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Abstract

This paper investigates the privacy breaches caused by multi-dimensional range (MDR) sum queries
in OLAP systems. We show that existing inference control methods are generally ineffective or infeasible
for MDR queries. We then consider restricting users to even MDR queries (that is, the MDR queries
involving even number of data values). We show that the collection of such even MDR queries is safe if
and only if a special set of sum-two queries (that is, queries involving exactly two values) is safe. On the
basis of this result, we give an efficient method to decide the safety of even MDR queries. Besides safe
even MDR queries we show that any odd MDR query is unsafe. Moreover, any such odd MDR query is
different from the union of some even MDR queries by only one tuple. We also extend those results to
the safe subsets of unsafe even MDR queries.

Keywords: Inference Control, Privacy, OLAP

1 Introduction

Multi-dimensional range (MDR) query is an important class of decision support query in OLAP (On-line
Analytical Processing) systems [25]. One of the most popular data models of OLAP systems, data cube [23],
can be viewed as a collection of MDR queries. MDR queries are intended to assist users in exploring trends
and patterns in large amount of data stored in data warehouses. Contrary to this initial objective, MDR
gueries can be used to obtain protected sensitive data, which results in the breach of individual’s privacy.
Access control alone is insufficient in controlling information disclosure, because information not released
directly may be inferred indirectly from the answers to legitimate queries, which is known eddhence
problemin databases. Providing precise answers to MDR queries without privacy breaches is the subject
matter of this paper.

The inference problem has been investigated since 70’s with many inference control methods proposed
especially for statistical databases. Those methods usually have run times proportional to the size of the
gueries or the data set, and they are invoked only after queries have arrived. On the other hand, OLAP
applications demand instant responses to MDR queries, although those queries usually aggregate a large
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amount of data [24]. Consequently, the delay in query answering renders most existing methods impractical
for OLAP systems. In this paper we propose efficient inference control methods by exploiting the unique
structures of MDR queries.

The first contribution of this paper is that it will invoke more attention to the privacy issue of OLAP
systems, which is unfortunately ignored in most of today’s commercial products. We study several existing
inference methods and the results show that they are ineffective or infeasible for MDR queries. We also
show that finding maximal safe subsets of unsafe MDR queries is NP-hard. Secondly, we reduce the infer-
ence control of MDR queries to that of sum-two queries with a necessary and sufficient condition on their
compromiseability. By treating sum-two queries as edges of simple undirected graphs, this reduction relates
the inference control of MDR queries with existing results in inference control in statistical databases and
graph theory. Finally, we give efficient methods ( the complexity is bourd(ten), wherem, n are the
number of queries and tuples respectively) to determine safe MDR queries, safe arbitrary queries and large
subsets of unsafe MDR queries.

The rest of the paper is organized as follows. Section 1.1 gives motivating examples to build an intuitive
understanding. Section 1.2 describes our assumptions. Section 2 reviews existing inference control methods
proposed in traditional statistical databases and modern decision support systems. Section 3 formalizes
MDR queries and the compromiseability. Section 4 gives negative results of applying existing inference
control methods to MDR queries. Section 5 investigates the problem of determining safe MDR queries.
Section 6 extends the results to subsets of unsafe MDR queries. Section 7 discusses the implementation.
Section 8 concludes the paper. Appendix A gives the proofs of all the theorems, lemmata, corollaries and
propositions.

1.1 Motivating Example

Suppose that part of a data set owned by a fictitious organizaliompany Ais shown in Table 1. It
contains salary adjustments for four employees in years 2002 and 2003. Let the three attrilgates be
emp (employee) andd; (adjustment) respectively. The symhéf A in Table 1 indicates that the employee
did not work forCompany An that year.

The Data Core year_emp_adj
| year/emp/adj| Alice Bob Mary Jim
2002 1000.00 500.00 -2000.00 N/A
2003 N/A 1500.00 -500.00 1000.00

Table 1: An Example of a Two-dimensional Data Core.

Company Anvites an analysMallory to analyze the data set. For this purpag@llory is allowed to
ask sum gueries about the attribui® in Table 1. On the other han@ompany Aworries thatMallory
may impropriately use the information she learns about each employee. Matioey is prohibited from
directly asking the individual values (of attributéj) in Table 1. In addition, suppoddallory knows the
non-sensitive attributegear, emp and theN/As in Table 1. Now we ask the following questionSan
Mallory learn any of the individual values through sum queries®l if yes,how can we safeguard these
values?Supposeévallory asks the following query:



SELECT emp, SUM(ad))
FROM year_emp_adj
GROUP BY emp;

The answer to the above SQL query contains four rec@ddé:e, 1000), (Bob, 2000), (M ary, —2500)
and(Jim, 1000). Each record corresponds to a one-dimensional MDR sum query, sietiias, 1000),
which sums the values in the first column of the table. Intuitively, by viewing each MDR query as a box,
we can represent it using its longest diagonal. For example|(dsé-e, 2002), (Alice, 2003)] for the first
column of the table anf{ Alice, 2002), (Bob, 2003)] for the first two columns. We shall use this intuitive
notation instead of SQL for MDR query henceforth.

Mallory is able to learn from the MDR quefyAlice, 2002), (Alice, 2003)] that the adjustment for Alice
in 2002 is1000.00, because the query sums a single value. This threat can be thwarted by answering only
the MDR queries that sum two or more values. Howelgllory can easily get around this restriction by
subtracting ( the answers tg()Bob, 2002), (M ary, 2002)] from [( Alice, 2002), (M ary, 2002)].

Observe that the cardinality ¢fBob, 2002), (M ary,2002)] and[(Alice,2002), (Mary, 2002)] is even
(two) and odd (three), respectively. Is it helpful for protecting the individual values to reiaibbry to
only even MDR queriesr only odd MDR querie® The restriction to odd MDR queries is ineffective. For
example, the first two and three columns of Table 1 are both odd, but their difference gives the third column
which is even. Conversely, to obtain odd MDR queries from even ones is not always straight-forward.
Because the individual values can be viewed as the answers to odd MDR queries, restricting users to even
MDR queries makes inferences substantially more difficult.

Nonetheless, inference is still possible with only even MDR queries. A series of five even MDR queries
asked byMallory and their answers are given in Table 2. The first query sums all six values and the rest four
queries each sums two valuddallory then adds the answers to the last four quer?s8() and subtract
from the result the answer to the first queri@s00). Dividing the result of the subtraction {00) by two
gives Bob’s adjustment in 2002d0).

| Ranges | Answer
[(Alice, 2002), (Jim,2003)] || 1500
[(Alice, 2002), (Bob,2002)] || 1500
[(Bob, 2002), (Mary, 2002)] || —1500
[(Bob, 2002), (Bob, 2003)] 2000
[(Mary,2003), (Jim,2003)] 500

Table 2: An Example of Even MDR Queries.

In the rest of this paper we address the following questions naturally motivated by the above example.
1.How can we efficiently determine whether even MDR queries are safe? 2.What is the impact on users if
only even MDR queries are allowed? 3.Besides the even MDR queries, what else can be answered safely?
4.If even MDR queries are unsafe, can we find a large safe subset?



1.2 Assumptions

We only considestatelessnference control methods. That is, the methods that grant or deny incoming
gueries independent of the queries previously asked by the user. For example, restrictions on the size or
parity of queries are stateless. On the other handstidtefulmethods base authorization decisions on the
history of queries asked by a specific user. For example, controlling the size of overlaps between queries.
Stateful restrictions are usually infeasible in practice, because users can subvert them by using aliases to
login or colluding.

We assume users do not possessetiternal knowledgé about the boundaries of protected individual
values. Consequently we consider the protected values as unbounded reals. Under that assumption, it is
relevant for inference control to know which values users know and which they do not, but the specific
values are irrelevant. For example, all the inferences we discuss in Section 1.1 are possible regardless of
the explicit values (except the N/As) we put in Table 1. Inferences of approximated values caused by the
external knowledge about boundaries or data types has been studied in [28, 31]. Their inference control
methods can be incorporated into our methods as post-processing, because the inferences we study require
less external knowledge and should be checked first.

Onthe other hand, we assume users may know some of the protected values. For example, in Table 1 users
know Alice's salary adjustment in year 2003 is N/A (or equivalently, zero) because she h@siefiany A
by the end of 2002. We shall treat all known values the same way as the N/As in this example, regardless
the sources of this knowledge. We do not consider the known values that inference control mechanism
is not aware of (undetected external knowledge). Under this assumption, the summation of any two real
unbounded values is considered safe. We address the issue of undetected external knowledge in Section 7.

2 Related Work

Inference control has been extensively studied in statistical databases [14, 1, 16] and the proposed methods
are usually classified into two categoriesstriction basedechniques an@erturbation basedechniques.
Restriction based techniques include restricting the sizguefy setqi.e., the tuples that satisfy a single

query) [22], restricting the size of overlaps [18] between query sets, detecting inferences by auditing all
gueries asked by a specific user [12, 10, 26, 6], suppressing sensitive data in released statistical tables [13],
grouping tuples and treating each group as a single tuple [11, 32]. Perturbation based techniques add noise
to source data or outputs [35, 5, 34]. Other aspects of inference problem include the inference caused by
arithmetic constraints [8, 7], inferring approximate values instead of exact values [30] and inferring intervals
enclosing exact values [28, 27, 29]. The inference control methods proposed for statistical databases do
not consider the unique structure of MDR queries. This renders them ineffective and inefficient for MDR
queries. We show some examples in Section 4.

Recently a variation of the inference control problem, nanpiyacy preserving data mininigas drawn
considerable attention as seen in [3, 2, 21, 33, 20, 17]. They all attempt to perturb sensitive values while
preserving the classifications or association rules that can be learned from the data set. In doing so, they
assume that user’s objective of data analysis is predictable. However, in OLAP systems this assumption may
not hold, because we do not know in advance what users may want to discover. Our work does not have this

The knowledge obtained from sources other than queries [14]



limitation, because what we give users is not the results (e.g., classifications or association rules), but the
means (the precise answers to their queries) to obtain the results they desire.

Controlling inferences of a special class of MDR queries, nanuiata cubess studied in [36]. They
give sufficient conditions for safe data cubes based on the cardinality of the data core. They state that a
data core is safe if it is full or dense (the number of known values is either zero or under the given bound).
However, the conditions become invalid for those MDR queries not included in the data cube. Moreover,
their conditions are not necessary, implyifiagse alarmgqueries not satisfying the conditions may still be
safe). In this paper we strengthen that result by giving necessary and sufficient conditions for all MDR
queries.

The inference problem of one-dimensional range queries is studied in [10], and the MDR case is con-
sidered difficult. Theusability (i.e., the highest possible ratio of the number of safe queries to that of all
gueries) of MDR queries in the full core is studied in [6]. They mention but do not fully explore the restric-
tion of even MDR queries. However, the general case with known values ( referrechtdeai [6]) is
thought to be challenging. In [9, 12] Chin gave necessary and sufficient condition for the compromiseability
of sum-two queries. He also proved that finding the maximal safe subsets of unsafe sum-two queries is
NP-hard. However, sum-two queries are rare in practice. In this paper we utilize his results by reducing the
compromiseability of even MDR queries to that of sum-two queries.

3 Basic Definitions

This section defines the basic concepts and notations. WeRSE', R*, R™*" to denote the set of integers,
reals,k-dimensional integer vectork;dimensional real vectors amd by n real matrices, respectively. For
anyu,v,t € R¥, we writeu < v andt € [u,v] to mean thau[i] < v[i] andmin{u[i],v[i]} < t[i] <
maz{uli],v[i]} forall 1 < i < k, respectively. We uséfor the singleton seft} whenever clear from the
context.

Definition 1 (Core) For anyd € I¥, useF(d) to denote the Cartesian produd_, [1, d[i]]. We sayF =
F(d) is the full core. AnyC' C F'is acore. Any € Fis atuple. Any € F'\ C'is a tuple missing fron®'.

Definition 1 formalizes the concepts fill core, coreandtuple The full core is formed by the Cartesian
product of closed integer intervals. A core is any subset of the full core. A tuple is any vector in the full core
and a tuple missing from the core is any vector in the complement of the core with respect to the full core.

Definition 2 (MDR Query, Sum-two Query and Arbitrary Query) Given any full corel” and coreC' C
F,

1. Define functions

(@) ¢*(.): F x F — 2% asq*(u,v) = {t: t € C,t € [u,v]}.
(b) ¢3(.): C x C — 2% as¢?(u,v) = {u,v} if u # v, and¢ otherwise.

2. UseQ,(C) and Q. (C) (or simplyQ, and Q; whenC'is clear from context) fofg* (u, v) : ¢*(u,v) #
¢} and{q?(u,v) : ¢*(u,v) # ¢}, respectively.
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3. We call any non-empty C C an arbitrary query, anyg*(u,v) € Qg4 an MDR query (or simply
query), and any;?(u,v) € Q; a sum-two query.

In Definition 2 we formalize the conceptsarbitrary query, MDR queryandsum-two queryAn arbitrary
query is any non-empty subset of the given core. An MDR qyéty, v) is a non-empty subset of the core
that includes all and only those tuplbsundedby two given tuples. Intuitively, an MDR query can be
viewed as a multi-dimensional axis-parallel box. A sum-two query is any set of exactly two tuples. We use
Q4 and Q; for the set of all MDR queries and all sum-two queries, respectively.

Definition 3 (Compromiseability) Given any full coref’, coreC' C F, and any set of arbitrary querieS,
use M (S) to denote the incidence matrbof the set system formed byand S, we say that

1. S; is derivable fromS,, denoted asS; < S, if there existsM ¢ RISU*IS:l such thatM(S;) =
M - M(Ss) holds, whereS; and S, are sets of arbitrary queries.

2. §; compromises € C'if t < §1, andS; is safe if it compromises noe C.

3. & is equivalent taSs, denoted ass; = S,, if S1 <X S andS; < S

Definition 3 formalizes the concept of compromiseability and related concepts. Because an arbitrary
query is a set of tuples, any given set of arbitrary queries can be characterized by the incidence matrix of the
set system formed by the core and the set of arbitrary queries. Given two sets of arbitrary §uesies
and the incidence matrices! (S ), M(Sz2), we saysS; is derivable fromS; if the row vectors ofM (S ) can
be represented as the linear combination of thos&1¢8;). Intuitively, this implies that the information
disclosed througl$; can be computed from that through. We sayS; compromises a tuplein the core
if ¢ (i.e.,{{t}}) is derivable fromS; andS; is safe if it compromises no tuple in the core. We say any two
set of arbitrary queries are equivalent if they are mutually derivable.

Example 3.1 Table 3 gives an example of the core, MDR queries and compromiseability. As shown in the
left upper table in Table 3, the corg contains six tuples. The subscripts of the tuples give their order.
The right upper table shows a set of five MDR queries. The lower table shows that the five MDR queries
compromise tuplél, 2) becauseM ((1,2)) = (—1/2,1/2,1/2,1/2,1/2) - M(S).

The relation= of Definition 3 is an equivalence relation on the family of all sets of arbitrary queries,
because it is reflexive, symmetric and transitive. Hence if any two sets of arbitrary queries are equivalent,
then one is safe iff the other is. In Section 5 we shall reduce the compromiseability of even MDR queries to
that of a special set of sum-two queries based on this fact.

4 |Ineffective or Infeasible Restrictions

In this section we apply several existing restriction-based inference control methods to MDR queries. Our
results show that they are ineffective or infeasible for MDR queries. We first investigate three methods,
namely,Query set size contrpbverlap size controhnd Audit Expertin Section 4.1. Then we consider the
problem of finding maximal safe subsets of unsafe MDR queries in Section 4.2.

2M(S)[i, ] = 1if the i*" arbitrary query inS contains thg*" tuple inC, and M(S)[i, j] = 0 otherwise.
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The Core C A Set of MDR Queries:S

(1,1), (2,2) [[ {1, 1), (1,2),(1,3),
’ H 1 2 3 4 ‘ (2,2>,(2,3),(2,4)}
¢((1,1),(1,2)) || {1, 1),(1,2)}
; (. 1h (;’?2 (;2)3 o || C(02.013) [ {(1.2),0.3))
@2 236 @4 | | ((1,2),(2,2) || {1,2),2.2)}
¢((2,3),(2,9) || {(2,3), (2,9}

(1,2) < S because

(0a1’09070’0) = (_%7%a%9%9% :

S O O = o=
O = = =
O O = O =
S = O O =
= o O O =
_ o O O

Table 3: An Example of Core, MDR Queries and Compromiseability.

4.1 Query Set Size Control, Overlap Size Control and Audit Expert

Query Set Size Control This method prohibits users from askiemall queries whose cardinalities are
smaller than some pre-determined threshald22]. For arbitrary queries, query set size control can be
easily subverted by asking two legitimate queries whose intersection yields a prohibited one, a mechanism
known as thdrackerin statistical databases [15]. It is shown that finding a tracker for arbitrary queries is
possible even when; is about half of the cardinality of the core. At first glance, trackers may seem to be
more difficult to find when users are restricted to MDR queries. However, the following Proposition 1 shows
that whenn, is not big enough €; < i ) a tracker can always be found to deramy given small MDR

guery, and the tracker composes of only MDR queries.

Example 4.1 Whenk = 1 the core contains integers between one and Given anyg*(u, v) satisfying
0 < v—u < 3, we have that eithef ¢*(0,u — 1) [> 5 or | ¢*(v + 1,d) |> % holds. Without loss of
generality, if| ¢*(0,u — 1) |> § then we have that*(u,v) = ¢*(0,v) \ ¢*(0,u — 1).

3

Proposition 1 Givend € R*, F = F(d) andC C F, letn; = UC—,JJ. For any¢*(uq, v,) € Qg Satisfying
| ¢*(uq,vq) |< m¢, we have tha™ (uq, ve) = {¢*(u,v) : | ¢*(u,v) |> n4}.

Overlap Size Control This method prevents users from asking queries with large intersections [18]. Any
answerable query must have a cardinality of at leasind the intersection of any two queries is required to

be no larger than. In order to compromise any tupleone must first ask one quegys ¢t and subsequently

(n — 1)/r or more queries to form the complementtofvith respect ta;. Consequently no inference is
possible if less thatw — 1) /r + 1 queries are answered. The following proposition 2 shows that this bound

is not improved (increased) by restricting users to MDR queries, because for almost any MDR query the
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complement of a tuple can always be formed. Overlap size control is infeasible because it is a stateful
method. Moreover, it depends on the restriction of small queries, which is ineffective as described above.

Example 4.2 Consider the core given in Table 3. To compromis$el), one first asks*((1,1),(1,3))
that contains(1,1). Then to form the complement dfl, 1) with respect tog*((1,1), (1,3)), queries
q((1,2),(2,2)) andg¢*((1, 3), (2, 3)) are asked. Asking one more quer¥(2,2),(2,3)) would be suf-
ficient for the intended compromise.

Proposition 2 Given anyl € R, F = F(d) andC C F, for anyq*(u, v) satisfying| {i : u[i] # v[i]} |< k
and anyt € ¢*(u,v), there exists aiy’ C Q  such thatt = ¢*(u,v) \ U,cg 9N ¢*(u, v). Moreover, for all
q € S we have that ¢ N ¢*(u,v) |= 1.

Audit Expert Chin gives a necessary and sufficient condition for determining safe arbitrary queries in
Audit Expert [12]. By treating tuples and queries as a set system, the queries are safe iff the incidence
matrix of the set system contains one or more unit row vector in its reduced row echelon form (RREF). The
elementary row transformation used to obtain the RREFaflay » matrix has the complexit (m?n).

Using this conditioron-line (after queries arrive) may incur unacceptable delay in answering queries because
m andn can be very large in OLAP systems. Moreover, it is a stateful method because it requires the entire
history of queries. A better way to use the condition is to determine the compromiseability of queries off-
line [6]. However, although this condition certainly applies to MDR queries, it is not efficient because it
does not take into consideration the inherent redundancy among MDR queries. In Section 5 we further
investigate this issue in detail.

Example 4.3 Consider again the two-dimensional core given in Table 3. We can observe redundancy among
the MDR queries. For example;((1,1),(2,2)) is derivable fromg*((1,1),(2,1)) and¢*((1, 2), (2, 2)).

Hence if¢*((1,1),(2,1)) andg*((1,2),(2,2)) are both safe theqr*(( 1),(2,2)) must be safe. The con-
verse is not true, that ig;((1, 1), (2, 2)) is safe bug*((1,1),(2,1)) = {(1,1)} is not.

4.2 Finding Maximal Safe Subsets of Unsafe MDR Queries

When a set of queries are not safe, itis desired to find its maximal safe subset. In [12] it has been shown that
finding the maximal safe subset of unsafe arbitrary queries (the MQ problem) or sum-two queries (the RMQ
problem) is NP-hard. A natural question is whether restricting users to MDR queries makes the problem
easier. Unfortunately, this is not the case. We show that this problem remains NP-hard even when restricted
to MDR queries (the MDQ problem). The result is based on the intuition that given ang’ganed any set

of sum-two queries, C 9;(Cy), we can find another corg, and a set of MDR queries; C Q,4(C1), such

that the maximal safe subset 8f gives the maximal safe subset.&f in polynomial time. Consequently

MDQ problem is also NP-hard. We illustrate this in Example 4.4 and give the general result in Theorem 1.

Example 4.4 Suppose we are givety = {t1,ts, 3} andSy = {¢*((t1,t2)), ¢*((t2, t3)), ¢*((ts, t1))}. Let
Cr = {(1,2,1),(1,1,2),(2,1,1)} and letS; be composed of*((1, 1, 1), (1,2,2)), ¢*((1,1,1),(2,1,2))



andg¢*((1,1,1),(2,2,1))}. Theng*((1,1,1),(1,2,2)) = {(1,2,1),(1,1,2)}, andg*((1,1,1),(2,1,2))
={(1,1,2),(2,1,1)} andg*((1,1,1),(2,2,1)) = {(2,1,1),(1,2,1)}. The maximal safe subset 6f
gives the maximal safe subset&). In this simple case any two out of the three queries are safe.

Theorem 1 The MDQ problem is NP-hard.

Restricted MDQ Problem Knowing that the MDQ problem is NP-hard, is it possible to reduce the com-
plexity with further restrictions? We considéata cubesa special class of MDR queries originally defined

in [23]. In Definition 4 we rephrase the concepts of data cubes using MDR queries. Our definitions are
equivalent to the original ones given in [23]. We demonstrate those definitions in Example 4.5. The follow-
ing Corollary 1 shows that the MDQ problem remains NP-hard even when it is restricted to those special
MDR queries.

Definition 4 (Data Cube) Givend € R¥, F = F(d) andC C F,

1. A skeleton query is any (u, v) satisfying the condition that[i] # v[i] impliesu[:] = 1 andv[i] =
dfi] forall 1 < i < k. A skeleton query*(u,v) is called a j-star query{( < j < k)if | {i : i €

[1, K], uli] # o]} [= J.

2. Forany non-empty C [1, k], letj =| J |. The set) of j-star queries satisfying that (u, v) € Q iff
{i i €[1,k],uli] # v[i]} = Jis called a (j-star ) cuboid.

3. The data cube is the union of all cuboids (or equivalently all skeleton queries).

Example 4.5 For the core given in Table 3, we have two 1-star cubgid$(1, 1), (1,4)),¢*((2,1),(2,4))}

and {¢*((1,1),(2,1)),¢*((1,2),(2,2)),¢*((1,3),(2,3)),4*((1,4),(2,4))}. The only 2-star cuboid is a
singleton sef{¢*((1,1),(2,4))}. The data cube is the union of the three cuboids, which also includes alll
skeleton queries.

Corollary 1 The problem MDQ remains NP-hard under the restriction that the given set of MDR queries
must be: 1. a set of skeleton queries; 2. the union of some cuboids or 3. The data cube.

5 Compromiseability of Even MDR Queries

This section investigates the compromiseabilityegén MDR queriesFirst in Section 5.1 we show that

the set of even MDR queries is equivalent to a subset of sum-two queries. Based on this equivalence
the compromiseability of even MDR queries can be efficiently determined. In Section 5.2 we show that
answering any odd MDR query in addition to even MDR queries leads to compromises, and any odd MDR
query is different from the union of a few even MDR queries by only one tuple. We also show that the
compromiseability of arbitrary queries can be efficiently determined given that the even MDR queries are
safe.



5.1 Equivalence Between MDR Queries and Sum-two Queries

Denote the set of all even MDR queries @s. In order to efficiently determine the compromiseability
of the even MDR querie®., we show that there exists a subggi; of sum-two querie;, such that
Qu = Q.. Then we can determine wheth@g is safe by checking iB; is safe. Intuitively, determining
the compromiseability 0B, is easier because by reducigy to 94 we have removed most redundant
gueries.

Two natural but untrue conjectures @ = Q; and Q. = Q. N Q;. To see whyQ, = O, is untrue,
consider the counter-example with the one-dimensional €ote {1, 2, 3}. We have that?(1,3) € Q; is
not derivable fromQ, = {¢*(1,2), ¢*(2,3)}. Example 5.1 gives a counter-exampledp= Q. N Q;.

Example 5.1 Table 4 show®, £ Q. N Q; becausg*((1,1),(2,4)) € Q. is not derivable fron@, N Q;.

The Core C
HE 2 3 4 |

1@3@1) 1.2 1,3

2 2,2) (2,3) (2,9
Qe ¢*((1,1),(1,2)),¢*((1,2), (1,3)),¢%((2,2),(2,3)),¢((2,3), (2, 4))
¢*((1,2),(2,2)),¢*((1,3), (2,3)),¢"((1,2), (2,3)), ¢*((1, 1), (2, 4))
Qe NQy Qe \ {¢7((1,2), (2,3)) } U{q*((1,1), (2,4))}

q*((la 1)7 (274)) ﬁ Qe N Qs

Table 4. An Example Showin@,. Not Equivalent toQ, N Q;.

From Example 5.1 we see th@t £ Q. N Q; because of even queries suchyaq1,1), (2,4)). Such an
even query is the union afdd queriedike ¢*((1, 1), (1, 3)) andg*((2, 2), (2,4)). Intuitively, suppose that
from Q. N Q; we can derive each odd query up to thst tuple Then wepair the adjacent last tuples of all
the odd queries by adding additional sum-two querie@to Q;. Hence we can derive the even query with
these additonal sum-two queries. Conversely, those additional sum-two queries can be deriv@d Ifisom
reversing this process. We demonstrate this in Example 5.2 and generalize the result in Theorem 2.

Example 5.2 In Example 5.1, we can le@y; = Q. N 9Q; U {¢*((1,3),(2,4))}. Consequently we can
deriveq*((1,1), (2,4)) as the union of?((1,1), (1,2)), ¢*((2,2), (2,3)) andq?((1, 3), (2,4)). Conversely
¢*((1,3),(2,4) can be derived ag*((1,1), (2,4)) \ (¢*((1,1),(1,2)) U¢*((2,2),(2,3))). Hence now we
haveQ, = Q.

Theorem 2 For any coreC, there exist®; C Q; such thatQ, = Qg4 holds.

a

The proof of Theorem 2 includes a procedure (see Appendix B) that consftidiy calling a subroutine
SubQDT for each even MDR query*(ug, vp). SunQDT adopts a divide-and-conquer approach in pairing
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the tuples ing*(ug, vo). Intuitively, we view each MDR query as an axis-parallel box. At the first stage,
SuhQDT recursively divides the curreptdimensional box into{ — 1)-dimensional boxes, until single
tuples are returned as zero-dimensional boxes. Then at the second stage, suppose the cutrenthox

is j-dimensional SuUbQDT pairs every two tuples returned by thie{ 1)-dimensional boxes ( that (u, v)

has been divided into). §*(u,v) contains even number of tuples, then all of them can be properly paired
andnull is returned to thej(+ 1)-dimensional box. Otherwise, the returned tupfeom the last { — 1)-
dimensional box cannot be paired and is returned*fy, v).

Graph Representation and Complexity Analysis The time complexity of building,; usingSubQDT
is O(mn), wherem =| Q. | andn =| C |. Becausd Qg |<| Q; |< (!S) andm = O((1)), we have
| Qar |= O(m). Hence no more storage is required®@y; than by Q..

For anyS C Qg, we useG(C, S) for the undirected simple graph haviiagas the vertex sef§ as the
edge set and each edgdt,, t2) incident the vertices; andt,. We callG(C, Q) the QDT Graph It has
been shown in [9] that a set of sum-two queries is safe iff the corresponding graph is a bipartite graph (that
is, a graph with no cycle containing odd number of edges). This can easily be decided with a breadth-first
search (BFS) o/(C, Qg ), taking timeO(n+ | Q4 |) = O(m+n). Hence the complexity of determining
the compromiseability o, is dominated by the construction &, which isO(mn). Notice that from
Section 4 we know that directly applying the condition of Audit Expert [12] has the complexidfafn).
Therefore, our solution is more efficient than Audit Expert with respect to MDR queries.

Example 5.3 Example 5.1 has the cyct€((1,3), (2,3)), ¢*((2,3), (2,4)) and¢*((1,3), (2,4)) in G .
HenceG is not a bipartite graph an@,; (and hence?.) is not safe.

5.2 Beyond Even MDR Queries

Characterizing the QDT Graph We give some properties of the QDT graph in Lemma 1 that are useful
for the rest of this section. The first property shown in Lemma 1 is straightforward. The second property is
based on the intuition that if any two tuplées ¢» in the core are notlose enouglti.e., ¢*(¢1,t2) ¢ Qar),

then we can find another tuple € ¢*(¢1, t2), such thag*(t1,t2) € Qg andts is closer tof; thant, does.

If ¢*(t1,t3) ¢ Qa:, We repeat this process. This process can be repeated legsqthian t2) | times, and

upon termination we have a tuple that is close enougl.t®he third claim is a natural extension of the first
two.

Lemmal 1. 9.NQ; C Qu.

2. For anyty,ts € C satisfying that ¢*(¢1,t2) |> 2, there exist$s € ¢*(¢1,t2) such thatg*(¢1,t3) €
Qut-

3. G(C, Qg ) is connected.

11



Properties of Q4 Although we have shown th&@, = 9., Q4 may not be the smallest or the largest
subset ofQ; that is equivalent t@@.. The smallest subset can be obtained by removing all the cycles
containing even number of edges fra®iC, Q4 ). If Q. is safe we then have a spanning tre&ot, Q. ),

which corresponds to a set of linearly independent row vectors in the incidence matrix. On the other hand,
we are more interested in the maximal subseDepfthat is equivalent t&@,.. According to Lemma 2, a
safe Q. essentially allows users to sum any two tuples from difference color clasgse&0Q ), and to
subtract any two tuples of the same color. The maximal subggf efjuivalent taQ, is hence the complete
bipartite graph with the same bipartition 6{C, Q).

Lemma 2 Given thatQ, is safe, let(Cy, C») be the bipartition oiG(C, Q4) and %, = {¢*(u,v) : u €
Ch,v € Co}. We have that

1. Qz(lt = th.
2. ForanyS C Qy,if S = Q4 thenS C Qy,.

3. Foranyt;,t, € Cy (orty,ts € Cy), there exists € RI9a! such thatM (t1) — M(ts) = - M(Qq).

a

Odd MDR Queries Now that we can determine the compromiseabilityhf we would like to know if
anything else can be answered safely. First we consider odd MDR queries that form the complethent of
with respect to all MDR querie®),. Intuitively, feeding any odd MDR query*(ug, vp) into SubQDT as

the input gives us a single tupte Suppose;* (ug, vo) is aj-dimensional box. It can be divided into two
dimensional boxes excluding together with a{ — 1)-dimensional box containingg We can recursively
divide the § — 1)-dimensional box in the same way. Hencéu, vp) is the union of a few disjointed even
MDR queries together with a singleton 4et. This is formally stated in Corollary 2.

Corollary 2 Givend € R¥, F = F(d), C C F and anyg*(u,v) € Q4 \ Q. satisfying| {i : u[i] # v[i]} |=
4, there exists;* (u;, v;) € Q. forall 1 < i < 2j — 1, such that| ¢*(u,v) \ U2 ¢* (ui, vi) |
g (ui,v) Ng*(u,v) =¢pforall 1 <i<l<25—1.

Example 5.4 In Table 4, use;*((1,1),(2,3)) as the input ofSubQDT gives the output1,3). Hence
q*((1,1),(2,3)) can be divided intay*((1,1), (1,3)) andg¢*((2,2),(2,3)). ¢*((1,1),(1,3)) can be fur-
ther divided intog*((1,1), (1,2)) and {(1,3)}. Consequentlyg*((1,1),(2,3)) = ¢*((1,1),(1,2)) U
7*((2,2),(2,3)) U{(1,3)}

Corollary 2 has two immediate consequences. Firstly, no odd MDR query is safe in addign to
Equivalently, any subset a@; with Q. as its proper subset is unsafe. Secondly, any odd MDR query
is different from the union of a few number of even MDR queries by only one tuple. This difference is
negligible because most users of MDR queries are interested in patterns and trends instead of individual
values.
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Arbitrary Queries  We know the implication o©, in terms of sum-two queries from Lemma 2. Hence

we can easily decide which arbitrary queries can be answered in addition to @.saf®rollary 3 shows

that any arbitrary query can be answered iff it contains the same number of tuples from the two color classes
of G(C, Qg). This can be decided in linear time in the size of the query by counting the tuples it contains.
The compromiseability of odd MDR queries hence becomes a special case of Corollary 3, because no odd
MDR query can satisfy this condition.

Corollary 3 Given thatQ, is safe, forany; C C, ¢ < Q. iff | ¢ Cy |=| ¢ N Cs |, where(Cy, Cy) is the
bipartition of G(C, Q4).

6 Unsafe Even MDR Queries

In this section we consider the situations where even MDR queries are unsafe. We show the equivalence
between subsets of even MDR queries and sum-two queries, and give a sufficient condition for the safe
subsets.

We have seen in Section 4.2 that finding maximal safe subsets of queries is infeasible even for queries of
restricted form, such as sum-two queries and data cubes. Hence we turn to large but not necessarily maximal
safe subsets that can be found efficiently. Recall that in Section 5 we were able to efficiently determine the
compromiseability o2, because 0. = Q. If we could establish the equivalence between their subsets,
we would be able to extend the results in Section 5 to those subsets. However, equivalence does not hold for
arbitrary subsets o, or Q4, as shown in Example 6.1.

Example 6.1 ConsiderQ,; of Example 5.2, Lety; = Q4 \{¢*((1,1),(1,2))}. Supposéy; = S. for some
Se C Q.. Because*((1,3),(2,4)) < Se, Se must containg*((1, 1), (1,2)), but theng*((1,1), (1,2)) £

Sat, @ contradiction. Hencéy, is not equivalent to any subset@f. Similarly Q. \ {¢*((1,1),(1,2))}is

not equivalent to any subset ©f;;.

Intuitively, any MDR query can be viewed asab-core The equivalence given in Theorem 2 must also
hold for this sub-core as the following. The even MDR queries defined in the sub-core is equivalent to the
sum-two queries added @, by SubQDT with those even MDR queries as its inputs. This result can be
extended to any subset of the core, as long as the subset can be represented as the union of some sub-cores.
Given anyS C Q., we delete each*(u,v) € Q. \ S from the core then the result must be the union of
some sub-cores. Similarly given asyC Qy, for eachg?(u,v) € Qg \ S if we deleteg*(u, v) from the
core then the result is the union of some sub-cores. In this way the quivalence between sufsetaf
subsets 0B, can always be established. This is formalized in Proposition 3.

Proposition3 1. Given anyS C Q. let S, = S\ {¢*(u,v) : Jg*(up,v0) € Qe \ S,q*(u,v) N
q*(ug,v0) # ¢} and Sy = {¢*(u,v) : I¢*(ug,v0) € Se, ¢*(u,v) € Qg because ofg*(ug,vo)}.
ThensS, = Sy;.

2. Given anyS C Qu, let S. = 9. \ {¢*(u,v) : EIqQ(uU,vo) € S, ¢*(u,v) N g*(up,v0) # ¢}, and
Sar = {¢*(u,v) : g*(uo, v0) € Se,¢*(u,v) € Qg because ofg*(ug, vo)}. ThenSy; = S..
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a

Proposition 3 gurantees the equivalence at the cost of smaller subsets. In some situations we are satisfied
with the weaker result, such &s; > S. for someS. C Q.. Because then if; is safe therb,. must also be
safe, although the converse is not always true. The result in Proposition 4 is similar to Corollary 3 but gives
only the sufficient condition. In Proposition 4, can be found by examining each querydy against the
bipartition (C1, Cs), taking timeO(mn), wherem =| Q. | andn =| C' |.

Proposition 4 ForanySy; C Qu, let(C1, Cs) be the bipartition of#(C, Sy ). ThenSy, = S, holds, where
Se C Q. satisfies that for any*(u,v) € S, | ¢*(u,v) N Cy |=| ¢*(u,v) N Cy |=| ¢*(u,v) | /2 holds.

a

By Proposition 4 we can efficiently find a safe subSgof Q. if a safe subseb,;; of Qg4 is given. The
ideal choice ofSy; should maximize S, |. This is egivalent to computing tr@mbinatorial discrepangf
the set system formed ly and Q. [4]. The alternative approach is to maximiz8y; |, which is equivalent
to finding the maximal bipartite subgraph@fC, Q).

Instead of those solutions that may incur high complexity, we can apply a simple procedure given in [19].
It takes the grapli7(C, Q4 ) as the input and outputs a bipartite subgraph. It starts from an empty vertex
set and empty edge set and processes one vertex at each step. The unprocessed vertex is colored blue if at
least half of the processed vertices that it connects to are red. It is colored red, otherwise. Any edge in the
original graph is included in the output bipartite subgraph if it connects two vertices in different colors. The
procedure terminates with a bipartite gra@hC, Q) satisfying that Qg |>| Qa: | /2. The procedure
runs inO(n?) = O(m), wheren =| C | andm =| Q. |. Our ongoing work shall address the effectiveness
of this procedure through empirical results.

7 Discussion

A novel three-tier inference control model was proposed for OLAP systems in [36]. The results given in
Section 5 and Section 6 fit in this model perfectly. In this section we briefly justify this claim but leave out
more details due to space limitations.

The Three-Tier Inference Control Model of [36] The objective of three-tier inference control model is to
minimize the performance penalty of inference control methods and make inference control less vulnerable
to undetected external knowledge. This is achieved by introducing a newadgregation tierA, to the
traditional two tier view (i.e.data tier D andquery tier@Q) of inference control. The three tiers are related

by Rap C AxD,Rga C @xAandRgp = RapoRga. The aggregation tied satisfies three conditions.
Firstly, | A | is comparable td D |. Secondly, there exists partitioh on A such that the composition of

R 4p and the equivalence relation decidedPyives a partition orD. Finally, inferences are eliminated in

the aggregation tied.

The three-tier model gains its advantages through its three properties. Bécé&uss relatively small
(supposé @ |>>| D |), controlling inferences ofl is easier than that af) because of the smaller input
to inference control methods. Because of the second properly wiference control can blecalizedto
the R p-related blocks ofd and D, which further reduces the complexity. Moreover, any consequences
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of undetected external knowledge in some blocks are confined to these blocks, making inference control
morerobust Finally, as the most expensive task of three-tier inference control, the constructibnaof

be processed off-line (i.e., before any query arrives). Because decomposing queries into pre-computed
aggregations is a built-in capability in most OLAP systems, the online performance overhead of three-tier

inference control is almost negligible.

Applicability of Our Results  Partitions of data set based on the dimension hierarchies naturally compose
the data tier. Each block in the partition corresponds to a core. Thesgfé or its safe subsetS;

if it is unsafe) composes each block of the aggregation tier. The query tier includes any arbitrary query
derivable from the aggregation tier. If we characteeusing the row vectors iM(Q. ), then the query

tier is the linear space they span. The relatfox, andRg 4 are both the derivarability relatioff given in
Definition 3, andRgp = Rap o Rga is a subset oK, becauseX is transitive.

In Section 5 we showed thatQy; |= O(n?), wheren =| C |, satisfying the first condition of the
three tier model. Becausgy; is defined separately on each core, the aggregation tier has a natural partition
corresponding to the partition of the data tier, satisfying the second condition. The last condition is satisfied
because we use the safe subset®gfwhen it is unsafe. Hence by integrating our results on the basis of
the three tier model, we inherit all the advantages including negligible online performance overhead, and
the robustness in the face of undetected external knowledge.

Moreover, our results provide better usability to OLAP systems than the cardinality-based approach
in [36] does. Firstly, the cardinality-based conditions become invalid when MDR queries other than those
contained in the data cube (i.e., skeleton queries) are answered. In this paper we allow any MDR queries
if only they are safe. The MDR queries generalize data cubes and various data cube operations, such as
slicing, dicing, roll up and drill down. Our answers to even MDR queries are precise, and the answered even
MDR queries closely approximate the restricted odd ones. Secondly, when a data cube is unsafe, it is simply
denied in [36]. However, in this paper we are able to give partial answers to an unsafe set of even MDR
gueries, implying better usability. Our methods for computing the partial answers are also efficient. Thirdly,
we use necessary and sufficient conditions to determine safe even MDR queries, while the cardinality-based
conditions are only sufficient. Therefore, we can provide more answers to users without privacy breaches
than the methods of [36] does.

8 Conclusion and Future Direction

In this paper we have shown the infeasibility of applying several existing restrictions to MDR queries. We
then proved the equivalence between the even MDR queries and a special set of sum-two queries. On the
basis of this equivalence we are able to efficiently determine the compromiseability of even MDR queries.
We showed that the restricted odd MDR queries are closely approximated by the answered even ones. We
show that safe arbitrary queries can be efficiently determined. We can also maintain this equivalence when
even MDR queries are unsafe. Our on-going work implements the proposed algorithms in order to explore
their fine tunings. Another future direction is to investigate the aggregation operators other than SUM.
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Appendix A

Proof of Theorem 1: In [12] Chin shows the NP hardness of tR&Q problemwhich can be obtained by
replacingQg with Q; in MDQ problem. We show that every instance of the RMQ problem is polynomially
reduciable to an instance of the MDQ problem.

Suppose an instance of the RMQ problem is given as

1. The core cuboid’y = {t1,t2,...,tn}.

2. The set of sum-two querie® = {¢*(ti,, t,), ¢*(tins tjs), - - - ¢*(tin s, )}, Wherel < i, < n and
1<j,<nforall<z<m.

We construct an instance of the MDQ problem as

1.d=(2,2,...,2) e R™.

2. The core cuboid’; = {si,s2,..., sy} satisfying thats; [z] = s;, [z] = 1forall1 < z < m, and
for each fixedr, s, [z] = 2 for all y # i, andy # j.

U2,12)y -« «y ¢ (Um, Vi) }, Where for alll < ¢ < m,

3. The set of MDR querieS§; = {¢*(u1,v1),¢"
=1, v;[i] = 2 for all j # i.

(
w;[i] = v;[i] = 1, and for each fixed, u;[i] =1
We have thay*(ug,v,) = {si,,s;,} forall < z < m. Hence for any/ C [1,m] we have that
{¢?(ti,,t;,) : x € I} is safe iff{¢*(us,v,) : © € I} is safe. Consequently the maximal safe subset of
gives the maximal safe subset&y. O

Proof of Corollary 1. Because the set of MDR queries constructed in the proof of Theorem 1 are actually
skeleton queries, we only need to show MDQ is NP-hard under the second and third restrictions.

Suppose the instance of the RMQ problem is given same as in the proof of Theorem 1. We first construct
an instance of the MDQ problem under the restriction that the set of MDR queries is the union of some
cuboids. The core cuboid; and the set of MDR querie$; are given as follows.
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lL.d=(n-1,n—-1,....,n—1) e R™

2. The core cuboid’; = {s1,s2,...,5n}, where for alll < z < m, s;,[z] = s;,[2] = 1 and
1 < syli] < s.[i] foranyy < zandy, z € [1,n] \ {iz, iy}

3. Sy = {q*(u1,v1), q* (ug,v2), . .., ¢* (Um, vim) }, Where for alll < i < m, u;[i] = v;[i] = 1, and for
each fixed, u;[i] = 1,v;[i] =n — 1 forall j # 1.

4. S1 = U, Q;, where eaclt); is the cuboid containing*(u;, v;).

For anyq € (J;~, Q; \ St we have that ¢ |= 1. Hence trivially the maximal safe subset §f is
a subset of5;. For anyl < = < m we have thay*(us,v,) = {si,,s;, }. Hence for anyl C [1,m],
{q3(ti,, t;,) : x € I} is safe iff{¢*(us,v,) : @ € I} is safe. Consequently the maximal safe subset of
gives the maximal safe subset%y.

Next we modify this instance of the MDQ problem to the third restriction as follows.

lL.d=n+1Ln+1,....,n+1)eR™
2. C1 ={s1,82,- -+, Sn, Snt1, Snt2}, Wheres, 11 = (n,n,...,n)ands,y2 = (n+1,n+1,...,n+1).

3. St = {q*(U17U1)7 *(u2702)7 s 7q*(um7vm)}' where for alll <i<m, Uz[l] = UZ[Z] = 1 and for
each fixed;, u;[i] = 1,v;[i] = n + 1 for all j # 1.

4. @; is the cuboid containing®¥i forall 1 < ¢ < m.

5. S; is the data cube.

SupposeS;..1 is the maximal safe subset ¢f. Then similarly S,,,,1 does not contain any €
Ui, Qi \ St. Moreover,S,,,q,1 does not contain any j-* query for gll< m — 1. As we shall show shortly,
Smaz1 CONtains the m-* query* (uy, vy ), whereu, = (1,1,...,1) andv, = (n+1,n+1,...,n+ 1).
Hence we have tha,,,,.1 C S; U {¢*(us, vx) } @andg*(ug, vx) € Spmaz1- Foralll < az < m, we have that
q* (ug, vz) = {si,, sj, }- Hence forany C [1,m], {¢*(ti,,t;,) : @ € I} is safe iff{¢"=*= : z € I} is safe.
Consequently finding, .1 gives the maximal safe subset%.

It remains to show thag* (us, v4) € Smaz1. We do so by contradiction. Suppog8uy, vs) ¢ Smaz1
and Spar1 U {q*(ux, vx)} compromises someé € ;. Then we have thab,,.,,1 C S;. Suppose
Smaz1 |= 1. Then there exists € R*! such thatr - M({g*(us, v4)} U Smaz1)? = M(t) holds. Let
r' = (r[2],7[3],...,r[l]). Then

(1] - M(q* (s, v:)) T + 7" - M(Spaz1)” = M(2)

We have thak,, 1, Sp+2 ¢ qusmm q becauses, o1 C Sy MoreoverM (q* (uy, vi) = M(spy1) +
M(sp42) + Y iy M(s;). We have that

r[1] - M(sn)” + (1] M(snia)” + D @i M(si)T = M(t)
i=1
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forsomez; e R,i=1,2,...,n.

There are two cases. First suppase {si, s2,...,s,}. Then we have that[l] = 0. Consequently
we have that’ - M(Sy,..1)7 = M(t), which contradicts the assumption th#t,..; is safe. Secondly,
sSuppose € {sp+1,sn+2}. Without loss of generality assume= s, 1, which leads to the contradiction
thatr[1] = 1 andr[1] = 0. Hence we have proved th@t(u., vs) € Smaz1- O
Proof of Proposition 1: Let S = {¢*(u,v) : Vi € [1, k], (u[i] = 1,v[i] = ugli] — 1) V (u[i] = ugli], v[i] =
valt]) V (uglt] = wvali] + 1,va]7] = d[i])}. We have thaC = U‘v’qES q, andg¢*(u,v) N ¢*(ug,vq) = @
holds for anyg*(u,v) € S\ ¢*(u4,v,). Becausd S |= 3%, there must exist* (uy, vy) € S such that
q* (up, vp) > % Next we define

1. uc, v, satisfying thatu.[i] = min{ug[i], up[i], vp[i]}, andv.[i] = maz{uyi], va[i], vp[i]} for all
1<i<Ek.

2. Foralll <i <k, u; satisfying thatu;[i] = wu,[i], v;[i] = vs]i], and for each fixed, u;[j] = u.[:] and
v;i[7] = vc[i]) foranyj # i.

Then we have that

k

¢* (tas va) = " (e, ve) \ | J (6" (uiy 03) \ ¢ (up, v0)) \ ¢ (up, v3)
i=1

Letr = (17 _]-a _17 ey _1, k— 1) € Rk+2’ then

M(q* (ta, va)) = 7 - (M(q* (te, ve), M(q* (u1,v1), M(q* (uz, v2), . . ., M(q* (ug, vg), M(g* (up, vp))"
Moreover,q*(ub,vb) c q*(uwvc) andq*(ubﬂ)b) - q*(ui7vi) forall 1 < ¢ < k hold. Hence we have that
| ¢*(ue,ve) |> ny and| ¢* (us, v;) |> ng holds for alll < i < k. -

Proof of Proposition 2: Suppose tuples ig*(u,v) are in dictionary order and uge for the i*" tuple.
Without loss of generality supposge= ¢; andu[l] = v[1]. Foralll < i <| ¢*(u,v) | —1 letwu;[1] = 1,
v;[1] = d[1], and for each fixed, u;[j] = v;[j] = t;[j] forall j > 1. LetS = {¢*(ui,v;)}. Because

q*(ui,vi) N g*(u,v) = t; we havel = ¢*(ui, vi) \ U es 9N g (u,v). O
Proof of Theorem 2: In the following discussion we assume that R¥, FF = F(d), C C F, and any
S C C'is sorted in dictionary order. Far= 1,2,...,| S |, we useS]i] for thei*" tuple inS. For any

u,v € F satisfyingu < v andg*(u,v) € Q., useS,, to denote the set of sum-two queries adde@tpby
calling SubQDT(C, u, v).

In order to proveQ. < Qg, we show that for any, < v andg¢*(u,v) € Q., ¢*(u,v) = Sy, holds.
Specially, we show thaf*(u,v) = qusw q. Becausey N ¢ = ¢ holds for anyq, g2 € Sy, it then
follows that M (¢*(u,v)) = 7 - M(Sw)?, wherer = (1,1,...,1) € RISl We do so by mathematical
induction on| I |, wherel = {i:i € [1, k], u[i] < v[i]}.

The Inductive Hypothesis:For| I |=0,1,...,k, if ¢*(u,v) € Q., theng*(u,v) = ,cg,, ¢- Otherwise,
q*(u,v) = (qusw q) U{ SubQDT(C, u,v)}.

The Base CasefFor| I |= 0, we have that: = v, andg¢*(u,v) = {u}. Becausd = ¢, the subroutine
SubQDT in Figure 8 returng at the second step, with,, = ¢. Hences(q*(u,v)) = ¢ U {u}, validating
the base case of our inductive hypothesis.
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The Inductive Case: Suppose the inductive hypothesis holds|fdr |= 0,1,...,5 < k, we show that it
holds for| I |= j+1. Letu andv satisfy thatu < vand| I |= j+1, wherel = {i :i € [1, k], u[i] < v[i]}.

For allulm] < i < v[m], wherem = maxz(I), the paifu;,v;) defined in the subroutin8ubQDT sat-
isfy | {i : i € [1,k],u[i] < v[i]} | = j. Hence when the subroutif@ubQDT recursively calls
itself with the input(C, u;,v;), the inductive hypothesis holds inside the recursion. Let {i : i €

[u[m], v[m]], ¢*(ui, v;) ¢ Qc} andJ’ = [u[m],v[m]]\ J. Because of the inductive hypothesj§(u;, v;) =

qus ¢ holds for alli € J’, and conversely* (u;, v;) = (IJ q)U{t;} foralli € J, wheret; =

SubQDT(C Ujy Vi)

If ¢*(u,v) € Q., we have that J | is even. Fori = 1,2,..., |—2| q*(t2;_1,t2;) € Sy holds because of
Step 4 ofSubQDT. Hence we have that

qESu;v;

=

v[m] v[m] 3
)= | o= (U oulitar )= q
z:u[m] z:u[m] qesuivi i=1 esuv

Conversely, if¢*(u,v) € Q4 \ Q., we have that J |is odd. Fori = 1,2,..., 'Jl , we have that

q*(toi_1,t21) € Suw. Furthermore, we have th&uhQDT(C,u,v) = g ¢ Suv- Hence the following
holds:

v[m]
¢ (u,v) = U ¢ (ui, v;) = Syup U{Sub_ QDT (C,u,v)}
i=ul[m]
This proves the inductive case of our inductive hypothesis.

In order to proveQs =< Q., we show that for any € Qu, ¢ < Q. holds. Suppose in the subroutine
SubQDT in Figure 8 a sum-two query*(;, t;) is added toQ4;, whereu[m] < i < j < v[m).

We only need to show that'(u;, v;) \ {ti} = U,cs, ¢ and similarlyg*(u;, v;) \ {t;} = qusj q, where
Si, S € Q. andu;, v4, uj, v; are defined in Figure 8. Because then we have

j—1
¢ (tirty) = ¢ (i, o) \ ((|J o) U | 9)
l=i+1 qESiUSj

This implies thay?(¢;, t;) < Q., becausg*(u;, vj) € Q. andg*(u;,v;) € Q. for anyi < I < j. We do so
by induction on| I |.

The Inductive Hypothesis: For anyi € [u[m], v[m]], if t; # null theng*(u;, v;) \ {t:} = Uy,es, s(q), for
somesS; C 9., whereu[m], v[m], t; are defined in Figure 8.

The Base Casefor| I |= 0, we have that. = v, i = u[m/|, andt, = u. Henceg*(u,u) \ {u} = ¢. The
base case of the inductive hypothesis trivially holds véith= ¢.

The Inductive Case: Suppose the inductive hypothesis holds foi dll|= 0,1, ..., j for some0 < j < k,
we show that it holds fof + 1. Because the subroutisb QDT recursively calls itself, inside the recursion
we have that I |= j. Suppose the inputs to the recursive call@re, v andg*(u,v) ¢ Q.. We have that
¢ (u,v) = ¢ (u,vi—1) U ¢*(ur41,v) U ¢ (ug,vp) if I < v[m], or ¢*(u,v) = ¢*(u,v;—1) U ¢*(ug,vp) if
[ = v[m]. Moreover, because of the inductive hypothesis we haveytitat, v;) \ {t;} = ¢*(u;, v) \ {t:} =
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Uvges, s(g) holds for someS; € Q.. Hence we have*(u,v) \ {ti} = Uy,ess(q), whereS = S; U
{¢*(u,vi—1), ¢* (uig1,0) } if L < wim], or Q@ = Q; U {qg*(u,v;_1)} if | = v[m]. Becauser*(u,v) ¢ Qe,
we have that {i : i € [u[m],v[m]],t; # null} | is odd. Hence we havg (u,v;—1), ¢* (ui+1,v) € Q..
ConsequentlyS C Q. holds. Because; =SubhQDT(C, u,v), this validates the inductive case of our
inductive hypothesis. u

Proof of Corollary 2: Suppose we call subroutirgubh QDT in Figure 8 with input(¢*(u, v), u,v) and let
the output be,4q. Fori =1,2,... kandl = 1,2, 3, 4, define tuples;; as:

1. uylj] = toaaly] forall j > iandl =1,2,3,4.
2. uzl[z] = ’UJ[Z}, Ui2 [’L] = uodd[z’] — 1, u;3 [Z] = todd[i] +1 andui4[i] = ’UM

3. ui1[j] = wislj] = wlj] andusz[j] = wi[j] = v[j] forall j < i.

We then have that (u, v) = U, (¢* (i1, wia) Ug* (ui3, wia) ) U{toqa and all they* (uy, uy )s are disjointed.

1=

Because/* (u13, u14) = ¢, we have totally2k — 1 disjointed even MDR queries. O

Proof of Lemma 1: The first claim of Lemma 1 is true consideriSuhQDT(C, ug, vg), Whereug, vg
satisfyq*(uo, vo) = {uo, vo}.

For the second claim, suppose # t1, t3 # to and| ¢*(t1,t3) |> 2. Thengs ¢ ¢*(t1,t3) holds. For
otherwise, for any € [1, k] we havemin{t:[i], t2[i]} < t3[i] < maz{t1[i],t2[i]} andmin{t:[i], ts[i]} <

ta[t] < max{ti[i],t3[i]}, and hencey, = t3 contradicting our assumption. Consequently we have that
| ¢*(t1,t3) |<| q*(t1,t2) |. Letty € q*(t1,ts3) satisfyingty # t; andty # t3. We can repeat the same
argument by replacing; with ¢4 and so on, unti| ¢*(¢1,t) |= 2 for somet € ¢*(t1, t2). This together with

the first claim of Lemma 1 justifies the second claim.

We prove the third claim by contradiction. SuppdsgandG, are any two connected components of any
G(C,Qa), and lett; € V(Gy) (the vertex set of7;), t2 € V(G2). By the first claim of Lemma 1 we
have thaf ¢*(¢1,t2) |> 2. By the second claim there exists € ¢*(¢1,t2) such thaty*(¢1,t3) € Qg and
hencets € V(G1). Similarly as stated above, ¢ ¢*(t3,t2) and hence ¢*(¢1,t2) |>| ¢*(¢3,t2) |. Repeat
above reasoning with; replaced byt; and so on, until that for somewe have| ¢*(¢,t2) |= 2, and hence
q*(t,t2) € Qu by the first claim. But theid’; andG» are connected because V(G ), contradicting our
assumption.

The fourth claim follows directly from the results of Chin [12] and Theorem 2. Chin’s result states that any
S C Q, is safe iff the graph, whose vertex setisand edge set i§, is a bipartite. O

Proof of Lemma 2: Qg4 = Q3 is trivial becausedy C QF. We only need to showp), < Qg. By
Lemma 1G(C, Q4) is a connected bipartite. Hence there exists a path containing odd number of edges
between any; € C1 andig € Cy. LetitbeS = {qZ(tl, tg), q2(t2, tg), ceey q2(t2n, t2n+1), q2(t2n+1), to)},

wheren > 0. We have thatM(¢?(t1,t0)) = ((—1)° (=1, (=1)%,...,(=1)?") - M(S)T. Hence
¢*(t1,to0) = Qar.

Becausel);, corresponds to the complete bipartite graph( a bipartite graph whose edge set includes all the
edges that incident two vertices from different color classes) with bipartiionCs), any proper superset

S of Qy, is not a bipartite. Henc8 cannot be safe, and consequelﬁil)ﬁ Q-

For anyt,t;; € Sy, becaus&(C, Qu) is connected there must exigtsc Sy such thay?(ty,t2) € Qus.
Taken together witly?(t2,t11) < Qg we have that the third claim holds. O
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Proof of Corollary 3: If | cnNC) |=| ¢NCy |, thenc =
consequently: < Q..

qes ¢ forsomeS C Q7. Hencec < Qj, and

We prove the only if part by contradiction. Without loss of generality suppose) C; |>| ¢ N Cy |
andc < Q.. Thenc = ¢y U ¢y, Wherecy, ¢; satisfy thatcy Nec; = ¢, | co N C1 |=| ¢co N Cy | and
¢y € Cq. Then we have thaty < Q. and hencd/(c¢;) < Q. follows. Suppose:; = {to,t1,...,tn}
wheren > 1. Then by the third claim of Lemma 2 we have th&t(tg) — M(t;) = r; - M(Qa)”
holds for all1 < i < n, where each; € RI9«l. By adding the two sides of all the equation we have
thatn - M(to) = SO0 M(t;) + 30 ri - M(Qa)”. Let M(c1) = - M(Qq)", wherer € RIQul,
Becaused ;' ; M(t;) = M(c1) — M(to) = r - M(Qau)" — M(ty) we have thatn + 1)M(ty) =
S i M(Qa)T + 1 M(Qa)T. Hencety is compromised by, contradicting our assumption that
c= Q.. O

Proof of Proposition 3: We only need to justify the first claim. For amy(ug,v9) € Sg, suppose
q*(ug,vo) € Qg because of*(ug,v1) € Se. Then{q*(u,v) : ¢*(u,v) € QeAg*(u,v) C ¢*(u1,v1)} C Se
holds. Hencep?(ug,v9) < S.. Conversely, for any*(ug,vo) € Se, we have{q*(u,v) : ¢*(u,v) €
Qg because of* (ug,vo)} € Sg. Henceg* (ug, vo) = Sat- O
Proof of Proposition 4:

Let S C Q, satisfy thatG(C, S) is the complete bipartite with the bipartitigd’;, Co). Clearly S, <
S = Sdt' Od

23



Appendix B

ProcedureQDT
Input: d, F = F(d),C CF
Output: A set of sum-two querie®
Method:
l.LetQu=0¢
2. For anyg*(u,v) € Q., whereu < v
Call SubhQDT(C, u,v);
3. Return Q;

Subroutine SubQDT
Input: The coreC, tuplesu andv satisfyingu < v
Output: t,4q

Method:
l.Letl={i:iell,k],uli] <v[i]}andm = max(I),
2.f I =¢ //Stop whernu = v
Return u;
3. For i = u[m] to v[m] /[Divide
let t; = null;
If qg*(ui,vi) # &
Let ¢; = SUbhQDT(C, u;, v;), /[Recursion
whereV;j € I'\ {m},w;[j] = ulj] A vi[j] = v[j] andu;[m] = v;[m] = 4;
4. For i = u[m] tov[m] lIConquer
If ¢; # null
Let j =min{j:j > i,t; #nullV j > vim]};
If 5> v[m)]
Return t;;
Else

Let Qu = Qur U {¢*(ti, t;)} andi = j;
5. Return null;

Figure 1: Procedure QDT
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