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Abstract 

Enterprises across all industries increasingly depend on 

decision guidance systems (DGSs) to facilitate decision-

making across all lines of business. Despite significant 

technological advances, current DGS development 

paradigms lead to a tight-integration of the analytics models, 

methods and underlying tools that comprise these systems, 

often inhibiting extensibility, reusability and interoperability. 

To address these limitations, this paper focuses on the 

development of the first NoSQL decision guidance 

management system (NoSQL-DGMS), called Unity, which 

enables decision-makers to build DGSs from a repository of 

analytics models that can be automatically reused for 

different analytics methods, such as simulation, optimization 

and machine learning. In this paper, we provide the Unity 

NoSQL-DGMS reference architecture, and develop the first 

implementation, which is centered around a modular 

analytics engine that symbolically executes and 

automatically reduces analytics models, expressed in 

JSONiq, into lower-level, tool-specific representations. We 

conduct a preliminary experimental study on the overhead of 

OPL optimization models automatically generated from 

JSONiq using Unity, compared with manually-crafted OPL 

models. Preliminary results indicate that the execution time 

of OPL models that are automatically reduced from JSONiq 

is within a small constant factor of corresponding, manually-

crafted OPL models. 

1 Introduction 

Enterprises across all industries increasingly depend on 

decision guidance systems (DGS) to facilitate decision-

making across all lines of business. DGSs are an advanced 

class of decision support systems (DSS) that are designed to 

provide actionable recommendations using a variety of 

different analytics models, algorithms and data. These 

systems are often built on top of a variety of different lower 

level tools that provide decision-makers with the full gamut 

of business analytics, from descriptive to diagnostic to 

predictive to prescriptive analytics [1]. While DSSs are 

traditionally classified into five different categories 

according to underlying technology, namely data-driven, 

model-driven, knowledge-driven, document-driven and 

communications-driven [2], state-of-the-art DGSs often 

combine multiple approaches into one integrated system to 

solve complex analytical problems [1]. 

 However, despite significant technological advances, 

current DGS development paradigms lead to a tight-

integration of the analytics models, tasks and underlying 

tools that comprise these systems, often inhibiting 

extensibility, reusability and interoperability. As stated in [1], 

the development of DGSs are typically one-off, hard-wired 

to specific problems, and usually require significant 

interdisciplinary expertise to build. This is similar to how 

database systems were developed long before the invention 

of the first DBMS. Consequently, DGSs end up being highly 

complex, costly, and non-extensible, and non-reusable.  

These deficiencies originate mainly from the diversity of the 

required analytics tools and algorithms, which are each 

designed for a specific analytics task, such as data 

manipulation, predictive what-if analysis, decision 

optimization, statistical learning and data mining. These tools 

each may require the use of a different mathematical 

abstraction and language to construct analytics models, 

which inhibits the interoperability such models across 

different analytics tools and tasks [1]. 

 Overcoming the aforementioned difficulties faced when 

building DGSs is an important research problem [1]. These 

difficulties can be attributed to a diverse, low level 

abstractions provided by current paradigms, which preclude 

the reuse of analytics models across different analytics tasks. 

Thus the same underlying reality must often be modeled 

multiple times using different mathematical abstractions to 

support different tasks, instead of being modeled just once, 

uniformly [1]. Also, the modeling proficiency required by 

these languages is typically not within the realm of expertise 

of many of the users of a DGS, including the stakeholders, 

business analysts and application developers. Consequently, 

DGS development projects often require a team with diverse 

interdisciplinary expertise, are prone to budget overruns and 
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unexpected delays, and often result in software that is highly-

proprietary, non-reusable, non-extensible, and locked-in to 

specific tool vendors [1]. 

 To date, there has been extensive research focusing on the 

application of DGSs to solve complex problems in a variety 

of different domains [3]–[5]. However, far less effort has 

been expended on surmounting the above-mentioned 

obstacles encountered in the development of DGSs in 

general, and thus several research gaps still exist. An initial 

step forward was made in [6] with the introduction of a new 

type of platform that they refer to as a decision guidance 

management system (DGMS), which was designed to 

simplify the development of DGSs by seamlessly integrating 

support for data acquisition, learning, prediction, and 

optimization on top of the data query and manipulation 

capabilities typically provided by a DBMS [6]. While the 

work in [6] laid the foundation for additional research [1], 

[7]–[10], it did not address the technical challenges 

surrounding the development of a DGMS. In particular, the 

work in [6] did not provide any underlying algorithms to 

support the decision guidance capabilities provided by the 

proposed DGMS, such as simulation, optimization and 

learning. The proposed architecture was also limited to the 

relational model, and lacked support for developing analytics 

models on top of NoSQL data stores for semi-structured data 

in more flexible formats, such as XML or JSON. 

Furthermore, due to the inherent limitations of SQL, to 

repurpose the language for decision guidance modeling and 

analysis, a number of non-standard syntactic extensions were 

developed, collectively called DG-SQL. Introducing new 

language dialects, however, can break the interoperability of 

existing development tools and inhibit wide-spread adoption 

[11] and also affect the reusability of existing code [12]. 

 Further progress was made in [1], [10] with the proposal 

of the Decision Guidance Analytics Language (DGAL) 

designed as an alternative to DG-SQL for developing DGSs 

over NoSQL data stores. Instead of SQL, DGAL is based on 

the more expressive JSON Query Language (JSONiq), which 

itself is based on XQuery. JSONiq is a popular query 

language for JSON document-oriented NoSQL data stores, 

and provides highly-expressive query capabilities centered 

around the original FLWOR construct of XQuery [13]. 

Rather than extending the syntax of an existing language, as 

what was done in DG-SQL, DGAL is, by design, 

syntactically equivalent to JSONiq. To support decision 

guidance, a number of analytics services, such as for 

optimization and learning, are proposed in [1]. While these 

services are exposed as regular functions in JSONiq, they 

require a non-standard interpretation of the language to 

implement. Thus, while DGAL is syntactically equivalent to 

JSONiq, the analytics services it provides have semantics that 

extend that of the JSONiq language. However, while [1] 

focused on proposing DGAL as a language for developing 

DGSs, it did not provide a reference architecture or 

implementation of a DGMS developed around DGAL, nor 

did it address the problem of compiling DGAL analytics 

models into lower-level, tool-specific representations. 

 Lifting the aforementioned limitations is exactly the 

focus of this paper. Specifically, the contributions of this 

paper are as follows. First, we propose a reference 

architecture for DGSs that is based on Unity NoSQL-DGMS 

operating as a middleware to connect higher-level decision 

guidance applications and their clients to the lower-level 

tools needed for supporting different analytics tasks. The 

uniqueness of this architecture is that it centered around a 

knowledge base of DGAL analytics models, which can be 

reused for various analytics tasks such as prediction, 

optimization and statistical learning without the need to 

manually create lower level task-specific models.   

 Second, we develop Unity NoSQL-DGMS, the first 

system of its kind, which is designed to enable decision-

makers to build DGSs from a repository of DGAL analytics 

models that can be automatically reused for different 

analytics tasks. Unity’s uniqueness lies in its core analytics 

services, including optimization and learning, which do not 

require lower-level level models (e.g., in AMPL for 

optimization problems), but rather automatically generate the 

lower-level task- and tool-specific models from the higher 

level task- and tool-independent analytics models in the 

AKB. 

 Third, as part of Unity NoSQL-DGMS, we develop 

algorithms for its execution engine based on a symbolic 

computation to reduce analytics models in the knowledge 

base into a JSON-based intermediate representation. This 

intermediate representation is then translated into tool-

specific representations. The execution engine is used to 

provide analytics services for deterministic optimization 

against DGAL analytics models using mathematical 

programming (MP). To implement these services, we 

develop a code generator from the intermediate 

representation that targets both AMPL and OPL to support a 

wide range of different optimization solvers.  

 Finally, we conduct a preliminary experimental study on 

the overhead of automatically generated task- and tool-

specific models. Our evaluation is currently limited to just the 

execution time overhead of OPL optimization models that are 

automatically generated from DGAL analytics models using 

the deterministic optimization service developed in this 

paper. Initial results indicate that the execution time of 

automatically derived OPL optimization models is within a 

constant factor of the execution time of corresponding, 

manually-crafted OPL optimization models. 

 The rest of this paper is organized as follows. In the next 

section, we present the Unity NoSQL-DGMS reference 

architecture, and describe each of its major layers and 

components. In the following section, we provide an 

overview of the DGAL language, and show how to use 

develop a DGS using DGAL and Unity. Then we move on to 

describe the prototype implementation of Unity, to include 

the DGAL execution engine, intermediate representation, and 

implementation of the argmin and argmax services for 

performing deterministic optimization against DGAL 

analytics models. Finally, we describe the preliminary 

experimental study and then conclude the paper with some 

brief remarks on future work. 



3 

2 Unity NoSQL-DGMS Reference 
Architecture 

In this section, we describe the Unity NoSQL-DGMS 

reference architecture, which is depicted in figure 1.  The 

boundary of Unity is enclosed in a black rectangle in the 

diagram. Unity serves as a middleware between the client 

layer and external tool layer of a typical DGS, and is 

internally comprised of three-layers, namely the application 

management layer, the analytics management layer, and the 

tool management layer. As a middleware, Unity simplifies 

connecting these different clients and the users they support 

to external tools. Similar to the original DGMS vision 

presented in [6], Unity is designed to provide seamless 

support for data acquisition, learning, prediction, and 

optimization. However, unlike former, which uses DG-SQL 

for analytics modeling and analysis, Unity replaces the role 

of DG-SQL with DGAL. Specifically, in the Unity, DGAL 

serves as both a language for defining reusable analytics 

models, and for executing analytics services against those 

models. As a middleware, Unity provides DGAL as a unified 

abstraction to hide the complexities of dealing with a diverse 

range of lower-level tools that are needed to implement a 

DGS. 

 Unity supports six primary user roles typical of a DGS, 

namely stakeholders, contributors, analysts, modelers, 

developers, and administrators. The roles are not mutually 

exclusive, and therefore a single user may serve different 

roles. Stakeholders consist of decision-makers at all levels of 

an organization, from supervisors to the board of directors. A 

stakeholder is the end-user of the actionable, decision-guided 

recommendations provided by a particular DGS. 

Contributors provide data-entry and manage the domain 

models, data marts, and ontologies in the analytics 

knowledgebase. Analysts are advanced business users that 

manage the analytics models of the knowledgebase, and 

additionally is able to design new views, dashboards, forms 

and reports. Analysts can also design workflows and business 

rules for automating repetitive decisions based on the 

actionable recommendations provided by a particular DGS. 

Modelers are technical users with an operations research 

background that develop the metrics and constraints 

equations for new analytics models. While an analyst may not 

have the technical expertise to develop new analytics models 

from scratch, they can mash up new models by composing 

and specializing existing models in the knowledge base. 

Developers are technical users with experience in software 
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development that build custom applications that provide 

extended functionality to meet domain-specific requirements. 

 We envision that Unity would support client layer of 

diverse, domain-specific clients that used in conjunction with 

DGSs to support the different types of user that interact with 

a DGS. Unity provides out-of-the-box support for web-based 

user agents for managing DGSs developed using Unity. 

Unity also provides a REST-based API for integrated third-

party clients ranging from information visualization tools, 

model-driven architecture (MDA) tools, integrated 

development environments and for integrating with other 

information systems. Another objective Unity is to facilitate 

the development of DGSs by allowing users to work at 

different levels of abstractions according to their skills and 

expertise. These abstractions support the seamless integration 

of different analytical models, tools and data. For example, 

modelers and developers can use the full power of 

mathematical constraints in DGAL to create reusable 

analytics models, which are interoperable and composable 

and extensible, while analysts and non-technical users are 

able to compose these expertly crafted analytics models to 

precisely model problems they need to analyze. 

 The application management layer provides a number of 

services to support the rapid development of DGS. Analytics 

knowledge management supports the creation, querying, and 

modification of the different artifacts housed in the analytics 

knowledgebase. View and dashboard management provides 

tools for creating analytics views and templates for the rapid 

development of interactive dashboards. Analytics views are 

similar to regular database views, except that they are based 

on one or more analytics models and services. Form and 

report management supports the development and use of 

forms for data collection and reporting. Workflow and rule 

management supports the development and execution of 

rules and workflows for building automated decision systems 

(ADS). Finally, custom application management provides 

tools for building domain-specific DGS-based applications. 

 The analytics management layer hides the complexity of 

dealing with the different external tools that provide the 

essential analytics and other capabilities of a DGS. This layer 

is comprised of the analytics knowledge base, the execution 

engine and a variety of different analytics services. At the 

core of the architecture, the knowledge base provides uniform 

access to the different analytics artifacts that together 

constitute the domain-specific knowledge used for decision 

guidance. The different types of analytics artifacts include, 

but are not limited to analytics models, domain models and 

instances, ontologies. 

 The Unity reference architecture is designed to support 

three kinds of analytics models, namely white-box, black-box 

and grey-box models. With white-box analytics models, the 

DGAL source code of the analytics model is stored in the 

knowledge base, and the execution of such models is 

performed locally by the execution engine. While white-box 

analytics models can help decision-maker better understand 

the logic behind the computation of metrics and constraints, 

they would not be suitable for models containing proprietary 

knowledge. On the other hand, with black-box analytics 

models the DGAL source code is not provided, and instead 

are stored in the knowledge base as web service descriptions, 

were the execution of such models would occur remotely. 

While this can support proprietary models, it does not provide 

a way for the client to reuse the models for different analytics 

tasks. It also requires users to send possibly sensitive data to 

third parties for processing. Finally, gray-box models are like 

black-box models in the execution occurs remotely, however 

the gray-box models are capable of returning its results in 

symbolic form. While this exposes part of the logic at a low 

level (akin to assembly), it allows clients to easily reuse 

remote models for different types of analytics. 

 The execution engine serves as a bridge between 

analytics models in the knowledge base, analytics services, 

such as simulation and optimization, and the lower-level tool 

used to implement them. The execution engine is built on top 

of external tools, such as Zorba for JSONiq query processing 

and AMPL for MP-based optimization, which are managed 

in the tool management layer. The execution engine includes 

a compiler for translating DGAL analytics model into lower-

level, tool specific models.  Rather than directly translating 

DGAL analytics models into different tool-specific models, 

such as AMPL, the approach we use to implement the 

analytics model compiler involves a symbolic execution 

using a standard JSONiq query processor to first lower the 

analytics model in DGAL into a simpler, JSON-based 

intermediate representation. We discuss the details of the 

intermediate representation in the following section. While 

JSONiq query processors support complex data queries and 

even simple analytical operations they do not directly support 

the advanced analytics services that DGAL provides, such as 

optimization and learn. Executing DGAL queries that depend 

on such services require the use of specialized algorithms to 

implement, which are often readily available as third-party 

tools. By utilizing a simpler intermediate representation, 

support for new third-party tools can be developed without 

having to re-implement the entire DGAL language. 

 Finally, the tool management layer manages the external 

tools that are needed to implement the various analytics 

services, as well as to provide other capabilities of the 

NoSQL-DGMS. It provides a uniform access to the different 

tools, ranging from data storage and retrieval, data analytics 

and manipulation, statistical and machine learning, MP/CP 

optimization and business process and rule execution and 

reasoning. 

3 Reusable Analytics Modeling 
with Unity and DGAL 

In this section we provide a brief overview of DGAL and 

show how one can use DGAL in conjunction with Unity to 

develop a reusable analytics model for order analytics to 

support the development of intelligent supply chain 

management systems. In the interest of space, we will limit 

our discussion to analytics modeling, simulation and 

deterministic optimization. For more information on DGAL 

and other analytics services, such as statistical learning and 

stochastic optimization, we refer the reader to our work in [1].  
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 As mentioned earlier, current DGS development 

paradigms lead to a tight-integration of the analytics models, 

tasks and underlying tools that comprise these systems, often 

inhibiting extensibility, reusability and interoperability. As 

illustrated on left in figure 2, the task-specific analytics 

modeling paradigm requires a specialized analytics model for 

each analytics task, such as those for descriptive, predictive 

or prescriptive analytics. This inhibits composition, 

specialization, generalization and reuse of analytics models.  

Overcoming these limitations by way of a paradigm shift 

from non-reusable, task-dependent modeling to task-

independent modeling was the motivation for the 

development of DGAL [1]. As shown on the right in figure 

2, DGAL supports a task-independent approach to modeling 

analytics knowledge where a single model can be used for 

multiple analytics tasks, such as simulation, optimization and 

learning. 

 DGAL is based on the JSON Query Language (JSONiq), 

which itself is based on XQuery. JSONiq is a popular query 

language for JSON document-oriented NoSQL data stores, 

and provides highly-expressive query capabilities centered 

around the original FLWOR construct of XQuery [13]. 

Rather than extending the syntax of JSONiq, DGAL is by 

design, syntactically equivalent to JSONiq. To support 

decision guidance, a number of analytics services, such as for 

optimization and learning, are proposed in [1]. While these 

services are exposed as regular functions in JSONiq, they 

require a non-standard interpretation of the language to 

implement. Thus, while DGAL is syntactically equivalent to 

JSONiq, the analytics services it provides have semantics that 

extend that of the JSONiq language. 

 In DGAL, an analytics model is implemented as a regular 

function in JSONiq. Such function must accept its input as a 

single JSON object, and must return a JSON object that 

contains a top-level constraint property evaluating to true 

if the constraints of the model are satisfied for a particular 

input and false otherwise. It can also contain any number of 

metrics, which are numerically or logically-typed properties 

that are computed and derived from the input to the function. 

The input to the function can have certain numerically or 

logically-typed properties replaced with decision variables or 

learning parameters, which can then be solved for by 

invoking one or more of the analytics services provided by 

Unity. Restrictions on the properties of the input that can be 

replaced with decision variables or learning parameters 

depend on the analytics service invoked. In the case of 

deterministic optimization, for example, decision variables 

are restricted to only those properties that contribute to the 

computation of either the objective metric or constraint. For 

more details on DGAL analytics models we direct the reader 

to [1]. 

 
"suppliers": [{ 
  "sid": "supplier1", 
  "supply": [ 
    { "upc": "47520-81452", "ppu": 10.99, "qty": 500 }, 
    { "upc": "32400-24785", "ppu": 19.99, "qty": 400 }] 
  },{ 
  "sid": "supplier2", 
  "supply": [ 
    { "upc": "47520-81452", "ppu": 11.99, "qty": 1500 }, 
    { "upc": "32400-24785", "ppu": 18.99, "qty": 1295 }, 
    { "upc": "14752-47748", "ppu": 29.99, "qty": 2500 }] 
  }], 
"customers": [{ 
  "cid": "customer1", 
  "demand": [ 
    { "upc": "47520-81452", "qty": 1475 }, 
    { "upc": "14752-47748", "qty": 475 }] 
  },{ 
  "cid": "customer2", 
  "demand": [ 
    { "upc": "32400-24785", "qty": 874 }, 
    { "upc": "47520-81452", "qty": 254 }, 
    { "upc": "14752-47748", "qty": 987 }] 
  }], 
"orders": [{ 
  "sid": "supplier1", 
  "cid": "customer1", 
  "items": [ { "upc": "47520-81452", "qty": 500 } ] 
  }, ...  
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 In our ordering system scenario, we track a group of 

suppliers that each supply zero or more items, as well as a 

group of customers that each have a demand for zero or more 

items. We also maintain a list of orders that represent the flow 

of items from suppliers to customers. We can represent this 

information using a JSON object that will serve as the input 

to our DGAL analytics model, an example of which is shown 

above. Based on the data model that can be derived from the 

above example, we can now define the metrics and 

constraints for our analytics model that we will then proceed 

to implement. While a single analytics model can support 

multiple metrics, for the purposes of our discussion we will 

limit our model to only compute the total cost of all orders, 

which can be computed using the following JSONiq 

expression (assuming that the variable $input holds the input 

to our analytics model): 

 
let $orders := $input.orders[] 
let $items := $input.items[] 
let $suppliers := $input.suppliers[] 
 
let $cost := 
  for $order in $orders, $item in $items 
  return 
      fn:sum( 
        $suppliers[$$.sid eq 
$order.sid].supply[][$$.upc eq $item.upc].ppu * 

$item.qty 
      )  
 

 We now need to define the constraints of our analytics 

model. In our order analytics model, we have two basic 

constraints. The first constraint is a supply constraint on 

orders that stipulates that for each supplier, the quantity of 

each item in stock is greater than or equal to the sum of the 

order quantities of that item across all orders to that supplier. 

The second constraint is a demand constraint on orders that 

stipulates that for each customer, the quantity of each item 

requested is equal to the sum of the order quantities of that 

item across all orders from that customer. We can express 

these constraints in JSONiq as follows: 

 
let $suppliers := $input.suppliers[] 
let $customers := $input.customers[] 
let $orders := $input.orders[] 
 
let $supplyConstraint := 
 for $supplier in $suppliers, $item in 
$supplier.supply[] 
 return $item.qty ge fn:sum($orders[$$.sid eq 
$supplier.sid].items[][$$.upc eq 
$item.upc].qty) 
 
let $demandConstraint := 
 for $customer in $customer, $item in 
$customer.demand[] 
 return $item.qty eq fn:sum($orders[$$.cid eq 
$customer.cid].items[][$$.upc eq 
$item.upc].qty)  
 

 We finish the implementation of our DGAL analytics 

model for order analytics by wrapping the JSONiq 

expressions for computing metrics and constraints inside a 

JSONiq function:  

 
declare function 
scm:OrderAnalyticsModel($input) 
{ 
  let $cost := ... 
  let $supplyConstraint := ... 
  let $demandConstraint := ... 
  let $constraints := 
    $supplyConstraint and $demandConstraint 
  return { 
    cost: $cost 
    constraints: $constraints 
  } 
};  
 

 Using our reusable analytics model for order analytics, 

implemented in DGAL, we can perform a variety of different 

tasks, such as simulation, optimization and learning, without 

having to redevelop new task-specific models for individual 

task. The work of reducing DGAL analytics models into tool-

specific models for execution and analysis is handled 

seamlessly by Unity. Simulation in DGAL involves the 

computation of the metrics and constraints for an input 

object. We can compute the metrics and constraints by simply 

invoking the scm:OrderAnalyticsModel function on that 

input object:  

 

scm:OrderAnalyticsModel($input)  
 

 In this case, the output JSON object that is returned from 

the invocation of that function contains only numerically or 

logically-typed values for metric properties, and a value of 

either true or false for the constraints property, depending if 

the constraints were satisfied for the given input object.  

 What if we wanted to find the optimal item order 

quantities, qty, for each supplier such that the total cost is 

minimized? To do this, we can annotate our original input 

object with decision variable objects in place of numeric 

values for each qty property to indicate that we want Unity 

to solve for the values of those properties. A decision variable 

object is a JSON object that contains one of the following 

properties corresponding to its type: integer?, decimal?, 

or logical?. The corresponding property value indicates 

the decision variable identifier, which if set to null will 

replaced with a UUID. Two different decision variable 

objects that contain identical identifiers refer the same 

decision variable in the underlying optimization problem. 

The decision variable annotated input is shown below: 

 
"orders": [{ 
    "sid": "supplier1", 
    "cid": "customer1", 
    "items": [ { "upc": "47520-81452", "qty": { 
"integer?": null } } ] 
}]  
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 Invoking the scm:OrderAnalyticsModel function 

directly on the decision variable annotated input would, 

however, result in undefined behavior. This is because the 

function that implements the analytics model is expecting a 

numerically-typed value for the qty property, but we provide 

a decision variable object instead. Rather, we can invoke an 

analytics service provided by Unity for deterministic 

optimization against the analytics model and annotated input 

to find specific values for qty that minimizes the cost 

metric as follows: 

 
let $ instantiatedInput := dgal:argmin({ 
  varInput: $annotatedInput, 
  analytics: 
"Q{http://example.org/scm}OrderAnalyticsModel", 
  objective: "cost" 
})  
 

 In maintaining complete syntactic equivalence with 

JSONiq, all analytics services provided by Unity are exposed 

as a regular JSONiq functions by DGAL. For deterministic 

optimization, DGAL provides the dgal:argmin function 

which simply serves as a wrapper around the analytics service 

for deterministic optimization that is provided by Unity. The 

dgal:argmin function takes single JSON object as input 

that contains at least three properties, specifically: (1) 

varInput: the decision variable annotated input as a JSON 

object, (2) analytics: the analytics model as a qualified name 

string, and (3) objective: the JSONiq path expression string 

to select the property of the objective metric that is computed 

by analytics model. If a solution to the resulting optimization 

problem is feasible, the dgal:argmin function returns an 

instantiation of the annotated object contained in the varInput 

property, where all decision variable annotations are 

instantiated with values that together minimize the objective 

metric. To compute the minimized value of the objective 

metric, one simply invokes the analytics model on the 

instantiated input object returned from dgal:argmin: 

 
return 
Q{http://example.org/scm}OrderAnalyticsModel($i
nstantiatedInput)  

4 System Implementation 

In this section we describe a prototype implementation of 

Unity that follows the reference architecture presented 

earlier. The Unity prototype was developed using a 

combination of Java, C++ and JSONiq and currently supports 

for computation and deterministic optimization of analytics 

models implemented in DGAL. We use Java Content 

Repository (JCR), as implemented in Apache Jackrabbit, to 

store, retrieve and manage the analytics knowledge base 

artifacts, such as analytical models, views and data. To 

simplify the development of DGAL analytics models, we 

developed an initial DGAL IDE based on Eclipse, as shown 

in figure 3, as well as a package for Atom containing a macro 

for executing DGAL queries from within the IDE.  

 The execution engine was developed on top of the Zorba 

query processor, which was adapted to operate against the 

JCR content repository, rather than from the local file system. 

For this purpose, we developed a custom URI resolver for 

Zorba in C++. For the application layer, we use Jetty as an 

embedded HTTP server and Java servlet container to host a 

custom developed Web application that provides support for 

executing DGAL queries and manipulating and managing 

Figure 3. Eclipsed-based IDE for DGAL Analytics Model Development 
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analytics models and data in the repository. For the client-

tier, the Unity DGMS prototype provides remote access 

through a number of different protocols, including 

HTTP/HTML, REST/JSON and WebDAV. 

 The process provided by Unity that implements the 

deterministic optimization function, dgal:argmin, consists 

of 6 steps, as shown in figure 4. The process begins with the 

analytics model resolution step, where in the fully qualified 

analytics model name is resolved against the content 

repository to retrieve its implementation as a DGAL source 

module. Next, in the source-to-source transformation step, 

the DGAL source module is transformed into a symbolically 

executable JSONiq library module. Then in the symbolic 

execution step, the transformed module is executed as a 

regular JSONiq module by the Zorba engine, which generates 

its output in an intermediate representation. Next in the 

solver-specific model generation step, the output from the 

previous step is used to generate a solver-specific model with 

associated data. Currently the prototype can generate 

optimization models in either OPL or AMPL. The newly 

generated model is then dispatched, in the solver specific 

execution step, to the solver specified in the configuration 

object, such as CPLEX, MINOS or SNOPT. Finally, in the 

analytics model input instantiation step the solution obtained 

from the solver is merged with the decision variable 

annotated input to return an instantiated input, where all 

decision variables are replaced with the resultant values in the 

solution. 

 The prototype implementation is built around an 

intermediate representation for analytics models. The 

intermediate representation is a JSON-based language that 

captures a partially translated analytics model in a way that is 

independent of both the source modeling language and the 

target, tool-specific language. While we currently support 

DGAL for analytical modeling, other languages like DGQL 

[7] could also be supported with the development of an 

analytics compiler to transform models in other languages 

into this intermediate representation. 

 In the intermediate representation, mathematical 

expressions whose values depend on decision variables or 

learning parameters are encoded as symbolic expression 

objects, which are JSON objects that capture the abstract 

syntax tree of the expression to be computed, rather than its 

computed result. Decision variables are represented in the 

intermediate representation as simple JSON objects that 

capture the variable’s name, type and optionally its estimated 

value, which is often crucial for non-linear optimization 

tasks. The property name of a decision variable object 

indicates the type of the decision variable and the property 

value is a string that holds the identifier of the decision 

variable. Unlike in some optimization modeling languages, 

such as AMPL and OPL, decision variables in the 

intermediate representation are not explicitly defined, rather 

they are implicitly defined as part of their usage. For this 

reason, care must be taken to ensure that if multiple decision 

variable symbols with the same identifier are used within a 

single intermediate representation model, the decision 

variable types must all be consistent. Just like decision 

variables, learning parameters are represented in the 

intermediate representation as simple JSON objects that 

capture the parameter’s name, type and optionally its 

estimated value. 
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Figure 4. Deterministic Optimization Process 

(dgal:argmin) 

 Expressions are encoded as single-property JSON objects 

where the property name indicates the expression operator 

and the corresponding value is a JSON array containing the 

values of the operands. The intermediate analytical 

representation supports many kinds of expression operators, 

including arithmetical, logical, conditional, quantified 

expression operators. While user-defined functions are 

currently not supported, Unity DGMS provides a number of 

built-in functions, such as aggregation and piecewise 

functions. For instance, the JSONiq expression 100 + 250 
eq 350 can be encoded in the intermediate representation as 

follows: 

 
{ 
    "==": [ 
        { "+": [ 100, 250 ] }, 
        350 
    ] 
}  
 

 While this expression is valid in the intermediate 

representation, the analytics engine automatically reduces 
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expressions that do not depend on any decision variables or 

learning parameter, and thus can be computed at the time of 

symbolic execution. For this expression, the value can be 

reduced to simply true. 

 As explained before, while syntactically DGAL is 

backwards compatible with JSONiq, the execution of 

analytics services extends the semantics of JSONiq. Because 

of this difference, analytics services cannot be directly 

executed on a standard JSONiq query processor, such as 

Zorba. One way to support the alternative execution 

semantics of DGAL is to re-develop a new JSONiq query 

processor that natively supports DGAL. However, as the 

objective of Unity is to promote interoperability and reuse, 

we opted for a different approach. If JSONiq supported 

operator overloading, like in C++, another approach would 

be to overload the expression operators supported by DGAL 

to re-define their execution semantics. For descriptive 

analytic tasks that are supported directly in JSONiq, the 

execution semantics would remain unchanged. For predictive 

or prescriptive analytic tasks, however, the execution of these 

overloaded operators would generate results in the 

intermediate analytical representation Unfortunately, 

JSONiq does not currently support operator overloading. 

 To support advanced analytics using a stock JSONiq 

query processor, the analytic model compiler first performs a 

source-to-source transformation to redefine the execution 

semantics of expression operators by direct modification of 

the source code. The main idea behind this approach is that 

for each expression operator in the analytical model, a 

function call is substituted in its place that when called 

returns the result in the intermediate analytical 

representation. In cases where the computation of an 

expression does not involve a decision variable or learning 

parameter, the intermediate analytical representation would 

be identical that of a standard interpretation of JSONiq. 

 As shown in figure 5, to perform the source-to-source 

transformation we first parse the JSONiq source text and 

build an abstract syntax tree. For this purpose, we used the 

REx parser generator [14] to generate a JSONiq parser in 

Java from the EBNF grammar that is provided in the JSONiq 

language specification. We then use an XSLT transformation 

on the resulting XML syntax tree to replace each JSONiq 

expression operator with a corresponding function that 

returns its result in the intermediate analytical representation. 

 

Parse and
Generate AST

Validate and
Prune AST

Transform AST

Start

DGAL
Module

Transformed
DGAL Module

DGAL AST

Pruned
DGAL AST  

Figure 5. DGAL Source-to-Source Transformation 
Process 

 For example, consider the supplyConstraint expression 

from supply chain analytics example presented in section 2. 

After performing the source-to-source transformation, the 

sub-expression $supplyItem.qty ge fn:sum(...) is replaced 

with a calls to the corresponding dg:ge and dg:sum functions, 

as shown below: 

 
let $supplyConstraint := 
for $supplier in $input.suppliers[], 
    $supplyItem in $supplier.supply[] 
return dg:ge($supplyItem.qty, 
         dg:sum($input.orders[][dg:eq($$.sid, 
           
$supplier.sid)].items[][dg:eq($$.upc, 
$supplyItem.upc)].qty))  
 

 All such expression functions, like dg:ge and dg:sum,  are 

implemented completely in JSONiq. The complete JSONiq 

definition of the dg:eq function is provided below: 

 
declare function dg:eq($operand1, $operand2) 
{ 
    if ($operand1 instance of object 
     or $operand2 instance of object) then 
      { "==": [$operand1, $operand2] } 
    else 
      $operand1 eq $operand2 
};  
 

 It takes two parameters, $operand1 and $operand2, which 

correspond to the left and right operands of the binary 

equality operator in JSONiq. A quick simplification is done 

in the event that neither operand depends on a decision 

variable or learning parameter, whereby the fully computed 

result is returned, otherwise an intermediate analytical 

expression tree object is returned. 

5 Experimental Evaluation 

 While the Unity NoSQL-DGMS prototype that we 

described in the previous section demonstrates one approach 

for implementing deterministic optimization against 

analytics models expressed in DGAL, a vital question is 

whether our approach is too computationally inefficient to be 

used for real-world, DGSs. In this section, we report on a 

preliminary experimental study that we conducted to 

investigate the overhead of OPL optimization models 

automatically generated from DGAL using Unity, compared 

with manually-crafted OPL models that are formally-

equivalent. Our hypothesis is that for OPL models that are 

automatically generated from DGAL, the solve time is within 

a small constant factor of the time it takes to solve manually 

crafted OPL models that are formally equivalent. To test our 

hypothesis, we manually translated an AMPL optimization 

model for procurement analytics, which we borrow from [8], 

into two formally equivalent models, one in DGAL and the 

other in OPL, which we refer to as the experimental input and 

control input respectively. 

 A program was written to randomly generate pairs of 

instance data to use for our DGAL and OPL models, which 



10 

we refer to as the experimental input and control input 

respectively. Care was taken to ensure that each input pair 

was formally equivalent, or in other words the same 

randomly generated value was used for each corresponding 

property in the input. We conducted a total of 205 trials, 

where for each trial we measured the wall-clock time that the 

CPLEX solver took to solve the experimental optimization 

problem and the control optimization problem. We only 

measured the difference in how long it takes CPLEX to solve 

the experimental optimization problem versus the control 

problem, so we do not include the time spent on other 

associated processes in our measurements, such as the time 

spent compiling DGAL models and loading data into 

CPLEX. 

 
Figure 6. Execution Time Overhead of Automatically 

Generated OPL Models from DGAL (in seconds) 

 The Java API provided by CPLEX was used to automate 

the execution of the experiment’s 205 trials. The wall-clock 

time was measured by subtracting the difference between the 

return values of calls to System.currentTimeMillis() placed 

immediately after and before the invocation of the CPLEX 

solve() method. Within a trial, the experimental optimization 

problem consisted of the OPL model and input that was 

automatically generated through compilation of the 

experimental DGAL model on the experimental input. The 

control optimization problem consisted of the control OPL 

model and the control input. The number of decision 

variables in the resulting optimization problems across all 

trials range from 72 to 16,800. The tests were conducted on a 

single machine equipped with an Intel® Core™ i5-4210U 

processor and 16GB of RAM. To reduce measurement errors 

due to interference, we closed all other extraneous 

applications and services, and each test was run sequentially.  

 The results of this experiment are presented as a scatter 

chart in figure 6, where the horizontal axis represents the 

wall-clock time that the CPLEX solver took, in seconds, to 

solve the control optimization problem, and the vertical axis 

shows the wall-clock time that the CPLEX solver took, in 

seconds, to solve the experimental optimization problem. A 

linear trend line through the time measurement points gives a 

slope of 2.3148, which indicates that compiled DGAL 

models are on average about 231% slower than manually 

crafted OPL. On closer inspection, a value of 0.7644 for the 

coefficient of determination, indicates that almost 24% of the 

variance in time measurements is not explained by the 

independent variable of our experiment, which was the 

optimization model used, either the OPL model automatically 

generated from DGAL or the manually crafted one. Some 

variance is to be expected because the behavior of underlying 

algorithms used for MP-based optimization, such as branch 

and bound, are often sensitive to how the problem is 

formulated. 

 While our objective is not to compete with commercial 

solvers in terms of faster execution times, but rather to 

develop a NoSQL-DGMS based around DGAL to facilitate 

the development of DGSs, there are a number of techniques 

that could be employed to decrease the overhead of 

automatically generated models. The CPLEX solver provides 

a number of options to fine-tune the optimization process, 

like pre-solve, which need to be investigated in the future. 

Also, utilizing a combination of domain-specific pre-

processing techniques, such as the one proposed in [4],  to 

generate efficient, tool-specific models for certain classes of 

problems. However, with regards to our preliminary 

evaluation, we view the current optimization time overhead 

as a standard tradeoff between user productivity and 

computational efficiency. Thus, Unity NoSQL-DGMS would 

still be practical in cases where computational efficiency can 

be sacrificed to avoid the costly re-development of 

specialized analytics models to support different tasks. 

6 Conclusion and Future Work 

This paper reported on the development of the first NoSQL 

decision guidance management system (NoSQL-DGMS) – 

Unity, which enables decision-makers to build DGSs from a 

repository of analytics models that can be automatically 

reused for different analytics methods, such as simulation, 

optimization and machine learning. We provided the Unity 

NoSQL-DGMS reference architecture, and developed its first 

implementation, which is centered around a modular 

analytics engine that symbolically executes and 

automatically reduces analytics models, expressed in DGAL, 

into lower-level, tool-specific representations. We also 

demonstrated the use of Unity and DGAL in building a 

simple DGS for order analytics. Finally, we conducted a 

preliminary experimental study on the overhead of OPL 

optimization models automatically generated from DGAL 

using Unity, compared with manually-crafted OPL models 

y = 2.3148x + 1.7776
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that are formally-equivalent. Preliminary results indicate that 

the execution time of OPL models that are automatically 

reduced from DGAL is within a small constant factor of 

corresponding, manually-crafted OPL models. 

 The possibility of building DGSs from reusable analytics 

models by way of a NoSQL-DGMS represents a paradigm 

shift from the current approaches, which are task-dependent 

and lead to a tight-integration of the analytics models, 

methods and underlying tools. Our work opens up new 

research questions that we plan to work on in the future. 

Particularly, as support for additional analytics tools are 

developed, the problem of choosing the most appropriate tool 

for a specific task, such as optimization, emerges. Further 

research is needed to investigate how a tool recommender 

system can be developed to determine the set of candidate 

tools feasible for a particular analytics model and task, and 

then to rank the set of candidate tools according to some user-

defined objective, such as predicted execution time or 

accuracy. Second, more work is necessary to develop 

algorithms to automatically reduce the complexity of 

analytics models using techniques such as domain-specific 

heuristics, pre-processing and relaxation. This is essential 

because in DGAL analytics models can use the full 

expressive power of JSONiq, which can lead to the 

development of analytics models are too complex to be 

solved efficiently using MP-based techniques alone. 
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Appendix 1 – Experimental DGAL Analytics Model 

jsoniq version "1.0"; 
module namespace ns = "http://cs.gmu.edu/dgal/procurementAnalytics.jq";  

declare function ns:procurementAnalytics($procurementData)  
{ 
  let $Vendors := $procurementData.Vendors[] 
  let $Items := $procurementData.Items[] 

  let $Locations := $procurementData.Locations[] 
  let $Stock := $procurementData.Stock[] 
  let $Order := $procurementData.Order[] 
  let $total_cost := sum(for $v in $Vendors, $i in $Items, $l in $Locations  

                         return $Stock[$$.Vendor eq $v].Items[][$$.Item eq $i].PricePerUnit * 
                                $Order[$$.Location eq $l].Items[][$$.Item eq $i].ItemOrder[][$$.Vendor 
eq $v].Orders) 

  let $available_vs_purchased := every $v in $Vendors, $i in $Items satisfies  
      $Stock[$$.Vendor eq $v].Items[][$$.Item eq $i].Available >= 
      sum(for $l in $Locations 
          return $Order[$$.Location eq $l].Items[][$$.Item eq $i].ItemOrder[][$$.Vendor eq $v].Orders)  

  let $requested_vs_delivered := every $l in $Locations, $i in $Items satisfies  
      $Order[$$.Location eq $l].Items[][$$.Item eq $i].Requested <=  
      sum(for $v in $Vendors 
          return $Order[$$.Location eq $l].Items[][$$.Item eq $i].ItemOrder[][$$.Vendor eq $v].Orders)  

  let $order_placed := every $l in $Locations, $i in $Items, $v in $Vendors  satisfies 
    if ($Order[$$.Location eq $l].Items[][$$.Item eq $i].ItemOrder[][$$.Vendor eq $v].OrderPlaced eq 0) 
then 
        $Order[$$.Location eq $l].Items[][$$.Item eq $i].ItemOrder[][$$.Vendor eq $v].Orders eq 0  

    else 
        $Order[$$.Location eq $l].Items[][$$.Item eq $i].ItemOrder[][$$.Vendor eq $v].Orders >= 1  
  let $items_purchased := every $v in $Vendors, $l in $Locations satisfies  

    $Order[$$.Location eq $l].LocationOrder[][$$.Vendor eq $v].ItemsPurchased eq  
    sum(for $i in $Items return $Order[$$.Location eq $l].Items[][$$.Item eq $i].ItemOrder[][$$.Vendor 
eq $v].OrderPlaced) 
  let $vendor_shipped := every $l in $Locations, $v in $Vendors satisfies  

    if ($Order[$$.Location eq $l].LocationOrder[][$$.Vendor eq $v].VendorShipped eq 0) then 
        $Order[$$.Location eq $l].LocationOrder[][$$.Vendor eq $v].ItemsPurchased eq 0  
    else 
        $Order[$$.Location eq $l].LocationOrder[][$$.Vendor eq $v].ItemsPurchased >= 1  

  let $vendor_restriction := every $l in $Locations satis fies 
    sum(for $v in $Vendors return $Order[$$.Location eq $l].LocationOrder[][$$.Vendor eq 
$v].VendorShipped) <= 20 

  let $constraints := ((((($available_vs_purchased and $requested_vs_delivered) and $order_placed) and  
                     $items_purchased) and $vendor_shipped) and $vendor_restriction) 
  return { 
      procurementData: $procurementData, 

      procurementCost: $total_cost, 
      available_vs_purchased: $available_vs_purchased, 
      requested_vs_delivered: $requested_vs_delivered, 
      order_placed: $order_placed, 

      items_purchased: $items_purchased, 
      vendor_shipped: $vendor_shipped, 
      vendor_restriction: $vendor_restriction, 

      constraints: $constraints 
  } 
}; 

 


