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Abstract

We present a novel AAC application, HoloAAC, based
on mixed reality that helps people with expressive lan-
guage difficulties communicate in grocery shopping sce-
narios via a mixed reality device. A user, who has diffi-
culty in speaking, can easily convey their intention by
pressing a few buttons. Our application uses computer
vision techniques to automatically detect grocery items,
helping the user quickly locate the items of interest. In
addition, our application uses natural language process-
ing techniques to categorize the sentences to help the
user quickly find the desired sentence. We conducted
case studies to evaluate our mixed reality-based applica-
tion with 7 participants with expressive language diffi-
culties to validate the usability and feasibility. To the best
of our knowledge, HoloAAC is the very first application
that explores context-aware AAC based on mixed reality.
We will open-source our holistic implementation.

1 Introduction

Augmentative and alternative communication
(AAC) Beukelman et al. (1998) is a communica-
tion mechanism for those with complex communication
needs (CCN) Porter et al. (1995), and existing AAC
devices are forms of assistive technology comprising
hardware and software that can support or replace
natural speech entirely. On the other hand, augmented
reality (AR), a user’s visual perception supplemented
with additional computer-generated sensory modalities,
is rising in its abilities to support assistive technology
through rehabilitation therapies that support people

Figure 1: When the user wears HoloLens 2 and stands
by the side of the cashier, the user clicks the camera
button to capture current objects on the desk. In this
scenario, there are three objects on the desk: soda, coffee,
and water. After the captured image is processed on
the server, the detected objects, the generated keywords,
and the generated sentences will be shown in front of
the user via an AAC interface visualized by HoloLens 2.
As the user clicks the prices keyword, the sentence “what
are the prices of these groceries?” is shown. The user
clicks this sentence to trigger our application to speak it
accordingly.

with visual impairments.
While immersive learning applications in augmented

reality have greatly supported individuals with disabil-
ities, current AAC devices do not carry the contextual
intelligence to prompt appropriate conversation choices
or phrases based on a user’s environment. This is partic-
ularly concerning for emergency situations where real-
time communication is important for supporting AAC
users who have to not only consider their accommoda-
tions but also navigate a crisis with heightened emotions.
This prompts the need for an AI-driven AAC system
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aware of the environmental situation and demand. Be-
cause of the monumental shift of the nature of AAC,
AAC has expanded its reach to include more people
with a wider range of CCN Shane et al. (2012).

Augmented reality is becoming popular in various
fields such as teaching Tzima et al. (2019), learning Mys-
takidis et al. (2022), entertainment Hung et al. (2021),
defense Wang et al. (2020), and marketing Rauschn-
abel et al. (2019). As an immersive technology, AR
opts to observe the user’s surroundings, understand
the context, and synthesize context-aware content with
the aid of computer vision and artificial intelligence al-
gorithms. For instance, running on an AR headset, our
HoloAAC app automatically recognizes products in the
user’s surroundings while the user navigates a grocery
store, retrieving relevant conversation sentences. More-
over, head-mounted AR headsets feature egocentric vi-
sion, referring to being capable of seeing what the user
sees. These factors make head-mounted AR headsets
promising vehicles for delivering AAC applications in
the future. Compared to current AAC devices that re-
quire users to operate an AAC application on a phone
or tablet, an AAC app running on a head-mounted AR
headset could be less distracting and more intuitive to
provide in-situ conversation help.

To explore this direction, we propose a computer
vision-guided mixed-reality AAC application that helps
AAC users in grocery shopping scenarios as shown in
Figure 1. First, we devise a computational approach to
generate shopping-related sentences. Second, we use a
mixed reality device to capture an image of the current
context, based on which an object detection algorithm is
applied. Third, we propose a natural language process-
ing (NLP) based algorithm to help the user quickly find
the desired sentence. Fourth, a text-to-speech engine
will translate the entire sentence into speech upon the
user’s selection. To the best of our knowledge, HoloAAC
is the very first application that explores using mixed
reality and contextual-awareness to provide AAC for
users with expressive language difficulties. The major
contributions of this work include:

• Proposing a novel augmentative and alternative
communication interface that can be used on a
mixed reality headset;

• Devising an interactive approach based on object
detection and text retrieval techniques to help AAC
users quickly retrieve and speak desired sentences
via text-to-speech;

• Evaluating our approach through experiments that
mimic grocery scenarios and case studies conducted
with people who have expressive language difficul-
ties.

2 Related Work

There are needs for just-in-time communication and
context-aware technologies in the AAC community. In
fact, this is an area of needs that has been prevalent. We
review some existing works.

2.1 Context-Aware AAC

Communication depends on context. People talk
about things that are rooted in their environments Pan-
chanathan et al. (2018). A context-aware system decides
what information and which service should be presented
to the user Sezer et al. (2018).

TalkAbout Kane et al. (2012) is a context-aware, adap-
tive AAC system that provides its users with a word list
adapted to their current location and conversation part-
ner. TryTalk Ghatkamble et al. (2014) operates similarly,
considering the user’s location obtained through GPS
or building QR code, as well as the day and time. Chan
et al. Chan et al. (2016) used the Bluetooth Low Energy
beacons to achieve accurate indoor tracking and a micro-
location context-aware AAC system to reduce the cogni-
tive load of user interaction. Chan et al. Chan et al. (2020)
proposed a context-aware AAC system to facilitate daily
communication for nonverbal school children with mod-
erate intellectual disabilities. Vargas de Vargas (2020)
proposed a preliminary idea about design and evalua-
tion of a context-adaptive AAC application, which uses
SNOW De Deyne et al. (2019) data, ConceptNET Speer
et al. (2017), DeScript Wanzare et al. (2016), user-specific
semantic network, and clustering algorithms to infer
the suggested vocabulary to enable the user to easily
find appropriate words when communicating. Shen et
al. Shen et al. (2022) devised KWickChat for nonspeak-
ing individuals with motor disabilities, which leverages
a GPT-2 language model and context information to im-
prove the quality of the generated responses. Rocha et
al. Rocha et al. (2022) proposed a system for people with
aphasia, which supports two-way communication. They
demonstrated how it can be used by a person with apha-
sia lying in bed to communicate with a caregiver via a
smartwatch.

Unlike the previous works, our application offers full
sentences for users to select instead of a single word or
a phrase. Inspired by TryTalk Ghatkamble et al. (2014),
our application also prioritizes frequently clicked sen-
tences relevant to the detected objects. Our application
leverages the image capturing, hand tracking, visualiza-
tion, and audio capabilities of the HoloLens 2 to realize
a novel and integrated AAC interface in augmented re-
ality.

2.2 Computer Vision-based AAC

Computer vision has been applied for AAC. The com-
puter vision-based AAC applications primarily lie on
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eye tracking, blink recognition, head tracking, facial de-
tection, and sign language recognition Panchanathan
et al. (2018).
Eye-Tracking. We review some systems that use eye-
tracking to support AAC. Raudonis et al. Raudonis et al.
(2009) proposed relatively inexpensive eye-tracking sys-
tem, which used a web camera and principal component
analysis and an artificial neural classifier to achieve the
goal of eye-tracking. Al-Rahayfeh et al. Al-Rahayfeh and
Faezipour (2013) presented a survey about eye-tracking
and head movement, which shows that the eye-tracking
can applied in assistive technologies to improve accu-
racy and lower cost.

Jen et al. Jen et al. (2016) proposed a wearable eye-gaze
tracking system that only required one single webcam
mounted on the glasses, whose experiments show its
high accuracy and robustness. On the other hand, Al-
Kassim et al. Al-Kassim and Memon (2017) designed a
scanning keyboard to help people with paralysis, which
relies on detection and tracking of the user’s eyeball
movements. Moreover, Zhang et al. Zhang et al. (2017)
developed an eye gesture communication system Gaze-
Speak that can run on a smartphone to help people who
have motor impairments. Fiannaca et al. Fiannaca et al.
(2017) presented AACrobat, a Gaze-Based AAC to lower
communication barriers and provide autonomy using
mobile devices. For more recent and detailed research
on eye-tracking, please refer to a recent review Klaib
et al. (2021).
Sign Language Recognition. Another area of research
uses sign language recognition to drive AAC applica-
tions. Sign language, e.g., American Sign Language
(ASL), is an ideal way to communicate for people who
are deaf or hard of hearing Panchanathan et al. (2018).

Akmeliawati et al. Akmeliawati et al. (2007) proposed
an automatic vision-based sign language translation sys-
tem to translate Malaysian into English in real-time.
Dreuw et al. Dreuw et al. (2012) presented another sign
language recognition and translation system, which is
based on statistical machine translation, speech recog-
nition, and image processing, supporting the recogni-
tion of complete sentences in sign languages. Halim et
al. Halim and Abbas (2015) developed a system for de-
tecting and understanding sign language gestures to as-
sist people with hearing and speech impairments, which
employed the dynamic time warping algorithm and Mi-
crosoft Kinect. Besides the above computer vision-based
sign language recognition research, there are some re-
searches using accelerometers, gyroscopes, and surface
electromyography sensors Li et al. (2010); Su et al. (2016);
Wei et al. (2016).

Disparate previous AAC research that used computer
vision for communication purposes, we leverage com-
puter vision to drive our application: object detection
analyzes the context in a scenario, and the detection re-
sult hints what items the user is probably concerned
about, helping the user quickly generate context-aware

sentences.

2.3 Computer Vision for Non-AAC Users

Computer vision can be used for assistive healthcare,
which is not limited to AAC users. For example, com-
puter vision can assist visually impaired people to navi-
gate in indoor space, aid people with cognitive impair-
ments, help with neurorehabilitation of post-stroke pa-
tients, support the surgeon, and push the development
of social robots which are designed to foster people’s
cognitive and socio-emotional well-being Marco and
Farinella (2018).

2.4 Augmented Reality for AAC

Augmented reality for AAC is a relatively new research
field. Ramires et al. Ramires Fernandes et al. (2014)
discussed an augmented reality based interacting sys-
tem, which integrated AAC and applied behavior analy-
sis (ABA), to support interventions with children who
have Autism Spectrum Disorders (ASD). Also, other re-
searches Bai et al. (2015); Chen et al. (2015, 2016); Cihak
et al. (2016); Mcmahon et al. (2015); Liu et al. (2017);
Taryadi and Kurniawan (2018) show that AR can be
used to improve language and communication skills in
individuals with ASD and has positive outcomes such
as increased motivation, attention, and learning new
tasks Hayden et al. (2017).

Recently, Zheng et al. Zheng et al. (2017) proposed
a communication enhancement system KinToon which
uses a projector to project cartoon masks to a human
face to enable autistic children to interact with their fa-
vorite cartoon characters face to face. On the other hand,
Kerdvibulvech et al. Kerdvibulvech and Wang (2016)
proposed a three-dimensional augmented reality based
human-computer interaction application to assist chil-
dren with special problems in communication.

The direction of using a HoloLens for AAC appli-
cations is relatively unexplored. Zhao et al. Zhao
et al. (2021) proposed an AAC application that runs
on HoloLens to used eye-gaze technology to select
words and make sounds. Another application based
on HoloLens was designed to assist people with low
vision in wayfinding Zhao et al. (2020).

Compared to previous works, HoloAAC does not act
as a supportive tool for therapists. It aims to help AAC
users in daily grocery shopping scenarios. Also, it aims
to speak a meaningful sentence rather than a word or a
phrase.

2.5 User Interface and Interaction for AAC

Several design efforts focused on user interfaces and in-
teractions to support AAC applications. Sobel et al. Sobel
et al. (2017) explored the design space of AAC awareness
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Figure 2: Our application’s overview. As a user wearing a HoloLens 2 reaches a cashier, they presses the camera
button to capture an image. The image is sent to a server which executes a series of operations: semantic segmentation,
object detection, sentence retrieval, and text-to-speech. When HoloLens 2 gets the response from the server, the user
can select a desired sentence, triggering our application to speak the sentence.

displays. Gibson et al. Gibson et al. (2020) extracted de-
sign requirements from a clinical AAC tablet application.
Kristensson et al. Kristensson et al. (2020) proposed a
design engineering approach for quantitatively explor-
ing context-aware sentence retrieval. Besides, Obiorah
et al. Obiorah et al. (2021) developed three meal order-
ing prototype systems for people with aphasia dining in
restaurants. Mitchell et al. Mitchell et al. (2022) evaluated
a generically optimized keyboard and the ubiquitous
QWERTY keyboard among three people with dexterity
impairments due to motor disabilities.

In this work, we focus on creating an aided AAC.
Aided AACs can be categorized into two groups: low-
technology AACs and high-technology AACs. Low-
technology AACs do not require a battery or wall plug
power supply to operate, while high-technology AACs
refer to powered devices, either from a battery or a wall
plug power supply Norrie et al. (2021). Some high-
technology AACs can run on smartphones and tablets.
With the commonality of smartphones and tablets, many
AAC applications surge, such as Proloquo2Go, Cboard,
TouchChat, QuickTalk, iCommunicate, and SonoFlex.
For more details about high-technology AAC, please
refer to a recent review Elsahar et al. (2019).

Unlike existing high-tech AAC user interfaces that
run on traditional devices, for example, smart phones,
tablets, and specially designed electronics, our novel
user interface runs on a mixed reality headset, which is
portable and wearable, supporting more advanced and
immersive interactions.

3 Interview with AAC Users

To devise a friendly, accessible, and practical applica-
tion for AAC users, we interviewed 2 professional AAC
users who have been using AAC devices for more than 3

years and also teaching people to use AAC devices. We
obtained the following insights about the design of this
application.

• This application should be portable and the device
running the application should be untethered.

• This application should be easy to use with minimal
configurations and intuitive operations.

• Considering that some AAC users are used to
symbol-based or text-based AAC tools, it is prefer-
able to use similar symbols in this application.

• This application should be friendly to those AAC
users with listening disabilities.

• For the grocery shopping scenario, it would be con-
venient to automatically detect items and support
the user to select items.

We devise our augmented reality AAC application,
HoloAAC, based on the above observations. The appli-
cation runs on the Microsoft HoloLens 2. It comprises
three windows: an entry window, a network setting win-
dow, and a main window. In this application, we sup-
port setting voice speed, volume, and voice type (male
voice/female voice). Besides that, since computer vision
can be used in context-aware AAC to determine what
objects of interest are in the environment Panchanathan
et al. (2018), we use computer vision techniques to detect
groceries and provide an optional way to select/deselect
groceries. In addition, the application also tracks the
user’s sentence selection history to prioritize previously
selected sentences. Our application employs the wireless
network to realize the portable goal. In order to make
this application more accessible, we use red color to de-
note being selected. What’s more, we set the pressed
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(a) (b) (c) (d) (e) (f)

Figure 3: Example with a bottle of water. (a) The scene in front of the user. (b) The HoloLens UI that allows the user
to capture an image by pressing the camera button. (c) The semantic segmentation result. (d) The object detection
result with the confidence score. (e) After the processing is done on the server end, a user interface is shown via
HoloLens 2 to allow the user to select additional keywords and sentences. (f) The window after the keyword “price”
was pressed and then the first sentence “what is the price of water?” was pressed. The red colors in the object panel
and keyword panel indicate the items being selected, while the red color in the sentences panel refers to the sentence
being played.

sentence’s color to red to indicate that it is being spo-
ken, which is more friendly for people with listening
disability.

4 Overview

Figure 2 shows our application workflow. First, the user
wearing a HoloLens 2 takes a picture of the groceries
in front. The picture is then sent to the server (a PC in
our experiments) for processing: semantic segmentation,
object detection, sentence retrieval, and text-to-speech.
The user can select one or more keywords to quickly
locate the desired sentence and trigger the device to
speak it.

Although object detection can be directly employed
on the grocery items, detection failure may happen in
practice. To enhance the accuracy, we apply a semantic
segmentation as a preprocessing step. Semantic segmen-
tation is used to locate the potential object regions in
the original pictures taken by HoloLens 2. The poten-
tial object regions indicated by bounding boxes will be
regarded as the input for object detection. As for the
sentence retrieval stage, we add a runtime cache to store
the context data, that is, historical clicking data, to help
filter sentences. The text-to-speech engine will translate
the filtered sentences to audio files, which are sent as the
server’s response back to the device. After getting the
response, the main UI will be updated with the relevant
keywords and sentences for the user’s further interac-
tion.
Illustrative Example. Taking a water bottle as an exam-
ple as shown in Figure 3. The user presses the cam-
era button on the UI as shown in Figure 3b. When
the capturing is done, it will send a post request to the
server, which contains some parameters, for example,
male voice/female voice, speech speed, and speech vol-
ume. Via a web request, the server gets the captured
image. The server will run the semantic segmentation
algorithm to identify potential objects regions as shown
in Figure 3c. These regions will be processed iteratively.
For each iteration, the bounding box of one region will

be calculated. The object detection algorithm will be
employed to detect an object within the bounding box
as shown in Figure 3d. Here “water 0.94” means that
the water is detected with a 0.94 confidence score. The
confidence score is the product of box confidence score
and conditional class probability, which reflects the con-
fidence of localization and classification. The box confi-
dence score refers to the confidence of the box containing
an object, while the class probability is conditioned on
the bounding box containing an object Redmon et al.
(2016).

The detected objects’ names will be used for the sen-
tence retrieval process. After that, the server will pack-
age the data and reply to the HoloLens 2. After receiving
the data, the HoloLens 2 will parse the data, and update
the UI accordingly as shown in Figure 3e. When the
user presses one sentence, the sentence will be spoken
by the device. If desired, the user can also press one or
more keywords to quickly locate sentences via filtering
as shown in Figure 3f.

5 Technical Approach

5.1 AR Tool and User Interface

As aforementioned, our application runs on Microsoft
HoloLens 2. We use the Unity and the Mixed Reality
Toolkit (MRTK) to develop the application. HoloLens 2
supports hand tracking so the user interface is movable
in the 3D space. The user interface primarily includes
three parts: Entry UI, Main UI, and Network Setting UI.
We discuss the Main UI below and put details of the En-
try UI and the Network Setting UI in our supplementary
material.
Main UI. The Main UI is where the detected objects, key-
words, and sentences show. Figure 4 shows its screen-
shot. The top Detected Objects panel shows the detected
objects in the captured picture. The left Keywords panel
displays keywords related to the selected objects in the
Detected Objects panel and the Select Object panel. The
central Select Object panel lists all the objects that are
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Figure 4: Our AAC user interface. Refer to the main text
for the functionality description.

supported. In case the object detection fails and there-
fore no object is detected and automatically selected, the
user can still select any object in this panel manually.
To enhance understanding, we add a symbol in front of
each object’s name. The bottom Sentences panel shows
relevant sentences retrieved according to objects and key-
words. When the user presses one sentence, the applica-
tion will speak the sentence. The speech was generated
based on the voices settings, that is, male voice/female
voice, speed, and volume as set on the Entry UI.

At the bottom right, there are three buttons: camera,
back, and close. This camera button performs the same
action as the camera button in the Entry UI. The back
button is used to go back to the Entry UI. The close but-
ton is used to quit this application. We use a red color
to denote the selected objects, keywords, and sentences
in the Detected Objects panel, the Select Object panel, Key-
words panel, and Sentences panel. Note that the Detected
Objects panel, the Select Object panel, and the Keywords
panel support multi-selection.

5.2 Object Detection

As aforementioned, we take the image captured by the
HoloLens 2 as the input. The next step is to detect possi-
ble objects on the image.
Object Detection. Inspired by the GroceEye Bhimani
(2020), to perform object detection of grocery items, we
fine-tune a YOLOv5 model with the Freiburg Grocery
dataset. We use the processed Freiburg dataset which
can be downloaded from Github.
Semantic Segmentation. As noted, the images of the
training dataset in object detection are different from the
images captured by the HoloLens 2. The training dataset
is cleaner because the image size is small and contains
less background information. The images captured by
the HoloLens 2 are larger because of the FOV of its cam-

era. As a result, in most cases, directly running the object
detection model will yield inaccurate results. Therefore,
we propose a preprocessing method to improve object
detection precision. In our approach, we first apply a
semantic segmentation method (Deeplabv3+) before we
perform the object detection.
Object Detection in A Real Grocery Store. As ob-
ject detection is our approach’s entry point, we validate
whether it works in a real grocery store scenario. We
conducted a preliminary experiment in a real grocery
store. To validate the object detection robustness, we run
our application from different perspectives as shown
in Figure 5. Our proposed object detection approach
worked under different lighting conditions (Figure 5a
and Figure 5c) and in different angles (Figure 5b and Fig-
ure 5c), successfully detecting objects (e.g., soda, water)
taken in front, though missing a bag of rice at the side
which the user can select manually in an error handling
manner (Section 5.4).

Please refer to our supplementary material for details
of fine-tuning, object detection evaluation, semantic seg-
mentation, and the real grocery store object detection
experiments.

5.3 Relevant Sentence Retrieval

After detecting the objects on the image, our approach
retrieves relevant sentences that the user may want to
speak. As illustrated in Figure 6, relevant sentence re-
trieval can be split into six steps: 1) retrieving object
relevant sentences; 2) sentence stemming; 3) keyword
generation; 4) sentence grouping; 5) sentence filtering,
sorted by historical data; and 6) text-to-speech.
Overall Workflow of Sentence Retrieval. We inter-
viewed two professional AAC users, who have been us-
ing AAC devices for more than 3 years and also teaching
people to use AAC devices, for their opinion regarding
commonly asked questions in grocery shopping scenar-
ios. We abstracted them and made them extensible to
support adding other sentences easily. We devise a sen-
tence database to construct object relevant sentences.
Since the number of sentences with regards to every
object is large, it is hard for a user to locate the target
sentence. Therefore, we tokenize and stem sentences
to get keywords, which are used to group sentences.
Hence the user can select the target sentence through
selecting keywords. We also consider historical data,
that is, which sentences are selected by the user before,
to sort the sentences. As a result, the more times one sen-
tence is selected, the higher the precedence of showing
that sentence is. After the sentences are confirmed, the
text-to-speech engine will synthesize the corresponding
audios of speaking the sentences.
Sentence Dataset Schema Design. We define a
database of items to cover most conversation topics in
grocery store shopping scenario. Considering the ex-
pandability, intuitiveness, and readability, we apply an
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(a) Perspective 1’s result (b) Perspective 2’s result (c) Perspective 3’s result

Figure 5: Object detection by our application in a real store. The images were captured by a HoloLens 2 from different
perspectives. The labels of the detected objects are shown.

Figure 6: Sentence retrieval overview. Our method first retrieves all sentences containing the detected grocery names.
After removing stop words and punctuations, it extracts the stems of each sentence. We use the IDF algorithm to
obtain keywords. The sentences will then be categorized by the keywords. The user could click further keywords on
the UI, which will then trigger our approach to filter out any irrelevant sentence. Those sentences that pass the filter
will be processed by the text-to-speech engine to generate the audio files of the spoken sentences.

object-oriented programming methodology to design
this database. It is easy to imagine that most items share
some common topics. For example, customer may want
to ask about the price of some items, where to find what,
and whether something is on sale. Suppose that one
customer asks about the prices of cake or water. The
user might say “what is the price of cake?” or “what is
the price of water?”. In this case, the difference between
these two sentences is that the subject varies. Therefore,
we abstract these sentences to a simple format, that is,
what is the price of {name}, where {name} refers to one
specific item’s name here.

Think about another scenario. The customer may buy
several items, for example, cakes, and want to put these
items in one bag. In this situation, the user may say “put
all the cakes in one bag.”. Since cake is a countable noun,
it should use its plural form for grammar correctness.
Hence, we represent the plural nouns with {names}
rather than {name} for countable nouns. Besides that,
some items, such as milk, may be more complicated.
There are many kinds of milk, like skim milk, non-fat
milk, and whole milk. In this case, we define that these
items can be accompanied by adjectives. Each of the
adjectives can be applied before the item’s name.

Suppose the user selects two kinds of milk, for ex-
ample, skim milk and whole milk, and wants to ask a
question about the price of the whole milk. Without the
adjective, the abstracted sentence should be “what is the
price of this whole {name}?”. If they also wants to ask
about the price of the skim milk, the abstracted sentence
should be “what is the price of this skim {name}?”. It
is obvious that this design is redundant, so we abstract
this case as “what is the price of this {name}?”. As milk
can carry its adjectives, we regard one adjective and one
noun as one entity and then render the sentence “what
is the price of this {name}?” with this entity.

Figure 7 shows a sentence dataset schema example.
Topics lists all topics of any object. For example, Price is
a topic. It has two parameters: name and names. Name
denotes the singular format of one object, while names
denotes its plural format. Sentences lists all sentences of
this topic. Name in sentences will be replaced by one
object’s singular format. What denotes what this file is
about. Topics under milk shows what topics milk owns.
Adjectives depicts what adjectives can be used for this
object. The adjective will be placed in front of the name.
In this case, the name will be replaced by nonfat milk
once and also by 1% milk once. Sentences under milk
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indicates those sentences that are only owned by milk.
All sentences in the topics included in the object file
and all sentences that are within the object file will be
translated as the full set of sentences of this object. Our
supplementary material conains implementation details.
Sentence Dataset Generation. We use the YAML to
design a data structure to encode the item-relevant sen-
tences, but the data structure can not be employed di-
rectly. We need to design an engine to manipulate these
data. Since these files exhibit a parent-child inheritance
relationship, in other words, a hierarchical relationship,
we apply a Depth First Search algorithm to parse these
files. Since we take object names to retrieve relevant sen-
tences, we build a dictionary to store items (keys) and
sentences (values).

Besides the single item, we also consider two other
scenarios: one is about dual items, the other is about
many (more than two) items. We refer these cases as
non-single items. For the dual items’ scenario, follow-
ing the same schema defined before, we use {one} and
{two} as the parameters. Therefore, the sentences will
contain two placeholders, {one} and {two}. One sample
sentence is “can you put the {one} and {two} in one
bag?”. For the many items’ scenario, we do not define
any parameters. Instead, we use these groceries to refer
them as a whole. One sample sentence is “can you put
these groceries in one bag?”.

We apply a preprocessing step to speed up the re-
sponse during real requests. For each item, we calculate
a number of keywords with the IDF algorithm. These
keywords can be used to filter the sentences. One key-
word forms a group in which all sentences have the
keyword. For the many items’ scenario, we calculate its
keywords. However, for the dual items’ scenario, we
cannot get the keywords before the request because the
sentences are neither set nor deducible.
Keywords Generation for Locating Sentences. As we
already have the sentences of one or more items, the
next step is to enable the user to quickly select the target
sentence. First, for every sentence, we tokenize the sen-
tence, removing punctuations and stopwords. In NLP,
stopwords refer to those words that do not add much
meaning to a sentence, such as “a” and “the”. After that,
we get the stem for every sentence. Then, we vectorize
the sentences based on the occurrences of words. The
result will be a count matrix. We apply the IDF algo-
rithm to get the words with high frequency. In NLP, IDF
means inverse document frequency. IDF is a common
term weighting schema in information retrieval. A token
with a higher IDF weight has a lower frequency, and vice
versa. In our approach, we use the top-ten lower IDF
weight tokens as the keywords. It will split sentences
into several groups.
Sentence Filtering. After we get both the object name(s)
and the keywords, we are able to filter the sentence
database. First, we filter the subset of the entire sentence
dataset using the object name(s). Sentences irrelevant

Figure 7: Sentence dataset schema example. We use
include to indicate the predecessor-successor relation be-
tween two files. The including file (the successor) will
own all attributes of the included file (the predecessor).

with the objects will be removed, while those relevant
will be kept. Then, we filter the subset again with the key-
words. After that, we obtain several target sentences that
the user may prefer. In order to adapt to the user and per-
sonalize our approach, we record the sentences the user
has selected before. This data is a kind of prior knowl-
edge. When the user selects the same objects and the
same keywords next time, the sentences will be sorted
according to this data. The more times a sentence has
been selected, the higher precedence of appearance the
sentence is given.

Suppose there are three sentences (S1, S2, and S3)
listed on the sentences panel for a specific input when
our application runs for the first time. All sentences
carry the same frequency 0. Suppose the sentences are
shown in the order S1, S2, and S3, and the user selects
S2. If our application gets the same input (with the same
selected objects and selected keywords) next time, the
sentences will be shown in the order S2, S1, and S3.
Text-to-Speech. There are many off-the-shelf solutions
for performing text-to-speech. Our approach uses a light-
weight offline solution named pyttsx31. It supports male
and female voices, changing the speaking speed, and
changing the speech volume. This solution outputs au-
dio files in wav format. In order to reduce the audio
file size, we convert the format from wav to ogg. In our
experiments, for the same data and same sample rate,
the file size in wav file is about 79KB, while the corre-
sponding ogg file is just 9KB. It costs less time to transfer
the smaller files from the server to the headset.

5.4 Error Handling

Computer vision techniques such as semantic segmenta-
tion could fail in some circumstances, for example, due
to motion blur caused by the user’s head movement or
varying light conditions. We devise our application to
tolerate such situations if semantic segmentation or ob-
ject detection fails. In such situations, our approch leaves
the Detected Objects panel empty and fill the sentences

1https://pypi.org/project/pyttsx3/
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(a) Input (b) Segmentation (c) Main UI

Figure 8: Putting two items in separate bags. (a) The
image captured. (b) The object detection result. (c) The
main UI showing that the coffee and water were detected,
and the separate and bags keywords were selected by the
user. The target sentence Can you put the water and the
coffee in separate bags? was selected and spoken.

(a) Input (b) Object detection (c) Main UI

Figure 9: Removing one item from two items. (a) The
image captured. (b) The object detection result. (c) The
main UI showing that the water and soda were detected,
and the remove keyword was selected by the user. The
target sentence Please remove soda but keep water. was
selected by the user and spoken.

panel with sentences with no object specification. The
user can select listed objects in the Select Object panel to
retrieve relevant sentences.

6 Experiments and Results

6.1 Implementation

We developed a prototype with a PC installed with Unity,
Microsoft Visual Studio 2019, Anaconda3, and PyCharm
2021.2.3. The web service also runs on this PC. The
prototype runs on a Microsoft HoloLens 2. For fine-
tuning the YOLOv5 object detection model, we used a
PC with a Nvidia GTX 3090 graphics card.

6.2 Different Scenarios

We created four scenarios to simulate potential sentences
to say at a grocery store cashier, which are described as
follows.
Putting Two Items in Separate Bags. Figure 8 shows
this scenario. One bottle of water and one bottle of coffee
are on the desk. The objective is to say “can you put the
coffee and the water in separate bags?”. Based on the
captured image, our application managed to detect the
water and coffee, and retrieved the relevant sentence.
The user clicked on this sentence to trigger the device to
say it.

(a) Input (b) Object detection (c) Main UI

Figure 10: Asking about item prices. (a) The image
captured. (b) The object detection result. (c) The main
UI showing that the coffee, water, and soda were detected,
and the prices keyword was selected by the user. The
target sentence What are the prices of these groceries? was
selected and spoken.

(a) Input (b) Object detection (c) Main UI

Figure 11: Object detection failure. (a) The image cap-
tured. (b) The object detection result. It did not succeed
as nothing was segmented in the previous step. (c) The
main UI showing that the chocolate and have keywords
were selected by the user. The target sentence Do you
have chocolate? was selected and spoken.

Removing One Item From Two Items. Figure 9 shows
this scenario. One bottle of soda and one bottle of water
are on the desk. The goal is to ask the cashier to remove
the soda but keep the water. Based on the captured im-
age, the application detected both items. Two relevant
sentences were retrieved. The first sentence “please re-
move soda but keep water.” was selected by the user
and spoken by the device.

Asking about Item Prices. Figure 10 shows this sce-
nario. One bottle of soda, one bottle of coffee, and one
bottle of water are on the desk. The objective is to ask
about the item prices. Based on the captured image,
our application detected all the objects in the window.
The sentence “what are the prices of these groceries?”
was retrieved, selected by the user, and spoken by the
application.

Object Detection Failure. Figure 11 shows this sce-
nario. One bag of chocolate is on the desk. The objective
is to ask if chocolate is available. Our application failed
to detect this object based on the captured image. How-
ever, the user manually selected the keywords “choco-
late” and “have” in the panels. Three relevant sentences
were retrieved, of which the first sentence “do you have
chocolate?” was selected by the user and spoken by the
application.
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7 Case Studies

As disability simulations might introduce negative
stereotypes and fail to highlight infrastructural and so-
cial challenges Bennett and Rosner (2019), we recruited
people with expressive language difficulties for case
studies. According to the American Speech-Language-
Hearing Association, about 0.60% of the population use
AAC 2. Inspired by AACrobat Fiannaca et al. (2017), we
formed case studies where we observed a small group of
people with expressive language difficulties who used
HoloAAC to complete tasks. We then obtained the users’
feedback. According to the local standards for sample
size in computer-human interaction studies Caine (2016),
considering the COVID-19 pandemic, the study setting,
and the availability of participants, we recruited 7 par-
ticipants. This sample size follows the highly expert
recommendations ranging from 4 ± 1 to 10 ± 2 Caine
(2016). P1, P2, P3, and P4 are local and came to our lab
for their case studies. P5 lives in another state, which is
about 400 miles away from our lab. P6 and P7 are also
non-local and they come from an aphasia rehabilitation
center in another state, which is about 100 miles away
from our lab.

Since Proloquo2Go3 (Figure 12) is a popular AAC ap-
plication on iPhone and iPad for people with expressive
language difficulties DongGyu et al. (2014), we let par-
ticipants complete the same tasks using it as a baseline
to investigate the usability and feasibility of our appli-
cation. Considering the comfort, IRB regulation, safety,
convenience, and privacy of AAC users, we conducted
the case studies in a simulated environment for P1, P2,
P3, and P4. We used a private room inside a lab and
set up an environment similar to a grocery store cashier.
As for P5, we drove to his home to conduct the case
study. Similarly, we drove to the rehabilitation center to
conduct the case studies for P6 and P7.

7.1 Participants

We recruited 7 participants for the case studies, five (P1,
P2, P3, P4, and P5) of whom are AAC users with 5˜20
years AAC experience, and two (P6 and P7) of whom
have aphasia and use phone typing to help themselves
with speaking. P1, P2, P3, P4, and P5 used AAC devices
mostly at home, in school or work, and in the commu-
nity. P1, P2, P3, and P4 are local, and they came to the lab
for the case studies. P5, P6, and P7 are non-local. P5 lives
in another state, and P6 and P7 are from a rehabilitation
center in another state. Participant ages ranged from 18
to 74 years old. Education demographics show partici-
pants who received less than a high school diploma to a
doctorate-level degree. Three participants were working
full-time, two were unable to work, one was looking for
work, and one was retired.

2https://www.asha.org/njc/aac/
3https://www.assistiveware.com/products/proloquo2go

P1 (Female, Proloquo4Text, 5 years of AAC experi-
ence). P1 is an AAC user. She is blind in her right
eye. She is proficient in using iPhone and iPad to com-
municate. She has used Proloquo4Text4 for about 5 years.
She types on a phone or a tablet to communicate in daily
life. She has good physical coordination and motion
control ability with her fingers. She does not have any
VR/AR experience.
P2 (Male, ASL Interpreter, 5 years of AAC experience).
P2 is an AAC user. He is deaf. He used to use a tele-
typewriter to communicate with people online. Then
he started to use a webcam which allows him to com-
municate face to face with others in ASL. In his daily
life, he uses an ASL interpreter or type to communicate
with others. Unlike P1, He has prior experience with VR
headsets and AR apps.
P3 (Female, EZKeys, 20 years of AAC experience). P3
is an AAC user. She is a non-native English speaker. She
not only types on phones and computers but also uses
an AAC tool called EZKeys5 for 20 years. She does not
have any experience with VR/AR.
P4 (Male, Proloquo2Go, 11 years of AAC experience).
P4 is an AAC user. Due to a lower-limb disability, he
uses a mobile scooter for daily transportation. He has
been using Proloquo2Go iPad and iPhone Apps for 11
years. He has prior VR experience but no AR experience.
P5 (Male, NovaChat 86, 5 years of AAC experience).
P5 is an AAC user. He lives with his family and uses a
symbol-based AAC device NovaChat 8 for daily com-
munication (e.g., home and shopping). He did not use
Proloquo2Go before the case study. He does not have
prior VR/AR experience.
P6 (Male, Cellphone/iPad, 0 years of AAC experi-
ences). P6 has aphasia. He usually communicates
with others through his cellphone or iPad. He did not
use Proloquo2Go before the case study. He has some
experience in VR games.
P7 (Male, Cellphone, 0 years of AAC experiences). P7
has aphasia and hemiplegia. He is not able to move his
right hand because of hemiplegia. He is used to typing
on his cellphone to express his thoughts. He neither
used Proloquo2Go nor AR/VR devices.

7.2 Procedure

Control Groups. We used two control groups: Prolo-
quo2Go Symbol (Figure 12a) and Proloquo2Go Typing
(Figure 12b) since these two modes are frequently used
by AAC users. In our case study, Proloquo2Go runs on
an iPad.
Warm-up Session. We conducted a warm-up session to
get participants familiarized with the basic operations
of Proloquo2Go and our application as well. To let them
get ready for the formal case study tasks, the warm-up

4https://www.assistiveware.com/products/proloquo4text
5http://www.techaccess4you.com/ez-keys-software/
6https://store.prc-saltillo.com/novachat-8-active-f19015-30
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Table 1: Target sentences used for the six tasks. To avoid confusion, we used bag in Proloquo2Go Typing and
HoloAAC, and plastic bag in Proloquo2Go Symbol as the bag symbol in Proloquo2Go was not a plastic bag. Also,
as Proloquo2Go did not have the plural form symbol of bag and soda, we used the singular form. Besides, in
Proloquo2Go Symbol, we omitted the punctuations of the target sentences for simplicity.

Task Item(s) Proloquo2Go Typing and HoloAAC Proloquo2Go Symbol
1 water What is the price of water? What is the price of water
2 soda Do you have six-packs of soda? Do you have six-packs of soda
3 coffee Do you have any more coffee? Do you have any more coffee
4 soda Put all the sodas in one bag. Put all the soda in one plastic bag
5 water, soda Can you put the water and soda in one bag? Can you put the water and soda in one plastic bag
6 water, coffee, soda Can you put these groceries in separate bags? Can you put these groceries in separate plastic bag

Table 2: Task completion times (Unit: second) of the participants. HL, PS, and PT denote the HoloAAC, Proloquo2Go
Symbol, and Proloquo2Go Typing conditions.

Participant Task 1 Task 2 Task 3 Task 4 Task 5 Task 6
HL PS PT HL PS PT HL PS PT HL PS PT HL PS PT HL PS PT

P1 18 63 20 12 32 19 30 47 16 21 90 15 11 84 20 18 81 23
P2 40 66 9 12 65 8 40 24 9 32 86 14 52 102 18 27 93 23
P3 33 84 34 15 137 22 78 48 23 39 147 23 15 147 30 39 114 43
P4 10 92 7 35 47 21 43 41 5 60 113 7 14 107 9 10 91 16
P5 27 134 23 15 116 32 33 143 27 33 214 24 14 190 38 19 211 51
P6 39 153 81 26 75 82 38 214 64 27 245 47 7 256 64 15 105 123
P7 12 156 16 31 206 29 35 100 22 30 221 50 41 84 38 17 119 57

(a) Proloquo2Go Symbol (PS) (b) Proloquo2Go Typing (PT)

Figure 12: Screenshots of Proloquo2Go Symbol and Typ-
ing.

session comprised of two tasks. The two warm-up tasks
were the same, except that we assisted them to finish
the first task while they finished the second task inde-
pendently. For counterbalancing, the participant did
the tasks in different orders. For example, if the partic-
ipant did Proloquo2Go Symbol, Proloquo2Go Typing,
and HoloAAC for the first task, the participant would
do the second warm-up task in a different order: e.g.,
HoloAAC, Proloquo2Go Symbol, and Proloquo2Go Typ-
ing.
Case Study Tasks. As shown in Table 1, we designed
6 tasks with different target sentences, which were also
given with counterbalancing. Our application tracked
the time spent on different operations (e.g., clicking key-
words). However, as Proloquo2Go does not have a tim-
ing function, we employed an external timer to count
the time for the Proloquo2Go Symbol and Proloquo2Go
Typing conditions. For Proloquo2Go Typing, we ended
the timer once the user has typed the entire sentence.
For Proloquo2Go Symbol, we ended the timer once the
user has typed the last symbol.
Questionnaire. After the last Proloquo2Go Sym-

Table 3: Task completion times analysis. HL, PS, and
PT denote the HoloAAC, Proloquo2Go Symbol, and
Proloquo2Go Typing conditions. SD denotes standard
deviation.

Participant Metrics HL PS PT

P1 Mean 18.33 66.08 18.82
SD 6.89 23.15 3.06

P2 Mean 33.83 72.78 13.45
SD 13.66 27.98 5.98

P3 Mean 36.50 113.08 29.21
SD 23.11 39.85 8.40

P4 Mean 28.67 81.85 10.90
SD 20.68 30.64 6.47

P5 Mean 23.50 167.98 32.58
SD 8.67 42.07 10.81

P6 Mean 25.33 174.60 76.80
SD 12.60 75.20 25.93

P7 Mean 27.67 147.58 35.45
SD 11.02 56.47 15.93

bol/Typing and HoloAAC tasks were done, we asked
the participant to finish a questionnaire to evaluate
the workload. We used the NASA Task Load Index
(TLX) Hart (1986) to get the subjective workload assess-
ment. It has six questions in total, which are answered
using a 7-Likert scale.

7.3 Result Analysis

Table 2 shows the task completion times of the partici-
pants. Table 3 shows the mean and standard deviation
of the completion times. We can see that P1, P2, P3, and
P4 show a more stable ability to type, probably because
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Figure 13: NASA TLX workload assessment rating plots. Each box and whisker plot comprises six-number summary
of the rating: minimum, lower quartile (Q1), median (line), mean (×), upper quartile (Q3), and maximum. Please
refer to Section 7.4 for the findings and explanations.

Table 4: Mean completion time for each task with
HoloAAC.

Task 1 2 3 4 5 6
Mean Time(s) 26 21 42 35 22 21

they type frequently in their daily life. During the case
study, they sometimes chose the autocomplete words
supplied by the tablet’s input keyboard to speed up their
input; so sometimes they did not type the whole word.

P1 took similar time using HoloAAC or Proloquo2Go
Typing. The completion times with HoloAAC are less
than those with Proloquo2Go Typing in 4 out of 6 tasks
(Task 1, 2, 5 & 6).

P2 took more time using HoloAAC than Proloquo2Go
Typing. We found that it was hard for him to quickly
manage to click the target sentence in AR. It took him
many attempts to click one sentence to make it speak.

P3 took slightly more time using HoloAAC than Pro-
loquo2Go Typing on average. However, she finished 4
out of 6 tasks (Task 1, 2, 5 & 6) faster using HoloAAC.

P4 took more time using HoloAAC than Proloquo2Go
Typing probably due to his many years of experience
with Proloquo2Go but no experience with AR.

P5 took less time in 3 out of 6 tasks (Task 2, 5 & 6) us-
ing HoloAAC than Proloquo2Go Typing. The mean and
SD show that using HoloAAC is faster than using Prolo-
quo2Go Symbol or Typing. Proloquo2Go and HoloAAC
are both new to him. The data shows that he becomes
familiar with HoloAAC faster than with Proloquo2Go.

P6 took less time in all 6 tasks using HoloAAC com-
pared to using Proloquo2Go Symbol or Proloquo2Go
Typing. From the SD and mean, using HoloAAC is
faster than using Proloquo2Go Symbol or Typing.

P7 took less time in 3 out of 6 tasks (Task 1, 4, & 6)
using HoloAAC than Proloquo2Go Typing. From the
SD and mean, using HoloAAC is faster than using Pro-
loquo2Go Symbol or Typing. Because of hemiplegia, P7
felt hard in clicking the sentence precisely and gradually

became frustrated as the case study went by. As a result,
in the NASA TLX, he gave the same ratings for all ques-
tions under HoloAAC (7), Proloquo2Go Symbol (4), and
Proloquo2Go Typing (1) to finish the case study quickly.

We note that the participants generally finished the
tasks much faster using HoloAAC than using Prolo-
quo2Go Symbol, even for P1 and P4 who are experienced
with Proloquo2Go but not with AR. It seems that choos-
ing keywords/symbols to finish a sentence exactly may
take more time than typing especially for experienced
typers.

Table 4 shows the mean completion time for each task.
We can see that Task 3 and Task 4 are the top-two in time
consumption as they required the participant to click
keywords in AR. More AR mid-air interactions gener-
ally resulted in more time needed. Our supplementary
material contains the detailed breakdowns of the times
spent on each operation in each task by each participant.

7.4 User Feedback

General Feedback. About our HoloAAC application,
all participants said that they liked the automatic pop-
ping up of relevant keywords and sentences with respect
to the objects detected.

P1 liked the camera feature which could help her ex-
press her thoughts faster. She disliked that she needed
more attempts to interact with the AR interface because
she was blind in her right eye.

P2 liked the way how sentences can be automatically
generated. He disliked that it was sometimes hard to
click sentences in AR. His unfamiliarity with AR glasses
posed some challenges for him in completing some tasks,
but it also made him feel very fulfilled after completing
the tasks.

P3 liked the feature of automatically detecting objects
and generating sentences. She thought that the response
to user input could improve, and she wanted the mid-
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Table 5: NASA TLX workload assessment ratings given by the participants. HL, PS, and PT denote the HoloAAC,
Proloquo2Go Symbol, and Proloquo2Go Typing conditions. Please refer to Section 7.4 for the findings and explana-
tions.

Participant
Mental

Demand
Physical
Demand

Temporal
Demand

Performance
Dissatisfaction Effort Frustration

HL PS PT HL PS PT HL PS PT HL PS PT HL PS PT HL PS PT
P1 4 5 1 3 1 1 4 5 2 3 3 1 3 5 1 1 1 1
P2 5 6 1 5 6 1 2 6 1 4 3 1 5 6 1 2 6 1
P3 7 2 1 7 2 2 3 1 1 3 1 1 7 2 1 2 2 1
P4 2 6 2 4 3 2 2 6 5 2 3 2 3 7 3 3 5 4
P5 7 7 1 7 4 1 2 7 1 4 1 1 7 7 1 7 7 6
P6 3 3 3 5 4 3 5 3 3 4 4 3 3 5 4 3 2 4
P7 7 4 1 7 4 1 7 4 1 7 4 1 7 4 1 7 4 1

air clicking to be smoother. During the case study, she
sometimes made multiple attempts to click target sen-
tences. She also felt accomplished after completing all
the tasks. She suggested that our application could also
be extended for use in hospitals.

P4 liked the speed and efficiency of HoloAAC com-
pared to other AAC products. He made three comments.
First, it would be powerful if our approach could be
extended to distinguish subtle differences such as colors
and sizes between items. Second, it would be helpful
to take pictures and generate speeches almost instantly.
As an example, if he passed by a cute dog on street, he
would want HoloAAC to instantly say “cute dog” with
minimal or no selection needed. Third, he thought that
HoloAAC could be extended to provide personalized
response options by analyzing conversations in a cer-
tain context, for example, when he is chatting with a
friend, sentences about his recent personal stories could
be retrieved.

P5 liked the new interaction approach. He felt excited
when he managed to click the expected sentence. He dis-
liked the interaction accuracy because it took him much
time and effort to click. He suggested that HoloAAC can
be used in school.

P6 was extremely eager to learn and use HoloAAC.
He was enthusiastic about this new technology since it
can help him communicate with others. On the other
hand, HoloAAC can save his time thanks to its ability
to recognize objects, because of which he did not have
to memorize texts. He hoped that HoloAAC may be
enhanced in terms of interaction accuracy. Additionally,
he suggested that HoloAAC can be used extensively in
parks, shops, and schools.

P7 did not like HoloAAC. He had a hard time trying
to click sentences due to his hemiplegia. He was only
able to control his left hand to perform clicking actions.
He suggested to make the interaction more accurate
and sensitive so that it can benefit more people in the
workplace.
NASA TLX. We used NASA TLX to measure the work-
load. It measures the workload from six aspects: mental
demand, physical demand, temporal demand, perfor-
mance dissatisfaction, effort, and frustration. Table 5

shows the original ratings and Figure 13 shows the rat-
ing plots using the box and whisker plot. 1 represents
very low and 7 represents very high. For each aspect,
the lower the rating is, the better.

For P1, P2 and P4, in general, HoloAAC is better than
Proloquo2Go Symbol in all six aspects. For P1 and P2,
they performed very well with Proloquo2Go Typing
probably because they have about 5 years of AAC experi-
ence and are proficient at typing (P1 used Proloquo4Text
and P2 used a teletypewriter). For P4, HoloAAC is com-
parable to Proloquo2Go Typing. For P3, she gave high
ratings in mental demand, physical demand, and effort
for HoloAAC as she experienced difficulties in interact-
ing with the AR interface and she had strong experience
(20 years) with traditional AAC devices. For P5, he gave
high ratings on mental demand, physical demand, effort,
and frustration to HoloAAC. The reason is that because
of his myopia, he often adjusted his glasses to try to see
the holographics clearly. Besides that, during the case
study, we found that he needed many attempts to click
the expected sentence. For P6, he gave similar ratings be-
cause Proloquo2Go and HoloAAC are both new to him.
For P7, he gave the highest ratings to HoloAAC, mid-
dle ratings to Proloquo2Go Symbol, and lowest ratings
to Proloquo2Go Typing. The reason is that he is only
able to use his left hand to complete tasks. Compared
to other participants, mid-air AR interactions took him
more efforts and led to physical fatigue more easily.

• Mental Demand. The average rating of HoloAAC
is 5; and 4 out of 7 ratings are greater than 4. The
reason is that participants needed to focus on the
AR panel to be able to interact. On the other hand,
all 7 participants didn’t use HoloLens 2 before, but
they were more or less experienced in Proloquo2Go
or similar devices/applications. That’s why they
gave a high rating to the mental demand.

• Physical Demand. The average rating of
HoloAAC is 5.43, which is even higher than that
of the mental demand. 5 out of 7 ratings are greater
than 4. The reason is that the task was simple to
understand, but the interaction required motion
control. Some of the participants had disabilities
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besides speaking disabilities, which made the phys-
ical demand even higher. Another reason is, as Plas-
son et al. Plasson et al. (2020) pointed out, mid-air
interaction that HoloLens uses is less accurate than
2D touch and tends to result in physical fatigue.

• Temporal Demand. The average rating of
HoloAAC is 3.57, a little better than neutral (4); and
5 out of 7 ratings are less than or equal to 4. The
reason is that participants didn’t feel stressful when
performing the tasks. On the other hand, few in-
teractions were needed to complete the tasks using
HoloAAC.

• Performance Dissatisfaction. The average rating
of Holo-AAC is 3.86, a little better than neutral (4). 6
out of 7 ratings are less or equal to 4. Note that only
P7 gave a high rating (7) for this aspect. The reason
is that P7 did attempt many times to interact with
the AR interface because of his hemiplegia. We can
say most participants tended to be satisfied with
their performance.

• Effort. The average rating of HoloAAC is 5, which
is equal to the mental demand rating. 4 out of 7
ratings are greater than 4. The reason is that par-
ticipants had other disabilities in eyes or motion
control, which required more effort.

• Frustration. The average rating of HoloAAC is
3.57, a little better than neutral (4). 5 out of 7 ratings
are less than 4. Most participants didn’t feel high
frustration when performing tasks using HoloAAC.

In all six aspects, participants gave lowest ratings to
Proloquo2Go Typing. That is because 26-keys keyboard
based typing is common, and the participants were more
or less experienced in it.

7.5 Limitations and Future Work

Due to the small AAC population, it was challenging to
recruit many participants to evaluate our application. As
a result, we are not able to draw statistically meaningful
conclusions.

We only demonstrate HoloAAC for simple grocery
scenarios. As scene understanding techniques continue
to advance, more sophisticated scene and contextual
information could be analyzed for driving an AR-based
AAC application. For example, the scene background
could help determine where the user is situated (e.g.,
grocery store, bookstore, music store), providing hints
for recognizing objects and retrieving sentences relevant
to the current scene type. Besides, based on egocentric
computer vision techniques, the application could also
deduce the current interactions between the user and the
surrounding objects or people so as to retrieve relevant
sentences to enhance communications.

Another possible extension is to attach a 4G/5G com-
munication module to enable HoloLens to work with-
out Wi-Fi, which would allow our application to be em-
ployed in more scenarios such as supporting outdoor
activities. Besides, due to the reality that a standard
disabled experience rarely plays out in practice Hof-
mann et al. (2020), it would be helpful to consider multi-
ple disabilities so as to better accommodate AAC users.
For example, for those people with both expressive lan-
guage difficulties and motion control disability, an in-
teraction mechanism based on eye-tracking rather than
hand-clicking is more accessible. Moreover, with the
emergence of ChatGPT and GPT-4, it would be interest-
ing to integrate them into our approach: after HoloAAC
detects objects and the user selects some keywords,
ChatGPT/GPT-4 can generate sentences to be selected,
which are spoken through a text-to-speech module.

For those users who did not use HoloLens before, it
might take them some time to get familiar with the AR
interactions. In our case study, some participants expe-
rienced difficulty in clicking the keywords or sentences
shown in augmented reality. We believe that improving
the hand tracking precision would make AR-based AAC
applications more practical and favorable. Alternatively,
instead of using mid-air interactions, using a controller
(e.g., the clicker of HoloLens 1) could make interaction
easier especially for users with body movement disabili-
ties.
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QC, Canada) (UIST ’17). Association for Computing
Machinery, New York, NY, USA, 201–203. https:

//doi.org/10.1145/3131785.3131813

18

https://doi.org/10.1109/SENSORS47087.2021.9639819
https://doi.org/10.1109/SENSORS47087.2021.9639819
https://doi.org/10.1145/3131785.3131813
https://doi.org/10.1145/3131785.3131813

	Introduction
	Related Work
	Context-Aware AAC
	Computer Vision-based AAC
	Computer Vision for Non-AAC Users
	Augmented Reality for AAC
	User Interface and Interaction for AAC

	Interview with AAC Users
	Overview
	Technical Approach
	AR Tool and User Interface
	Object Detection
	Relevant Sentence Retrieval
	Error Handling

	Experiments and Results
	Implementation
	Different Scenarios

	Case Studies
	Participants
	Procedure
	Result Analysis
	User Feedback
	Limitations and Future Work


