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Abstract

This paper investigates the privacy breaches caused by multi-dimensional range (MDR) sum queries
in OLAP systems. We show that existing inference control methods are generally ineffective or infeasible
for MDR queries. We then consider restricting users to even MDR queries (that is, the MDR queries
involving even number of data values). We show that the collection of such even MDR queries is safe if
and only if a special set of sum-two queries (that is, queries involving exactly two values) is safe. On the
basis of this result, we give an efficient method to decide the safety of even MDR queries. Besides safe
even MDR queries we show that any odd MDR query is unsafe. Moreover, any such odd MDR query is
different from the union of some even MDR queries by only one tuple. We also extend those results to
the safe subsets of unsafe even MDR queries.
Keywords: Inference Control, Privacy, OLAP

1 Introduction

Multi-dimensional range (MDR) query is an important class of decision support query in OLAP (On-line
Analytical Processing) systems [25]. One of the most popular data models of OLAP systems, data cube [23],
can be viewed as a collection of MDR queries. MDR queries are intended to assist users in exploring trends
and patterns in large amount of data stored in data warehouses. Contrary to this initial objective, MDR
queries can be used to obtain protected sensitive data, which results in the breach of individual’s privacy.
Access control alone is insufficient in controlling information disclosure, because information not released
directly may be inferred indirectly from the answers to legitimate queries, which is known as theinference
problemin databases. Providing precise answers to MDR queries without privacy breaches is the subject
matter of this paper.

The inference problem has been investigated since 70’s with many inference control methods proposed
especially for statistical databases. Those methods usually have run times proportional to the size of the
queries or the data set, and they are invoked only after queries have arrived. On the other hand, OLAP
applications demand instant responses to MDR queries, although those queries usually aggregate a large
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amount of data [24]. Consequently, the delay in query answering renders most existing methods impractical
for OLAP systems. In this paper we propose efficient inference control methods by exploiting the unique
structures of MDR queries.

The first contribution of this paper is that it will invoke more attention to the privacy issue of OLAP
systems, which is unfortunately ignored in most of today’s commercial products. We study several existing
inference methods and the results show that they are ineffective or infeasible for MDR queries. We also
show that finding maximal safe subsets of unsafe MDR queries is NP-hard. Secondly, we reduce the infer-
ence control of MDR queries to that of sum-two queries with a necessary and sufficient condition on their
compromiseability. By treating sum-two queries as edges of simple undirected graphs, this reduction relates
the inference control of MDR queries with existing results in inference control in statistical databases and
graph theory. Finally, we give efficient methods ( the complexity is bound toO(mn), wherem, n are the
number of queries and tuples respectively) to determine safe MDR queries, safe arbitrary queries and large
subsets of unsafe MDR queries.

The rest of the paper is organized as follows. Section 1.1 gives motivating examples to build an intuitive
understanding. Section 1.2 describes our assumptions. Section 2 reviews existing inference control methods
proposed in traditional statistical databases and modern decision support systems. Section 3 formalizes
MDR queries and the compromiseability. Section 4 gives negative results of applying existing inference
control methods to MDR queries. Section 5 investigates the problem of determining safe MDR queries.
Section 6 extends the results to subsets of unsafe MDR queries. Section 7 discusses the implementation.
Section 8 concludes the paper. Appendix A gives the proofs of all the theorems, lemmata, corollaries and
propositions.

1.1 Motivating Example

Suppose that part of a data set owned by a fictitious organization,Company A, is shown in Table 1. It
contains salary adjustments for four employees in years 2002 and 2003. Let the three attributes beyear,
emp (employee) andadj (adjustment) respectively. The symbolN/A in Table 1 indicates that the employee
did not work forCompany Ain that year.

The Data Core year emp adj

year / emp / adj Alice Bob Mary Jim

2002 1000.00 500.00 -2000.00 N/A
2003 N/A 1500.00 -500.00 1000.00

Table 1: An Example of a Two-dimensional Data Core.

Company Ainvites an analystMallory to analyze the data set. For this purpose,Mallory is allowed to
ask sum queries about the attributeadj in Table 1. On the other hand,Company Aworries thatMallory
may impropriately use the information she learns about each employee. HenceMallory is prohibited from
directly asking the individual values (of attributeadj) in Table 1. In addition, supposeMallory knows the
non-sensitive attributesyear, emp and theN/As in Table 1. Now we ask the following questions.Can
Mallory learn any of the individual values through sum queries?and if yes,how can we safeguard these
values?SupposeMallory asks the following query:
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SELECT emp, SUM(adj)

FROM year emp adj

GROUP BY emp;

The answer to the above SQL query contains four records(Alice, 1000), (Bob, 2000), (Mary,−2500)
and(Jim, 1000). Each record corresponds to a one-dimensional MDR sum query, such as(Alice, 1000),
which sums the values in the first column of the table. Intuitively, by viewing each MDR query as a box,
we can represent it using its longest diagonal. For example, use[(Alice, 2002), (Alice, 2003)] for the first
column of the table and[(Alice, 2002), (Bob, 2003)] for the first two columns. We shall use this intuitive
notation instead of SQL for MDR query henceforth.

Mallory is able to learn from the MDR query[(Alice, 2002), (Alice, 2003)] that the adjustment for Alice
in 2002 is1000.00, because the query sums a single value. This threat can be thwarted by answering only
the MDR queries that sum two or more values. However,Mallory can easily get around this restriction by
subtracting ( the answers to )[(Bob, 2002), (Mary, 2002)] from [(Alice, 2002), (Mary, 2002)].

Observe that the cardinality of[(Bob, 2002), (Mary, 2002)] and[(Alice, 2002), (Mary, 2002)] is even
(two) and odd (three), respectively. Is it helpful for protecting the individual values to restrictMallory to
only even MDR queriesor only odd MDR queries? The restriction to odd MDR queries is ineffective. For
example, the first two and three columns of Table 1 are both odd, but their difference gives the third column
which is even. Conversely, to obtain odd MDR queries from even ones is not always straight-forward.
Because the individual values can be viewed as the answers to odd MDR queries, restricting users to even
MDR queries makes inferences substantially more difficult.

Nonetheless, inference is still possible with only even MDR queries. A series of five even MDR queries
asked byMallory and their answers are given in Table 2. The first query sums all six values and the rest four
queries each sums two values.Mallory then adds the answers to the last four queries (2500) and subtract
from the result the answer to the first queries (1500). Dividing the result of the subtraction (1000) by two
gives Bob’s adjustment in 2002 (500).

Ranges Answer

[(Alice, 2002), (Jim, 2003)] 1500
[(Alice, 2002), (Bob, 2002)] 1500
[(Bob, 2002), (Mary, 2002)] −1500
[(Bob, 2002), (Bob, 2003)] 2000
[(Mary, 2003), (Jim, 2003)] 500

Table 2: An Example of Even MDR Queries.

In the rest of this paper we address the following questions naturally motivated by the above example.
1.How can we efficiently determine whether even MDR queries are safe? 2.What is the impact on users if
only even MDR queries are allowed? 3.Besides the even MDR queries, what else can be answered safely?
4.If even MDR queries are unsafe, can we find a large safe subset?
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1.2 Assumptions

We only considerstatelessinference control methods. That is, the methods that grant or deny incoming
queries independent of the queries previously asked by the user. For example, restrictions on the size or
parity of queries are stateless. On the other hand, thestatefulmethods base authorization decisions on the
history of queries asked by a specific user. For example, controlling the size of overlaps between queries.
Stateful restrictions are usually infeasible in practice, because users can subvert them by using aliases to
login or colluding.

We assume users do not possess theexternal knowledge1 about the boundaries of protected individual
values. Consequently we consider the protected values as unbounded reals. Under that assumption, it is
relevant for inference control to know which values users know and which they do not, but the specific
values are irrelevant. For example, all the inferences we discuss in Section 1.1 are possible regardless of
the explicit values (except the N/As) we put in Table 1. Inferences of approximated values caused by the
external knowledge about boundaries or data types has been studied in [28, 31]. Their inference control
methods can be incorporated into our methods as post-processing, because the inferences we study require
less external knowledge and should be checked first.

On the other hand, we assume users may know some of the protected values. For example, in Table 1 users
know Alice’s salary adjustment in year 2003 is N/A (or equivalently, zero) because she has leftCompany A
by the end of 2002. We shall treat all known values the same way as the N/As in this example, regardless
the sources of this knowledge. We do not consider the known values that inference control mechanism
is not aware of (undetected external knowledge). Under this assumption, the summation of any two real
unbounded values is considered safe. We address the issue of undetected external knowledge in Section 7.

2 Related Work

Inference control has been extensively studied in statistical databases [14, 1, 16] and the proposed methods
are usually classified into two categories;restriction basedtechniques andperturbation basedtechniques.
Restriction based techniques include restricting the size ofquery sets(i.e., the tuples that satisfy a single
query) [22], restricting the size of overlaps [18] between query sets, detecting inferences by auditing all
queries asked by a specific user [12, 10, 26, 6], suppressing sensitive data in released statistical tables [13],
grouping tuples and treating each group as a single tuple [11, 32]. Perturbation based techniques add noise
to source data or outputs [35, 5, 34]. Other aspects of inference problem include the inference caused by
arithmetic constraints [8, 7], inferring approximate values instead of exact values [30] and inferring intervals
enclosing exact values [28, 27, 29]. The inference control methods proposed for statistical databases do
not consider the unique structure of MDR queries. This renders them ineffective and inefficient for MDR
queries. We show some examples in Section 4.

Recently a variation of the inference control problem, namely,privacy preserving data mininghas drawn
considerable attention as seen in [3, 2, 21, 33, 20, 17]. They all attempt to perturb sensitive values while
preserving the classifications or association rules that can be learned from the data set. In doing so, they
assume that user’s objective of data analysis is predictable. However, in OLAP systems this assumption may
not hold, because we do not know in advance what users may want to discover. Our work does not have this

1The knowledge obtained from sources other than queries [14]
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limitation, because what we give users is not the results (e.g., classifications or association rules), but the
means (the precise answers to their queries) to obtain the results they desire.

Controlling inferences of a special class of MDR queries, namely,data cubesis studied in [36]. They
give sufficient conditions for safe data cubes based on the cardinality of the data core. They state that a
data core is safe if it is full or dense (the number of known values is either zero or under the given bound).
However, the conditions become invalid for those MDR queries not included in the data cube. Moreover,
their conditions are not necessary, implyingfalse alarms(queries not satisfying the conditions may still be
safe). In this paper we strengthen that result by giving necessary and sufficient conditions for all MDR
queries.

The inference problem of one-dimensional range queries is studied in [10], and the MDR case is con-
sidered difficult. Theusability (i.e., the highest possible ratio of the number of safe queries to that of all
queries) of MDR queries in the full core is studied in [6]. They mention but do not fully explore the restric-
tion of even MDR queries. However, the general case with known values ( referred to asholesin [6]) is
thought to be challenging. In [9, 12] Chin gave necessary and sufficient condition for the compromiseability
of sum-two queries. He also proved that finding the maximal safe subsets of unsafe sum-two queries is
NP-hard. However, sum-two queries are rare in practice. In this paper we utilize his results by reducing the
compromiseability of even MDR queries to that of sum-two queries.

3 Basic Definitions

This section defines the basic concepts and notations. We useI,R, Ik,Rk,Rm×n to denote the set of integers,
reals,k-dimensional integer vectors,k-dimensional real vectors andm by n real matrices, respectively. For
any u, v, t ∈ Rk, we writeu ≤ v and t ∈ [u, v] to mean thatu[i] ≤ v[i] andmin{u[i], v[i]} ≤ t[i] ≤
max{u[i], v[i]} for all 1 ≤ i ≤ k, respectively. We uset for the singleton set{t} whenever clear from the
context.

Definition 1 (Core) For anyd ∈ Ik, useF(d) to denote the Cartesian productΠk
i=1[1, d[i]]. We sayF =

F(d) is the full core. AnyC ⊆ F is a core. Anyt ∈ F is a tuple. Anyt ∈ F \ C is a tuple missing fromC.

Definition 1 formalizes the concepts offull core, coreandtuple. The full core is formed by the Cartesian
product of closed integer intervals. A core is any subset of the full core. A tuple is any vector in the full core
and a tuple missing from the core is any vector in the complement of the core with respect to the full core.

Definition 2 (MDR Query, Sum-two Query and Arbitrary Query) Given any full coreF and coreC ⊆
F ,

1. Define functions

(a) q?(.) : F × F → 2C asq?(u, v) = {t : t ∈ C, t ∈ [u, v]}.
(b) q2(.) : C × C → 2C asq2(u, v) = {u, v} if u 6= v, andφ otherwise.

2. UseQd(C) andQt(C) (or simplyQd andQt whenC is clear from context) for{q?(u, v) : q?(u, v) 6=
φ} and{q2(u, v) : q2(u, v) 6= φ}, respectively.
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3. We call any non-emptyq ⊆ C an arbitrary query, anyq?(u, v) ∈ Qd an MDR query (or simply
query), and anyq2(u, v) ∈ Qt a sum-two query.

In Definition 2 we formalize the concepts ofarbitrary query, MDR queryandsum-two query. An arbitrary
query is any non-empty subset of the given core. An MDR queryq?(u, v) is a non-empty subset of the core
that includes all and only those tuplesboundedby two given tuples. Intuitively, an MDR query can be
viewed as a multi-dimensional axis-parallel box. A sum-two query is any set of exactly two tuples. We use
Qd andQt for the set of all MDR queries and all sum-two queries, respectively.

Definition 3 (Compromiseability) Given any full coreF , coreC ⊆ F , and any set of arbitrary queriesS,
useM(S) to denote the incidence matrix2 of the set system formed byC andS, we say that

1. S1 is derivable fromS2, denoted asS1 ¹ S2, if there existsM ∈ R|S1|×|S2| such thatM(S1) =
M · M(S2) holds, whereS1 andS2 are sets of arbitrary queries.

2. S1 compromisest ∈ C if t ¹ S1, andS1 is safe if it compromises not ∈ C.

3. S1 is equivalent toS2, denoted asS1 ≡ S2, if S1 ¹ S2 andS2 ¹ S1

Definition 3 formalizes the concept of compromiseability and related concepts. Because an arbitrary
query is a set of tuples, any given set of arbitrary queries can be characterized by the incidence matrix of the
set system formed by the core and the set of arbitrary queries. Given two sets of arbitrary queriesS1, S2,
and the incidence matricesM(S1),M(S2), we sayS1 is derivable fromS2 if the row vectors ofM(S1) can
be represented as the linear combination of those ofM(S2). Intuitively, this implies that the information
disclosed throughS1 can be computed from that throughS2. We sayS1 compromises a tuplet in the core
if t (i.e.,{{t}}) is derivable fromS1 andS1 is safe if it compromises no tuple in the core. We say any two
set of arbitrary queries are equivalent if they are mutually derivable.

Example 3.1 Table 3 gives an example of the core, MDR queries and compromiseability. As shown in the
left upper table in Table 3, the coreC contains six tuples. The subscripts of the tuples give their order.
The right upper table shows a set of five MDR queries. The lower table shows that the five MDR queries
compromise tuple(1, 2) becauseM((1, 2)) = (−1/2, 1/2, 1/2, 1/2, 1/2) · M(S).

The relation≡ of Definition 3 is an equivalence relation on the family of all sets of arbitrary queries,
because it is reflexive, symmetric and transitive. Hence if any two sets of arbitrary queries are equivalent,
then one is safe iff the other is. In Section 5 we shall reduce the compromiseability of even MDR queries to
that of a special set of sum-two queries based on this fact.

4 Ineffective or Infeasible Restrictions

In this section we apply several existing restriction-based inference control methods to MDR queries. Our
results show that they are ineffective or infeasible for MDR queries. We first investigate three methods,
namely,Query set size control, overlap size controlandAudit Expertin Section 4.1. Then we consider the
problem of finding maximal safe subsets of unsafe MDR queries in Section 4.2.

2M(S)[i, j] = 1 if the ith arbitrary query inS contains thejth tuple inC, andM(S)[i, j] = 0 otherwise.
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The Core C A Set of MDR Queries:S

1 2 3 4

1 (1,1)1 (1,2)2 (1,3)3
2 (2,2)4 (2,3)5 (2,4)6

q?((1, 1), (2, 4)) {(1, 1), (1, 2), (1, 3),
(2, 2), (2, 3), (2, 4)}

q?((1, 1), (1, 2)) {(1, 1), (1, 2)}
q?((1, 2), (1, 3)) {(1, 2), (1, 3)}
q?((1, 2), (2, 2)) {(1, 2), (2, 2)}
q?((2, 3), (2, 4)) {(2, 3), (2, 4)}

(1, 2) ¹ S because

(0, 1, 0, 0, 0, 0) = (−1
2
, 1

2
, 1

2
, 1

2
, 1

2
)·




1 1 1 1 1 1
1 1 0 0 0 0
0 1 1 0 0 0
0 1 0 1 0 0
0 0 0 0 1 1




Table 3: An Example of Core, MDR Queries and Compromiseability.

4.1 Query Set Size Control, Overlap Size Control and Audit Expert

Query Set Size Control This method prohibits users from askingsmall queries whose cardinalities are
smaller than some pre-determined thresholdnt [22]. For arbitrary queries, query set size control can be
easily subverted by asking two legitimate queries whose intersection yields a prohibited one, a mechanism
known as thetracker in statistical databases [15]. It is shown that finding a tracker for arbitrary queries is
possible even whennt is about half of the cardinality of the core. At first glance, trackers may seem to be
more difficult to find when users are restricted to MDR queries. However, the following Proposition 1 shows
that whennt is not big enough (nt ≤ n

3k ) a tracker can always be found to deriveanygiven small MDR
query, and the tracker composes of only MDR queries.

Example 4.1 Whenk = 1 the core containsn integers between one andd. Given anyq?(u, v) satisfying
0 < v − u < n

3 , we have that either| q?(0, u − 1) |≥ n
3 or | q?(v + 1, d) |≥ n

3 holds. Without loss of
generality, if| q?(0, u− 1) |≥ n

3 then we have thatq?(u, v) = q?(0, v) \ q?(0, u− 1).

Proposition 1 Givend ∈ Rk, F = F(d) andC ⊆ F , let nt = b |C|
3k c. For anyq?(ua, va) ∈ Qd satisfying

| q?(ua, va) |< nt, we have thatq?(ua, va) ¹ {q?(u, v) : | q?(u, v) |≥ nt}.

2

Overlap Size Control This method prevents users from asking queries with large intersections [18]. Any
answerable query must have a cardinality of at leastn, and the intersection of any two queries is required to
be no larger thanr. In order to compromise any tuplet, one must first ask one queryq 3 t and subsequently
(n − 1)/r or more queries to form the complement oft with respect toq. Consequently no inference is
possible if less than(n− 1)/r + 1 queries are answered. The following proposition 2 shows that this bound
is not improved (increased) by restricting users to MDR queries, because for almost any MDR query the
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complement of a tuple can always be formed. Overlap size control is infeasible because it is a stateful
method. Moreover, it depends on the restriction of small queries, which is ineffective as described above.

Example 4.2 Consider the core given in Table 3. To compromise(1, 1), one first asksq?((1, 1), (1, 3))
that contains(1, 1). Then to form the complement of(1, 1) with respect toq?((1, 1), (1, 3)), queries
q?((1, 2), (2, 2)) andq?((1, 3), (2, 3)) are asked. Asking one more queryq?((2, 2), (2, 3)) would be suf-
ficient for the intended compromise.

Proposition 2 Given anyd ∈ Rk, F = F(d) andC ⊆ F , for anyq?(u, v) satisfying| {i : u[i] 6= v[i]} |< k

and anyt ∈ q?(u, v), there exists anS ⊆ Qd such thatt = q?(u, v) \⋃
q∈S q ∩ q?(u, v). Moreover, for all

q ∈ S we have that| q ∩ q?(u, v) |= 1.

2

Audit Expert Chin gives a necessary and sufficient condition for determining safe arbitrary queries in
Audit Expert [12]. By treating tuples and queries as a set system, the queries are safe iff the incidence
matrix of the set system contains one or more unit row vector in its reduced row echelon form (RREF). The
elementary row transformation used to obtain the RREF of am by n matrix has the complexityO(m2n).
Using this conditionon-line(after queries arrive) may incur unacceptable delay in answering queries because
m andn can be very large in OLAP systems. Moreover, it is a stateful method because it requires the entire
history of queries. A better way to use the condition is to determine the compromiseability of queries off-
line [6]. However, although this condition certainly applies to MDR queries, it is not efficient because it
does not take into consideration the inherent redundancy among MDR queries. In Section 5 we further
investigate this issue in detail.

Example 4.3 Consider again the two-dimensional core given in Table 3. We can observe redundancy among
the MDR queries. For example,q?((1, 1), (2, 2)) is derivable fromq?((1, 1), (2, 1)) andq?((1, 2), (2, 2)).
Hence ifq?((1, 1), (2, 1)) andq?((1, 2), (2, 2)) are both safe thenq?((1, 1), (2, 2)) must be safe. The con-
verse is not true, that is,q?((1, 1), (2, 2)) is safe butq?((1, 1), (2, 1)) = {(1, 1)} is not.

4.2 Finding Maximal Safe Subsets of Unsafe MDR Queries

When a set of queries are not safe, it is desired to find its maximal safe subset. In [12] it has been shown that
finding the maximal safe subset of unsafe arbitrary queries (the MQ problem) or sum-two queries (the RMQ
problem) is NP-hard. A natural question is whether restricting users to MDR queries makes the problem
easier. Unfortunately, this is not the case. We show that this problem remains NP-hard even when restricted
to MDR queries (the MDQ problem). The result is based on the intuition that given any coreC0 and any set
of sum-two queriesS0 ⊆ Qt(C0), we can find another coreC1 and a set of MDR queriesS1 ⊆ Qd(C1), such
that the maximal safe subset ofS1 gives the maximal safe subset ofS0 in polynomial time. Consequently
MDQ problem is also NP-hard. We illustrate this in Example 4.4 and give the general result in Theorem 1.

Example 4.4 Suppose we are givenC0 = {t1, t2, t3} andS0 = {q2((t1, t2)), q2((t2, t3)), q2((t3, t1))}. Let
C1 = {(1, 2, 1), (1, 1, 2), (2, 1, 1)} and letS1 be composed ofq?((1, 1, 1), (1, 2, 2)), q?((1, 1, 1), (2, 1, 2))
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andq?((1, 1, 1), (2, 2, 1))}. Thenq?((1, 1, 1), (1, 2, 2)) = {(1, 2, 1), (1, 1, 2)}, andq?((1, 1, 1), (2, 1, 2))
= {(1, 1, 2), (2, 1, 1)} andq?((1, 1, 1), (2, 2, 1)) = {(2, 1, 1), (1, 2, 1)}. The maximal safe subset ofS1

gives the maximal safe subset ofS0. In this simple case any two out of the three queries are safe.

Theorem 1 The MDQ problem is NP-hard.

2

Restricted MDQ Problem Knowing that the MDQ problem is NP-hard, is it possible to reduce the com-
plexity with further restrictions? We considerdata cubes, a special class of MDR queries originally defined
in [23]. In Definition 4 we rephrase the concepts of data cubes using MDR queries. Our definitions are
equivalent to the original ones given in [23]. We demonstrate those definitions in Example 4.5. The follow-
ing Corollary 1 shows that the MDQ problem remains NP-hard even when it is restricted to those special
MDR queries.

Definition 4 (Data Cube) Givend ∈ Rk, F = F(d) andC ⊆ F ,

1. A skeleton query is anyq?(u, v) satisfying the condition thatu[i] 6= v[i] impliesu[i] = 1 andv[i] =
d[i] for all 1 ≤ i ≤ k. A skeleton queryq?(u, v) is called a j-star query (1 ≤ j ≤ k) if | {i : i ∈
[1, k], u[i] 6= v[i]} |= j.

2. For any non-emptyJ ⊆ [1, k], let j =| J |. The setQ of j-star queries satisfying thatq?(u, v) ∈ Q iff
{i : i ∈ [1, k], u[i] 6= v[i]} = J is called a ( j-star ) cuboid.

3. The data cube is the union of all cuboids (or equivalently all skeleton queries).

Example 4.5 For the core given in Table 3, we have two 1-star cuboids{q?((1, 1), (1, 4)), q?((2, 1), (2, 4))}
and {q?((1, 1), (2, 1)), q?((1, 2), (2, 2)), q?((1, 3), (2, 3)), q?((1, 4), (2, 4))}. The only 2-star cuboid is a
singleton set{q?((1, 1), (2, 4))}. The data cube is the union of the three cuboids, which also includes all
skeleton queries.

Corollary 1 The problem MDQ remains NP-hard under the restriction that the given set of MDR queries
must be: 1. a set of skeleton queries; 2. the union of some cuboids or 3. The data cube.

2

5 Compromiseability of Even MDR Queries

This section investigates the compromiseability ofeven MDR queries. First in Section 5.1 we show that
the set of even MDR queries is equivalent to a subset of sum-two queries. Based on this equivalence
the compromiseability of even MDR queries can be efficiently determined. In Section 5.2 we show that
answering any odd MDR query in addition to even MDR queries leads to compromises, and any odd MDR
query is different from the union of a few even MDR queries by only one tuple. We also show that the
compromiseability of arbitrary queries can be efficiently determined given that the even MDR queries are
safe.
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5.1 Equivalence Between MDR Queries and Sum-two Queries

Denote the set of all even MDR queries asQe. In order to efficiently determine the compromiseability
of the even MDR queriesQe, we show that there exists a subsetQdt of sum-two queriesQt, such that
Qdt ≡ Qe. Then we can determine whetherQe is safe by checking ifQdt is safe. Intuitively, determining
the compromiseability ofQdt is easier because by reducingQe to Qdt we have removed most redundant
queries.

Two natural but untrue conjectures areQe ≡ Qt andQe ≡ Qe ∩ Qt. To see whyQe ≡ Qt is untrue,
consider the counter-example with the one-dimensional coreC = {1, 2, 3}. We have thatq2(1, 3) ∈ Qt is
not derivable fromQe = {q?(1, 2), q?(2, 3)}. Example 5.1 gives a counter-example toQe ≡ Qe ∩Qt.

Example 5.1 Table 4 showsQe � Qe ∩Qt becauseq?((1, 1), (2, 4)) ∈ Qe is not derivable fromQe ∩Qt.

The Core C
1 2 3 4

1 (1,1) (1,2) (1,3)
2 (2,2) (2,3) (2,4)

Qe q?((1, 1), (1, 2)), q?((1, 2), (1, 3)), q?((2, 2), (2, 3)), q?((2, 3), (2, 4))
q?((1, 2), (2, 2)), q?((1, 3), (2, 3)), q?((1, 2), (2, 3)), q?((1, 1), (2, 4))

Qe ∩Qt Qe \ {q?((1, 2), (2, 3))} ∪ {q?((1, 1), (2, 4))}

q?((1, 1), (2, 4)) � Qe ∩ Qt

Table 4: An Example ShowingQe Not Equivalent toQe ∩Qt.

From Example 5.1 we see thatQe � Qe ∩Qt because of even queries such asq?((1, 1), (2, 4)). Such an
even query is the union ofodd querieslike q?((1, 1), (1, 3)) andq?((2, 2), (2, 4)). Intuitively, suppose that
fromQe ∩Qt we can derive each odd query up to thelast tuple. Then wepair the adjacent last tuples of all
the odd queries by adding additional sum-two queries toQe ∩Qt. Hence we can derive the even query with
these additonal sum-two queries. Conversely, those additional sum-two queries can be derived fromQe by
reversing this process. We demonstrate this in Example 5.2 and generalize the result in Theorem 2.

Example 5.2 In Example 5.1, we can letQdt = Qe ∩ Qt ∪ {q2((1, 3), (2, 4))}. Consequently we can
deriveq?((1, 1), (2, 4)) as the union ofq2((1, 1), (1, 2)), q2((2, 2), (2, 3)) andq2((1, 3), (2, 4)). Conversely
q2((1, 3), (2, 4) can be derived asq?((1, 1), (2, 4)) \ (q2((1, 1), (1, 2)) ∪ q2((2, 2), (2, 3))). Hence now we
haveQe ≡ Qdt.

Theorem 2 For any coreC, there existsQdt ⊆ Qt such thatQe ≡ Qdt holds.

2

The proof of Theorem 2 includes a procedure (see Appendix B) that constructsQdt by calling a subroutine
SubQDT for each even MDR queryq?(u0, v0). SubQDT adopts a divide-and-conquer approach in pairing
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the tuples inq?(u0, v0). Intuitively, we view each MDR query as an axis-parallel box. At the first stage,
SubQDT recursively divides the currentj-dimensional box into (j − 1)-dimensional boxes, until single
tuples are returned as zero-dimensional boxes. Then at the second stage, suppose the current boxq?(u, v)
is j-dimensional,SubQDTpairs every two tuples returned by the (j − 1)-dimensional boxes ( thatq?(u, v)
has been divided into). Ifq?(u, v) contains even number of tuples, then all of them can be properly paired
andnull is returned to the (j + 1)-dimensional box. Otherwise, the returned tuplet from the last (j − 1)-
dimensional box cannot be paired and is returned byq?(u, v).

Graph Representation and Complexity Analysis The time complexity of buildingQdt usingSubQDT
is O(mn), wherem =| Qe | andn =| C |. Because| Qdt |≤| Qt |≤

(|C|
2

)
andm = O(

(|C|
2

)
), we have

| Qdt |= O(m). Hence no more storage is required byQdt than byQe.

For anyS ⊆ Qdt, we useG(C, S) for the undirected simple graph havingC as the vertex set,S as the
edge set and each edgeq2(t1, t2) incident the verticest1 andt2. We callG(C,Qdt) theQDT Graph. It has
been shown in [9] that a set of sum-two queries is safe iff the corresponding graph is a bipartite graph (that
is, a graph with no cycle containing odd number of edges). This can easily be decided with a breadth-first
search (BFS) onG(C,Qdt), taking timeO(n+ | Qdt |) = O(m+n). Hence the complexity of determining
the compromiseability ofQe is dominated by the construction ofQdt, which isO(mn). Notice that from
Section 4 we know that directly applying the condition of Audit Expert [12] has the complexity ofO(m2n).
Therefore, our solution is more efficient than Audit Expert with respect to MDR queries.

Example 5.3 Example 5.1 has the cycleq2((1, 3), (2, 3)), q2((2, 3), (2, 4)) andq2((1, 3), (2, 4)) in Gdt.
HenceGdt is not a bipartite graph andQdt (and henceQe) is not safe.

5.2 Beyond Even MDR Queries

Characterizing the QDT Graph We give some properties of the QDT graph in Lemma 1 that are useful
for the rest of this section. The first property shown in Lemma 1 is straightforward. The second property is
based on the intuition that if any two tuplest1, t2 in the core are notclose enough(i.e., q?(t1, t2) /∈ Qdt),
then we can find another tuplet3 ∈ q?(t1, t2), such thatq?(t1, t2) ∈ Qdt andt3 is closer tot1 thant2 does.
If q?(t1, t3) /∈ Qdt, we repeat this process. This process can be repeated less than| q?(t1, t2) | times, and
upon termination we have a tuple that is close enough tot1. The third claim is a natural extension of the first
two.

Lemma 1 1. Qe ∩Qt ⊆ Qdt.

2. For anyt1, t2 ∈ C satisfying that| q?(t1, t2) |> 2, there existst3 ∈ q?(t1, t2) such thatq?(t1, t3) ∈
Qdt.

3. G(C,Qdt) is connected.

2
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Properties of Qdt Although we have shown thatQdt ≡ Qe, Qdt may not be the smallest or the largest
subset ofQt that is equivalent toQe. The smallest subset can be obtained by removing all the cycles
containing even number of edges fromG(C,Qdt). If Qe is safe we then have a spanning tree ofG(C,Qdt),
which corresponds to a set of linearly independent row vectors in the incidence matrix. On the other hand,
we are more interested in the maximal subset ofQt that is equivalent toQe. According to Lemma 2, a
safeQe essentially allows users to sum any two tuples from difference color classes ofG(C,Qdt), and to
subtract any two tuples of the same color. The maximal subset ofQt equivalent toQe is hence the complete
bipartite graph with the same bipartition ofG(C,Qdt).

Lemma 2 Given thatQe is safe, let(C1, C2) be the bipartition ofG(C,Qdt) andQ?
dt = {q2(u, v) : u ∈

C1, v ∈ C2}. We have that

1. Q?
dt ≡ Qdt.

2. For anyS ⊆ Qt, if S ≡ Qdt thenS ⊆ Q?
dt.

3. For anyt1, t2 ∈ C1 ( or t1, t2 ∈ C2 ), there existsr ∈ R|Qdt| such thatM(t1)−M(t2) = r ·M(Qdt).

2

Odd MDR Queries Now that we can determine the compromiseability ofQe, we would like to know if
anything else can be answered safely. First we consider odd MDR queries that form the complement ofQe

with respect to all MDR queriesQd. Intuitively, feeding any odd MDR queryq?(u0, v0) into SubQDT as
the input gives us a single tuplet. Supposeq?(u0, v0) is aj-dimensional box. It can be divided into twoj
dimensional boxes excludingt, together with a (j − 1)-dimensional box containingt. We can recursively
divide the (j − 1)-dimensional box in the same way. Henceq?(u0, v0) is the union of a few disjointed even
MDR queries together with a singleton set{t}. This is formally stated in Corollary 2.

Corollary 2 Givend ∈ Rk, F = F(d), C ⊆ F and anyq?(u, v) ∈ Qd \Qe satisfying| {i : u[i] 6= v[i]} |=
j, there existsq?(ui, vi) ∈ Qe for all 1 ≤ i ≤ 2j − 1, such that| q?(u, v) \ ⋃2j−1

i=1 q?(ui, vi) |= 1 and
q?(ui, vi) ∩ q?(ul, vl) = φ for all 1 ≤ i < l ≤ 2j − 1.

2

Example 5.4 In Table 4, useq?((1, 1), (2, 3)) as the input ofSubQDT gives the output(1, 3). Hence
q?((1, 1), (2, 3)) can be divided intoq?((1, 1), (1, 3)) andq?((2, 2), (2, 3)). q?((1, 1), (1, 3)) can be fur-
ther divided intoq?((1, 1), (1, 2)) and {(1, 3)}. Consequently,q?((1, 1), (2, 3)) = q?((1, 1), (1, 2)) ∪
q?((2, 2), (2, 3)) ∪ {(1, 3)}

Corollary 2 has two immediate consequences. Firstly, no odd MDR query is safe in addition toQe.
Equivalently, any subset ofQd with Qe as its proper subset is unsafe. Secondly, any odd MDR query
is different from the union of a few number of even MDR queries by only one tuple. This difference is
negligible because most users of MDR queries are interested in patterns and trends instead of individual
values.
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Arbitrary Queries We know the implication ofQe in terms of sum-two queries from Lemma 2. Hence
we can easily decide which arbitrary queries can be answered in addition to a safeQe. Corollary 3 shows
that any arbitrary query can be answered iff it contains the same number of tuples from the two color classes
of G(C,Qdt). This can be decided in linear time in the size of the query by counting the tuples it contains.
The compromiseability of odd MDR queries hence becomes a special case of Corollary 3, because no odd
MDR query can satisfy this condition.

Corollary 3 Given thatQe is safe, for anyq ⊆ C, q ¹ Qe iff | q ∩ C1 |=| q ∩ C2 |, where(C1, C2) is the
bipartition ofG(C,Qdt).

2

6 Unsafe Even MDR Queries

In this section we consider the situations where even MDR queries are unsafe. We show the equivalence
between subsets of even MDR queries and sum-two queries, and give a sufficient condition for the safe
subsets.

We have seen in Section 4.2 that finding maximal safe subsets of queries is infeasible even for queries of
restricted form, such as sum-two queries and data cubes. Hence we turn to large but not necessarily maximal
safe subsets that can be found efficiently. Recall that in Section 5 we were able to efficiently determine the
compromiseability ofQe because ofQe ≡ Qdt. If we could establish the equivalence between their subsets,
we would be able to extend the results in Section 5 to those subsets. However, equivalence does not hold for
arbitrary subsets ofQe orQdt, as shown in Example 6.1.

Example 6.1 ConsiderQdt of Example 5.2, LetSdt = Qdt\{q2((1, 1), (1, 2))}. SupposeSdt ≡ Se for some
Se ⊆ Qe. Becauseq?((1, 3), (2, 4)) ¹ Se, Se must containq?((1, 1), (1, 2)), but thenq?((1, 1), (1, 2)) �
Sdt, a contradiction. HenceSdt is not equivalent to any subset ofQe. SimilarlyQe \ {q?((1, 1), (1, 2))} is
not equivalent to any subset ofQdt.

Intuitively, any MDR query can be viewed as asub-core. The equivalence given in Theorem 2 must also
hold for this sub-core as the following. The even MDR queries defined in the sub-core is equivalent to the
sum-two queries added toQdt by SubQDT with those even MDR queries as its inputs. This result can be
extended to any subset of the core, as long as the subset can be represented as the union of some sub-cores.
Given anyS ⊆ Qe, we delete eachq?(u, v) ∈ Qe \ S from the core then the result must be the union of
some sub-cores. Similarly given anyS ⊆ Qdt, for eachq2(u, v) ∈ Qdt \ S if we deleteq?(u, v) from the
core then the result is the union of some sub-cores. In this way the quivalence between subsets ofQe and
subsets ofQdt can always be established. This is formalized in Proposition 3.

Proposition 3 1. Given anyS ⊆ Qe, let Se = S \ {q?(u, v) : ∃q?(u0, v0) ∈ Qe \ S, q?(u, v) ∩
q?(u0, v0) 6= φ} andSdt = {q2(u, v) : ∃q?(u0, v0) ∈ Se, q

2(u, v) ∈ Qdt because ofq?(u0, v0)}.
ThenSe ≡ Sdt.

2. Given anyS ⊆ Qdt, let Se = Qe \ {q?(u, v) : ∃q2(u0, v0) ∈ S, q?(u, v) ∩ q?(u0, v0) 6= φ}, and
Sdt = {q2(u, v) : ∃q?(u0, v0) ∈ Se, q

2(u, v) ∈ Qdt because ofq?(u0, v0)}. ThenSdt ≡ Se.
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2

Proposition 3 gurantees the equivalence at the cost of smaller subsets. In some situations we are satisfied
with the weaker result, such asSdt º Se for someSe ⊆ Qe. Because then ifSdt is safe thenSe must also be
safe, although the converse is not always true. The result in Proposition 4 is similar to Corollary 3 but gives
only the sufficient condition. In Proposition 4,Se can be found by examining each query inQe against the
bipartition(C1, C2), taking timeO(mn), wherem =| Qe | andn =| C |.

Proposition 4 For anySdt ⊆ Qdt, let (C1, C2) be the bipartition ofG(C,Sdt). ThenSdt º Se holds, where
Se ⊆ Qe satisfies that for anyq?(u, v) ∈ Se, | q?(u, v) ∩ C1 |=| q?(u, v) ∩ C2 |=| q?(u, v) | /2 holds.

2

By Proposition 4 we can efficiently find a safe subsetSe of Qe if a safe subsetSdt of Qdt is given. The
ideal choice ofSdt should maximize| Se |. This is eqivalent to computing thecombinatorial discrepanyof
the set system formed byC andQe [4]. The alternative approach is to maximize| Sdt |, which is equivalent
to finding the maximal bipartite subgraph ofG(C,Qdt).

Instead of those solutions that may incur high complexity, we can apply a simple procedure given in [19].
It takes the graphG(C,Qdt) as the input and outputs a bipartite subgraph. It starts from an empty vertex
set and empty edge set and processes one vertex at each step. The unprocessed vertex is colored blue if at
least half of the processed vertices that it connects to are red. It is colored red, otherwise. Any edge in the
original graph is included in the output bipartite subgraph if it connects two vertices in different colors. The
procedure terminates with a bipartite graphG(C,Qds) satisfying that| Qds |≥| Qdt | /2. The procedure
runs inO(n2) = O(m), wheren =| C | andm =| Qe |. Our ongoing work shall address the effectiveness
of this procedure through empirical results.

7 Discussion

A novel three-tier inference control model was proposed for OLAP systems in [36]. The results given in
Section 5 and Section 6 fit in this model perfectly. In this section we briefly justify this claim but leave out
more details due to space limitations.

The Three-Tier Inference Control Model of [36] The objective of three-tier inference control model is to
minimize the performance penalty of inference control methods and make inference control less vulnerable
to undetected external knowledge. This is achieved by introducing a new tier,aggregation tierA, to the
traditional two tier view (i.e.,data tierD andquery tierQ) of inference control. The three tiers are related
byRAD ⊆ A×D, RQA ⊆ Q×A andRQD = RAD◦RQA. The aggregation tierA satisfies three conditions.
Firstly, | A | is comparable to| D |. Secondly, there exists partitionP on A such that the composition of
RAD and the equivalence relation decided byP gives a partition onD. Finally, inferences are eliminated in
the aggregation tierA.

The three-tier model gains its advantages through its three properties. Because| A | is relatively small
(suppose| Q |>>| D |), controlling inferences ofA is easier than that ofQ because of the smaller input
to inference control methods. Because of the second property ofA, inference control can belocalizedto
theRAD-related blocks ofA andD, which further reduces the complexity. Moreover, any consequences
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of undetected external knowledge in some blocks are confined to these blocks, making inference control
morerobust. Finally, as the most expensive task of three-tier inference control, the construction ofA can
be processed off-line (i.e., before any query arrives). Because decomposing queries into pre-computed
aggregations is a built-in capability in most OLAP systems, the online performance overhead of three-tier
inference control is almost negligible.

Applicability of Our Results Partitions of data set based on the dimension hierarchies naturally compose
the data tier. Each block in the partition corresponds to a core. The safeQdt ( or its safe subsetsSdt

if it is unsafe) composes each block of the aggregation tier. The query tier includes any arbitrary query
derivable from the aggregation tier. If we characterizeQe using the row vectors inM(Qe), then the query
tier is the linear space they span. The relationRAD andRQA are both the derivarability relation¹ given in
Definition 3, andRQD = RAD ◦RQA is a subset of¹, because¹ is transitive.

In Section 5 we showed that| Qdt |= O(n2), wheren =| C |, satisfying the first condition of the
three tier model. BecauseQdt is defined separately on each core, the aggregation tier has a natural partition
corresponding to the partition of the data tier, satisfying the second condition. The last condition is satisfied
because we use the safe subsets ofQdt when it is unsafe. Hence by integrating our results on the basis of
the three tier model, we inherit all the advantages including negligible online performance overhead, and
the robustness in the face of undetected external knowledge.

Moreover, our results provide better usability to OLAP systems than the cardinality-based approach
in [36] does. Firstly, the cardinality-based conditions become invalid when MDR queries other than those
contained in the data cube (i.e., skeleton queries) are answered. In this paper we allow any MDR queries
if only they are safe. The MDR queries generalize data cubes and various data cube operations, such as
slicing, dicing, roll up and drill down. Our answers to even MDR queries are precise, and the answered even
MDR queries closely approximate the restricted odd ones. Secondly, when a data cube is unsafe, it is simply
denied in [36]. However, in this paper we are able to give partial answers to an unsafe set of even MDR
queries, implying better usability. Our methods for computing the partial answers are also efficient. Thirdly,
we use necessary and sufficient conditions to determine safe even MDR queries, while the cardinality-based
conditions are only sufficient. Therefore, we can provide more answers to users without privacy breaches
than the methods of [36] does.

8 Conclusion and Future Direction

In this paper we have shown the infeasibility of applying several existing restrictions to MDR queries. We
then proved the equivalence between the even MDR queries and a special set of sum-two queries. On the
basis of this equivalence we are able to efficiently determine the compromiseability of even MDR queries.
We showed that the restricted odd MDR queries are closely approximated by the answered even ones. We
show that safe arbitrary queries can be efficiently determined. We can also maintain this equivalence when
even MDR queries are unsafe. Our on-going work implements the proposed algorithms in order to explore
their fine tunings. Another future direction is to investigate the aggregation operators other than SUM.
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[16] D.E. Denning and J. Schlörer. Inference controls for statistical databases.IEEE Computer, 16(7):69–
82, 1983.

[17] I. Dinur and K. Nissim. Revealing information while preserving privacy. InProceedings 2003 ACM
PODS Symposium on Principles of Database Systems, 2003.

[18] D. Dobkin, A.K. Jones, and R.J. Lipton. Secure databases: protection against user influence.ACM
Trans. on Database Systems, 4(1):97–106, 1979.

[19] P. Erd̈os. On some extremal problems in graph theory.Isarel Journal of Math., 3:113–116, 1965.

[20] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy preserving data mining.
In Proceedings 2003 ACM PODS Symposium on Principles of Database Systems, 2003.

[21] A. Evfimievski, R. Srikant, , R. Agrawal, and J. Gehrke. Privacy preserving mining of association
rules. InProceedings of the 8th Conference on Knowledge Discovery and Data Mining (KDD’02),
2002.

[22] L.P. Fellegi. On the qestion of statistical confidentiality.Journal of American Statistic Association,
67(337):7–18, 1972.

[23] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational operator generalizing
group-by, crosstab and sub-totals. InProceedings of the 12th International Conference on Data Engi-
neering, pages 152–159, 1996.

[24] V. Harinarayan, A. Rajaraman, and J.D. Ullman. Implementing data cubes efficiently. InProceedings
of the 1996 ACM SIGMOD international conference on Management of data, pages 205–227, 1996.

[25] D.T. Ho, R. Agrawal, N. Megiddo, and R. Srikant. Range queries in olap data cubes. InProceedings
1997 ACM SIGMOD International Conference on Management of Data, pages 73–88, 1997.

[26] J. Kleinberg, C. Papadimitriou, and P. Raghavan. Auditing boolean attributes. InProc. of the 9th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pages 86–91, 2000.

[27] Y. Li, L. Wang, and S. Jajodia. Preventing interval based inferece by random data perturbation. In
Proceedings of The Second Workshop on Privacy Enhancing Technologies (PET’02), 2002.

[28] Y. Li, L. Wang, X.S. Wang, and S. Jajodia. Auditing interval-based inference. InProceedings of the
14th Conference on Advanced Information Systems Engineering (CAiSE’02), pages 553–568, 2002.

[29] Y. Li, L. Wang, S.C. Zhu, and S. Jajodia. A privacy enhanced microaggregation method. InProceed-
ings of the Second International Symposium on Foundations of Information and Knowledge Systems
(FoIKS 2002), pages 148–159, 2002.

[30] F.M. Malvestuto and M. Mezzini. Auditing sum queries. InProceedings of the 9th International
Conference on Database Theory (ICDT’03), pages 126–146, 2003.

[31] F.M. Malvestuto and M. Moscarini. Computational issues connected with the protection of sensetive
statistics by auditing sum-queries. InProc. of IEEE Scientific and Statistical Database Management,
pages 134–144, 1998.

17



[32] J.M. Mateo-Sanz and J. Domingo-Ferrer. A method for data-oriented multivariate microaggregation.
In Proceedings of the Conference on Statistical Data Protection’98, pages 89–99, 1998.

[33] S. Rizvi and J.R. Haritsa. Maintaining data privacy in association rule mining. InProceedings of the
28th Conference on Very Large Data Base (VLDB’02), 2002.

[34] J. Schl̈orer. Security of statistical databases: multidimensional transformation.ACM Trans. on
Database Systems, 6(1):95–112, 1981.
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Appendix A

Proof of Theorem 1: In [12] Chin shows the NP hardness of theRMQ problemwhich can be obtained by
replacingQd with Qt in MDQ problem. We show that every instance of the RMQ problem is polynomially
reduciable to an instance of the MDQ problem.

Suppose an instance of the RMQ problem is given as

1. The core cuboidC0 = {t1, t2, . . . , tn}.
2. The set of sum-two queriesS0 = {q2(ti1 , tj1), q

2(ti2 , tj2), . . . , q
2(tim , tjm)}, where1 ≤ ix ≤ n and

1 ≤ jx ≤ n for all 1 ≤ x ≤ m.

We construct an instance of the MDQ problem as

1. d = (2, 2, . . . , 2) ∈ Rm.

2. The core cuboidC1 = {s1, s2, . . . , sn} satisfying thatsix [x] = sjx [x] = 1 for all 1 ≤ x ≤ m, and
for each fixedx, sy[x] = 2 for all y 6= ix andy 6= jx.

3. The set of MDR queriesS1 = {q?(u1, v1), q?(u2, v2), . . . , q?(um, vm)}, where for all1 ≤ i ≤ m,
ui[i] = vi[i] = 1, and for each fixedi, uj [i] = 1, vj [i] = 2 for all j 6= i.

We have thatq?(ux, vx) = {six , sjx} for all 1 ≤ x ≤ m. Hence for anyI ⊆ [1,m] we have that
{q2(tix , tjx) : x ∈ I} is safe iff{q?(ux, vx) : x ∈ I} is safe. Consequently the maximal safe subset ofS1

gives the maximal safe subset ofS0. 2

Proof of Corollary 1: Because the set of MDR queries constructed in the proof of Theorem 1 are actually
skeleton queries, we only need to show MDQ is NP-hard under the second and third restrictions.

Suppose the instance of the RMQ problem is given same as in the proof of Theorem 1. We first construct
an instance of the MDQ problem under the restriction that the set of MDR queries is the union of some
cuboids. The core cuboidC1 and the set of MDR queriesS1 are given as follows.
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1. d = (n− 1, n− 1, . . . , n− 1) ∈ Rm.

2. The core cuboidC1 = {s1, s2, . . . , sm}, where for all1 ≤ x ≤ m, six [x] = sjx [x] = 1 and
1 < sy[i] < sz[i] for anyy < z andy, z ∈ [1, n] \ {ix, iy}.

3. St = {q?(u1, v1), q?(u2, v2), . . . , q?(um, vm)}, where for all1 ≤ i ≤ m, ui[i] = vi[i] = 1, and for
each fixedi, uj [i] = 1, vj [i] = n− 1 for all j 6= i.

4. S1 =
⋃m

i=1 Qi, where eachQi is the cuboid containingq?(ui, vi).

For anyq ∈ ⋃m
i=1 Qi \ St we have that| q |= 1. Hence trivially the maximal safe subset ofS1 is

a subset ofSt. For any1 ≤ x ≤ m we have thatq?(ux, vx) = {six , sjx}. Hence for anyI ⊆ [1,m],
{q2(tix , tjx) : x ∈ I} is safe iff{q?(ux, vx) : x ∈ I} is safe. Consequently the maximal safe subset ofS1

gives the maximal safe subset ofS0.

Next we modify this instance of the MDQ problem to the third restriction as follows.

1. d = (n + 1, n + 1, . . . , n + 1) ∈ Rm.

2. C1 = {s1, s2, . . . , sn, sn+1, sn+2}, wheresn+1 = (n, n, . . . , n) andsn+2 = (n+1, n+1, . . . , n+1).

3. St = {q?(u1, v1), q?(u2, v2), . . . , q?(um, vm)}, where for all1 ≤ i ≤ m, ui[i] = vi[i] = 1 and for
each fixedi, uj [i] = 1, vj [i] = n + 1 for all j 6= i.

4. Qi is the cuboid containingqui,vi for all 1 ≤ i ≤ m.

5. S1 is the data cube.

SupposeSmax1 is the maximal safe subset ofS1. Then similarlySmax1 does not contain anyq ∈⋃m
i=1 Qi \St. Moreover,Smax1 does not contain any j-* query for allj < m− 1. As we shall show shortly,

Smax1 contains the m-* queryq?(u?, v?), whereu? = (1, 1, . . . , 1) andv? = (n + 1, n + 1, . . . , n + 1).
Hence we have thatSmax1 ⊆ St ∪ {q?(u?, v?)} andq?(u?, v?) ∈ Smax1. For all1 ≤ x ≤ m, we have that
q?(ux, vx) = {six , sjx}. Hence for anyI ⊆ [1,m], {q2(tix , tjx) : x ∈ I} is safe iff{qux,vx : x ∈ I} is safe.
Consequently findingSmax1 gives the maximal safe subset ofS0.

It remains to show thatq?(u?, v?) ∈ Smax1. We do so by contradiction. Supposeq?(u?, v?) /∈ Smax1

and Smax1 ∪ {q?(u?, v?)} compromises somet ∈ C1. Then we have thatSmax1 ⊆ St. Suppose|
Smax1 |= l. Then there existsr ∈ Rl+1 such thatr · M({q?(u?, v?)} ∪ Smax1)T = M(t) holds. Let
r′ = (r[2], r[3], . . . , r[l]). Then

r[1] · M(q?(u?, v?))T + r′ · M(Smax1)T = M(t)

We have thatsn+1, sn+2 /∈ ⋃
q∈Smax1

q becauseSmax1 ⊆ St. MoreoverM(q?(u?, v?) = M(sn+1) +
M(sn+2) +

∑n
i=1M(si). We have that

r[1] · M(sn+1)T + r[1] ·M(sn+2)T +
n∑

i=1

xi · M(si)T = M(t)
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for somexi ∈ R, i = 1, 2, . . . , n.

There are two cases. First supposet ∈ {s1, s2, . . . , sn}. Then we have thatr[1] = 0. Consequently
we have thatr′ · M(Smax1)T = M(t), which contradicts the assumption thatSmax1 is safe. Secondly,
supposet ∈ {sn+1, sn+2}. Without loss of generality assumet = sn+1, which leads to the contradiction
thatr[1] = 1 andr[1] = 0. Hence we have proved thatq?(u?, v?) ∈ Smax1. 2

Proof of Proposition 1: Let S = {q?(u, v) : ∀i ∈ [1, k], (u[i] = 1, v[i] = ua[i]− 1) ∨ (u[i] = ua[i], v[i] =
va[i]) ∨ (ua[i] = va[i] + 1, va[i] = d[i])}. We have thatC =

⋃
∀q∈S q, andq?(u, v) ∩ q?(ua, va) = φ

holds for anyq?(u, v) ∈ S \ q?(ua, va). Because| S |= 3k, there must existq?(ub, vb) ∈ S such that
q?(ub, vb) ≥ |C|

nt
. Next we define

1. uc, vc satisfying thatuc[i] = min{ua[i], ub[i], vb[i]}, andvc[i] = max{ub[i], va[i], vb[i]} for all
1 ≤ i ≤ k.

2. For all1 ≤ i ≤ k, ui satisfying thatui[i] = ua[i], vi[i] = va[i], and for each fixedi, ui[j] = uc[i] and
vi[j] = vc[i]) for anyj 6= i.

Then we have that

q?(ua, va) = q?(uc, vc) \
k⋃

i=1

(q?(ui, vi) \ q?(ub, vb)) \ q?(ub, vb)

Let r = (1,−1,−1, . . . ,−1, k − 1) ∈ Rk+2, then

M(q?(ua, va)) = r · (M(q?(uc, vc),M(q?(u1, v1),M(q?(u2, v2), . . . ,M(q?(uk, vk),M(q?(ub, vb))T

Moreover,q?(ub, vb) ⊆ q?(uc, vc) andq?(ub, vb) ⊆ q?(ui, vi) for all 1 ≤ i ≤ k hold. Hence we have that
| q?(uc, vc) |≥ nt and| q?(ui, vi) |≥ nt holds for all1 ≤ i ≤ k. 2

Proof of Proposition 2: Suppose tuples inq?(u, v) are in dictionary order and useti for the ith tuple.
Without loss of generality supposet = t1 andu[1] = v[1]. For all 1 < i ≤| q?(u, v) | −1 let ui[1] = 1,
vi[1] = d[1], and for each fixedi, ui[j] = vi[j] = ti[j] for all j > 1. Let S = {q?(ui, vi)}. Because
q?(ui, vi) ∩ q?(u, v) = ti we havet = q?(ui, vi) \

⋃
q∈S q ∩ q?(u, v). 2

Proof of Theorem 2: In the following discussion we assume thatd ∈ Rk, F = F(d), C ⊆ F , and any
S ⊆ C is sorted in dictionary order. Fori = 1, 2, . . . , | S |, we useS[i] for the ith tuple in S. For any
u, v ∈ F satisfyingu ≤ v andq?(u, v) ∈ Qe, useSuv to denote the set of sum-two queries added toQdt by
callingSubQDT(C, u, v).

In order to proveQe ¹ Qdt, we show that for anyu ≤ v and q?(u, v) ∈ Qe, q?(u, v) ¹ Suv holds.
Specially, we show thatq?(u, v) =

⋃
q∈Suv

q. Becauseq1 ∩ q2 = φ holds for anyq1, q2 ∈ Suv, it then
follows thatM(q?(u, v)) = r · M(Suv)T , wherer = (1, 1, . . . , 1) ∈ R|Suv|. We do so by mathematical
induction on| I |, whereI = {i : i ∈ [1, k], u[i] < v[i]}.
The Inductive Hypothesis:For | I |= 0, 1, . . . , k, if q?(u, v) ∈ Qe, thenq?(u, v) =

⋃
q∈Suv

q. Otherwise,
q?(u, v) = (

⋃
q∈Suv

q) ∪ { SubQDT(C, u, v)}.
The Base Case:For | I |= 0, we have thatu = v, andq?(u, v) = {u}. BecauseI = φ, the subroutine
SubQDT in Figure 8 returnsu at the second step, withSuv = φ. Hences(q?(u, v)) = φ ∪ {u}, validating
the base case of our inductive hypothesis.
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The Inductive Case: Suppose the inductive hypothesis holds for| I |= 0, 1, . . . , j < k, we show that it
holds for| I |= j+1. Letu andv satisfy thatu < v and| I |= j+1, whereI = {i : i ∈ [1, k], u[i] < v[i]}.
For all u[m] ≤ i ≤ v[m], wherem = max(I), the pair(ui, vi) defined in the subroutineSubQDT sat-
isfy | {i : i ∈ [1, k], ui[i] < vi[i]} | = j. Hence when the subroutineSubQDT recursively calls
itself with the input(C, ui, vi), the inductive hypothesis holds inside the recursion. LetJ = {i : i ∈
[u[m], v[m]], q?(ui, vi) /∈ Qe} andJ ′ = [u[m], v[m]] \J . Because of the inductive hypothesis,q?(ui, vi) =⋃

q∈Suivi
q holds for alli ∈ J ′, and converselyq?(ui, vi) = (

⋃
q∈Suivi

q) ∪ {ti} for all i ∈ J , whereti =
SubQDT(C, ui, vi).

If q?(u, v) ∈ Qe, we have that| J | is even. Fori = 1, 2, . . . , |J |2 , q2(t2i−1, t2i) ∈ Suv holds because of
Step 4 ofSubQDT. Hence we have that

q?(u, v) =
v[m]⋃

i=u[m]

q?(ui, vi) = (
v[m]⋃

i=u[m]

(
⋃

q∈Suivi

q)) ∪ (

|J|
2⋃

i=1

{q2(t2i−1, t2i)) =
⋃

q∈Suv

q

Conversely, ifq?(u, v) ∈ Qd \ Qe, we have that| J | is odd. Fori = 1, 2, . . . , |J |−1
2 , we have that

q2(t2i−1, t2i) ∈ Suv. Furthermore, we have thatSubQDT(C, u, v) = t|J | /∈ Suv. Hence the following
holds:

q?(u, v) =
v[m]⋃

i=u[m]

q?(ui, vi) = Suv ∪ {Sub QDT (C, u, v)}

This proves the inductive case of our inductive hypothesis.

In order to proveQdt ¹ Qe, we show that for anyq ∈ Qdt, q ¹ Qe holds. Suppose in the subroutine
SubQDT in Figure 8 a sum-two queryq2(ti, tj) is added toQdt, whereu[m] ≤ i < j ≤ v[m].

We only need to show thatq?(ui, vi) \ {ti} =
⋃

q∈Si
q and similarlyq?(uj , vj) \ {tj} =

⋃
q∈Sj

q, where
Si, Sj ⊆ Qe andui, vi, uj , vj are defined in Figure 8. Because then we have

q2(ti, tj) = q?(ui, vj) \ ((
j−1⋃

l=i+1

q?(ul, vl)) ∪ (
⋃

q∈Si∪Sj

q))

This implies thatq2(ti, tj) ¹ Qe, becauseq?(ui, vj) ∈ Qe andq?(ul, vl) ∈ Qe for anyi < l < j. We do so
by induction on| I |.
The Inductive Hypothesis:For anyi ∈ [u[m], v[m]], if ti 6= null thenq?(ui, vi) \ {ti} =

⋃
∀q∈Si

s(q), for
someSi ⊆ Qe, whereu[m], v[m], ti are defined in Figure 8.

The Base Case:For | I |= 0, we have thatu = v, i = u[m], andti = u. Henceq?(u, u) \ {u} = φ. The
base case of the inductive hypothesis trivially holds withSi = φ.

The Inductive Case:Suppose the inductive hypothesis holds for all| I |= 0, 1, . . . , j for some0 ≤ j < k,
we show that it holds forj+1. Because the subroutineSubQDT recursively calls itself, inside the recursion
we have that| I |= j. Suppose the inputs to the recursive call areC, u, v andq?(u, v) /∈ Qe. We have that
q?(u, v) = q?(u, vl−1) ∪ q?(ul+1, v) ∪ q?(ul, vl) if l < v[m], or q?(u, v) = q?(u, vl−1) ∪ q?(ul, vl) if
l = v[m]. Moreover, because of the inductive hypothesis we have thatq?(ul, vl) \ {tl} = q?(ul, vl) \ {tl} =
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⋃
∀q∈Sl

s(q) holds for someSl ⊆ Qe. Hence we haveq?(u, v) \ {tl} =
⋃
∀q∈S s(q), whereS = Sl ∪

{q?(u, vl−1), q?(ul+1, v)} if l < v[m], or Q = Ql ∪ {q?(u, vl−1)} if l = v[m]. Becauseq?(u, v) /∈ Qe,
we have that| {i : i ∈ [u[m], v[m]], ti 6= null} | is odd. Hence we haveq?(u, vl−1), q?(ul+1, v) ∈ Qe.
ConsequentlyS ⊆ Qe holds. Becausetl =SubQDT(C, u, v), this validates the inductive case of our
inductive hypothesis. 2

Proof of Corollary 2: Suppose we call subroutineSubQDT in Figure 8 with input(q?(u, v), u, v) and let
the output betodd. For i = 1, 2, . . . , k andl = 1, 2, 3, 4, define tuplesuil as:

1. uil[j] = todd[j] for all j > i andl = 1, 2, 3, 4.

2. ui1[i] = u[i], ui2[i] = uodd[i]− 1, ui3[i] = todd[i] + 1 andui4[i] = v[i].

3. ui1[j] = ui3[j] = u[j] andui2[j] = ui4[j] = v[j] for all j < i.

We then have thatq?(u, v) =
⋃k

i=1(q
?(ui1, ui2)∪q?(ui3, ui4))∪{todd} and all theq?(uil, uil)s are disjointed.

Becauseq?(u13, u14) = φ, we have totally2k − 1 disjointed even MDR queries. 2

Proof of Lemma 1: The first claim of Lemma 1 is true consideringSubQDT(C, u0, v0), whereu0, v0

satisfyq?(u0, v0) = {u0, v0}.
For the second claim, supposet3 6= t1, t3 6= t2 and | q?(t1, t3) |> 2. Thenq2 /∈ q?(t1, t3) holds. For
otherwise, for anyi ∈ [1, k] we havemin{t1[i], t2[i]} ≤ t3[i] ≤ max{t1[i], t2[i]} andmin{t1[i], t3[i]} ≤
t2[i] ≤ max{t1[i], t3[i]}, and hencet2 = t3 contradicting our assumption. Consequently we have that
| q?(t1, t3) |<| q?(t1, t2) |. Let t4 ∈ q?(t1, t3) satisfyingt4 6= t1 andt4 6= t3. We can repeat the same
argument by replacingt3 with t4 and so on, until| q?(t1, t) |= 2 for somet ∈ q?(t1, t2). This together with
the first claim of Lemma 1 justifies the second claim.

We prove the third claim by contradiction. SupposeG1 andG2 are any two connected components of any
G(C,Qdt), and lett1 ∈ V (G1) (the vertex set ofG1), t2 ∈ V (G2). By the first claim of Lemma 1 we
have that| q?(t1, t2) |> 2. By the second claim there existst3 ∈ q?(t1, t2) such thatq?(t1, t3) ∈ Qdt and
hencet3 ∈ V (G1). Similarly as stated above,t1 /∈ q?(t3, t2) and hence| q?(t1, t2) |>| q?(t3, t2) |. Repeat
above reasoning witht1 replaced byt3 and so on, until that for somet we have| q?(t, t2) |= 2, and hence
q?(t, t2) ∈ Qdt by the first claim. But thenG1 andG2 are connected becauset ∈ V (G1), contradicting our
assumption.

The fourth claim follows directly from the results of Chin [12] and Theorem 2. Chin’s result states that any
S ⊆ Qt is safe iff the graph, whose vertex set isC and edge set isS, is a bipartite. 2

Proof of Lemma 2: Qdt ¹ Q?
dt is trivial becauseQdt ⊆ Q?

dt. We only need to showQ?
dt ¹ Qdt. By

Lemma 1G(C,Qdt) is a connected bipartite. Hence there exists a path containing odd number of edges
between anyt1 ∈ C1 andt0 ∈ C2. Let it beS = {q2(t1, t2), q2(t2, t3), . . . , q2(t2n, t2n+1), q2(t2n+1), t0)},
wheren ≥ 0. We have thatM(q2(t1, t0)) = ((−1)0, (−1)1, (−1)2, . . . , (−1)2n) · M(S)T . Hence
q2(t1, t0) ¹ Qdt.

BecauseQ?
dt corresponds to the complete bipartite graph( a bipartite graph whose edge set includes all the

edges that incident two vertices from different color classes) with bipartition(C1, C2), any proper superset
S of Q?

dt is not a bipartite. HenceS cannot be safe, and consequentlyS � Qdt.

For anyt1, t11 ∈ S1, becauseG(C,Qdt) is connected there must existst2 ∈ S2 such thatq2(t1, t2) ∈ Qdt.
Taken together withq2(t2, t11) ¹ Qdt we have that the third claim holds. 2
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Proof of Corollary 3: If | c ∩ C1 |=| c ∩ C2 |, thenc =
⋃

q∈S q for someS ⊆ Q?
dt. Hencec ¹ Q?

dt and
consequentlyc ¹ Qe.

We prove the only if part by contradiction. Without loss of generality suppose| c ∩ C1 |>| c ∩ C2 |
and c ¹ Qe. Thenc = c0 ∪ c1, wherec0, c1 satisfy thatc0 ∩ c1 = φ, | c0 ∩ C1 |=| c0 ∩ C2 | and
c1 ⊆ C1. Then we have thatc0 ¹ Qe and henceV (c1) ¹ Qe follows. Supposec1 = {t0, t1, . . . , tn}
wheren ≥ 1. Then by the third claim of Lemma 2 we have thatM(t0) − M(ti) = ri · M(Qdt)T

holds for all1 ≤ i ≤ n, where eachri ∈ R|Qdt|. By adding the two sides of all then equation we have
that n · M(t0) =

∑n
i=1M(ti) +

∑n
i=1 ri · M(Qdt)T . LetM(c1) = r · M(Qdt)T , wherer ∈ R|Qdt|.

Because
∑n

i=1M(ti) = M(c1) − M(t0) = r · M(Qdt)T − M(t0) we have that(n + 1)M(t0) =∑n
i=1 ri · M(Qdt)T + r · M(Qdt)T . Hencet0 is compromised byQdt contradicting our assumption that

c ¹ Qe. 2

Proof of Proposition 3: We only need to justify the first claim. For anyq2(u0, v0) ∈ Sdt, suppose
q2(u0, v0) ∈ Qdt because ofq?(u1, v1) ∈ Se. Then{q?(u, v) : q?(u, v) ∈ Qe∧q?(u, v) ⊆ q?(u1, v1)} ⊆ Se

holds. Henceq2(u0, v0) ¹ Se. Conversely, for anyq?(u0, v0) ∈ Se, we have{q2(u, v) : q2(u, v) ∈
Qdt because ofq?(u0, v0)} ⊆ Sdt. Henceq?(u0, v0) ¹ Sdt. 2

Proof of Proposition 4:

Let S ⊆ Qt satisfy thatG(C, S) is the complete bipartite with the bipartition(C1, C2). ClearlySe ¹
S ≡ Sdt. 2
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Appendix B

ProcedureQDT
Input: d, F = F(d), C ⊆ F

Output: A set of sum-two queriesQdt

Method:
1. Let Qdt = φ

2. For anyq?(u, v) ∈ Qe, whereu < v

Call SubQDT(C, u, v);
3. Return Qdt;

Subroutine SubQDT
Input: The coreC, tuplesu andv satisfyingu ≤ v

Output: todd

Method:
1. Let I = {i : i ∈ [1, k], u[i] < v[i]} andm = max(I);
2. If I = φ //Stop whenu = v

Return u;
3. For i = u[m] to v[m] //Divide

let ti = null;
If q?(ui, vi) 6= φ

Let ti = SubQDT(C, ui, vi), //Recursion
where∀j ∈ I \ {m}, ui[j] = u[j] ∧ vi[j] = v[j] andui[m] = vi[m] = i;

4. For i = u[m] to v[m] //Conquer
If ti 6= null

Let j = min{j : j > i, tj 6= null ∨ j > v[m]};
If j > v[m]

Return ti;
Else

Let Qdt = Qdt ∪ {q2(ti, tj)} andi = j;
5. Return null;

Figure 1: Procedure QDT
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