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Abstract

Decision guidance systems are a class of decision sup-
port systems that are geared toward producing action-
able recommendations, typically based on formal an-
alytical models and techniques. This paper proposes
the Decision Guidance Analytics Language (DGAL) for
easy iterative development of decision guidance sys-
tems. DGAL allows the creation of modular, reusable
and composable models that are stored in the analytical
knowledge base independently of the tasks and tools
that use them. Based on these unified models, DGAL
supports declarative queries of (1) data manipulation
and computation, (2) what-if prediction analysis, (3) de-
terministic and stochastic decision optimization, and
(4) machine learning, all through formal reduction to
specialized models and tools, and in the presence of
uncertainty.
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1. Introduction

Decision Support Systems (DSS) are widely used to support organizational and personal decision-making in di-
verse areas such as engineering systems, finance, business, economics and public policy. They are becoming increas-
ingly critical with the information overload from the Internet. While the scope of DSS is broad, we view Decision
Guidance Systems (DGS) as a class of DSS geared to elicit knowledge from domain experts and provide actionable
recommendations to human decision-makers, with the goal of arriving at the best possible course of action. To this
end, DGS may need to:

• Use and mine large amounts of data collected from multiple sources;

• Elicit knowledge about the underlying model structure from domain experts;

• Learn deterministic or stochastic models from historical data;

• Elicit metrics, performance indicators and decision objectives from decision-makers;

• Perform analytical tasks, including what-if prediction analysis and (deterministic or stochastic) optimization
under diverse constraints, e.g., originating from business or engineering considerations and laws of nature;

• Present and explain actionable recommendations to decision-makers; and

• Solicit decision-makers feedback for iterative improvement.

Consider an example of DGS for procurement and sourcing, e.g., for a manufacturing facility. Given databases
and sources on possible suppliers, a procurement officer needs to monitor, make and execute procurement decisions,
e.g., which items in what quantities and from which suppliers should be procured, as to satisfy business constraints
(production schedule, risk mitigation, inventory capacity etc.) and minimize the total cost. For example, the pro-
curement officer may want to monitor the status of orders, inventories, schedules, and DGS will need to generate
different aggregated views of this information, continuously, over time. These activities resemble those of database
management systems, dealing with data manipulation and transformation of data (especially temporal sequences)
from multiple sources. When given the current inventory and orders status, as well as uncertainty in future pricing
and supply, the procurement officer may want to estimate the level of inventories and financial status over the next
month and identify risks. These decisions involve the techniques of stochastic simulation and statistical learning for
regression, classification and estimation [1]. Prediction and estimation of uncertain outcomes, in turn, may involve
regression analysis of functions [2] such as for cost, time, risk, or building classifiers for different categories of out-
comes (e.g., normal operation, schedule delay, and financial default). The procurement officer may also ask for a
recommendation on procurement, e.g., which items in what quantities from which suppliers and at what time should
be purchased, as to satisfy business rules and constraints and minimize the total procurement cost. These decision-
makings involves optimization and sensitivity analysis [3], which would typically correspond to a deterministic or
stochastic optimization problem, possibly using multiple criteria and under various business assumptions. The goal
of the Decision Guidance Analytics Language (DGAL) and Analytical Knowledge Base (AKB), which we propose in
this paper, is to support easy development and reuse of models of the descriptive, predictive and prescriptive analytical
tasks in decision guidance systems.

Until now, the practice of building DG applications has resembled the practice of developing database applica-
tions decades ago before the invention of the relational DBMS. It typically follow the “linear” style described in the
conventional approach of Figure 1. DG applications are typically one-off and hard-wired to specific problems; require
significant interdisciplinary expertise to build; are highly complex and costly; and are not extensible, modifiable, or
reusable.

We believe that these deficiencies originate mainly from the diversity of the required computational tools and
algorithms, each designed for a different task (such as data manipulation, predictive what-if analysis, decision op-
timization, statistical learning and data mining). The computational tools require the use of diverse mathematical
abstractions/languages to construct input models (e.g., languages such as OPL, AMPL and GAMS for modeling
mathematical programming and constraint programming problems).
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Figure 1. Conventional Approach vs. DGAL Approach

This introduces two major issues. First, the same underlying reality must often be modelled multiple times using
different mathematical abstractions for different tasks/tools, instead of being modeled only once, uniformly. Second,
the modeling expertise required by these abstractions/languages is typically not within the realm of DG users – neither
domain-specific users (e.g., business professionals) nor DB application and software developers (who may be used to
SQL-like languages and OO programming languages such as Java). This, in turn, leads to long-duration, expensive
and non-reusable development of DG applications, which must involve a team with diverse interdisciplinary expertise.

We further discuss related work and its limitations in Section 2.
Overcoming the outlined limitations of decision guidance modeling is the focus of this paper. More specifically,

the contributions of this paper are as follows. First, we introduce the concept of and the design principles for the Deci-
sion Guidance Analytics Language (DGAL) and the Analytical Knowledge-Base (AKB). The key idea is a paradigm
shift from the non-reusable task-centric modeling approach to reusable-AKB-centric approach (see lower part of Fig-
ure 1). In the latter approach, modular reusable and composable models, which we call Analytical Models (AMs),
are created and stored in the KB independently of the tasks and the tools that may use these models. Second, we
provide formal definition of syntax & semantics of DGAL. Third, we discuss a case study to show how we apply a
DGAL-based methodology to create (graphical) domain specific languages for anaytical end-users. We describe a
high-level implementation architecture for DGAL.

The paper is organized as follows. In Section 2 we discuss the related work and also its limitations. Section
3 presents the conceptual architecture and desired properties of DGAL. Section 4 overviews JSON and JSONiq for
descriptive analytics, with its computational DGAL extensions. Section 5 describes the construction and of Analytical
Knowledge and explains how computation, optimization and learning queries can be posed against AMs and their
semantics. Section 6 describes modeling of uncertainty in AMs and the corresponding declarative query operators.
Section 7 describes the DGAL Knowledge Base. Section 8 describes a supply chain case study represented by DGAL
knowledge base. Section 9 concludes, provides more details on related work, and outlines future research questions.

2. Related Work

To understand the current state of the art and its limitations, consider the six classes of tools/languages relevant
to modelling analytical tasks in decision guidance systems: (1) closed domain-specific end-user oriented tools, e.g.,
strategic sourcing optimization modules within procurement applications [4]; (2) data manipulation languages, such
as SQL, XQuery [5] and JSONiq [6]; (3) simulation modelling languages, such as Modelica [7]; (4) simulation lan-
guages, such as Jmodelica and Simulink [8][9]; (5) optimization modelling languages, such as AMPL [10], GAMS

3



Alexandar Brodsky, Juan Luo, and M. Omar Nachawati / GMU-CS-TR-2016-1 (2016) 1–20 4

[11], and OPL [12] for Mathematical Programming (MP) and Constraint Programming (CP); and (6) statistical learn-
ing languages/interfaces, such as PMML [13]. Domain specific tools may be easy to use for a particular well-defined
task, but are not extensible to reflect the diversity of emerging descriptive, predictive and prescriptive analytical tasks.
Nor do they support ality, i.e., the ability to compose their (white-box) models to achieve global (system-wide) opti-
mal predictions and/or prescriptions (e.g., actionable recommendations), rather than local (silo) optimal predictions
and prescriptions. Data manipulation languages, obviously, do not support predictive what-if analysis, optimization
or statistical learning.

Simulation languages and tools have the advantage of their modelling expressivity, flexibility, and OO modularity,
which support reusability and interoperability of (black-box) simulation models. However, performing optimization
using simulation models/tools is based on (heuristically-guided) trial and error. Because of that, simulation-based
optimization is significantly inferior, in terms of optimality of results and computational complexity, to MP and CP
tools/algorithms, for problems expressible in supported analytical forms (e.g., MILP) [14]. Also, while sufficiently
expressive, simulation languages were not designed for declarative and easy data manipulation provided by data
manipulation languages such as SQL, XQuery and JSONiq.

Because optimization modelling languages such as AMPL [10], GAMS [11] or OPL [12] are used with MP and CP
solvers, which use a range of sophisticated algorithms that leverage the mathematical structure of optimization prob-
lems, they significantly outperform simulation-based optimization, in terms of optimality and running time. However,
optimization modelling languages are not modular, extensible, reusable or support ality; nor do they support low-level
granularity of simulation models (which is expressed through OO programs.) Statistical learning languages/tools have
similar limitations and advantages, because most are based on optimization. Like the simulation tools, optimization
and statistical learning tools were not designed for easy data manipulation, compared to data manipulation languages
such as SQL, XQuery, and JSONiq.

The Modelica simulation modeling language was designed to reuse knowledge. It allows a detailed level of
abstraction, including Object-Oriented code and differential equations [7]. However, Modelica by itself is not a
language for performing optimization, learning, or prediction. But there are tools such as JModelica for simulation,
and Optimica for simulation-based optimization [8]. However, because of the low level of abstraction allowed in
Modelica, general Modelica models cannot be automatically reduced to MP/CP models and solved by MP/CP solvers.

3. Conceptual Architecture & Desired Properties

The following are the design principles we identified for the proposed DGAL language/system:

• Reusable-KB-centric approach: DGAL must support the paradigm shift from

• Non-reusable task-centric modelling approach to reusable-KB-centric modelling approach.

• Task-independent representation of analytical knowledge: DGAL AMs must represent analytical knowledge
(including data and its structure, parameters, control/decision variables, constraints and uncertainty) uniformly,
regardless of the tasks (e.g., computation, prediction, optimization or learning) that may be using it.

• Unified language for analytical knowledge manipulation: DGAL must uniformly support (1) data manipulation
(with the ease of data manipulation languages like SQL and JSONiq), (2) deterministic and stochastic computa-
tion/prediction, (3) decision optimization based on MP/CP, (4) statistical/machine learning, and (5) construction
of AMs.

• Flexible construction of analytical knowledge: DGAL must support modular AM , generalization, specialization
and reuse.

• Algebra over analytical KB: DGAL operators must form an algebra over the set of well-defined AMs, that is,
operators applied to AMs (in the AKB) must return an AM. Thus, the resulting AMs can be put back into the
AKB, and then used by other operators. Note, this is analogous to data manipulation languages (such as SQL,
XQuery and JSONiq), which are algebras over the corresponding data model (relational, XML or JSON).

• Declarative high-level language: DGAL analytical knowledge manipulation operators (compute, optimize,
learn) must be declarative and simple for end users.
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Figure 2. DGAL Framework

• Compact language core: It is desirable for DGAL to have a compact core, and allow additional functionality
through built-in and user-developed libraries (in the knowledge-base).

• Ease of use by modellers: DGAL should be easy to use by mathematical modellers and software/DB developers.

• Ease of use by end users: DGAL should enable built-in KB libraries of AMs to raise the level of abstraction
(obscure mathematical details, etc.), which would make it easy to use by end users (such as business analysts
and managers)

The high-level DGAL framework and functionality is depicted in Figure 2. Central to the framework is the Ana-
lytical Knowledge Base, which is a collection of Analytical Models (AMs), possibly organized in different Viewpoint
Libraries. AM is the base component of analytical knowledge. At the high-level, AM describes metrics and constraints
of a system as a function of parameters and controls. More specifically, each AM composes of:

• Input JSON object schema that encodes parameters and contril variables of a system (e.g. machine, process,
supply chain)

• Output JSON object schema that encodes metrics of interest (e.g. cost, time, energy, QoS) and the boolean value
constraints, which is true if all system’s feasibility constraints (e.g. laws of physics, engineering limitations,
safety rules) are satisfied.

• JSONiq function that computes the output (with metrics and constraints) from an input (with parameters and
controls). The function may use stochastic primitives drawing a value from a probability distribution.

• Constraints, using JSONiq syntax for Boolean expressions, including for universal quantification.

• Uncertainty, by adding distribution functions to expressions (in functions and constraints), which implicitly
define random variables. All DGAL operators are applied to AM and return an AM, and so DGAL constitutes
an algebra (like data manipulation languages SQL, XQuery and JSONiq). The DGAL operators are of four key
types (Upper part of Figure 2).

5



Alexandar Brodsky, Juan Luo, and M. Omar Nachawati / GMU-CS-TR-2016-1 (2016) 1–20 6

• Construct: this class of operators allows to construct an AM from scratch, from another AM by specialization/-
generalization, or by composing an AM from previously defined AMs.

DGAL Enginine provides the following core analytics functions to an AM:

• Compute: this class of operators instantiate an AM by performing computation of functions (may involve
uncertainty quantification).

• Simulate: this class of operators instantiate an AM by performing computation of functions (may involve un-
certainty quantification) multiple times and each time it returns a diffent output.

• Predict: this class of operators instantiate an AM by assigning values to variables and performing computations,
given values of its parameters.

• Learn: this class of operators instantiate an AM by funding values of its parameters, as to minimize an estimation
error against a learning set.

• Optimize: this class of operators instantiate an AM by finding values of decision variables that optimize an
objective, and then compute it with the optimal values.

The (deterministic) optimization and learning operators are performed by creating a formal mathematical or con-
straint programming model and solving it using an appropriate solvers (Lower part of Figure 2). The AM, AKB and
DGAL operators are designed according to the designed principles outlined in this section.

4. Overview of JSON and JSONiq

JavaScript Object Notation (JSON) is rapidly becoming a data model for descriptive (big data) analytics. For that
reason, we would like to use JSONiq, a query language over JSON as a foundation of DGAL. Both JSON and JSONiq
are reviewed in this section. We borrow here the description of JSONiq from [15][6].

JSON data model is a “lightweight data-interchange format. It is easy for humans to read and write. It is easy for
machines to parse and generate” [15]. JSON is an open standard format that uses human-readable text to transmit data
objects consisting of attribute-value pairs. It is used primarily to transmit data between a server and web application,
as an alternative to XML [6]. Similar to the fact that Xquery is a query and processing language designed for XML
data model, JSON data model also have a specially designed powerful query language, JSONiq.

JSONiq is very similar to XQuery, adapted to JSON, including “the structure and semantics of the FLWR (FOR-
LET-WHERE-RETURN) construct, the functional aspect of the language, the semantics of comparisons in the face
of data heterogeneity, and the declarative, snapshot-based updates” [15]. However, Xquery is more complex and has
more language constructs than JSONiq due to the fact that XML data model is more complex than that of JSON. For
example, the element type of XML can be mixed with attributes, elements, or text. The order of children elements in
XML is significant even with the same contents. The namespaces, QNames, and XML schema can be complicated to
describe specific types of XML documents [6].

The FLWR construct is an iteration structure for both JSONiq/Xquery. It is different from regular control structure
of programming languages by considering the simplicity of JSON data model. FLWR makes the JSONiq a powerful,
clean, and straightforward data processing language. In addition to querying collections of data in JSON format,
JSONiq can extract, transform, clean, select, enrich, or join hierarchical or heterogeneous data sets [6].

The main technical characteristics of JSONiq (and XQuery) are as follows:

• “It is a set-oriented language. While most programming languages are designed to manipulate one object at a
time, JSONiq is designed to process sets (actually, sequences) of data objects” [6].

• It falls into the category of the functional programming paradigm. Different from the procedural programming
paradigm such as Object-Oriented programming languages, expression is the basic unit of the JSONiq pro-
grams. Every language construct is an expression and expressions are composed from one or more previous
expressions [6].
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Figure 3. Collections “demand1.jsn” and “purchase1.jsn”

• It is a declarative language. It describes what computation will be performed, instead of how the computation
(process) will be done. It does not consider the implementation details such as specific data structures, algo-
rithms, memory allocations, and indexing in databases. The component of the declarative language usually has
clear corresponding relationship to mathematical logic [6].

• It is designed to process hierarchical or heterogeneous data which is sometimes semi-structured. The JSON
data type does not need to follow any specific pattern but can be heterogeneous. It can be nested structures in
multiple levels. Consequently it is hard to define a schema which can describe the JSON data well. Sometimes
the schema may only be able to describe the data partially [6].

To exemplify JSON and JSONiq, first consider JSON collections “demand1.jsn” and “purchase1.jsn” in Figure 3.
JSON collections are sequences of objects, identified by a name which is a string, e.g. “demand1.jsn.” In the example,
the collection “demand1.jsn” is a sequence that contains four objects, {item: 1, demQty: 100}, {item: 2, demQty:
500}, {item: 3, demQty: 130}, and {item: 4, demQty: 50}. Objects are unordered sets of key/value pairs, separated
by comma. A key is a string and a value can be any JSON building block. Each key/value pair is separated by a
semicolon. Four items are defined in this collection, with the quantity of demand specified.

Similarly the collection “purchase1.jsn” contains a sequence of three suppliers objects. For each supplier object,
four sets of key/value pairs indicate supplier identifier, the overall supplier cost before and after volume discount, and
the list of items being purchased from this supplier. Given “items” as the key of the key/value pair, a sequence of
items is assigned as the value and of the type JSON Array. Array represents an ordered list of items (in any category)
and can nest. For example, for the first supplier with key/value pair of “sup: 15”, two different items are purchased as
{item:1, ppu: 2.0, availQty: 70, qty: 150} and {item:2, ppu: 7.5, availQty: 2000, qty: 100}. Each item is represented as
a JSON object, with four key/value pairs. Each item has a unique identifier (e.g. 1), price per unit, available quantity
from the specific supplier, and purchased quantity.

JSONiq is a language that makes computations of structures from the input collections easy. In the JSONiq
example of Figure 4, a JSONiq function orderAnalytics is defined with variable $purchase and demand as argument
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Figure 4. JSONiq Example

and object as return type. The argument variable $purchase and demand is of the composite structure of both
collections “purchase1.jsn” and “demand1.jsn” as follows:

collection(“purchaseAndDemand1.jsn”):
purchase: [collection(“purchase1.jsn”)], demand: [collection(“demand1.jsn”)]
The function implements a small supply chain with items, demand, and supplies. In the function body, the variable

$supInfo is assigned as an array which contains the sequence of objects in the collection “purchase1.jsn.” The variable
$suppliers is assigned as an array of all supplier identifiers such as 15 or 17. The variable $orderedItems is assigned
as an array of all the items and demand quantities in the collection “demand1.jsn.”

The variable $perSup is defined to calculate for each supplier, the total cost charged for all items supplied by this
supplier. The for clauses is used to iterate each supplier of $suppliers. For all items supplied by that specific supplier,
within the inner “for” clause of the second let statement, the variable $priceBeforeDisc represents the cost to purchase
items, which are calculated from price per unit and item quantity. The variable $priceAfterDisc is defined to adjust the
item cost by considering the volume discount rate. The cost after discount is calculated based on a volume discount
formula. If the overall cost is more than the volumeDiscOver, it will be calculated at a discount rate volumeDiscRate.
The variable $totalCost sums up the total cost of all suppliers. The variable $supAvailability is defined as a Boolean
variable to enforce the business rule that the item quantity purchased must be less than or equal to the available
quantity to each specific supplier. The variable $demandSatisfied is defined as another Boolean variable to enforce
the business rule that the total market demand for each item cannot beyond the total item supply from all suppliers.
The Boolean variable $constraint is the logical ‘&&’ of both $supAvailability and $demandSatisfied.

The object returned by this function consists of six key-value pairs representing market demand, detailed infor-
mation for each supplier (identifier, supplied items, price before volume discount, and price after volume discount),
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Figure 5. Output of JSONiq Example

total cost of all purchases, if market demand has been satisfied, if the supply availability has been satisfied, and if both
availability have been satisfied. The output of this JSONiq example is displayed in Figure 5, given the argument as
composite collections in Figure 3.

The FLWOR expression is probably the most powerful JSONiq construct, which corresponds to the SQL Select-
From-Where clause, but the JSONiq construct is more general and flexible. The FOR clause allows iteration over a
sequence.

5. DGAL by Example: Deterministic Knowledge Manipulation

5.1. Computation and Data Manipulation

Performing computation/data manipulation with Analytical Model is just an invocation of a JSONiq function, like
in the example in Figure 6. First, we need to import the module in which the function orderAnalytics is defined. Then
we assign values to the argument of the function. The function is then called to perform the computation. In the
example, it returns an object representing demand, cost of each supplier, total cost, and a true/false Boolean value for
demand being satisfied, the supply availability being satisfied, and both constraints being satisfied.
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Figure 6. Computation

Figure 7. varPurchase1.jsn

5.2. Optimization

If the quantities in the collection “purchase1.jsn” used as argument to JSONiq query in Figure 4 were not known,
the procurement officer may want to find them as to make sure that the constraints of both Boolean expressions
“$demandSatisfied” and “$supAvailability” are satisfied (i.e., computed to be true), and the total cost is minimized.
Intuitively, the DGAL optimization operators are designed to do this kind of “reverse” computation.

To perform optimization in DGAL, we first need to annotate the input object to the analytical model function
(orderAnalytics in the example) to indicate which values (qtys in the example) are not known but we would like
the system to find (i.e., decision variables). Figure 7 gives an example of such annotation in the collection “varPur-
chase1.jsn.” This collection is identical to the collection “purchase1.jsn” in Figure 3, with the exception that the key
qty does not have a numerical value, but has instead a special annotation “int ?” to indicate that qty will now be a
decision variable. The annotated collection must have the following structural limitation. Informally, the structure of
the output object should not depend on the values of the annotated decision variables; only numerical values in the
output object may depend on the decision variables.

With the annotated input collection, performing optimization is very simple: it is performed by invoking the
DGAL function argmin (or argmax) as exemplified in Figure 8.

The DGAL function argmin in Figure 8 is invoked with the following input object. The first parameter $AM is
assigned as a type of function reference in JSONiq and points to the Analytical Model used, i.e., sp:orderAnalytics in
the example. The second parameter is an array which has two key-value pairs. The first key varInput has the value
which is the annotated input to orderAnalytics, i.e., when we use the annotated collection “varPurchase1.jsn” from
Figure 7 instead of the original collection “purchase1.jsn” from Figure 3. The second key objective has the value
that indicates the key of the numeric value in the output object of orderAnalytics orderCost in the example - that we
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Figure 8. Optimization

Figure 9. Output of Optimization

would like to use as the objective to be minimized.
The output of the argmin function is an object identical to the annotated input object, with the exception that all

annotations “int ?” (which denote decision variables) are now replaced with actual numerical values that (1) satisfy
the constraints, i.e., result in the value true computed for the key constraints in the output object; and (2) minimize
the numerical value computed for the key orderCost, which was designated as the objective in the invocation of the
argmin function. The collection “OutputFromOptimization.jsn” in Figure 9 exemplifies the optimization output.

5.3. Learning

If the volume discount parameters, volumeDiscOver and volumeDiscRate, were not known in the collection “pur-
chase1.jsn”, how can we learn them (via regression analysis) from historical data? The DGAL function learn is
provided for this purpose.

To use the learn function in DGAL, we first need to annotate the input object to the Analytical Model (order-
Analytics in the example) to indicate which parameters we would like to learn. In the example these parameters are
volumeDiscOver and volumeDiscRate for each supplier in collection “varPurchase.jsn.” Figure 10 gives an example
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Figure 10. paramPurchase1.jsn

of such annotation in the collection “paramPurchase1.jsn.” This collection is identical to the collection “varPur-
chase1.jsn” in Figure 7, with the exception that the keys volumeDiscOver and volumeDiscRate do not have a numeri-
cal value, but have instead a special annotation “float . . . ” to indicate that they will now be parameters to be learned
using regression.

We also need to create a learning set collection, which captures a set of (historical) input-output pairs of a function
we are trying to regress. The collection “learningSet1.jsn” in Figure 11 exemplifies the learning set. It contains a
sequence of JSON objects, each having keys input and output. The value for the key output in every object gives
a historical value for orderCost. The value for the key input in every object gives a “partial” input object for the
Analytical Model orderAnalytics. It is “partial” because we only need information on the quantities for each item
order from each supplier, but do not need any other information. With the “paramPurchase1.jsn” collection and the
learning set object, performing regression learning is done by invocation of DGAL function learn, as shown in Figure
12.

The function learn is invoked with an object with key-value pairs for paramInput; analytics to indicate the Ana-
lytical Model to be learned (orderAnalytics in the example); outValue, to indicate which value the function computes
(orderCost in the example), and the previously constructed learningSet.

The output of function learn is exemplified in Figure 13. The structure of output is exactly as the input collection
“paramPurchaseAndDemand1” with the exception that parametric annotations “float . . . ” replaced by values. How-
ever, the decision variables annotations “int ?” are still left as they were. Note that both parameters and decision
variables can be either of type int or float. The values for parameters are constructed to minimize the summation of
squares of learning errors for each input-output pair in the learning set.

6. DGAL by Example: Uncertainty Management (Simulation, Prediction, and Stochastic Optimization)

Consider Figure 14, which exemplifies how uncertainty is represented in AMs.
In the example, the stochOrderAnalytics function is identical to the (deterministic) orderAnalytics function in

Figure 4 with the exception that, in the $ppu computation, a random value drawn from the normal or Gaussian
distribution is used (see a box in Figure 14). The Gaussian distribution is constructed with the mean of zero and
standard deviation of 0.05. When this is done, the variable $ppu on the left of the assignment statement represents a
random variable. Furthermore, all expressions that are dependent on it in the computation, directly or indirectly, also
represent random variables.

In the context of uncertainty, we can talk about simulation, prediction and stochastic optimization (see example in
Figure 15). Simulation is done exactly as computation, namely by invoking the Analytical Model stochOrderAnalyt-
ics. Because a random value is drawn as the noise added to the unit price of products (see Figure 14), every invocation
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Figure 11. Learning Set

Figure 12. Learning

Figure 13. Output from Learning
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Figure 14. Analytical Model with Uncertainty

of stochOrderAnalytics may result in a different answer, which is a result of stochastic simulation.
We can also perform prediction, e.g., using the Monte-Carlo method, to estimate the expectation of the random

variables ($ppu and all expressions that depend on it in Figure 14). This is done using the DGAL function predict,
which is invoked with the input object that has key-value pairs input, analytics, sigmaUpperBound, confidence and
timeUpperBound (see prediction part in Figure 15). The value for input is the same as in the computation (i.e., collec-
tion purchaseAndDemand1); analytics indicates the used analytical function (stochOrderAnalytics in the example).
The estimates of the random variables are done so that the standard deviation would not exceed the sigmaUpperBound
with the indicated statistical confidence, unless computation time exceeds the indicated timeUpperBound, which is an
optional parameter. The form of the output is the same as in the deterministic computation (the example in Figure 5),
with annotation exception that instead of the (deterministically) computed numeric values, e.g. ppu with the values of
2.0, 7.5, 3.8, 3.5, or 6.8 per supplier and per item, the output object contains JSON objects that capture estimations of
the expectation and standard deviation of random variables ppu.

Finally, a one-stage stochastic optimization is performed by invoking the DGAL function argmin (or argmax).
The input object is the same as in the deterministic case, with the exception that it is extended with key-value pairs for
the required constraintSatProb to indicate with what minimal probability the constraints must be satisfied and with
what statistical confidence. Optionally, a maximum computation budget can be indicated.

The output of the argmin function has the same form as in the deterministic case. Semantically, argmin in this
case is interpreted as a (one-stage) stochastic optimization to minimize the expectation of the indicated objective
(orderCost in the example), which is now interpreted as a random variable.

7. DGAL Knowledge Base

We describe the components of the DGAL knowledge base in Figure 16.
The analytical knowledge base component provides a facility for the storage and retrieval of analytical knowledge

artifacts. An analytical knowledge artifact is an abstract concept that refers to any data element that can be identified
by an URI. Data semantics are determined by the artifact type. The DGAL engine currently supports different types
of analytical knowledge artifacts such as JSON, JSONiq, JSON Schema, DGAL, and Package.

A repository in the JSON/JSONiq tier is a set of information resources that can be uniquely referenced by a
Uniformed Resource Indicator (URI). Examples of such resources include JSON documents, JSONiq modules and
JSON schemas. Within the DGAL tier, a DGAL Knowledge Base is a specialization of a JSONiq repository that
provides decision-guidance capabilities, such learning and optimization. An Analytica Model is a specialization of a
JSONiq module that include analytical model functions and schemas for input and output. Analytical model functions
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Figure 15. Simulation, prediction, 1-stage stochastic optimization

Figure 16. UML diagram for DGAL Knowledge Base

are essentially JSONiq functions that can be interpreted using alternative, decision-guidance semantics described in
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previous sections.
Clearly, AM functions, like any JSONiq function, perform data manipulation. For example, to compute informa-

tion about order analytics from the purchase and demand data, one can simply invoke the JSONiq function orderAna-
lytics, described in Figure 4. However, we will also use AM functions for optimization, statistical learning, simulation
and prediction with the same ease as data manipulation.

8. A Composable Supply Chain Case Study

In this section, we demonstrate the ability of composing analytical models in DGAL with a case study regarding
supply chain optimization. Consider the simple supply chain model shown in Figure 17 that describes the structure
and interactions of the various suppliers and manufacturing involved in the production of two supposed products:
prod1 and prod2. At the highest level, the entire supply chain is represented by the mySupplyChain composite com-
ponent. This component provides two outputs, namely prod1 and prod2, and requires no input. As a composite type
component, it is itself composed of two sub-components, which in this case are combinedSupply and combinedManuf.

The combinedSupply component is a composite type component with two outputs that correspond to the raw ma-
terials used during the manufacturing process. The combinedSupply component is in turn composed of two atomic
components, supp1 and supp2, each representing an individual supplier of raw material. This provides a layer of
abstraction over the individual suppliers and allows us to reference both suppliers using the single, composite compo-
nent.

The combinedManuf component is also a composite type component and has two inputs, mat1 and mat2, which
are connected to the two outputs of the combinedSupply component. It has two outputs, prod1 and prod2, which
directly correspond to the two outputs of the mySupplyChain component. The combinedManuf component is in turn
composed of two atomic components, namely tier1manuf and tier2manuf, which are arranged in sequence, as depicted
in Figure 17.

Figure 17. A Composable Supply Chain Model

Based on the description above, we can develop a formal supply chain model in DGAL to be used for decision
guidance analytics, like optimization. The first step is to formalize the structure of the components and connections
in our supply chain model. This can be represented in JSON, which provides a compact syntax for expressing nested
data relationships. A schema can also be developed to enforce a standard hierarchy or other structural constraints
using JSON Schema or JSound. Our structural model consists of a JSON-array of objects that represent each individ-
ual component of our supply chain model. Each represented component contains the following object properties: a
unique identifier, the type of component (either composite, supplier, or manufacturer), the input types and input quan-
tities, the output types and output quantities. Composite type components have an additional property that specify any
sub-processes that they compose. Supplier type components contain a property that indicate the price-per output unit,
while manufacturer type components contain property that specifies the quantities of each input type needed to pro-
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duce one unit of output. The full JSON representation for the structure of the supply chain example is provided below:

Once the structure of the components and connections have been specified, the next step is to specify the inter-
action semantics for each type of component in our model. For each component type, a DGAL analytical function,
corresponding to a JSONiq function, needs to be provided that specifies how components are composed along with
any constraints, and computes analytical metrics, such as cost.

For supplier components, the following DGAL analytical function computes a cost metric based on the sum of the
cost of each supplied item:

17
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For manufacturer components, the following DGAL analytical function computes a cost metric based on the sum
of the cost of each output product:

Next, a DGAL analytical function is provided for composite components. The function specifies how sub- com-
ponents are composed, ensuring that metrics are properly aggregated and additional constraints are enforced:

Finally to put things all together, the DGAL argmin function, specified in previous sections, can be used to op-
timize our supply chain model via our composite analytical functions. In this case we pass to the argmin function
our supply chain JSON structure, the name and namespace of our analytical composition function, scMetrics, and the
objective that we want to minimize, cost. The result of calling argmin will be a fully instantiated supply chain model,
where all the decision variables have been solved.
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9. Conclusions and Future Work

In this paper we proposed the Decision Guidance Analytics Language (DGAL) for easy iterative development
of decision guidance systems. The work on DGAL leverages our prior work on decision guidance and optimization
languages. In particular, the unification of computation and equational syntax comes from CoJava [16], SC-CoJava
[17] and DGQL [18], CoReJava [19][20] on adding regression to DGAL, and DG-Query [21] which are designed
to seamlessly add deterministic optimization and machine learning to Java, SQL and XQuery code, respectively, via
automatic reduction to MP, CP or specialized algorithms. Also, DGAL fits into the framework of, but is significantly
more general than, Decision Guidance Management Systems, proposed in [22]. Finally, the concept of centralized
AKB is borrowed from our work on the Process Analytics Formalism [23][24], which was limited to MP/CP opti-
mization only.

Many research questions remain open. They include (1) specific reduction algorithms from DGAL queries and
AMs to specialized formal models of optimization, statistical learning, and uncertainty quantification; it may be
promising to borrow from the work on constraint databases to support symbolic constraint (2) development specialized
algorithms for stochastic optimization in DGAL that can leverage deterministic approximation encoded in DGAL
Analytical Models; (3) development of specialized algorithms that can utilize pre-processing of stored (and therefore,
static) AMs, to speed up optimization, generalizing the results in [25]; and, (4) developing graphical user interfaces
for domain specific languages based on DGAL.
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