
Maintainability of the Linux Kernel 
ABSTRACT 

We have examined 365 versions of Linux.  For every version, we counted the number of 

instances of common (global) coupling between each of the 17 kernel modules and all the other 

modules in that version of Linux.  We found that the number of instances of common coupling 

grows exponentially with version number.  This result is significant at the 99.99% level, and no 

additional variables are needed to explain this increase.   On the other hand, the number of lines 

of code in each kernel modules grows only linearly with version number.   We conclude that, 

unless Linux is restructured with a bare minimum of common coupling, the dependencies 

induced by common coupling will, at some future date, make Linux exceedingly hard to 

maintain without inducing regression faults. 
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1.  INTRODUCTION 

Numerous articles in newspapers and popular magazines point out the many strengths of Linux, 

the open-source operating system [1].  Linux is also increasingly featured on television news 

programs.  Typically, such items include an interview with a former user of Microsoft Windows 

who proudly asserts that Linux fails far less frequently on his or her PC than Windows did.  

Occasionally a magazine article might mention that it is important for one to install a version of 

Linux that is appropriate for one’s PC or that it is helpful to know a Linux guru, but most media 

coverage is largely uncritical of Linux.   
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A cynic might claim that these articles are just a manifestation of a worldwide campaign 

of “Microsoft bashing.”  A statistician would surely point out that the articles are anecdotal in 

nature and can hardly be considered to constitute scientific evidence.  Nevertheless, the sheer 

volume of material praising Linux in the popular press and on television is difficult to ignore. 

Turning now to software experts, their adulation of Linux is somewhat more muted.  For 

example, in the May 1999 issue of IEEE Computer, Ken Thompson (co-creator of UNIX) wrote: 

“I don’t think [Linux] will be very successful in the long run.  I’ve looked at the source and there 

are pieces that are good and pieces that are not.  A whole bunch of random people have 

contributed to this source, and the quality varies drastically.  My experience and some of my 

friends’ experience is that Linux is quite unreliable.  Microsoft is really unreliable but Linux is 

worse.  In a non-PC environment, it just won’t hold up.  If you’re using it on a single box, that’s 

one thing.  But if you want to use Linux in firewalls, gateways, embedded systems, and so on, it 

has a long way to go” [2]. 

A key phrase in Thompson’s remarks is “I’ve looked into the source.”  That is, a critical 

difference between Linux and Windows is that Linux is open-source software—anyone can 

study the source code and comment on (say) its quality.   

It has been claimed that open-source software is superior to proprietary software.  One 

reason given for this assertion is that open-source software can be improved by anyone who has 

a copy of the program.  A second reason frequently put forward is the fact that the name of the 

author of a module is usually incorporated into the source code; public knowledge of who wrote 

the software is viewed as an inducement for writing quality code.  Finally, in the case of products 

like Linux, yet another reason given is that most of the code has been written by volunteers 

working on their own time, as opposed to employees battling against management-imposed 
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deadlines.  On the other hand, Thompson’s statements that “there are pieces [of Linux] that are 

good and pieces that are not” and “the quality varies drastically” cannot be disregarded. 

Notwithstanding Ken Thompson’s stature within the software engineering community, in 

a certain sense his opinion of the quality of Linux is as anecdotal as the views expressed by 

Linux users in press interviews.  After all, Thompson apparently did not use a metric (such as 

number of faults detected) to measure quality.  Furthermore, it is not clear whether his opinion is 

based on an exhaustive study of all of Linux, or on a sample of the code.   

This paper presents results from an examination of available subversions of versions 1.0 

through 2.3 of Linux, a total of 391 subversions.  Table I summarizes this data set.  In Table I 

and the throughout this paper, the term “module” refers to a file containing executable C code 

(that is, a file with the suffix .c, as opposed to, say, header file with suffix .h). 

Table I.  Summary of Linux versions and subversions. 

Version # # of Subversions LOC (Modules) # of Modules Total # of Files 
Ver. 1.0 1 141,255 282 572 
Ver. 1.1 36 141,068 282 561 
Ver. 1.2 14 234,704 400 909 
Ver. 1.3 100 258,621 431 991 
Ver. 2.0 40 563,104 779 2,018 
Ver. 2.1 130 580,698 785 2,059 
Ver. 2.2 18 1,310,807 1,891 4,599 
Ver. 2.3 52 1,385,026 1,946 4,721 
Total 391    

 

We have examined one aspect of the maintainability of the Linux kernel.  Specifically, 

we have measured the common coupling in successive versions of the Linux kernel, and 

observed that the common coupling increases exponentially.  We conclude that if this trend 

continues, the maintainability of Linux will degrade in the future. 



Maintainability of Linux Kernel.  July 27, 2001 Page 4  

Section 2 discusses dependencies, and common coupling and its effect on 

maintainability.  Section 3 describes how we counted instances of common coupling, and our 

results are presented in Section 4.  Our conclusions appear in Section 5. 

2. DEPENDENCIES 

The coupling between two units of a software product is a measure of the degree of interaction 

between those units [3] and, hence, of the dependency between the units.  In their 1974 paper, 

Stevens, Myers, and Constantine outlined six levels of coupling. These were presented as an 

ordered list by Page-Jones [4], who gave three principal reasons why low coupling between 

modules is desirable: (1) fewer interconnections between modules reduce the chance that a fault 

in one module will cause a failure in other modules; (2) fewer interconnections between modules 

reduce the chance that changes in one module cause problems in other modules, which enhances 

reusability; and (3) fewer interconnections between modules reduce programmer time in 

understanding the details of other modules. Various modifications and extensions to these levels 

of coupling have been proposed over the past 25 years [4–6].  Although all types of coupling are 

sometimes useful in design, it has been demonstrated that some types have greater potential for 

introducing faults into software [7–10]. Because some types of coupling are more likely to lead 

to faults than others, it is widely accepted that some coupling types should be limited in use. 

In the 11-level categorization of [5], the two lowest levels of coupling are call coupling 

and scalar data coupling.  There is call coupling between modules P and Q if P calls Q or Q 

calls P, but there are no parameters, common variable references, or common references to 

external media between P and Q.  There is scalar data coupling if a scalar variable in P is 

passed as an actual parameter to Q and it is used for computation purposes (“C-use”), but not for 

control purposes (“P-use”) or indirect purposes (“I-use”).   This paper considers the classical 
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coupling category common coupling, which corresponds to level 10, global coupling, in the 

categorization of Offutt et al. [5].  Modules P and Q are global coupled if P and Q share 

references to the same global variable.   

If there were no couplings at all in a software product then that product would consist of 

one large module, so some amount of coupling clearly is needed. That is, coupling is a necessary 

consequence of modularization. However, where there is coupling between two modules, there is 

some degree of dependence between those modules.   The resulting degree of dependence 

between two modules may be high (“strong coupling”) or low (“weak coupling”).  A well-

designed software product makes considerable use of weak coupling and avoids, as far as 

possible, strong coupling.  For example, a well-designed product utilizes coupling categories 

such as call coupling and scalar data coupling, and eschews common coupling as much as is 

feasible [3, 11].   

It has been shown [12] that coupling is related to fault-proneness.  Coupling has not yet 

been explicitly shown to be related to maintainability.  On the other hand, we do not yet have a 

precise definition of maintainability, and therefore there are no generally accepted metrics for 

maintainability.  Nevertheless, if a module is fault-prone then it will have to undergo repeated 

maintenance, and these frequent changes are likely to compromise its maintainability.  

Furthermore, these frequent changes will not always be restricted to the fault-prone module 

itself; it is not uncommon to have to modify more than one module to fix a single fault.  Thus, 

the fault-proneness of one module can adversely affect the maintainability of a number of other 

modules.  In other words, it is easy to believe that strong coupling can have a deleterious effect 

on maintainability. 
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As previously mentioned, in this paper we consider common coupling.  There are three 

reasons why we did this.  First, it was shown in a case study on the maintainability of 

multiversion real-time software that the overwhelming preponderance of strong coupling 

introduced during the maintenance phase was common coupling [13].   Second, there is 

considerable controversy regarding what precisely constitutes weak or strong coupling, let alone 

which categorization of coupling should be followed.  However, all categorizations we have seen 

include a form of coupling that corresponds to classical common coupling, and there seems to be 

unanimity that common coupling is undesirable.   

The third reason why we concentrated on common coupling is that common coupling 

possesses the unfortunate property that the number of instances of common coupling between 

module M and the other modules can change drastically, even if module M itself never changes; 

this is termed clandestine common coupling [14].  For example, if modules M and N both 

reference global variable gv, then there is one instance of common coupling between module M 

and the other modules.  But if 10 new modules are written, all of which reference global variable 

gv, then the number of instances of common coupling between module M and the other modules 

increases to 11, even though module M itself is unchanged.   Bearing in mind that the size of 

Linux has increased nearly 1000% since version 1.0 (see Table I), we suspected that common 

coupling between a module in the kernel and the rest of the modules might increase dramatically, 

even though the kernel module itself did not change hugely. 

There were two reasons why we decided to concentrate our efforts on the Linux kernel.  

First, there are only 17 kernel modules and 6,506 versions of those modules; in contrast, the 

current version of Linux has nearly 2,000 modules, and there are up to 390 previous versions of 

each of those modules.   In other words, the research project was manageable because we 



Maintainability of Linux Kernel.  July 27, 2001 Page 7  

restricted our efforts to analyzing “only” 6,506 modules.  Second, in the case study on repeated 

maintenance we previously referenced [13], the major discriminating factor was differences in 

individual programmer abilities.  In the case of Linux, the original versions of all the kernel 

modules were written by Linus Torvalds, and he has either maintained them himself or in 

conjunction with one or two other programmers.   There is therefore no need to correct for 

individual programmer skills. 

3. COUNTING INSTANCES OF COMMON COUPLING 

As stated in Section 2, modules P and Q are common (global) coupled if P and Q share 

references to the same global variable.   We downloaded all the modules of each version of 

Linux.  For each of the 17 modules that constitute the kernel, we manually determined which 

variables are global.   

In more detail, we downloaded all the modules of the 391 versions of Linux available on 

the Web [1].  We discovered that versions 2.0.30 through 2.0.39 were produced subsequent to 

version 2.1.0, so we ignored those 10 versions.  Similarly, versions 2.2.2 through 2.2.17 were 

produced subsequent to version 2.3, so we ignored those 16 versions, too.  That left 365 versions 

of Linux.  We then determined in how many modules each global variable in a kernel module is 

referenced.  The counting was done at the module level, so multiple references to the same 

common variable within a given module were ignored.  We also ignored common coupling of 

constants. 

We then determined whether the code had been modified from the previous version and, 

if so, we noted the number of lines of code in that new version of that kernel module and when it 

was released.   
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Table II.   Data for six successive versions of three kernel modules. 

Version Panic.c Module.c Ksyms.c 
Number CC LOC Date CC LOC Date CC LOC Date 

2.1.104 (or 196) 914 79 05/21/98 963 1018 05/21/98 359 397 06/04/98 
2.1.105 (or 197) 921   974 1019 06/07/98 360   
2.1.106 (or 198) 933   989   368 398 06/13/98 
2.1.107 (or 199) 935   992   369   
2.1.108 (or 200) 942   992   369   
2.1.109 (or 201) 946   999   373   

 
 
Data are shown in Table II.  A blank in the LOC or date column denotes that the code has 

not changed between successive versions.  Thus, for example, version 2.1.104 of kernel module 

Panic.c was released on May 21, 1998.  That version had 79 lines of code, and there were 914 

instances of common coupling between module Panic.c and all the other modules in version 

2.1.104 of Linux.   The number of instances of common coupling steadily increased to 946 in 

version 2.1.109, even though the code for Panic.c did not change at all, an example of 

clandestine common coupling [14].  

Finally, for simplicity in the statistical analysis, we renumbered the versions as 

consecutive integers between 1 and 365.  Thus, version 2.1.104 above became version number 

196, as shown in Table II, and similarly for the other versions. 

4. RESULTS 

We present models for the relationship between LOC and version number; and between 

instances of common coupling and version number. A fundamental assumption of normal 

regression models is independence of observations; our observations are by their nature 

sequential and hence have a temporal dependency. The appropriate statistical tool is therefore a 

growth curve [15]. A separate growth curve is needed for each module because the changes in 

LOC and in instances of common coupling are module-specific. We found, however, that normal 
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regression models  produce very similar results to the growth curves, and have the advantage that 

all modules can be accommodated in a single model. For ease of presentation, therefore, we 

present in this paper the results of normal regression models [16].  

4.1  Lines of Code 

We first considered change in lines of code (LOC) through versions.  A linear regression of LOC 

versus version number was fitted, allowing different intercepts and slopes for each of the 17 

different modules.  Version number, module, and a version number–module interaction were all 

significant (p < 0.0001), as shown in the analysis of variance (ANOVA) of Table III.  

Table III.   Data for lines of code. 

Effect Degrees of 
freedom 

F p 

Version number 1 4517.3 < 0.0001 
Module 16 901.9 < 0.0001 
Version number 
× Module 

16 511.2 < 0.0001 

R2 = 0.951    
 

The “Degrees of freedom” column gives the number of parameters to be estimated for 

each effect in the model. The effect “Version number × Module” consists of the version number–

module interaction terms. These terms allow for differing gradients of the LOC–Version number 

regression line for each module. The parameters for the interaction terms are the differences 

between the gradient of one of the modules (we arbitrarily chose Printk.c) and each of the other 

modules. Consequently, the number of parameters to be estimated is 16, the number given in the 

“Degrees of freedom” column.  The effect “Version number” has one parameter, the gradient of 

the Printk.c module LOC–Version number regression line, and the effect “Module” has 16 

parameters, each of these being the difference between the intercept of the LOC–Version number 
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regression line for each module, and the intercept for the Printk.c module regression line. The F 

statistics are the ratios of the variation explained by each effect, to residual variation or noise. If 

this statistic is sufficiently large, we conclude that the effect is statistically significant. We judge 

the size of the F ratio for each effect by comparing it against the distribution we would expect it 

to have if the effect were in fact not present, namely, the F distribution. If the F ratio falls in the 

upper tail of the F distribution, we conclude that the effect is present, or statistically significant. 

The model explains 95.1% of the variation in LOC. That is, the two variables and their 

interaction account for 95.1% of the observed behavior of LOC.  This result is deduced from the 

value of R2 in Table III, which is the ratio 
 variationtotal

modelby  explainedvariation 
, that is, the proportion 

of total variation in LOC explained by the model. 

4.2 Common Coupling 

Figure 1 shows how common coupling varies with version number.  Nine of the Linux kernel 

modules appear in the first graph, and eight in the second. Both graphs show both the measured 

value of the common coupling and the values predicted by our model.  Figure 1 reveals an 

extremely clear exponential trend, which is again module-specific.  
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Figure 1.  Graphs of measured and predicted common coupling versus version number.  

The measured common coupling is represented by discrete points, the predicted 

common coupling by a line. 
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Because of the exponential nature of the relationship, a linear model was used, with the 

natural logarithm of the number of instances of common coupling as the response variable. (The 

constant 0.1 was added before taking logarithms, because eight of the common coupling values 

were zero.) Because of the strong linear dependency between LOC and version number, the 

inclusion of LOC in this model would have resulted in severe numerical instability, and LOC 

was therefore not included in this model. Version number, module, and version number–module 

interaction were all found to be significant. The analysis of variance table is given in Table IV.  

Table IV.   Data for common coupling. 

Effect Degrees of 
freedom 

F P 

Version number 1 2.1E+04 < 0.0001 
Module 16 824.44 < 0.0001 
Version number 
× Module 

16 163.50 < 0.0001 

R2 = 0.946    
 

The model has R2 = 0.946, meaning that 94.6% of the variation in the number of 

instances of common coupling can be explained by the effects.  

5.  CONCLUSIONS 

As described in Section 3, we downloaded 365 versions of Linux.   For each version in turn, we 

looked at the 17 kernel modules and counted the number of lines of code in each module.  Then 

we counted the number of instances of common (global) coupling between each of the kernel 

modules and all the other modules in that version of Linux.  We also recorded the version 

number as an integer between 1 and 365.  We obtained two primary results. 
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First, we found a module-specific linear dependency between lines of code and version 

number that is significant at the 99.99% level; 95.1% of that dependency can be explained by the 

three effects: version number, module, and their interaction. In other words, the number of lines 

of code in each kernel module increases linearly with version number, and no additional 

variables are needed to explain this increase; it is an inherent feature of successive versions of 

Linux.  This result is not surprising.  After all, successive versions of Linux provide additional 

functionality.  One would expect this increase of functionality to be achieved by both inserting 

additional code into existing modules and adding new modules.  The fact that the size of the 

kernel grows only linearly could be an indication that the kernel modules are well designed; only 

a small amount of additional code needs to be inserted to interface the kernel with modified 

existing modules and new modules that provide the additional functionality. 

Second, we found that the number of instances of common coupling grows exponentially 

with version number.  This result, too, is significant at the 99.99% level.   In this case, 94.6% of 

the observed growth can be explained by the three effects: version number, module, and their 

interaction.  That is, the exponential growth in common coupling is again an inherent feature of 

successive versions of Linux. 

In Section 2 we related common coupling to fault-proneness.  Consequently, combining 

our two results reveals a disturbing trend.  Even though the number of lines of code in the kernel 

grows only linearly, the number of instances of common coupling between each kernel module 

and all the other Linux modules grows exponentially.  Suppose that every statement added to a 

kernel module were a call to another module.  Because the number of lines of code grows only 

linearly, the number of new instances of coupling induced by these calls even in this extreme 

case can grow only linearly.  However, as explained in Section 2, common coupling can increase 
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even when a module does not change.  That is how the common coupling increases exponentially 

even though the number of lines of code increases only linearly.   

Common coupling was introduced into Linux from the very beginning, and the nature of 

common coupling led to an exponential growth in the number of instances in successive versions 

of Linux.  There is no reason to suppose that this growth will be slowed in the future unless 

Linux is completely restructured with a bare minimum of common coupling.  It could be argued 

that this restructuring of a huge product will mean that the development of Linux will have to be 

put on hold for many months until the restructuring is complete.  On the other hand, if this 

restructuring is not performed, it seems inevitable that, at some future date, the dependencies 

between modules induced by common coupling will render Linux extremely hard to maintain.  It 

will then be exceedingly hard to change one part of Linux without inducing a regression fault (an 

apparently unrelated fault) elsewhere in the product.  The only alternative will then be to 

restructure what by that time will be an even larger software product. 

In conclusion, our analysis of the growth of common coupling within successive versions 

of Linux tends to support Ken Thompson’s remark quoted in Section 1: “I don’t think [Linux] 

will be very successful in the long run” [2].  However, the future problems we have identified 

can be averted if Linux is restructured with common coupling reduced to a bare minimum, and if 

a careful watch is kept to ensure that virtually no additional instances are introduced after the 

restructuring has been performed. 
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