaining
goes to the sand2 machine. The sanded plywood is then
buffered and redistributed among the cut1 and cut2 ma-
chines. The sanded plywood is cut in these machines
and finally, the cut plywood is collected and provided as
output from the sand and cut manufacturing processes.
We assume that time is divided into time intervals of
duration At, where time intervals start and end at time
points (t). We assume without loss of generality that
At = 1. A time interval (also known as a period) is
denoted by p; 1 = (¢, ti11)-

In order to compose the sand and cut manufacturing
processes in tMQL [18], six modular components will

be initialized to map them to the physical entities of
the floor. The first component is the input quantity ag-
gregators (IQA) such as a1, that get the items from the
input and distributes them among the sand1 and sand?2
processes. The second component is the base process
that maps to the machines on the floor. This process has
controls for the throughput or speed of the machines as
well as Key Performance Indicator (KPI) variables such
as cost and energy consumed. In our example, the base
processes are the sandl, sand2, cutl and cut2 compo-
nents. The third component is the inventory aggregators
(IA) such as a2 that provide the analytical knowledge
for a work-in-progress inventory. The fourth component
is the output quantity aggregators (OQA) such as a3,
that collect items from the cut1 and cut2 machines and
dispense them from the floor. The fifth component are
the item flows that carry items from the input or output
or between the processes and aggregators. Finally, the
sixth component is that of the composite process that
contains one or more of the six components mentioned
here to represent the manufacturing process as a whole.
The composite process also provides global metrics such
as total cost and total energy consumed by the entire
floor. The total cost and total energy of the machines are
functions that take the throughput of the machines as
parameters. These modules and model composition are
explained in more detail in [18].

In most manufacturing settings, the model parame-
ters are stochastic variables. Thus, these machines will
run at different throughputs at each time interval, with
some added noise that follows a distribution around the
expected throughput. Since variables such as total cost
incurred and the number of items that flow through the
aggregators are a direct result of the throughput of the
machines, it becomes very difficult for process opera-
tors to get meaningful answers from these models for
queries such as: (a) what is the total cost of operating the
machines for the required demand; (b) what are the max-
imum number of items stored in the inventory across all
time periods; (c) what-if the noise level is increased or
decreased in one of the machines; and (d) how is cost
affected if one machine is replaced by a faster machine?

In order to obtain meaningful answers for such queries
from the model, it is required that the stochastic nature
of the variables be taken into consideration. In tMQL, the
deterministic optimization problem was defined as find-
ing the decision variables within an atomic or composite
process at each time point over the time horizon as to
minimize or maximize the objective function subject to
satisfying all the constraints within the component and
any sub-components. The mathematical formulation of
this problem is given in [18]. We extend this definition
to include the stochastic variables within the compo-
nents. Thus, the problem of stochastic optimization can
be cast as finding the throughput expectation setting for
each base process component at each time point over
the time horizon as to minimize the total expected cost
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Figure 1: A graphical notation for the sand and cut manufacturing processes

of production subject to satisfying the production de-
mand with a requested probability. More generally, this
task may involve finding decision variables within any
atomic or composite process as to minimize or maximize
the expected value of the objective subject to satisfying
constraints with a requested probability. For the sake
of completeness, an OPL-like formulation of this one
stage stochastic optimization problem is given in the
Appendix.

To solve such a problem, an approximate cost needs
to be computed such that it takes the approximate value
of the machine’s throughputs into consideration. In or-
der to do this, in addition to the expected throughputs,
the machines should also be provided with the actual
throughput. At each time point, the actual machine
throughputs can then be calculated by adding the noise
to the expected throughput. The expected throughput
mentioned here is the optimal value of the throughput
found in a deterministic setting. It is now possible to

apply some heuristics on top of the model to obtain
meaningful answers for questions that depend on the
stochastic variables. The next section gives details of our
algorithm to perform this approximation.

3 Iterative Heuristic Optimization-
simulation Algorithm

This section describes the iterative heuristic
optimization-simulation (IHOS) algorithm. IHOS
uses the powerful tMQL domain specific components
that can be reused to accurately model a system and
its inner workings and can be used in optimization
solutions based on MP/CP where optimality of results
and computational complexity are a priority. To
model and query a manufacturing process for the real
world, it is necessary to take into consideration the
stochastic nature of the variables of the model. As



described in Section 2, we account for the stochastic
throughput of the machines by adding noise to the
expected throughput parameter. Using these metrics,
the algorithms described in this section approximate
the total cost incurred of running the entire composite
process when the actual throughput of the machines is
stochastic. The main idea behind these algorithms is to
run multiple iterations of optimization and stochastic
simulation. The optimization solver solves the problem
of finding the expected throughputs of the machines
such that the demand is satisfied at each period while
minimizing the cost. The stochastic simulation then
adds noise to these mean throughputs to check whether
the probability of satisfying the demand at each time
period has a certain confidence. A heuristic is then
applied on the demands so that they can be increased
or decreased such that the optimizer can give more
realistic mean throughputs in the next iteration. A
number of candidate mean throughputs are collected
and then simulations are run on these candidates to
make sure that the probability of demand satisfied
indeed has the desired confidence and the cost is
approximately minimum. In this way, the algorithm
uses the model knowledge in both optimization and
stochastic simulation to provide an optimal setting
for the throughputs of the machines that the process
operator can use in a stochastic environment.

The pseudo code for the IHOS algorithm is shown
in Algorithm 1. This algorithm works in two phases.
The first phase (lines 5 - 43) is the heuristic optimization-
simulation phase. In this phase, the algorithm tries to
collect candidates that could potentially result in the
minimum expected cost such that the demands (actu-
alDemand) are satisfied in a stochastic environment. In
order to do this for the stochastic throughputs, a number
of iterations of optimization and stochastic simulation
are run that are bound by a certain budget (fotallterations)
or by the number of desired candidates (storeSize). This
algorithm first tries to solve a deterministic optimization
problem where the throughput of the machines are de-
cision variables, the demand on the number of items to
be produced at each time period (currentDemand) is one
of the constraints and the total cost is minimized subject
to constraints in each individual component. These de-
cision variables will be the optimal throughput of the
machines for the currentDemand in a deterministic envi-
ronment and are returned back as throughputExp in line
6. Then, the problem is run in a stochastic simulation
environment that takes these throughputs as expected
throughputs and adds noise to them. This noise may
follow any distribution such that its parameters (e.g., o)
are set by the process operator in the simulation. A call
to the stochastic simulation is made in line 7 whereas the
pseudo-code for the simulation is given in Algorithm 2.

The simulation function runs multiple (noSimulations)
Monte Carlo simulations on the model for the manufac-
turing processes (Algorithm 2, lines 1 - 3). Then, the

avgCost is computed as the average of the total costs
obtained from all simulations (Algorithm 2, line 4). In
order to check the number of times the demand was
satisfied, this algorithm then counts the number of times
the produced items (producedltems) were greater than
the demand at each time point. The probability of the
demand being satisfied (demandSetProbs) is the ratio be-
tween the number of times the demand was satisfied at
each period and noSimulations (Algorithm 2, line 5 - 12).

After the stochastic simulations returns (Algorithm
1, line 7), the iteration proceeds to check whether the
confidence that the demandSetProbs is greater than the
probabilityBound for each period is at least iterationCon-
fidence (lines 8 - 11). If this is the case, this iteration is
stored as a candidate (lines 12). Then, the iteration pro-
ceeds to check whether this confidence is also at least
equal to finalConfidence. The finalConfidence is a higher
confidence level than the iterationConfidence and is the
desired confidence level for the demands at which a avg-
Cost is accepted. If the finalConfidence is obtained, the
global minCost metric is updated if such a minimum
avgCost is achieved (lines 15 - 19). If the finalConfidence
cannot be obtained from the current run of stochastic
simulations, a greater number of stochastic simulations
(bound by maxExtraSimulationlterations) are run to check
whether the finalConfidence can be obtained and the cost
can be further minimized or whether the candidate can
be refuted with a lower refuteConfidence so that no more
simulations are wasted on this candidate (lines 20 - 39).

The last part of the iteration is the call to the heuristic
function demand adjust (line 41). The pseudo-code for
this heuristic function is shown in Algorithm 3. This
function uses the difference in the probabilities of the
demand satisfaction and an exponential function with
parameter A to either increase or decrease the value of
the demand at each period. This increase (or decrease) in
demand is decided by an exponential distribution with
the parameter equal to the difference in the probabil-
ity of demand satisfaction obtained from the simulation
runs (demandSetProbs) and the probabilityBound. This
ensures that if the percentage of the number of times
the demand was satisfied for each period was very low
(or very high), this heuristic will increase (or decrease)
the demand for that period exponentially so that the
optimization solver can adjust the mean throughputs ac-
cordingly in the next iteration. Thus, the demandSetProbs
would increase (or decrease) in the next iteration thereby
resulting in a greater likelihood of obtaining the desired
confidence of demand satisfaction.

The second phase of the IHOS algorithm is simulation-
based refinement using an extended Optimal Comput-
ing Budget Allocation (OCBA) algorithm [31]. OCBA is
a budget allocation algorithm, which ensures that the
resulting probability of the current selection (i.e., the
current top candidate is indeed the best) be maximized.
An application of this budget allocation algorithm can
be found in [32]. The objective for extended OCBA in



Algorithm 1: Iterative heuristic optimization-simulation

Input

: storeSize, totallterations, actualDemand, o, noSimulations, lastTP, probabilityBound, iterationConfidence,

finalConfidence, refuteConfidence maxExtraSimulationlterations, A, budgetDelta, budgetThreshold

Output: throughputWithMinCost, minCost

1 noCandRuns := 0

2 currentDemand := actualDemand

3 nolterations := 0

4 minCost := oo

5 repeat

6 throughputExp := DetOpt (currentDemand)

7 (demandSetProbs, avgCost) := Simulate (throughputExp, noSimulations, actualDemand, lastTP)
8 foreach tp<+ 1 to lastTP do

9 | confidencePerTP[tp| := Confidence (demandSetProb|tp] >= probabilityBound)

10 end

11 if ConfidenceSatisfied (confidencePerTP >= iterationConfidence) then

12 storedRuns.add(<avgCost, throughputExp, confidencePerTP>)

13 candSimulations.add(noSimulations)

14 noCandRuns := noCandRuns + 1

15 if ConfidenceSatisfied ( confidencePerTP >= finalConfidence) then

16 if avgCost < minCost then

17 ‘ minCost := avgCost

18 end

19 else
20 c:=1 // ¢ is a counter that counts the number of extra simulation iterations performed
21 while ¢ <= maxExtraSimulationlterations do
22 (demandSetProbs, avgCost) := Simulate (throughputExp, noSimulations*c, actualDemand, lastTP)
23 foreach tp< 1 to lastTP do // lastTP is the last time point
24 confidencePerTP[tp] := Confidence (demandSetProb[tp] >= probabilityBound)

// refute probabilityBound is less than the actual probabilityBound by €, e.g. € = 0.15

25 refuteConfidencePerTP[tp| := Confidence (demandSetProb|tp| <= (probabilityBound - €))
26 end
27 candSimulations.add(noSimulations*c)
28 if ConfidenceSatisfied (confidencePerTP >= finalConfidence) then
29 if avgCost < minCost then
30 ‘ minCost := avgCost
31 end
32 else
33 if ConfidenceRefuted (refuteConfidencePerTP >= refuteConfidence) then
34 ‘ Remove candidate from the storedRuns
35 end
36 end
37 c:=c+l
38 end
39 end
40 end
41 currentDemand := DemandAdjust (currentDemand, demandSetProbs, probabilityBound, A, lastTP)
42 nolterations := nolterations + 1

43 until nolterations > totallterations or noCandRuns > storeSize

44 minCost := Extended0CBA (storedRuns, actualDemand, probabilityBound, finalConfidence, minCost, candSimulations,
budgetDelta, budgetThreshold, maxExtraSimulationlterations, refuteConfidence, lastTP)

45 throughputWithMinCost := storedRuns.get(avgCost = minCost)

46 return throughputWithMinCost, minCost

this case is minimum cost among the candidates whose
confidence of demand satisfaction is above the thresh-
old. The call to the extended OCBA is shown in line
44 in Algorithm 1, whereas the pseudo-code for the ex-
tended OCBA algorithm is shown in Algorithm 4. Ex-
tended OCBA has an initialization phase and an itera-
tive phase. The data obtained from the first phase of

the IHOS algorithm can be reused in the initialization
phase of extended OCBA. Therefore, Algorithm 4 di-
rectly starts with the iterative phase of extended OCBA.
In this phase, the average cost is sorted in ascending
order into sortedCost. In order to find the boundary of
the top candidate of interest, simulations are run until
the confidence of demand satisfaction is achieved on



Algorithm 2: Simulate

Algorithm 3: DemandAdjust

: throughputExp, noSimulations, actualDemand,
lastTP
Output: demandSetProbs, avgCost

Input

1 foreach run < 1 to noSimulations do
(totalCost|run], producedItems|run|) :=
MonteCarloSimulation (throughputExp)
end
avgCost := average of totalCost
foreach tp + 1 to lastTP do
foreach run < 1 to noSimulations do
if producedltems|run|[tp] >= actualDemand|tp|
then
| demandSetProbs|tp] = demandSetProbs|tp] + 1
9 end

N 0 s w N

@

10 end

11 demandSetProbs|tp] =
demandSetProbs|tp]| /noSimulation
12 end

13 return demandSetProbs, avgCost

Input : currentDemand, demandSetProbs,
probabilityBound,
A, lastTP
Output: currentDemand
1 foreach tp < 1 to lastTP do
2 if probabilityBound > demandSetProbs[tp]) then
3 x := probabilityBound - demandSetProbs|tp|
4 increment :—
currentDemand|[tp| * exponentialDensity (A, x)
5 currentDemand|[tp] = currentDemand[tp] +
increment
6 else
7 x := demandSetProbs|tp| - probabilityBound
8 decrement :=
currentDemand[tp| * exponentialDensity (), x)
9 currentDemand|tp| = currentDemand|[tp| - decrement
10 end
11 end

12 return currentDemand

a top candidate. (Algorithm 4, lines 3 - 11). Then, the
number of simulations is computed using OCBA such
that a larger portion of the budgetDelta is allocated to
candidates that are closer to the boundary. (Algorithm 4,
lines 12 - 13). After this, the iterative phase of extended
OCBA follows very similarly the first phase of the IHOS
algorithm where after running the initial number of sim-
ulations, more simulations are run in an effort to de-
crease the cost and increase the confidence of demand
satisfaction (Algorithm 4, lines 14 - 46). The iterative
phase of extended OCBA continues until the number of
stochastic simulations (budget) crosses the total number
of allowed simulations (budgetThreshold).

4 Experimental Results

This section compares the IHOS algorithm with other
metaheuristic algorithms for multi-objective optimiza-
tion. As explained in Section 3, IHOS performs itera-
tions of optimization and simulation tasks on the same
tMQL model whose components map the entities of the
manufacturing processes. In order to compare IHOS
with other metaheuristic algorithms, the tMQL model
for the sand and cut manufacturing process from Sec-
tion 2 was encoded into the deterministic optimization
solver of Optimizing Programming Language (OPL) [15].
For the simulation part, the calculation of the metrics
for each period was coded in Java. The metrics in the
simulation problem were subject to the same bounds
as those set in the optimization problem. For the com-
parison algorithms, we used the jMetal package, which
is an object-oriented Java-based framework for multi-
objective optimization with metaheuristics [13]. The
algorithms chosen for comparison were the Nondomi-
nated Sorting Genetic Algorithm 2 (NGSAZ2) [27], Indica-
tor Based Evolutionary Algorithm (IBEA) [28], Strength

Pareto Evolutionary Algorithm 2 (SPEA?2) [29], and Fast
Pareto Genetic algorithm (FastPGA) [30]. All these algo-
rithms decide the throughput variables and call the same
simulation model of the sand and cut manufacturing pro-
cess multiple times as a black box. The simulation model
computes the estimated average costs and the confidence
of the demand satisfaction, just as in the IHOS algorithm.
This cost and demand satisfaction information is then
used by the jMetal algorithms to further increase or de-
crease the throughput variable using heuristics. The
jMetal package is in core Java and hence it was run with
the same JVM as the IHOS algorithm. All the experi-
ments were conducted on a 2.3 GHz quad-core machine
with 4 GB of RAM that ran the Ubuntu Linux operating
system.

The simulations for IHOS were run with the same
bounds as the constraints set in the optimization model
in OPL. First, the IHOS algorithm was run with two
different settings. The first setting considered 100 candi-
dates collected from phase 1 of IHOS (noCands = 100)
and the second setting considered 500 candidates. Ta-
ble 1 provides the input parameters to the algorithms
described in Section 3 and the bounds used for experi-
mentation of IHOS in these two settings. If the parameter
is specifically used in phase 1 or phase 2 of the algorithm,
then this is shown as a subscript on the parameters in the
table. The total demand (actualDemand) from the sand
and cut manufacturing process was set to be 50 sanded
and cut wood and the cumulative sum of the demand
required to be produced for each time period is shown
in Table 2. The comparison algorithms were run with
the same (relevant) parameters from Table 1 and the cu-
mulative actualDemand was set to be same as the IHOS
algorithm (Table 2). The cost function that computes the
totalCost for each simulation was set to be a piecewise
linear function with the stochastic throughput variable
as its parameter such that sand1 and cut1 were the faster



Algorithm 4: ExtendedOCBA

Input : storedRuns, actualDemand, probabilityBound, finalConfidence, minCost, candSimulations, budgetDelta,
budgetThreshold, maxExtraSimulationlterations, refuteConfidence, lastTP
Output: minCost

1 budget :=0
2 repeat
3 sortedCost := Sort storedRuns.avgCost in ascending order
4 foreach cand € sortedCost do
5 if ConfidenceSatisfied (confidencePerTP >= finalConfidence) then
6 ‘ Let firstCandAvg be the cand’s average cost and break out of the loop
7 else
8 Run a number of simulations on the cand such that either the confidence is satisfied or it is refuted. If confidence is
refuted, then discard the candidate from storedRuns and sortedCost, otherwise store cand’s average cost as
firstCandAvg and break out of the loop
9 end
10 end
11 secondCandAvg := Get the second lowest average cost from sortedCost
12 foreach run € storedRuns do
13 noSimulations|run| := Allocate budgetDelta to each stored run proportional to ”’2“"(/17"7'1;:{5:":1?;0"? where:
orun = standard deviation of candidate, run
Mean, ., — mean of candidate, run
candSimulations = Number of simulations performed to get mean, ., and o,
h— fv',rstCa,n(iAvg+2,s‘econdCandA7Jg
14 (demandSetProbs, avgCost) := Simulate (run.throughputExp, noSimulations|run|, actualDemand, lastTP)
15 candSimulations.add (noSimulations|run|)
16 budget := budget + noSimulations|run|
17 foreach tp < 1 to lastTP do // lastTP is the last time point
18 confidencePerTP[tp| := Confidence (demandSetProb|tp| >= probabilityBound)
// refute probabilityBound is less than the actual probabilityBound by €, e.g. € = 0.15
19 refuteConfidencePerTP[tp] := Confidence (demandSetProb[tp] <= (probabilityBound - €))
20 end
21 if ConfidenceSatisfied (confidencePerTP >= finalConfidence) then
22 if avgCost < minCost then
23 ‘ minCost := avgCost
24 end
25 else
26 c:=1 // c is a counter that counts the number of extra simulation iterations performed
27 while ¢ <= maxExtraSimulationlterations do
28 (demandSetProbs, avgCost) := Simulate (run.throughputExp, noSimulations[run|*c, actualDemand, lastTP)
29 candSimulations.add(noSimulations|run|*c)
30 budget := budget + noSimulations|run|*c
31 foreach tp <— 1 to lastTP do // 1lastTP is the last time point
32 | confidencePerTP|tp] := Confidence (demandSetProbltp] >= probabilityBound)
33 end
34 if ConfidenceSatisfied (confidencePerTP >= finalConfidence) then
35 if avgCost < minCost then
36 ‘ minCost := avgCost
37 end
38 else
39 if ConfidenceRefuted (refuteConfidencePerTP >= refuteConfidence) then
40 ‘ Remove candidate from the storedRuns
41 end
42 end
43 c:=c+l
44 end
45 end
46 end

47 until budget > budgetThreshold
48 return minCost




Table 1: Overview of input parameters

Variable name noCands  Value
storeSizeppgsel 100 100
storeSizeppgsel 500 500
totallterations ppaset 100 1000
totalIterations ppgsel 500 1500
Osand1 (noise) 100/500 14
Tsand (noise) 100/500 0.9
Oeut1 (noise) 100/500 1.6
Oeuta (noise) 100/500 1.0
noSimulations 100/500 100
lastTP 100/500 20
probabilityBound 100/500 0.95
iterationCon fidence pygse1 100/500 0.7
finalConfidence 100/500 0.95
refuteCon fidence 100/500 0.8
maxExtraSimulationlterations  100/500 5
/\DemandAdjust 100/500 0.5
budgetDeltaypgsen 100/500 1000
budgetThreshold pgser 100 2000000
budgetThreshold ypgser 500 4000000

machines and sand2 and cut2 were the slower machines.

The data collected from the experiments included the
estimated average costs achieved at different elapsed
time points performed for IHOS with the two settings
and all the comparison algorithms. Figure 2 shows the
estimated average costs achieved at different elapsed
time points including 95% confidence bars around the
mean at each elapsed time point. It can be observed
that both settings of IHOS perform better than the com-
parison algorithms initially. The reason for this is that
IHOS uses deterministic optimization to set the mean
throughputs of the machines whereas the other algo-
rithms start at a random point in the search space. As
time progresses, the average cost estimated by the IHOS
algorithm plateaus (between 8 and 512 sec) and then the
average cost further decreases after this point. We think
that during this time, the iterative candidate collection
phase of IHOS (phase 1) has successfully found the min-
imum cost among the collected candidates and after the
plateau, the extended OCBA algorithm (phase 2) is able
to decrease the cost further. In comparison, the other
algorithms progressively decrease the estimated average
costs and after some point they all plateau. As shown in
the figure, the average cost found by the IHOS algorithm
was 20% better than the nearest comparison algorithm
(IBEA) when the experiment ended. After this, the IHOS
algorithm was run without the extended OCBA where
the budgetDelta was equally distributed among the can-
didates in phase 2. The IHOS algorithm without the
extended OCBA was then compared to the one with ex-
tended OCBA as shown in Figure 2. The IHOS setting

Table 2: Cumulative actualDemand values for
all time periods
period Cumulative demand

1 0
2 0
3 1
4 2
5 3
6 5
7 7
8 9
9 12
10 15
11 18
12 21
13 24
14 27
15 30
16 33
17 37
18 41
19 45
20 50

of noCands = 500 was used for this comparison. It is
clear from the figure, that by using extended OCBA, the
algorithm is able to converge faster and at the end of
the experiment, IHOS with extended OCBA is able to
achieve a better estimate of average cost by about 8%.
We also ran the Tukey-Kramer procedure for pairwise
comparisons of correlated means on all six algorithm
types for each time point. By doing so, we confirmed
that the IHOS algorithm was indeed better than the other
algorithms when the experiment ended.

The IHOS algorithm was also performed for a longer
period of time and it was compared with the comparison
algorithms run for the same time period. In this case, the
number of candidates collected from phase 1 of the IHOS
algorithm were 5000 (noCands = 5000). The parameters
from Table 1 that were changed for noCands = 5000 were:
(a)storeSizepas1 = 5000; (b)totallterations pyas; = 8000;
and (c)budgetThreshold 4502 = 10000000. The IHOS al-
gorithm and the four comparison algorithms were run
with the same actualDemand values shown in Table 2.
Figure 3 shows the estimated average costs achieved at
different elapsed time points for this scenario. It can be
seen that after about 2500 seconds, all the comparison
algorithms stop improving. On the other hand, the IHOS
algorithm continues to improve beyond this time point
and gives a 16% improvement in the estimated average
cost at the end of two hours.
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Figure 2: Estimated average cost for the elapsed time
(max runtime = 25 minutes) (both axis in log-scale)

5 Conclusion

This paper demonstrated an iterative procedure to deal
with stochastic variables in the manufacturing process.
The THOS algorithm iteratively performs determinis-
tic optimization and simulation on the manufacturing
process tMQL models to collect the most promising can-
didates of machine throughputs that will yield the mini-
mum cost and satisfy customer demands in a stochastic
environment. The idea of generating promising candi-
dates from an approximated solutions is very central to
the SImQL query language [33][34], [35][32]. However,
SimQL algorithm extracts approximations by regression
analysis, whereas IHOS extracts approximations directly
from the stochastic model. The solution of the determin-
istic problem gives the throughputs of the machines such
that the cost is minimized and the demand is satisfied.
The stochastic simulation will then confirm that these
throughputs yield the same results in a stochastic envi-
ronment and if not, a simple heuristic is applied on the
demand so as to get better results in the next iteration.
The IHOS algorithm then allocates the computing bud-
get of simulations in a smart way with the help of the
extended OCBA algorithm to select the top candidate
with the best cost and confidence of demand satisfaction.
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Figure 3: Estimated average cost for the elapsed time
(max runtime = 120 minutes) (both axis in log-scale)

This paper also compares the IHOS algorithm with
four metaheuristic multi objective optimization algo-
rithms. The IHOS algorithm is initially run in two set-
tings with the number of candidates collected in each
setting equal to 100 and 500, respectively. Then, the
IHOS algorithm is run for a longer time with 5,000 can-
didates collected. The results show that the IHOS algo-
rithm not only converges faster, but also outperforms all
other algorithms with regards to the objective cost com-
puted. This is the case because solving the deterministic
optimization problem is very strong when optimality
of results and computational complexity are a priority.
Also, the allocation of budget performed with the help of
the extended OCBA algorithm further helps to improve
the cost. This is especially evident from the experiment
where the original IHOS algorithm is compared with
the case where instead of using the extended OCBA, the
budget is equally distributed among the candidates. In
addition, the IHOS algorithm runs the optimization and
simulation as a white box with the help of the tQML
models. These models are reusable, flexible and expres-
sive of the manufacturing process components. Using
these models greatly increases the opportunities pre-
sented to the IHOS algorithm to be more aware of the
problem. This results in a more directed approach of



finding the minimum cost in the search space.

We are currently investigating: (a) dynamically execut-
ing phases 1 and 2 of the IHOS algorithm to improve the
exploration of the search space; (b) extending the IHOS
algorithm for multiple objectives; (c) adding stronger
heuristics to IHOS; (d) incorporating sustainability met-
ric functions into IHOS; (e) developing graphical user
interfaces for modeling and querying with IHOS; and
(f) developing specialized algorithms that can utilize
preprocessing of stored (and therefore, static) compo-
nents to speed up optimization, generalizing the results
in [36][37]1[38].
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Appendices

A OPL-like formulation of the one-stage stochastic optimization problem

/* ============= (Global computation =====s========x/
int noPeriods = ...;

int lastTP = noPeriods;

range timeRange = 0..lastTP;

float periodlLength = ...;

float epsilon = 0.000001;

float probabilityBround = ...;

tuple idFlowPair {
string id;
string flow;

/* ============= jtemFlow Computation ============= %/
{string} itemFlowlds = ...;
string itemFlow_mt[itemFlowIds] = ...;
dvar int+ itemFlow_tpAlloc[itemFlowIds][0..lastTP];
dvar int+ itemFlow_periodQty[itemFlowIds] [1..noPeriods];

/¥ ============= IA Computation ============= %/
{string} IAids = ...;

string IA_mt[IAids] = ...;
{string} TIA_I[IAids] ces
{string} TIA_O[IAids] ces
dvar int+ IA_totalQty[IAids];

int TA_invQty[IAids] [0..lastTP];

int IA_initInv[IAids] = ...;

int IA_capacity[IAids] =...;
{idFlowPair} IA_IdInputFlowPairs = { <id,i> | id in IAids, i in IA_I[id] };
{idFlowPair} IA_IdOutputFlowPairs = { <id,i> | id in IAids, i in IA_0[id] };
float IA_inAllocRatio[IA_IdInputFlowPairs] = .3
float IA_outAllocRatio[IA_IdOutputFlowPairs] = ...;

forall(id in IAids){
dexpr IA_invQty[id][0] = IA_initInv[id];
forall(t in 1..lastTP){
dexpr IA_invQty[id][t] = IA_invQty[id] [t-1] +
sum(i in IA_I[id]) itemFlow_periodQtyl[i][t] -
sum(o in IA_0[id]) itemFlow_periodQty[o] [t];
}
forall(t in 0..lastTP){
forall(i in IA_I[id]){
dexpr itemFlow_tpAlloc[i] [t] =
TA_inAllocRatio[<id,i>]*(IA_totalQty[id] - IA_invQty([id] [t]);
}
forall(o in IA_0[id]){
dexpr itemFlow_tpAlloc[o] [t] =
TA_outAllocRatio[<id,o>]*(IA_invQty[id] [t]);
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/* ============= IQA Computation ============= */

{string} IQAids = ...;

string IQA_mt[IQAids] = ...;

string IQA_I = ...;

{string} IQA_O[IQAids] = ...;

{idFlowPair} IQA_IdOutputFlowPairs = { <id,o> | id in IQAids, o in IQA_0[id] };
float IQA_outAllocRatio[IQA_IdOutputFlowPairs] = ...;

int IQA_totalTPAlloc[IQAids][0..lastTP];

forall(id in IQAids){
forall(t in 0..lastTP){
dexpr IQA_totalTPAlloc[id][t] = itemFlow_tpAlloc[IQA_I][t];
}
forall(t in 0..lastTP, o in IQA_0[id]){
dexpr itemFlow_tpAlloc[o] [t] =
IQA_outAllocRatio[<id,o>]*IQA_totalTPAlloc[id] [t];
3
forall(p in 1..noPeriods){
dexpr itemFlow_periodQty[IQA_I][p]l) =
sum (o in IQA_0[id]) (itemFlow_periodQty[o] [pl);

/* ============= (QQA Computation ============= */
{string} 0QAids = ...;

string OQA_mt [0QAids] = .
{string} OQA_I[0QAids] = ...;
string 0QA_0 = ...;
{idFlowPair} OQA_IdInputFlowPairs = { <id,i> | id in OQAids, i in OQA_I[id] };
float 0QA_inAllocRatio[0OQA_IdInputFlowPairs] = ...;

int OQA_totalTPAlloc[0QAids] [0..lastTP];

forall(id in 0QAids){
forall(t in 0..lastTP){
dexpr O0QA_totalTPAlloc[id] [t] = itemFlow_tpAlloc[0QA_0] [t];
}
forall(t in 0..lastTP, i in OQA_I[id]){
dexpr itemFlow_tpAlloc[i] [t] =
OQA_inAllocRatio[<id,i>] *(0QA_totalTPAlloc[id] [t]);
}
forall(p in 1..noPeriods){
dexpr itemFlow_periodQty[0QA_0] [p] =
sum (i in OQA_I[id]) (itemFlow_periodQtyl[i] [p]) ==

/* ============= baseProcess Computation ============= x/
float machineSigma = ...;
{string} GBPids = ...;
{string} GBP_I[GBPids] =...;
{string} GBP_0[GBPids] e
string GBP_o[gbpid in GBPids] = first(GBP_0[gbpidl);
dvar float+ GBP_throughputExp[GBPids] [1..noPeriods];
float GBP_throughputControl [GBPids] [1..noPeriods];
float GBP_capacity[GBPids] = ...;
{idFlowPair} GBP_IdInputFlowPairs = { <id,i> | id in GBPids, i in GBP_I[id] };
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int GBP_inputPerOutput [GBP_IdInputFlowPairs] = ...;
float GBP_accumAmt[GBPids] [1..noPeriods];
float GBP_leftOver [GBPids][0..lastTP];
float GBP_slopel[GBPids] e
float GBP_slope2[GBPids] .3
pwlFunction costFunctlon[ld in GBPids] =
piecewise{GBP_slopel[id]->10; GBP_slope2[id] -> 40; 7.5}(0.5,100);
dexpr float GBP_cost[id in GBPids] [p in 1..noPeriods] =
costFunction[id] (GBP_throughputControl[id] [p]);
dexpr float GBP_totalCost[id in GBPids] = sum(p in 1..noPeriods) GBP_cost[id] [p];

forall(id in GBPids){
forall(p in 1..noPeriods){

dexpr GBP_throughputControll[id] [p] =
GBP_throughputExp[id] [p] + Gaussian({exp: 0.0, sigma:machineSigma});

dexpr GBP_accumAmt[id] [p] = GBP_leftOver[id] [p-1] +
GBP_throughputControl[id] [p] * periodLength;

dexpr GBP_leftOver[id] [p] = GBP_accumAmt[id] [p] -
itemFlow_periodQty[GBP_o[id]] [p];

forall(i in GBP_I[id]){
dexpr itemFlow_periodQty[i] [p] = itemFlow_periodQty[GBP_o[id]][p] *

GBP_inputPerOutput [<id,i>];

/* ============= CompositeProcess Computation ============= x/
{string} outputld = ...;

int demand[1..noPeriods] = ...;

dexpr float totalCost = sum(id in GBPids) GBP_totalCost[id];

minimize E(totalCost);
constraints{
/* ============= jtemFlow Constraints ============= %/
forall(id in itemFlowIds){
forall(p in 1..noPeriods){
Prob(itemFlow_periodQty[id] [p] <= itemFlow_tpAlloc[id] [p-1])>=
probabilityBound;

/* ============= A Constraints ==s=========== %/

forall(id in IAids){
Prob(IA_totalQty[id] <= IA_capacity[id]) >= probabilityBround;
sum (p in IA_IdInputFlowPairs : p.id == id) IA_inAllocRatio[p] == 1;
sum (p in IA_IdOutputFlowPairs : p.id == id) IA_outAllocRatio[p] == 1;

}
/* ============= IQA Constraints ============= */
forall(id in IQAids){
sum (p in IQA_IdOutputFlowPairs : p.id == id) IQA_outAllocRatio[p] == 1;
}
/* ============= OQA Constraints ============= */

forall(id in 0OQAids){
sum (p in OQA_IdInputFlowPairs : p.id == id) O0QA_inAllocRatio[p] == 1;
}
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/* ============= baseProcess Constraints ============= %/
forall(id in GBPids){
GBP_leftOver[id] [0] == 0.0;
forall(p in 1..noPeriods){
Prob (GBP_throughputControl[id] [p] <= GBP_capacity[id]) >= probabilitBound;
Prob(itemFlow_periodQty[GBP_o[id]] [p] <= GBP_accumAmt[id] [p]) >=
probabilityBound;

/* ============= CompositeProcess Constraints ============= x/
/*cumilitive demand constraint*/
forall(o in outputId, period in 1..noPeriods){
Prob(sum(p in 1..period) itemFlow_periodQty[o] [p]>=demand [period])>=
probabilityBound;
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