
Cardinality-based Inference Control in Sum-only Data
Cubes (Extended Version)?

Lingyu Wang, Duminda Wijesekera, and Sushil Jajodia

Center for Secure Information Systems
George Mason University,

Fairfax, VA 22030-4444, USA
{lwang3,dwijesek,jajodia }@gmu.edu

Abstract. This paper deals with the inference problems in data warehouses and
decision support systems such as on-line analytical processing (OLAP) systems.
Even though OLAP systems restrict user accesses to predefined aggregations,
the possibility of inappropriate disclosure of sensitive attribute values still ex-
ists. Based on a definition of non-compromiseability to mean that any member
of a set of variables satisfying a given set of their aggregates can have more than
one value, we derive sufficient conditions for non-compromiseability in sum-only
data cubes. Specifically, (1) the non-compromiseability of multi-dimensional ag-
gregates can be reduced to that of one dimensional aggregates, (2) full or dense
core cuboids are non-compromiseable, and (3) there is a tight lower bound for the
cardinality of a core cuboid to remain non-compromiseable. Based on those con-
ditions, and a three-tiered model for controlling inferences, we provide a divide-
and-conquer algorithm that uniformly divides data sets into chunks and builds a
data cube on each such chunk. The union of those data cubes are then used to
provide users with inference-free OLAP queries.

1 Introduction

Decision support systems such as On-line Analytical Processing (OLAP) are becom-
ing increasingly important in industry. These systems are designed to answer queries
involving large amounts of data and their statistical averages in near real time. It is
well known that access control alone is insufficient in eliminating all forms of dis-
closures, as information not released directly may be inferred indirectly from answers
to legitimate queries. This is known as theinference problem. An OLAP query typi-
cally consists of multiple aggregations, and hence vulnerable to unwanted inferences.
Providing inference-free answers to sum-only data cube style OLAP queries while not
adversely impacting the performance or restricting the availability in an OLAP system
is the subject matter of this paper.

The inference problem has been investigated since 70’s and many inference control
methods have been proposed for statistical databases. However, most of those methods
become computationally infeasible if directly applied to OLAP systems. OLAP appli-
cations usually require short response time, and OLAP queries usually aggregate a large
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amounts of data [21, 16]. Because most existing inference control algorithms have run
times proportional to the size of queries or data set, their impact upon performance
renders them impractical for OLAP systems.

While arbitrary queries are common in statistical databases, OLAP queries usu-
ally comprise of well-structured operations such as group-by, cross-tab and sub-totals.
Those operations can conveniently be integrated with data cube operator and various
data cube operations, such as slicing-dicing, roll up and drill down [20]. We will show
how the limited formats and predictable structures of the OLAP queries as well as the
multi-dimensional hierarchical data model of OLAP systems can be exploited to sim-
plify inference control.

Table 1 shows a small two-dimensional data set about monthly employee salaries.
Individual salary should be hidden from users, and hence has been replaced with the
symbol?. The symbol N/a denotes null value for inapplicable combinations of month
and employee, which is known to users.1 Assume subtotals are allowed to be released
to users through OLAP queries. Inference problem occurs if any of the values repre-
sented by symbol? can be derived from the subtotals. No value in the first two quarters
can be inferred, because infinitely many different values may fit in each? symbol with
the subtotals satisfied. For the third quarter, Mary’s salary in September can be inferred
from the subtotals of September salaries because she is the only employee with a valid
salary for September. For the fourth quarter, by subtracting Bob’s and Jim’s fourth quar-
ter salaries ($4300 and $3000 respectively) from the subtotals in October and Novem-
ber ($7100 and $4100 respectively) Alice’s salary for October can be computed to be
$3900.

Based on a definition of non-compromiseability to mean that any member of a set
of variables satisfying a given set of their aggregates can have more than one value2,
we derive sufficient conditions for non-compromiseability in sum-only data cubes: (1)
the non-compromiseability of multi-dimensional aggregates can be reduced to that of
one dimensional aggregates, (2) full or dense core cuboids are non-compromiseable,
and (3) there is a tight lower bound for the cardinality of a core cuboid to remain non-
compromiseable. Based on our results, and a three-tiered model for controlling infer-
ences, we provide a divide-and-conquer algorithm that uniformly divides data sets into
chunks and builds a data cube on each such chunk. The union of those data cubes are
then used to provide users with inference-free OLAP queries.

The rest of the paper is organized as follows. Section 2 reviews existing inference
control methods proposed in statistical databases and OLAP systems. Section 3 formal-
izes sum-only data cube and proves sufficient conditions for its non-compromiseability.
On the basis of a three-tiered model those conditions are integrated into an inference
control algorithm in Section 4. Section 5 concludes the paper.

1 In general, data values are known through various type ofexternal knowledge(knowledge
obtained through channels other than query.

2 In the settings of this paper, each variable can have either one value or infinitely many values.
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Quarter Month Alice Bob Jim Mary Sub Total

1 January ? ? ? ? 5500
February ? ? ? ? 5500
March ? ? ? ? 5500

Sub Total 3000 30004500 6000

2 April ? ? ? ? 6100
May ? N/a ? ? 6100
June ? ? ? ? 4100

Sub Total 4500 33004500 4000

3 July ? ? ? ? 6100
August ? ? ? ? 6100

September N/a N/a N/a ? 2000
Sub Total 3500 22002500 6000

4 October ? ? ? N/a 7100
November N/a ? ? N/a 4100
December ? N/a N/a ? 4100

* Bonus ? N/a N/a ? 6000
Sub Total 7000 43003000 7000

Table 1.An Example Data Cube

2 Related Work

Inference control has been extensively studied in statistical databases as surveyed in [14,
1, 15]. Inference control methods proposed in statistical databases are usually classified
into two main categories;restriction basedtechniques andperturbation basedtech-
niques. Restriction based techniques [19] include restricting the size of aquery set(i.e.,
the entities that satisfy a single query), overlap control [17] in query sets, auditing all
queries in order to determine when inferences are possible [11, 8, 23, 25], suppressing
sensitive data in a released statistical tables [12], partitioning data into mutually exclu-
sive partition [9, 10], and restricting each query set to range over at most one partition.
Perturbation based technique includes adding noise to source data [30], outputs [5, 26],
database structure [28], or size of query sets (by sampling data to answer queries) [13].
Some variations of the inference problem have been studied lately, such as the infer-
ence caused by arithmetic constraints [7, 6], inferring approximate values instead of
exact values [25] and inferring intervals enclosing exact values [24].

The inference control methods proposed for statistical databases generally sacrifice
efficiency for the ability of controlling the inference caused by arbitrary queries, which
is essential to general databases. However, this sacrifice is not desirable for OLAP sys-
tems, because in OLAP systems near real time response takes priority over the general-
ity of answerable queries. Hence most of those methods are computationally infeasible
in OLAP systems. As an example, Audit Expert [11] models inference problem with a
linear systemAx = b and detects the occurrence of inference by transforming them
by n matrix A (corresponding tom queries onn attribute values) to its reduced row
echelon form. The transformation has a well-known complexity ofO(m2n), which is
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prohibitive in the context of data warehouses and OLAP systems sincem andn can be
as large as a million.

Our work shares similar motivation with that of [17], i.e., to efficiently control in-
ference with the cardinality of data and queries, which can be easily obtained, stored
and maintained. Dobkin et al. gave sufficient conditions for the non-compromiseability
of arbitrary sum only queries [17]. The conditions are based on the smallest number
of queries that suffices to compromise the individual data. Our work deals with multi-
dimensional data cube queries. The fact that data cube queries are a special case of
arbitrary queries implies better results.

To the best of our knowledge, inference control for OLAP systems and data ware-
houses are limited to [3, 2, 18, 27]. They all attempt to perturb sensitive values while
preserving the data distribution model. Hence the classification or association rules ob-
tained before or after the perturbation remains the same. Those works are application-
specific, that is, the sole purpose of data analysis is limited to classification (association
rule mining). We do not have this restriction. Moreover, we do not use perturbation in
this paper.

3 Cardinality-based Non-compromiseability Criteria for Data
Cubes

This section defines our model for sum-only data cubes and formalizes compromiseabil-
ity. We then derive cardinality-based sufficient conditions for non-compromiseability in
two cases.

3.1 Problem Formulation

In our model, ak-dimensionaldata cubeconsists of onecore cuboidand severalaggre-
gation cuboids. In addition, we use anaggregation matrixto abstract the relationship
between them. Eachdimensionis modeled as a closed integer interval. The Cartesian
product of thek dimensions is calledfull core cuboid. Each integer vector in the full
core cuboid is atuple. A core cuboidis any subset of the full core cuboid that includes
at least one tuple for each value chosen from each dimension. This allow us to uniquely
identify the size of each dimension for a given core cuboid. Definition 1 formalizes
these concepts.

Definition 1 (Core Cuboids and Slices).
Given a set ofk integersDi satisfyingDi > 1 for all 1 ≤ i ≤ k. A k-dimensional

core cuboid is any subsetS of Πk
i=1[1, Di] satisfying the property that for anyxi ∈

[1, Di] there exist (k − 1) integersxj ∈ [1, Dj ] for all 1 ≤ j ≤ k and j 6= i, such
that (x1, . . . xi−1, xi, xi+1, . . . xk) ∈ S. Cc denotes a core cuboid. Each vectort ∈ Cc

is referred to as a tuple. Further, theith element of vectort ∈ Cc, denoted byt[i], is
referred to as theith dimension oft. We say thatΠk

i=1[1, Di] is the full core cuboid
denoted byCf . We say a tuplet is missing from the core cuboidCc if t ∈ Cf \Cc. The
subset ofCc defined by{t |t ∈ Cc, t[i] = j} for eachj ∈ [1, Di] is said to be thejth

slice ofCc on theith dimension, denoted byPi(Cc, j). If Pi(Cc, j) = {t |t ∈ Cf , t[i] =
j, j ∈ [1, Di]}, we say thatPi(Cc, j) is a full slice.
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As an illustration, the fourth quarter data given in Table 1 is modeled in Table 2.
It has two dimensions: month (dimension 1) and employee name (dimension 2). Both
have four different values that are mapped to the integer interval[1, 4]. The full core
cuboidCf is [1, 4] × [1, 4]. The core cuboidCc contains totally nine tuples and seven
tuples are missing fromCc (shown as N/a inCc).

To define aggregates of a data cube, we follow [20] to augment each dimension with
a special valueALL, for which we use symbol *. Eachaggregation vectoris similar to
a tuple except that it is formed with the augmented dimensions. An aggregation vector
selects a set of tuples in core cuboids with its * values, which form itsaggregation set.
All aggregation vectors having * value in the same dimensions form anaggregation
cuboid. The concepts of aggregation vector, aggregation cuboid and aggregation set are
formalized in Definition 2.

Definition 2 (j-* Aggregation Vectors, Cuboids and Data Cubes).
A j-* aggregation vectort is a k dimensional vector satisfyingt ∈ Πk

i=1([1, Di] ∪
{∗}) and | {i : t[i] = ∗ for 1 ≤ i ≤ k} |= j. If t[i] = ∗, then we say that the
ith element is a *-elements, and others are called non *-elements. A j-* aggregation
cuboid is a set of aggregation vectorsC such that for anyt, t′ ∈ C, {i : t[i] = ∗} = {i :
t′[i] = ∗} and | {i : t[i] = ∗} |= j. The aggregation set of an j-* aggregation vector
t is defined as{t′ : t′ ∈ Cc such thatt′[i] = t[i], ∀i t[i] 6= ∗}. We use the notation
Qset(t) for the aggregation set oft. The aggregation set of a set of aggregation vectors
S is defined as the union ofQset(t) for all t ∈ S. We use notationQset(S) for the
aggregation set ofS.

A data cube is defined as a pair< Cc, Sall >, whereCc is a core cuboid, andSall

is the set of all j-* aggregation cuboids, for all1 ≤ j ≤ k.

As an illustration, the subtotals of fourth quarter data given in Table 1 is mod-
eled in Table 2. Each subtotal is represented as an aggregation vector with * value.
For example,(1, ∗) represents the subtotal in October. The aggregation set of(1, ∗) is
{(1, 1), (1, 2), (1, 3)}. The set of four aggregation vectors{(1, ∗), (2, ∗), (3, ∗), (4, ∗)}
form an aggregation cuboid since they all have * value in the second dimension.

1 (Al) 2 (Bob) 3 (Jim) 4 (Ma) 5 (SubT)

1 (Oct) (1,1) (1,2) (1,3) N/a (1,*)
2 (Nov) N/a (2,2) (2,3) N/a (2,*)
3 (Dec) (3,1) N/a N/a (3,4) (3,*)
4 (Bonus) (4,1) N/a N/a (4,4) (4,*)

5 (SubT) (*,1) (*,2) (*,3) (*,4) (*,*)
Table 2. Illustration of Data Cube

To abstract the relationship between the core cuboid and aggregation cuboids in a
given data cube, we defineaggregation matrix. Each element of aggregation matrix is
associated with a tuple and an aggregation vector. An element of one means the tuple
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is in the aggregation set of the aggregation vector, zero otherwise. We assign the tuples
in Cf andC in dictionary order, the aggregation cuboids inSall in ascending order
on the number of *-elements and descending order on the index of the *-element. This
assignment enables us to refer to theith tuple in Cf asCf [i] (similarly for Cc, Sall

or their subsets). We useM [i, j] for the (i, j)th element of matrixM . The concept of
aggregation matrix is formalized in Definition 3.

Definition 3 (Aggregation Matrix).
The aggregation matrix of the aggregation cuboidC on the core cuboidCc is de-

fined as the following(m× n) matrixMCc,C ( or simplyM whenCc andC are clear
from context).

MCc,C [i, j] =

{
1, if Cf [j] ∈ Qset(C[i]);

0, otherwise.

We define the aggregation matrix ofS on Cc as the row block matrix with theith

row block as the aggregation matrix of theith aggregation cuboid inS.
We useS1 to represent the set of all 1-* aggregation cuboids for a givenCc, andM1

the aggregation matrix ofS1 onCc (that isMCc,S1 ), referred to as the 1-* aggregation
matrix.

The concept of aggregation matrix and compromiseability is illustrated in Table 3.
By representing individual salary with variablexi we get linear systemMCc,S1 · −→X =−→
B . It has at least one solution since

−→
B are calculated from the ”real” salary values,

which must satisfy the linear system. By linear algebra theory [22], eachxi can have
either a unique value or infinitely many different values among all the solutions to
MCc,S1 · −→X = −→

B . This depends onMCc,S1 but not on
−→
B (this is not valid if additional

knowledge about
−→
X is learned by users, for example, salaries are non-negative [24, 25,

23]). If anxi has a unique value among all the solutions then clearly the sensitive value
represented byxi was compromised. In this examplex1 has the value of3900 in any
solution so Alice’s salary for October is compromised. In Definition 4 we formalize the
definition of compromiseability. We distinct two cases of compromiseability, that is, the
trivial case illustrated by the third quarter data of Table 1, and the complementary cases
of the fourth quarter data.

Definition 4 (Compromiseability).
Given a data cube< Cc, Sall > and a set of aggregation cuboidsS ⊆ Sall, B is
arbitrarily chosen such thatMCc,S .

−→
X = −→

B has at least one solution.S is said to
compromiseCc, if at least one componentxi of

−→
X has the same value among all

the solutions toMCc,S .
−→
X = −→

B .
1. Cc is trivially compromised byS if there is an integeri ∈ [1,m] such that theith

row ofMCc,S is ej . Here1 ≤ j ≤ n.
2. Cc is non-trivially compromised byS if Cc is not trivially compromised byS.

It is well-known thatCc is compromised byS if and only if there exists at least one
unit row vectorei ( whereei[i] = 1 andei[j] = 0 for j 6= i) in any reduced row echelon
form of MCc,S [22]. This yields an alternative definition of compromiseability which
we shall use in the rest of this paper.
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1 (Alice) 2 (Bob) 3 (Jim) 4 (Mary) 5 (Sub Total)

1 (Oct) x1 x2 x3 N/a 7100
2 (Nov) N/a x4 x5 N/a 4100
3 (Dec) x6 N/a N/a x7 4100
4 (Bonus) x8 N/a N/a x9 6000
5 (Sub Total) 7000 4300 3000 7000 -

0BBBBBBBBBB@

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

1CCCCCCCCCCA
×

0BBBBBBBBBBBBBBBBBBBBBBBBBB@

x1

x2

x3

0
0
x4

x5

0
x6

0
0
x7

x8

0
0
x9

1CCCCCCCCCCCCCCCCCCCCCCCCCCA

=

0BBBBBBBBBB@

7100
4100
4100
6000
7000
4300
3000
7000

1CCCCCCCCCCA

Table 3.Equations Formulating the Disclosure of the Core Cuboid Given in Table 2

3.2 Trivial Compromises

In this section, we derive cardinality-based criteria of non-compromiseability in the
trivial case. We have two results. Firstly, full core cuboids cannot be trivially compro-
mised. The second is an upper bound on the cardinality of the core cuboid such that it
is trivially compromised by the set of all 1-* aggregation cuboids. They are stated and
proved in Theorem 1.

Theorem 1. 1. A full core cuboidCf cannot be trivially compromised by any set of
aggregation cuboidsS.

2. Cc is trivially compromised byS1 if |Cc| < 2k−1 ·max(D1, D2, . . . , Dk) for k ≥ 2

Proof: See the Appendix.
Theorem 1 provides cardinality-based criteria for the two extreme cases, i.e., the

core cuboid is either full or sparse. However, cardinality-based criteria is ineffective
for the case in between. As an example, consider the third quarter data in Table 1,
which is trivially compromised. Without changing the cardinality, evenly distributing
the three “N/a” in three months makes the core cuboid free of trivial compromise. This
invalidates any cardinality based criteria because trivial compromiseability varies for
core cuboids with exactly the same cardinality.
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3.3 Non-trivial Compromiseability

In this section, we derive cardinality-based criteria to determine the compromiseability
in the non-trivial case. We have two results. The first is that full core cuboids cannot be
non-trivially compromised. The second is a lower bound on the cardinality of the core
cuboid such that it remains safe from non-trivial compromise. First we have Lemma 1.

Lemma 1. 1. Cc can not be non-trivially compromised by any single cuboid.
2. If Cc cannot be compromised byS1, then it cannot be compromised bySall.
3. For any integersk andD1, D2, . . . , Dk that satisfyDi ≥ 4 for 1 ≤ i ≤ k, there is

a k-dimensional data cube< Cc, Sall >, with integer boundariesDi, such thatCc

is non-trivially compromised byS1.

Proof: See the Appendix.
Because of the second claim of Lemma 1, it is sufficient to safeguard the core cuboid

from 1-* aggregation cuboids. The last condition in Lemma 1 shows that it is impossible
to obtain a criteria for preventing non-trivial compromiseability by only looking at the
dimension cardinalities.

Theorem 2 (Non-trivial Compromiseability).

1. Cf cannot be non-trivially compromised byS1.
2. For any integersk and Di, there exists a k-dimensional data cube< Cc, Sall >

satisfying|Cf −Cc| = 2Dl + 2Dm − 9 such thatCc is non-trivially compromised
byS1, whereDl andDm are the least two amongDi.

3. If |Cf − Cc| < 2Dl + 2Dm − 9, thenCc cannot be non-trivially compromised.

Proof: See the Appendix.
The first claim in Theorem 2 guarantees the non-trivial compromiseability of full

core cuboid. The second and third claims give a tight lower bound on cardinality for a
core c uboid to remain free of non-trivial compromise. The second claim also implies
that no cardinality based criteria can be derived for sparse core cuboids (a core cuboid
is sparse if its cardinality goes under the lower bound).

Corollary 1 (Non-trivial Compromiseability).
If for any i ∈ [1, k], there existsj ∈ [1, Di] such that|Pi(Cf , j) − Pi(Cc, j)| = 0,

Cc cannot be non-trivially compromised.

Proof: Follows from the proof of Theorem 2. 2

Corollary 1 says full slices on every dimension suffices the non-compromiseability
in the non-trivial case.

4 A Cardinality-based Inference Control Algorithm for Data
Cubes

This section describes an algorithm to control inferences in data cube style OLAP
queries, using the results on compromiseability developed in Section 3. Our algorithm
is based on a three-tired model consisting of core data, pre-computed aggregates and
answerable queries.
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4.1 Three-Tiered Inference Control Model

Our three-tiered model consists of three basic components, and two abstract relations
in between, as given below, and illustrated in Figure 1. In addition we enforce three
properties on the model.

1. Three Tiers:
(a) A set of data itemsD.
(b) A set of aggregationsA.
(c) A set of queriesQ.

2. Relations Between Tiers:
(a) RAD ⊆ A×D.
(b) RQA ⊆ Q×A.

3. Properties:
(a) |A| << |Q|.
(b) There exist partitionsPD on D andPA on A, such that for any(a, d) ∈ RAD

and(a′, d′) ∈ RAD, d andd′ are in the same chunk ofPD if and only if a and
a′ are in the same chunk ofPA.

(c) D is not compromised byA.

 

Data Set 
(D) 

Pre-defined Aggregations 
(A) 

User Queries 
(Q) 

RDA 

RAQ 

Inference Control 

 

Fig. 1. Three-Tiered Model for Controlling Inferences

Three-tired inference control model simplifies inference control problem in several
ways. Firstly, since all queries inQ are derived from aggregations inA, it suffices to
ensure the non-compromiseabilityA instead ofQ. This reduces the complexity of in-
ference control due to the first characteristic ofA. Secondly, the second characteristic
of A allows us to adopt a divide-and-conquer approach to further reduce the complexity
of inference control. Thirdly, inference control is embedded in the off-line design of
A andRAD, so the overhead of on-line inference control is eliminated or reduced. Al-
though the restriction ofQ to be derived fromA reduces the total number of answerable
queries,A can be designed in such a way that it contains most semantics required by
the application, hence the restricted queries are mostly arbitrary and meaningless with
respect to application requirements.
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Algorithm Ctrl Inf Cube
Input: Data Cube< Cc, Sall >, integersDj

i ∈ [1, Di] for 1 ≤ i ≤ k and0 ≤ j ≤ mi, where
mi is fixed for eachi andDj

i satisfyD0
i = 1, Dmi

i = Di, andDj−1
i < Dj

i for all
1 ≤ j ≤ mi.

Output: a set of aggregationsSA that do not compromiseCc

Method:
1. LetSA = φ;
2. For eachk dimensional vectorv ∈Qk

i=1[1, mi]

Let Ctmp = {t : t ∈ Cc, ∀i ∈ [1, k] t[i] ∈ [D
v[i]−1
i , D

v[i]
i ]};

Let Cp = {t : ∃ t′ ∈ Ctmp, ∀i ∈ [1, k] t[i] = t′[i]−D
v[i]−1
i + 1};

Let SA = SA∪ Ctrul Inf Chunk(Cp, [1, D
v[i]
i −D

v[i]−1
i + 1]);

3. Return SA.

Subroutine Ctrl Inf Chunk
Input: k dimensional core cuboidC′c and thek dimension domains[1, D′

i], i = 1, 2, . . . , k
Output: S′all if it does not compromiseC′c according to the cardinality-based criteria,
φ otherwise, whereS′all is the set of all aggregation cuboids defined onC′c
Method:

1. If |C′c| = 0 or |C′c| = |C′f |, whereC′f is the full core cuboid ofC′c
Return S′all;

2. If C′c is trivially compromised byS′all

Return φ;
3. LetDl, Dm be the two smallest amongD′

i;
4. If | C′f − C′c |< 2Dl + 2Dm − 9

Return S′all;
5. If for all i ∈ [1, k] there existsj ∈ [1, D′

i] such that| Pi(C
′
f , j)− Pi(C

′
c, j) |= 0

Return S′all;
6. Return φ.

Fig. 2. The algorithm of inference control in data cube

4.2 Inference Control Algorithm

The inference control algorithm shown in Figure 2 applies the results given in Section 3
on the basis of our three-tiered model. The algorithm first partitions the core cuboid into
disjointed chunks, which are then passed to the subroutineCtrl Inf Chunk. The subrou-
tine checks the non-compromiseability of thesub-data cubedefined on this chunk of
data, using the cardinality based criteria. If it is compromised the subroutine returns an
empty set, indicating no aggregation is allowed on the data. Otherwise, the subroutine
returns all the aggregation cuboids of the sub-data cube. The final outcome is the union
of all the sub-data cubes returned by the subroutine. This set of aggregations can then
be used to answer data cube style OLAP queries without inference problem.

Correctness The correctness of the algorithm, that is, the non-compromiseability of
the final result is straight-forward. The subroutine CtrlInf Chunk guarantees the non-
compromiseability of each sub-data cube respectively. In addition, the sub-data cubes
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are disjointed, making the non-compromiseability of each of them independent of oth-
ers.

Runtime Analysis: The main routine of the algorithm partitionsCc by evaluating
the k dimensions of each tuple. Letn = |Cc|, so the runtime of the main routine is
O(nk)=O(n) (supposek is constant compared ton). The subroutineCtrl Inf Chunk
is called for each of theN =

∏k
i=1 mi chunks (mi are defined in the algorithm). It

evaluates the cardinality of each input chunkC ′c, which has the same complexity as
establishing its 1-* aggregation matrixM ′

1.
Let n′ =

∏k
i=1 D′

i be the number of columns inM ′
1 ( D′

i are defined in the algo-
rithm), thenm′ = n′

∑k
i=1

1
D′

i
is the number of rows. LetDmax

i be the maximum value

amongD′
i. Out of the(m′n′) elements,O(m′ ·Dmax

i ) elements must be considered to
computeM ′

1. Suppose (
∑k

i=1
1

D′
i
)Dmax

i = O(k). Then the runtime of the subroutine is

O(k ·∏k
i=1 D′

i). It is calledN times so the total runtime isO(k ·∏k
i=1 mi ·

∏k
i=1 D′

i) =
O(k ·∏k

i=1 mi ·
∏k

i=1
Di

mi
), which isO(k ·∏k

i=1 Di) = O(n). We note that by defini-
tion, determining non-compromiseability has a complexity ofO(n3) and the maximum
non-compromiseable subset of aggregations cannot be found in polynomial time [11].

Enhancing the Algorithm: The algorithm demonstrates a simple application of the
cardinality based criteria in Section 3, which can be improved in many aspects. The
dimension hierarchies inherent to most OLAP datasets can be exploited to increase the
semantics preserved by the algorithm. For example, assume the time dimension have the
hierarchy composed of day, week, month and year. Instead of partitioning the dataset
arbitrarily, each chunk can be defined on week. Hence queries about weeks, months and
years can be answered with aggregations in algorithm output.

Notice that the key to cardinality-based non-compromiseability is that each chunk
in the partition of core cube must be either empty or dense (full). The row shuffling [4]
technique proposed by Barbara et al. increases the subspaces density of data sets by
shuffling rows in those categorical, unordered dimensions. Row shuffling can be inte-
grated into the inference control algorithm as a pre-processing step prior to partitioning.

Data Cube Operations: We briefly describe how our algorithm may address common
data cube operations such as slicing, dicing, rolling up, drilling down and range queries.
Slicing, dicing and range query require aggregations to be defined on a subspace formed
by intervals in dimension domains. Our algorithm also partitions the data set into small
chunks. Therefore, in order to enhance our algorithm to address these operations, the
subspace required by these data cube operations should be formed as the union of multi-
ple chunks. Rolling up and drilling down require aggregations to be defined at different
granularities than those in the original data cube. Rolling up does not directly create
inference threat because with coarser granulated queries include less information about
individual data. Our ongoing work is addressing these details.

Although update operations are uncommon in decision support systems, data stored
in data warehouses need to be updated over time. Our algorithm is suitable for update
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operations in two aspects. Firstly, the change of values has no effect on the cardinality,
which determines non-compromiseability in our algorithm. Secondly, because we have
localizedprotection by partitioning data set into small disjointed chunks, the effect of
an insertion or deletion is restricted to only the chunks containing updated tuples.

5 Conclusions

Based on a definition of non-compromiseability to mean that there are more than one
choices for any of the unknown individual value to fit a given set of their aggregates, we
have derived sufficient conditions for non-compromiseability in sum-only data cubes.
Compromiseability of arbitrary aggregates can be reduced to those of one dimensional
aggregates. Full or dense core cuboids are free from inferences, and that there is a tight
lower bound on the cardinality of a core cuboid for it to remain non-compromiseable. To
apply our results for inference control of data cube style OLAP queries, we have shown
a divide and conqueralgorithm based on a three-tiered model. Future work includes
enhancing our results and algorithm to include data cube operations and consider other
variations of OLAP queries.
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Proof(Theorem 1):
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1. We show that for anyt ∈ S, we have|Qset(t)| > 1. Let t ∈ S be any j-* aggre-
gation vector. Without loss of generality, lett be(∗, ∗, . . . , ∗, xj+1, xj+2, . . . , xk).
From Definition 2, we have thatQset(t) = {t′ : t′ ∈ Cf , t′[j +1] = xj+1, t′[j +
2] = xj+2, . . . , t

′[k] = xk}. BecauseCf = Πk
i=1[1, Di] we have that|Qset(t)| =∏j

i=1 Di. With the assumption ofmin(D1, D2, . . . , Dk) > 1 we have|Qset(t)| >
1.

2. Suppose thatCc is not trivially compromised byS1. We show|Cc| ≥ 2k−1 ·
max(D1, D2, . . . , Dk) for k ≥ 2. Without loss of generality, we assumeDk =
max(D1, D2, . . . , Dk). Notice that there are totallyDk slices ofCc on thekth di-
mension. Without loss of generality it suffices to show that|Pk(Cc, 1)| ≥ 2k−1.
We do so by mathematical induction as given below.
Inductive Hypothesis:For everyi ≤ k, there is a subsetSi ⊆ Pk(Cc, 1) such that
|Si| = 2i−1 satisfying the condition that for anyt1, t2 ∈ Si, t1[j] = t2[j] for all
j ≥ i.
Base Case:By Definition 1, there existst ∈ Cc such thatt[k] = 1. Let S1 be{t}.
Then we have thatS1 ⊆ Pk(Cc, 1) and|S1| = 1, validating the base case of our
inductive hypothesis.
Inductive Case:Suppose we haveSi ⊆ Pk(Cc, 1) for 1 ≤ i < k such that|Si| =
2i−1 and for anyt1, t2 ∈ Si, t1[j] = t2[j] for all j ≥ i. We show that there exists
Si+1 ⊆ Pk(Cc, 1) such that|Si+1| = 2i, satisfying the condition that for any
t1, t2 ∈ Si, t1[j] = t2[j] for all j ≥ i + 1.
For anyt1 ∈ Si, let t′1[i] = ∗ andt′1[j] = t[j] for all j 6= i. We havet′1 ∈ S1 and
sincet1 ∈ Qset(t′1) we have|Qset(t′1)| ≥ 1. SinceCc is not trivially compromised
by S1, according to Definition 4, we have|Qset(t′1)| > 1. Hence, there exists
t′′1 ∈ Qset(t′1) ⊆ Cc such thatt′′1 [i] 6= t1[i] andt′′1 [j] = t1[j] for all j 6= i; which
impliest′′1 /∈ Si.
Now we show that for anyt2 ∈ Si such thatt1 6= t2, we havet′′1 6= t′′2 , where
t′′2 ∈ Cc, t′′2 [i] 6= t2[i] andt′′2 [j] = t2[j] for all j 6= i. Sincet1[j] = t2[j] for all
j ≥ i there must bel < i such thatt1[l] 6= t2[l]. We know thatt′′1 [j] = t′1[j] = t1[j]
andt′′2 [j] = t′2[j] = t2[j] for all j < i. Hence we have thatt′′1 [l] 6= t′′2 [l]; that is,
t′′1 6= t′′2 .
Hence there existsS′i ⊂ Cc satisfying:|S′i| = |Si|, and for anyt ∈ Si, there exists
one and only onet′ ∈ S′i such thatt[i] 6= t′[i] andt[j] = t′[j] for all j 6= i. Define
Si+1 asSi ∪ S′i. Since|Si| = 2i−1 we have|Si+1| = 2i.
This proves the inductive case of our induction, from which the claim|Pk(Cc, 1)| ≥
2k−1 follows.

2

Proof(Lemma 1):

1. LetC ∈ Sall. We show thatCc cannot be nontrivially compromised byC. For any
t ∈ Cc there exists one and only onet′ ∈ C such thatt ∈ Qset(t′). Hence in
M each non-zero column is a unit column vector, which implies thatM could be
transformed into its reduced row echelon form by merely permuting the columns.
Furthermore, each row ofM must contain at least two 1’s since no trivial compro-
mise is assumed. Hence no unit row vector is in the reduced row echelon form of
M , that is,Cc cannot be nontrivially compromised byC. This concludes our proof.
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2. Without loss of generality, lett be a j-* (j > 1) aggregation vector satisying that
t[i] = ∗ for any i ∈ [1, j]. Let C be the set of 1-* aggregation vectors defined as:
{t′ : t′[1] = ∗, t′[i] ∈ [1, Di]∀i ∈ [2, j], t′[i] = t[i]∀i ∈ [j + 1, k]}. We have that
Qset(t) = Qset(C). Hence in the aggregation matrixMm×n of Sall on Cc, any
row corresponding to a j-*(j > 1) aggregation vector can be represented as the
linear combination of the rows corresponding to the 1-* aggregation vectors. The
rest of the proof follows from linear algebra.

3. First we show that the Lemma fork > 2 can be reduced to the Lemma fork = 2.
For k > 2, let S′1 be{t : t ∈ S1, t[j] = 1 ∨ t[j] = ∗∀j > 2}. ThenQset(S′1) =
{t : t ∈ Cc, t[j] = 1∀j > 2}. The pair< Qset(S′1), S

′
1 > can be regarded

as a special two dimensional data cube. Hence, we can buildQset(S′1) in such a
way that it is nontrivially compromised byS′1, as shown in the succeeding case of
k = 2. By Lemma 1, if a tuple is nontrivially compromised byS′1 in the data cube
< Qset(S′1), S

′
1 >, then it is also nontrivially compromised byS1 in the data cube

< Cc, Sall >. This reduces proof fork > 2 to that ofk = 2, which we prove now.
For the proof ofk = 2, without loss of generality, we use mathematical induction
onD1, for an arbitrary, but fixed value ofD2 ≥ 4.
Inductive Hypothesis: For anyD1, D2 ≥ 4, we can build a two dimensional data
cubeCc with integer boundariesD1, D2 such thatCc is nontrivially compromised
by S1.
Base Case:WhenD1 = D2 = 4, consider the core cuboidCc corresponding to the
fourth quarter data in Table 1. It validates the base case of our inductive hypothesis.
Inductive Case: Assuming that there is nontrivially compromiseable two dimen-
sional core cuboid with integer boundaries{D1, D2}, we show how to obtain a
nontrivially compromiseable two dimensional core cuboid with integer boundaries
{D1 + 1, D2}.
Suppose we are given a core cuboidCc with boundaryD1 = j ≥ 4. Further
suppose without loss of generality that the tuple(1, 1) is nontrivially compromised
in < Cc, Sall >. Then, there is a row vectora such thata · M1 = e1. Now we
show how to build a core cuboidC ′c for D1 = j + 1 such that the tuple(1, 1) is
nontrivially compromised in< C ′c, Sall > also.
First define a set of tuplesC as:

– for anyt ∈ C, t[1] = j + 1
– for anyl ∈ [1, D2], (j + 1, l) ∈ C if and only if (j, l) ∈ P1(Cc, j)

Then, we defineC ′c = Cc ∪ C. Consequently, we haveP1(C ′c, j + 1) = C. Let
M ′

1 be the 1-* aggregation matrix ofS1 onC ′c. Hence,M ′
1 = (M1|Mc), where the

non-zero columns inMc correspond to the tuples inC. From the definition ofC we
further haveM1 = (M ′′

1 |Mc), where the non-zero columns ofMc correspond to the
tuples inP1(Cc, j). Thus,M ′

1 = (M ′′
1 |Mc|Mc). Sincea ·M1 = (a ·M ′′

1 |a ·Mc) =
e1, a·M ′

1 = (a·M ′′
1 |a·Mc|a·Mc) = (e1|0). Hence,C ′c is nontrivially compromised

by S1, validating the inductive case of our inductive hypothesis.

2

Proof(Theorem 2):

1. Due to Theorem 1, we only need to show the case of nontrivial compromise. In
this respect, without loss of generality, we show thatt0 = (1, 1, . . . , 1) cannot be
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nontrivially compromised byS1. Let C ′f = {t : ∀i ∈ [1, k], t[i] = 1 ∨ t[i] = 2}.
Since(D1, D2, . . . , Dk) ≥ 2, we have thatC ′f ⊆ Cf and|C ′f | = 2k. Because of
Lemma 1, we only need to prove thatt0 cannot be compromised byS1 in the data
cube< C ′f , Sall >. Let M ′

1 be the 1-* aggregation matrix ofS1 onC ′f . According
to Definition 3, there are2k non-zero column vectors inM ′

1, corresponding to the
2k tuples inC ′f . In the rest of the proof we formally show that each of the2k non-
zero column vectors can be represented by the linear combination of the left2k− 1
column vectors. Then, it follows from linear algebra thatt0 cannot be compromised
by S1 in data cube< C ′f , Sall >.
In order to prove our informally stated claim, we define thesign assignment vector
as ann dimensional column vectortsign wheren is |Cf |, as follows:

– tsign[1] = 1
– tsign[2i + j] = −tsign[j] for all 0 ≤ i ≤ k − 1 and1 ≤ j ≤ 2i

– tsign[j] = 0 for all j > 2k

Claim: M ′
1 · tsign = 0, where0 is then dimensional zero column vector.

Justification:

Let t = S1[i], t[l] = ∗ for l ∈ [1, k].
Let v beM ′

1[i,−].
Supposet[j] = 1 or t[j] = 2 for all j 6= l.

Then|Qset(t)| = 2, and as a consequence we getQset(t) = {t1, t2}
wheret1, t2 ∈ Cf , t1[l] = 1,t1[l] = 2
andt1[j] = t2[j] = t[j] for all j 6= l

Hence, there are two integersj1, j2 ∈ [1, n] satisfying
v[j1] = v[j2] = 1 andv[j] = 0 for anyj 6= j1, j2.

By Definition 3,M ′
1[−, j1] andM ′

1[−, j2] correspond tot1 andt2
respectively.
BecauseC ′f is formed in dictionary order, we getj2 = j1 + 2l−1.
Hence, we havev · tsign = 0.

Otherwise,|Qset(t)| = 0; and henceQset(t) = φ.
Hence,v = 0, and hence,0 · tsign = 0.

This justifies our claim.

Hence, as stated earlier, the justification of our claim concludes the main proof.
2. Without loss of generality we assumeD1, D2 are the least two amongDi’s. For an

arbitrary but fixed value ofD2, we show by induction onD1 thatCc as constructed
in the proof of Lemma 1 satisfies|Cf − Cc| = 2D1 + 2D2 − 9.
Inductive Hypothesis:Cc as constructed in the proof of Lemma 1 satisfies:

– |Cf − Cc| = 2j + 2D2 − 9 for anyj ≥ 4.
– | P1(Cf , j)− P1(Cc, j) |= 2 for anyj ∈ [1, D1].

Base Case:In the base case of the proof of Lemma 1, the core cuboidCc satisfies
|Cf−Cc| = 2D1+2D2−9. Notice that the core cuboid,D1 = 4, and| P1(Cf , j)−
P1(Cc, j) |= 2. This validates the base case of our inductive hypothesis.
Inductive Case: Suppose forD1 = j we have|Cf − Cc| = 2j + 2D2 − 9 and
| P1(Cf , j) − P1(Cc, j) |= 2. Let C ′f be the full core cuboid corresponding to
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C ′c for D1 = j + 1. By the definition ofC in the proof of Lemma 1, we have
|C| = |P1(Cc, j)| and as a consequence|C ′f −C ′c| = |Cf −Cc|+ 2 = 2(j + 1) +
2D2 − 9. SinceP1(C ′c, j + 1) = C. Hence,| P1(C ′f , j) − P1(C ′c, j) |= 2. This
validates the inductive case of our inductive argument and consequently concludes
our proof of the tightness of the cardinality lower bound for avoiding nontrivial
compromiseability.
Lower Bound: We show that ifCc is nontrivially compromised then we have|Cf−
Cc| ≥ 2D1 + 2D2 − 9. First we make following assumptions.

(a) The tuplet = (1, 1, . . . , 1) ∈ Cc is nontrivially compromised byS1

(b) No tuple inCc is trivially compromised
(c) There existsS ⊆ S1 such that for anyC ∈ S, t cannot be nontrivially compro-

mised byS \ C

(d) For anyt′ ∈ Cf \Cc, t cannot be nontrivially compromised byS1 in data cube
< Cc ∪ {t′}, Sall >. That is,|Cf − Cc| has reached its the lower bound.

Assumption 2 holds by Definition 4. Assumption 3 is reasonable, as by Lemma 1
S must contain at least two 1-* aggregation cuboids. Assumption 4 is reasonable,
because by Theorem 2,|Cf − Cc| has a lower bound ifCc is nontrivially compro-
miseable.
Claim: Suppose Assumption 1,2,3, and 4 hold. Furthermore assume that there is
a C ∈ S wheret ∈ C satisfiest[i] = ∗. Then|Pi(Cf , 1) − Pi(Cc, 1)| ≥ 1, and
|Pi(Cf , j)− Pi(Cc, j)| ≥ 2 holds for anyj ∈ [2, Di].
Justification: The proof is by contradiction. Without loss of generality, we only
justify the claim fori = k andj = 2. That is, given aC ∈ S satisfyingt[k] = ∗
for anyt ∈ C, we prove that|Pk(Cf , 2)− Pk(Cc, 2)| ≥ 2.
First we transform the aggregation matrix ofS on Cc by row permutation into a
singly bordered block diagonal form (SBBDF) [29], denoted byMm×n. The ith

diagonal block ofM corresponds toPk(Cc, i) and{t : t ∈ S \ C, t[k] = i} ,
and the border ofM denotes the aggregation cuboidC. We call the columns ofM
corresponding to theith diagonal block as theith slice ofM .
Due to Assumption 1, there exists a row vectora satisfyinga ·M = e1. Let ri be
M [i,−] then we gete1 =

∑m
i=1 a[i] · ri. Suppose each diagonal block ofM has

sizem′ × n′. Userj
i , for 1 ≤ j ≤ Dk to represent the row vector composed of the

elements ofri that falls into thejth slice ofM . Notice that there aren′ elements
in rj

i . We also usee′1 and0′ to represent then′ dimensional unit row vector andn′

dimensional zero row vector, respectively. Then the following are true:

i. e′1 =
∑m′

i=1 a[i]r1
i +

∑m
i=m−m′+1 a[i]r1

i

ii. 0′ =
∑2m′

i=m′+1 a[i]r2
i +

∑m
i=m−m′+1 a[i]r2

i

First we suppose|Pk(Cf , 2) − Pk(Cc, 2)| = 0, that is, the second slice ofM
contains no zero column. We then derive contradictions to our assumptions.
Since|Pk(Cf , 2)− Pk(Cc, 2)| = 0 the first slice ofM contains no more non-zero
columns than the second slice ofM does. Intuitively if the latter is transformed into
a zero vector then applying the same transformation on the former leads to a zero
vector, too. This is formally represented as:

iii. 0′ =
∑m′

i=1 a[m′ + i]r1
i +

∑m
i=m−m′+1 a[i]r1

i .
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Subtracting (iii) from (i) givese′1 =
∑m′

i=1(a[i] − a[m′ + i])r1
i . That implies

Cc is nontrivially compromised byS \ {Ck}, contradicting Assumption 3. Thus
Pk(Cf , 2)− Pk(Cc, 2)| 6= 0.
Next we assume|Pk(Cf , 2) − Pk(Cc, 2)| = 1 and derive a contradiction to our
assumptions.
First the row vectorr3

i satisfies the following condition:
iv. 0′ =

∑3m′

i=2m′+1 a[i]r3
i +

∑m
i=m−m′+1 a[i]r3

i .
Let t′ ∈ Pk(Cf , 2) \ Pk(Cc, 2). Notice that (i), (ii) still hold. Supposet′ corre-
sponds toM [−, y] = 0. Now assume we addt′ to Pk(Cc, 2), consequently we
haveM [−, y] 6= 0. Due to Assumption 4, we have that the left side of (ii) becomes
e′1, that is,a ·M [−, y] = 1. There is also an extra 1-elementM [x, y] in the border
of M .
Now let t′′ be the tuple corresponding toM [−, y + n′] in the third slice ofM .
Supposet′′ ∈ Pk(Cc, 3) and consequentlyM [−, y + n′] 6= 0. We have that
M [−, y + n′] = M [−, y] and consequentlya ·M [−, y + n′] = 1.
By removingt′ from Pk(Cc, 2) we return to the original state that all our assump-
tion hold. Now we show by contradiction thatt′′ ∈ Pk(Cc, 3) cannot hold any
longer. Intuitively, sincet′ is the only missing tuple in the second slice ofM , the
third slice ofM contains no more non-zero vectors than the second slice ofM
does, exceptt′′. Becausea ·M [−, y + n′] = 1, elements ofa transform the second
slice ofM to a zero vector, as shown by (ii), also transform the third slice ofM to
a unit vector. This is formally represented in (v):
v. e′′ =

∑3m′

i=2m′+1 a[i−m′]r3
i +

∑m
i=m−m′+1 a[i]r3

i

Subtracting (iv) from (v) we get thate′′ =
∑3m′

i=2m′+1(a[i−m′]−a[i])r3
i ; implying

Cc is compromised byS \ {Ci}. Hence, Assumption 3 is false. Consequently,t′′ /∈
Cc.
Similar proof exists for theith slice of Cc, wherei = 4, 5, . . . , Dk. However,
M [x,−] 6= 0 because if so, we can letax be zero and then decrease the num-
ber of missing tuples inCc, contradicting Assumption 4. HenceM [x,−] is a unit
vector with the 1-element in the first slice ofM . However, this further contra-
dicts Assumption 2, that no trivial compromise is possible. Hence we have that
|Pk(Cf , 2)− Pk(Cc, 2)| = 1 is false.
Now consider|Pk(Cf , 1) − Pk(Cc, 1)|. Suppose all the assumptions hold, and
|Pk(Cf , 1) − Pk(Cc, 1)| = 0. Let t1, t2 ∈ Pk(Cf , 2) \ Pk(Cc, 2). Now define
C ′c = Cc \ {t} ∪ {t1} and M ′ be the aggregation matrix ofS on C ′c. From
a·M = e1, and Assumption 4 we geta·M ′ = ei, whereM [−, i] corresponds tot1.
This implies the nontrivially compromise oft1 in < C ′c, Sall >, with |Pk(Cf , 1)−
Pk(C ′c, 1)| = 1, which contradicts what we have already proved. Hence, we get
|Pk(Cf , 1)− Pk(Cc, 1)| ≥ 1. This concludes the justification of our claim.
The claim implies that the number of missing tuples inCc increases monotonically
with the following:

– The number of aggregation cuboids inS.
– Di, provided there isC ∈ S satisfyingt[i] = ∗ for anyt ∈ C.

Hence|Cf − Cc| reaches its lower bound whenS = {C1, C2}, which is equal to
2D1+2D2−9, as shown in the first part of the current proof - concluding the proof
of Theorem 2. 2


