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Abstract

Recent techniques enable folding planer sheets to create
complex 3D shapes, however, even a small 3D shape can
have large 2D unfoldings. The huge dimension of the
flattened structure makes fabrication difficult. In this
paper, we propose a novel approach for folding a single
thick strip into two target shapes: folded 3D shape and
stacked shape. The folded shape is an approximation
of a complex 3D shape provided by the user. The pro-
vided 3D shape may be too large to be fabricated (e.g.
3D-printed) due to limited workspace. Meanwhile, the
stacked shape could be the compactest form of the 3D
shape which makes its fabrication possible. The com-
pactness of the stacked state also makes packing and
transportation easier. The key technical contribution of
this work is an efficient method for finding strips for
quadrilateral meshes without refinement. We demon-
strate our results using both simulation and fabricated
models.

1 Introduction

With the advances in robotics engineering and material
science, researchers started to find applications of fold-
able objects in a wide range of domains including med-
ical devices, self-folding machines, large developable
arrays [13, 1, 6, 8]. One main advantage of foldable
shapes is the compactness of the folded state as show
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Figure 1: Comparison of the actual size of the folded, un-
folded and stacked states of a cube model. The thickness
of the panel is 5% of its size.

in Figure 1. This makes carrying of large objects, from
maps, umbrellas, chairs, etc., used in our daily life to the
solar panels on the satellite, possible and much easier.
For example, Zirbel et al. [22] propose a method for
designing origami-based deployable arrays with a high
deployed-to-stowed ratio which can be used to design
solar cells in the spacecraft.

Folding and unfolding also provide opportunities to
make 3D shapes that are too large to be fabricated (e.g.
3D-printed) due to limited working volume. Zhou et al.
[21] present a method of transforming a 3D shape into a
box, however, the volume compression ratio is limited.
Nevertheless, most existing methods fabricate foldable
objects in 2D space. The area of these unfoldings is often
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(a) Original mesh (b) Voxelized (c) Stripified (d) Thickened (e) Stacked

Figure 2: Pipeline of our approach.

significantly greater or at least equal to the surface area
of the original 3D shape. The huge dimension makes
the fabrication of the 2D unfoldings more difficult and
sometimes impossible, again, due to limited workspace
area. Also, finding unfoldings of complex 3D shapes
can be extremely time consuming, e.g. it takes hours to
unfold meshes with a few thousands faces [16, 19] and
segmentation is required.

In this paper, we propose a novel approach to address
both issues by fabricating foldable shapes within limited
working space. Our strategy is to find the compactest
folded state of the 3D shape. First, we approximate a 3D
shape with equal size quadrilateral facets (Figure 2(b)),
then we find a Hamiltonian path in the quadrilateral
mesh (Figure 2(c)) such that we can fold/stack all faces
into one or multiple connected piles (Figure 2(e)). The
original model then can be obtained by unfold the piles.
Experimental results show that our method can signif-
icantly reduce the workspace required to fabricate the
models.

2 Background and Related Works

Assembling a polyhedron from one or multiple flat yet
foldable/developable components is known as paper
crafting which is another practical approach to fabricate
complex 3D shapes from flat materials [9, 12, 16, 19].
By cutting along a carefully selected subset of edges of
the polyhedron, we could unfold the polyhedron into a
planer shape on 2D space without overlapping which is
called a net of the polyhedron. Both heuristic methods
and evolutionary algorithms are proposed in the litera-
ture to find nets of polyhedra [11, 16, 19]. In the rest of
this section, we will briefly discuss two research areas
closely related to our work.

2.1 Thick Origamis

Mathematical models for folding rigid origami has been
developed [14], however, assuming zero thickness ma-
terial makes it hard to use in practice. Methods for ac-

commodating thick material then were proposed in the
literature, including: Axis-shift method [15], this method
shifts the rotation axes to either top or bottom of the
thick panel depends on the crease type (e.g. mountain
or valley); Volume Trimming method [15], this method
trims the edge of material to maintain the kinematics
to a limited folding angle range; Offset Panel method
[5], this method offsets the panels while maintain the
rotation axes which can accommodate the full range of
motion. Offset Crease method [22], this method widens
creases with flexible material and add gaps for folds to
accommodate thickness. A detailed comparison of these
methods can be found in [10].

2.2 Mesh Stripficiation

The Hamiltonian path/cycle problems are to deter-
mine whether there exists a Hamiltonian path/cycle (a
path/cycle in the graph that each vertex is visited exactly
once) in the given graph which are both NP-complete.
The best algorithm so far finds a Hamiltonian cycle in
O(1.657n) for a n-vertex graph and O(1.251n) for sparse
graphs in which every node has a max degree of 3 [7].
Mesh stripification is a special case of the Hamiltonian
path problem which has applications in computer graph-
ics for fast rendering, mesh simplification and compres-
sion [18]. Taubin [17] finds a Hamiltonian triangulation
of a quadrilateral mesh in linear time. It first finds cycles
in the dual graph of the mesh and then merge the cycles
by flipping the diagonal edges. Although this method
is efficient, there is no direct extension to find a single
quadrilateral strip. Diaz-Gutierrez and Gopi [4] use the
2-factor partitioning of the dual graph of the quadrilat-
eral mesh to find disjoint cycles and merge those cycles
into one. However, this method requires a nontrivial
refinement of the mesh to form the Hamiltonian cycle
makes it not applicable to stacking problems.
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(a) t = 0 (b) t = 0.01l (c) t = 0.05l (d) t = 0.1l (e) t = 0.2l

Figure 3: The folded state of a cube model and its corresponding 1-pile stacked state under different thicknesses. l is
the original panel size and t is the panel thickness.

3 Stacking Quad Mesh Surface

In this section, we will discuss the stages of the pipeline
shown in Figure 2 for stacking the facets of quad mesh.
There are four main steps: mesh voxelization, mesh strip-
ification, thickness accommodation and stacking. The
main idea of our approach is to approximate the input
mesh with equal size square panels. By finding a Hamil-
tonian path (a strip) of the voxelized mesh, we can stack
the strip into a much more compact state. In Figure 2(c),
the faces are color-coded to represent the Hamiltonian
path. The starting facet is shown in purple, the facet
in the middle is shown in green and the ending facet is
shown in yellow.

3.1 Creating Quad Mesh via Voxelization

There are many method for creating quadrilateral
meshes [? ], however, making every quad identical while
still being able to approximate the original shape is non-
trivial. Voxelization [3] is widely used in compute graph-
ics with applications in visualization, fluid simulation,
particle collision, etc. There exists two type of mesh
voxelizations: surface voxelization and volume voxeliza-
tion. In surface voexlization, only the surface region of
model will be covered by the voxels while in volume
voxelizaiton, voxels are also covered by the inner side of
the mesh. We extract the out-most faces from the surface
voxelization of the mesh which gives us a perfect mesh
for stacking: all faces are identical squares. And each
face can fold onto or under one of its four neighboring
faces.

3.2 Stripification of Quadrilateral Meshes

After voxelization, the input mesh is tessellated by iden-
tical squares and has exactly four neighbor faces. We are
guaranteed to find Hamiltonian paths in the dual graph
of the voxelized mesh as a 4-regular graph such that we
can cut the mesh and make it stackable.

Traveling Salesman Problem The exponential run-
ning time for finding Hamiltonian cycles prohibits its
practical usage on quadrilateral meshes of thousands of
faces. We convert the Hamiltonian path problem (HPP)
into the well known Traveling salesman problem (TSP)
which finds a Hamiltonian cycle with minimum cost (the
sum of crossed dual edge weights). We set the weight of
a pair of nodes to 1 if there is an edge connects them and
+∞ otherwise, then we know the optimal solution is n if
there are n faces in the original mesh.

There are several reasons for us consider switching to
TSP: 1) The solution of TSP can be converted to a set of
solutions of HPP. 2) TSP is a well studied problem com-
paring to HPP, thus many solvers available in the public
domain. 3) The known upper bound n helps the solver
to cut unnecessary branches thus the solve could find
solutions more efficiently. We use public available yet
state-of-art TSP solver Concorde [2] to find Hamiltonian
paths in the dual graph of the mesh.

3.3 Thickness Accommodation

All previous methods for accommodating thickness have
only one target state, the folded state. And a panel only
folds in one direction, e.g. it is either a mountain fold
or a valley fold. In this paper, we propose a new thick-
ness accommodation method based on the Offset Crease
method [22] which enables us fold the panels into two
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target states, the folded state and the stacked state. We
will show that the proposed method guarantees that
both target states are self-intersection free. We illustrate
our proposed method in Figure 4.
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Figure 4: The proposed method to fold thick panels.

Panels Assuming the original (zero thickness) panel
size is l × l, panels of thickness t are trimmed to (l −
2t) × (l − 2t) × t to accommodate thickness while en-
abling them to fold to both directions. Thus the maxi-
mum thickness that can be accommodated in our system
is t = 0.5l.
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(b) stacking stage: |θi | > π
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Figure 5: Hinge length constraints during folding.

Hinges The sliding hinge needs to have a variable
length from

√
2

2 t to t during the entire folding process.
We categorize the entire folding motion of a hinge into
two stages: 1) folding stage. As shown in Figure 5(a),
|θi| ≤ π

2 , we would like to preserve the kinematics as

of folding zero thickness material such that we can en-
sure the final folded state is globally intersection free.
2) stacking state. As shown in Figure 5(b), |θi| > π

2 , the

goal is to smoothly extend the hinge from
√

2
2 t to t to

accommodate the thickness when stacked.
The length of the i-th hinge is derived in Eq. 1,

hi =

{
cos( |θi |

2 ) · t, |θi| ≤ π
2√

2
2 · sin( |θi |− π

2
2 ) · t, |θi| > π

2

(1)

where θi is the folding angle of the ideal crease, t is
the thickness of the material. When θi = 0, the flat state,
hi = t; θi = ±π

2 , the maximum folded state, hi =
√

2
2 t;

θi = ±π, the stacked state, hi = t. During the entire
folding range, we have

√
2

2 t ≤ hi ≤ t.
Connection We assume panels and hinges are con-

nected by rigid thin material (shown as magenta panels
in Figure 3) whose size is (l − t)× (l − t)× tc, tc � t.
The center of connection part is aligned with the center
of the panel.

We simulate the folded and stacked states of a cube
model with different thicknesses, the results are shown
in Figure 3.

3.4 Stacking

Once we find a Hamiltonian cycle for a mesh, we can
break the cycle at arbitrary position to get a strip. For a
non-zero thickness panel in the strip, assuming only its
neighboring panels can stack with it, one folded onto it
and one folded under it. By assigning the folding angles
of the panels properly along the path, we can stack all
panels of the mesh into one or two piles.

Theorem 1. A single strip can be stacked into one or two
piles.

Proof. Picking either end of the strip as the base face, a
single pile stacking can be achieved by fold each child
panel onto its parent panel along the strip. Unfolding
the stacking at arbitrary position yields two piles.

Type of Panels and Piles We say a pile is a uphill pile
if the heights of its panels along the strip are increasing,
otherwise it is a downhill pile. The base panel of a pile
is the panel with height of 0. A penal is the roof panel
of the pile if it is the highest one in that pile. The roof
panel Rup of a uphill pile Pup can connect with the roof
panel Rdown of a downhill pile Pdown, while the base
panel Bdown of a downhill pile Pdown can connect with
the base panel B′up of another uphill pile P′up. Pup and
Pdown must have the same heights in order to connect
at the roof, while Pdown and P′up can have different
heights since they connect at the base. The remaining
questions is how to determine the heights for each pile.
We discuss two assigning strategies, uniform stacking
and non-uniform stacking as shown in Figure 6, to stack
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the mesh into multiple piles (e.g. 2x2, 3x3), a more
compact state, in details in the following.

(a) Uniform stacking (b) Non-uniform stacking

Figure 6: Front view of two stacking strategies.

Uniform Stacking In uniform stacking, as shown in
Figure 6(a), all the piles have the same number of panels.
Assuming we always start stacking with a uphill pile
then an exception can be made for the last pile if it is a
uphill pile. The last uphill pile can have different height,
either higher or lower than the rest of the piles. Given a
mesh with n panels and the number of piles k, the height
h of each pile can be dn/ke.

Fold to Stacked State The folding angle of an edge
that connects two faces is π− ρi, while ρi is the dihedral
angle between two faces. Let θi and θ′i denote the folding
angle of edge ei in the original mesh and in the stacked
state respectively. Let Pi be the child panel of ei, that is
when ei rotated, Pi will rotate with ei.

θ′i =


0, Pi is a base or roof panel
−π, Height of Pi is odd
π, Height of Pi is even

(2)

In order to fold the mesh into the stacked state, the angle
needed to fold for edge ei is θ′i − θi. By assigning the
folding angle for each edge based on the type of its child
panel, we can fold the mesh into the stacked status in
O(n). However, not all stacked states are feasible since
some piles might collide with others.

Theorem 2. A stacking can be validated in O(n) time.

Proof. First, we align the first face’s center to (0, 0), since
the coordinate system is discrete, we can check whether
a grid has been occupied or not in O(1). We fold one
face at a time in the order of the Hamiltonian path. Af-
ter folding the i-th face fi, if fi’s center is occupied by
another existing pile we know the stacking is invalid.
There are O(n) faces in total, thus the validation can be
done in O(n).

By breaking the Hamiltonian cycle at different loca-
tions, we have up to n− 1 different strips and stacked
states. We show a mountain model and its stackings of
different number of piles in Figure 7.

Non-uniform Stacking We can relax the same height
constraint when there is not enough variation to find
a valid folded state via uniform stacking. Each pair of
uphill and downhill piles still need to have the same
height, while the downhill to uphill pair of piles can
have different heights. For simplicity, the height of the
later uphill pile is chosen from {h, h± l}, where l can be

1, 2, · · · , m, m < h. This gives us m · (3bk/2c− 1) different
stacked states for each strip.

(a) The mountain model and its 1 pile stack-
ing.

(b) Stackings of 4 piles.

(c) Stackings of 6 piles.

Figure 7: A mountain model and its representitive stack-
ings of different number of piles.

Compactest Stacking For a given mesh m, we would
like to find its compactest stacking state s. The intuition
is that the stacking needs to be a box whose width, height
and depth should be as close as possible. However, there
are many different ways to define the compactness, the
optimal stacking may vary depends on the application.
In this paper, we adopt a widely used compactness mea-
sure: the sum of three dimensions. Under this measure,
the compactness ratio (CR) can be defined as:

CR =
|Ws|+ |Ds|+ |Hs|
|Wm|+ |Dm|+ |Hm|

, (3)

where W, D, H represents the width, depth and height
respectively.

Hs = t
⌈
|F|

WsDs

⌉
, Let Ws = Ds, then the optimal com-

pactness ratio CR =
3 3
√

t|F|
|Wm |+|Dm |+|Hm | can be obtained
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Table 1: Running time of finding a Hamiltonian path.
Model # of Quads Time (s)
Donut 32 0.01
Tower 462 0.59
Table 1964 3.68

Bunny 2206 2.50
Fish 4396 5.41

when Ws =
3
√

t|F|, where |F| is the number of faces in m
and t is the thickness of the panel which has a dimension
of 1× 1.

We can also measure the volume ratio (VR):

VR =
BBoxs

BBoxm
, (4)

which is simply the volume of bounding box of the stack-
ing divided by the volume of the bounding box of the
original mesh.

4 Experimental Results

4.1 Experimental Setup

We implemented the proposed method in C++. All data
are collected on a Macbook Pro with a 2.5 GHz Intel Core
i7 CPU with 16GB Memory running macOS 10.12. We
show the models used in the experiments in Figure 8.

4.2 Finding Hamiltonian Paths

We use Concorde TSP solver to find Hamilton paths in
the dual graph of the mesh. The found Hamiltonian
paths are coded in Figure 8, start with purple and end
with yellow with green as the intermediate color. The
running time for finding a Hamilton path on different
models in Table 1 from which we can see that the running
times grow almost linearly to the number of quads in
the mesh.

4.3 Compactest Stacking

We show the compactest stackings of the Bunny model
shown in Figure 8(d) under different thickness in Fig-
ure 9. The dimension of bounding box of the bunny
model is 22× 19× 27(W × D × H). The compactness
ratio and volume ratio of the optimal stackings of the
Bunny model is listed in Table 2, from which we can see
that even the thickness of the panel is 30% of its width,
the optimal stacked state only takes about 6% of volume
of the bounding box of the unfolded model.

4.4 Finding Continous Folding Motions

We use motion planning technique to find continuous
folding motion between the stacked state the target state.

Table 2: The optimal compactness ratio (CR) and volume
ratio (VR) of the stacked Bunny model under different
thicknesses t.

t Stacking (W × D× H) CR VR
0.0005 1× 1× 1.103 0.0456 9.7732× 10−5

0.005 2× 2× 2.760 0.0994 9.7820× 10−4

0.01 3× 3× 2.460 0.1244 1.9617× 10−3

0.1 6× 6× 6.200 0.2675 1.9778× 10−2

0.2 8× 8× 7.000 0.3382 3.9695× 10−2

0.3 9× 9× 8.400 0.3882 6.0287× 10−2

A discrete domain sampling based planner [20] is em-
ployed to find such motion to ensure it is physically
realizable. We show the folding motions of the Cube
(shown in Figure 3) and Mountain model (shown in Fig-
ure 7) from their 1-pile stacking to the unfolded/target
shapes in Figure 10 and Figure 11 respectively. The run-
ning time for the planner to find a continuous folding
path, on average of 30 trails, is 0.05 seconds for the Cube
model and 79.09 seconds for the Mountain model.

4.5 Physical Models

We show a physical realization of the cube model using
Lego to illustrate the proposed idea of two foldable tar-
get shapes. The panel size is 3.2in × 3.2in × 1.0in, the
size of ideal zero thickness panel will be 3.6in × 3.6in.
The net, the folded state and the stacked state of the cube
model are shown in Figure 12. We also show two others
shapes that can be folded from the cube chain.

5 Conclusion

In this paper, we propose a novel approach to fold a
voxelized mesh into a much more compact form called
stacking which enable us to fabricate (e.g. 3D-printing
and unfolding) a large 3D model from a much smaller
workspace. We show a technique to accommodate the
thickness of the material which also enables the folding
motion in both directions.

Limitations and Future Works In this work, we did
not plan the folding motion for those complex thick
chains by assuming there always exists a collision fold-
ing path due to its huge degree of freedom (DOF). Mean-
while, the high degree of freedom (DOF) makes the thick
chains hard to fold for both humans and themselves as
self-folding machines. We are seeking other represen-
tations instead of voxelization of the mesh to obtain a
better yet stackable approximation of the original model.
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