
FlexFlow: A Flexible Flow Control Policy Specification Framework∗

Shiping Chen, Duminda Wijesekera and Sushil Jajodia
Center for Secure Information Systems

George Mason University, Fairfax, VA 22030
e-mail:{schen3|dwijesek|jajodia}@gmu.edu

Abstract

Flow control policies are important in data-flow, work-flow, transaction systems and software design. Previous
work in this area concentrates either on modelling security aspects of information flow control or applying flow
control policies in some specific application domain. These models permit either permissions or prohibitions for
flows and normally are based on a specific meta-policy (usually theclosedpolicy).

We propose FlexFlow, a logic based flexible flow control framework to specify data-flow, work-flow and trans-
action systems policies that go beyond point-to-point flows. Both permissions and prohibitions are specifiable in
FlexFlow and meta-policies such aspermissions take precedencethemselves can be specified over the meta-policy
neutral policy specification environment of FlexFlow. We further show how to specify and prevent inter-flow conflicts
such as those arising in role-based work-flow policies.

Key Phrases:Flow control policy, Data flow, work flow, security policy, security constraints.

1 Introduction

Information flow policies govern the exchange of information at various levels in systems. At the lowest levels,
information is copied in and out of registers and memory locations inside processors. At a higher level, information
is exchanged among variables in programs, methods in object oriented systems and transactions in database systems.
In networked systems, messages are copied across system boundaries in order to exchange information. In all of
these examples the levels at which information flows, the units of transfer and the number of destinations vary, but
the central issue of information flow remains the same. Thus, it is interesting to investigate the commonalities among
policies that govern information flow at an abstract level. This paper proposes FlexFlow, a framework to do so.

Being designed to capture properties common across flows, FlexFlow is formulated using abstractions ofnodes
and treesof flows among them. Because of this abstractness, FlexFlow has two advantages. Firstly, FlexFlow is
not limited to high or low level information exchange policies. Thereby it can be used to reason about and derive
consequence of mixing flow control polices at different levels. For example, higher level information exchange policies
may govern flows between method calls, and lower level policies may govern data flows inside method calls. Because
our framework can model information flow at both levels, it is able to combine policies across both of them.

The second advantage is that our policy specification framework does not depend on any meta policies. Therefore,
policies using different meta policies can be modelled and their total effect can be compared using our framework.
This is similar to the advantage gained by theFlexible Authorization Framework(FAF) of Jajodia et al. [JSSS01] over
its predecessors in specifying access control policies.

FlexFlow is similar to FAF in many other ways. Firstly, FlexFlow specifies flow control polices as a set of stratified
Horn clauses. Secondly, FlexFlow is sound and complete, in the sense that every requested flow is either granted or
denied, but not both. Thirdly, FlexFlow is also based on unique stable model semantics, and therefore FlexFlow
rules can be interpreted unambiguously. Fourthly, because Horn clauses can be used to derive new Horn clauses, the
back tracking procedures used to execute query against FlexFlow can also be significantly optimized using well known
techniques in logic programming. Lastly, as described in [JSSS01], FlexFlow polices can also be materialized, thereby
saving query execution times during flow control requests.

∗This work was partially supported by the National Science Foundation under grant CCR-0113515.

1

Meanwhile, FlexFlow is different from FAF [JSSS01] in some aspects. The main difference is in their logical
formulation. FlexFlow use lists, whereas FAF does not. Therefore, unlike many logic based formulations of policies,
FlexFlow is set-based as opposed to entity-based. Although this paper does not show in detail, this logical formulation
with list processing capability can be used to specify and resolve many application dependent conflicts. Such method
has been used in Authorization Constraints Specification in work-flow Management System in the past [BA99]. Ad-
ditionally, because basic objects of study in FlexFlow are trees, inter-flow and intra-flow conflicts can be specified
and resolved. Although not fully worked out in this paper, to the best of our knowledge, this subtle difference does
not exist in FAF and previous formulations of logic based flow control frameworks. Additionally, the tree building
capability of FlexFlow can be optimized by using standard tree manipulating algorithms. Our ongoing work address
these issue.

The rest of the paper is organized as follows. Section 2 informally introduces abstract concepts of nodes, flow
trees and their representations. Section 3 formally describes the FlexFlow framework. Section 4 shows that FlexFlow
can be used to express various existing flow control models. Section 5 addresses flow constraints in FlexFlow. Section
6 describes related work and Section 7 concludes the paper. Appendices A and A.1 provide some auxiliary details
necessary to model database transactions in FlexFlow.

2 An Informal Description of FlexFlow

This section informally describes the FlexFlow framework and the reasons that went into making our design choices.
FlexFlow has trees referred to asflow treesbuild up fromnodesandbranches. Nodes represent sources and sinks of
information and branches represent pathways taken by information flowing between nodes. Thus, information flows
from the leaves of a tree via intermediate nodes to its root. Given that the same node can either send information or
refuse to do so under different circumstances, FlexFlow usesnode environmentsto capture sufficient data to enforce
suchlocal decisions. Thus node environments are used to specify and enforce information filtering and mixing policies
at nodes of flow trees. Similarly, a flow tree itself may be acceptable or rejectable due to policies under different global
circumstances, despite the nodes enforcing their local policies. Such circumstances are captured by tree environments
of a flow tree. The exact relationship between the environment of a flow tree and those of its nodes is not rigidly
fixed by FlexFlow and is therefore application specifiable. Consequently, the flow trees with their environments,
consisting of nodes and node environments constitute the basic entities of focus in FlexFlow. In order to specify how
to construct acceptable or rejectable flow trees, FlexFlow has rules written in the form of Horn clauses about trees
and their structural properties. Our position - one that we put forth in this paper - is that such rules suffices to enforce
existing flow control policies in a uniform and meta-policy independent manner.

As an example, consider an abstract syntax tree of the expressionx+(y+z) . As shown in the left hand side of
Figure 1 (the right hand side is its Prolog representation - to be explained shortly), it consists of three leaves with
variables (variables are considered named locations that can hold values)x , y andz , one intermediate nodeRtemp

and a root nodeRfinal. Assume that each variable in this example is accessible by a specified set of subjects. For
example,x is accessible by Alice and Bob,y accessible by Bob and Cindy, andz accessible by Alice, Bob and
Cindy. We model this situation by making the environment of each node be the access control list. We view each
binary addition operation as a computation tree in which the root stores the sum of the values stored in the leaves.
Thus, as shown in Figure 1 there is anintermediatenodeRtemp holding the value ofx+y and the rootRfinal holding
x+(y+z) . As it is shown in Figure 1,Rfinal holds the value ofx+Rtemp. The tree rooted atRtemp is said to resemble
a one stepflow, as it has depth one. By piecing together two trees with depth one, (namely the depth-one binary tree
rooted atRfinal and the one rooted atRtemp) we get a depth-two flow tree, namely the tree rooted atRfinal with x ,
y andz as leaves.

Having to reason with tree structures and lists in Horn clauses, FlexFlow uses Prolog’s list notation to represent
trees. In that notation, a list consisting of A, B and C are represented as [A,B,C]. Furthermore in the same notation,
a tree is represented as a list where the first element is the root of the tree and other elements are the subtrees rooted
in the left to right order. For example, [1,[[2,[3,4]],5]] represent a tree with 1 as its root and [2,[3,4]] and 5 as its two
children. The first child [2,[3,4]] itself is a root of a tree with two children, namely 3 and 4. The second child of 1 in
the original tree is 5. Thus, as can be seen from this example, in using the Prolog notation for lists to represent trees,
nodes are explicitly stated, but branches connecting them are implicit and derived from the nesting of lists (i.e. square
brackets). We use this notation for trees in FlexFlow.

In FlexFlow, we use ordered pairs of (node names, environments) as our nodes. In list notation, these are repre-

2

YNode

A flow tree
defined using
other flow trees

Env={Alice,Bob}
One step flow

Env={Alice,Cindy} Env = {Alice,Bob,Cindy}

X

Z

A Flow Tree List Representation

Env={Alice,Cindy}

(x,[Alice, Bob])

(y,[Alice,Cindy]) (z,[Alice,Bob,Cindy])

Rtemp

Rfinal

[(Rtemp,[Alice,Cindy]),
(y,[Alice,Cindy]),

(z,[Alice,Bob,Cindy)]

[(Rfinal,[Alice]),(x,[Alice,Bob]),
[(Rtemp,[Alice,Cindy]),(y,[Alice,Cindy]),(z,[Alice,Bob,Cindy])]]

Figure 1: An Example Flow Tree

sented by [node name, environments], which we sometimes write as (node names, environments) in order to avoid
being lost between square brackets. Using that convention,(z,[Alice,Bob,Cindy]) represents the right-
most bottom (i.e. the last in the in-order representation of the tree) node in Figure 1. Therefore, using our con-
vention to represent nodes and Prolog’s list notation, the subtree rooted atRtemp with an access control list [Al-
ice,Cindy] and two childreny andz is represented as[(Rtemp,[Alice,Cindy]), [(y,[Alice,Cindy]),
(z,[Alice,Bob,Cindy])]] .

FlexFlow states flow control policies as Horn clauses using flow trees as individual elements. In order to create
these rules we used some predicates. Both rules and predicates used in FlexFlow belong to a five level stratification.
Predicates at lower strata allow the construction of one step flows. At the higher levels, these one step flows are used
to construct flow trees. The stratified rules in FlexFlow can be used to specify flows that are permitted or prohibited
without assuming any meta policies such as the open or closed policy. Formal details are given in Section 3.

FlexFlow has made several design choices. The first one is to build flow trees instead of maintaining associations
of sources with their respective destinations. One advantage of building trees as opposed to the latter alternative is that
trees contain entire transcripts of flow histories, and therefore can be used to specify fine-grained flow control policies.
That requires policies that controls flows locally as well as globally. For example, as will be shown later, FlexFlow
could accept the computationx+(y+z) , but not(x+y+z) . Notice that in order to do so, the policy rules must not
permit an intermediate computation of(x+y) . This can be specially useful in specifying unwanted conflicts that may
occur inside a flow tree. For example, we may reject computingx+y if two subjects in the access control lists ofx
andy play conflicting roles, such as one producing data and the other consuming them. Maintaining only source lists
and destinations do not allow us to specify this fine-grained difference that occur in intermediate nodes of flow trees.
We now describe FlexFlow architecture.

2.1 Architecture of FlexFlow

As shown in Figure 2, FlexFlow rules have five stages, numbered zero through four in the figure. The first of them is
the structural module (stage 0) containing data structures and functions needed to define flows. These include subject
and object hierarchies, predicates necessary to model the environments and list manipulation operations such as adding
or removing elements, taking the union of two lists etc.

Stage 3

Conflict Resolution
Module

Decision Module

Stage 4Stage 0

Structure Module

Propagation Policies

Stage 1

Module

Stage 2

Recursive Tree Con.
Module
One Step Flow

?
1

2

dstObj

n

srcObj

srcObj

srcObj

Granted/denied

Figure 2: FlexFlow System Architecture

Stage 1 is used to specify one-step flows that are permitted or prohibited based on the structural properties specified

3

at the previous stage. As show in Figure 1, this stage consists of constructing the tree rooted at nodeRtemp. The next,
stage 2, is used to build the permitted or prohibited flow trees that may use already defined one-step flows. Recursion
is allowed in this step. For example if flows are transitive, they can be specified at this stage, as transitive closure can
be recursively defined. Similarly, permissions can also be propagated up and down subject, object and role hierarchies
using recursive rules.

Although propagation policies are flexible and expressive, they may result inover specification. That is, rules could
be used to derive both negative and positive flows that may be contradictory. This possible conflict is due to the fact
that positive and negative permissions is an application level inconsistency is not recognized by the underlying stable
model semantics of locally stratified logic programs. Similar encodings have been used in theFlexible Authorization
Frameworkby Jajodia et al. [JSSS01]. In order to weed out contradictive specifications, FlexFlow usesconflict
resolution policies. They are stated in stage 3.

At stage 4,decision policiesare applied in order to ensure the completeness of flow specification. That is because
every flow request made to FlexFlow must be either granted or denied. This is necessary because, as otherwise the
framework makes no assumption about flows that are not derivable only using stated rules.

3 Syntax and Semantics of FlexFlow

3.1 The Language of FlexFlow

Terms of the language:The language of FlexFlow consists of terms that are made up from constants and variables
for nodes, environments and actions. It also has constants and variables over lists of (node, environment) pairs. Such
lists are considered as flow trees, where the first element is the root and the rest are the children. In addition, FlexFlow
allows environments to have application defined structures and predicates. An example of such a structure is an access
control list, as used in Figure 1.

Predicates of the language:Predicates in FlexFlow belong to five strata, as summarized in Table 1 and explained
below.

Stratum 0: Consists of list manipulation and application-specific predicates. An example of an application specific
predicate isplayRole(xs, xr) stating that subjectxs plays rolexr. An example list manipulation predicate is
isMember((xn, xe), XL) stating that the (node, environment) pair(xn, xe) is in the listXL. More examples
are given in section 4.

Stratum 1: Consists of a four-ary predicatesafeFlow. The formal parametersxn, xe, XL andxaction of safeFlow(xn,
xe, XL,±xaction) are respectively the destination node, destination environment, a finite list of source (node,
environment) pairs and a name for the one step flow.safeFlow(xn, xe, XL,±xaction) holds if the one step flow
consisting of the source listXL and the destination(xn, xe) namedxaction is either permitted or prohibited
depending upon the sign (+ or -) appearing in front ofxaction.

Going back to the example in Figure 1,safeFlow(Rtemp, [Alice,Cindy], [(y,[Alice,Cindy]), (z,[Alice, Bob,Cindy])],
+binaryAdd) represents a one step flow that hasRtemp as a destination node, [Alice,Cindy] as environment,
[(y,[Alice,
Cindy]),(z,[Alice,Bob,Cindy])] as the source list consisting of (node,environment) pairs andbinaryAdd as
the action name. The (+) sign in front of the action sign (i.e.+binaryAdd) says that this one-step flow is
permissible.

Stratum 2: Consists of a ternary predicatesafeFlow*. The formal parametersxflowT , xflowE andxaction in
safeFlow*(xflowT , xflowE ,±xaction) are respectively a flow tree, its environmentxflowE and its namexaction.
safeFlow*(xflowT , xflowE ,±xaction), represents a permitted or prohibited flow tree, depending upon the sign
(+ or -) appearing in front ofxaction.

Going back to the example in Figure 1,safeFlow*([(Rfinal, eRf),[(z, ez),[(Rtemp, eRt), [(x, ex),(y, ey)]]]],[Alice,
Bob,Cindy], +add) says that the tree rooted atRfinal in the figure is permitted. Notice that the flow tree variable
xflowT has been instantiated to the list [(Rfinal, eRf),[(z, ez),[(Rtemp, eRt), [(x, ex),(y, ey)]]]]. The environ-
ment variableex, instantiated to the list [Alice,Bob,Cindy] is the union of all subjects that appeared in the access
control lists of sourcesx , y andz . add is a name given to the tree that computes and stores the valuex+(y+z)

4

Stratum Predicate Rules defining predicate

0 application-specific predicatesbase application-specific relations.
List manipulation predicates recursive list processing rules.

1 safeFlow Body may contain literals fromSR0.
2 safeFlow∗ Body may containsafeFlow*and other literals

from SR0 andSR1.
Occurrences ofsafeFlow∗ literal must be positive.

3 finalSafeFlow The head is of the formfinalSafeFlow(flowT, ,+),
the body may containsafeFlow, safeFlow*,
and literals fromSRi for i ≤ 2.

4 finalSafeFlow The head is of the formsafeFlow*(flowT, ,−),
the body contains just one literal¬safeFlow*(flowT, ,+).

Table 1: Stratification of FlexFlow and Predicates

in the locationRfinal. eRf , eRt, ex, ey andez respective represents the environments ofRfinal, Rtemp, x,y
andz .

Strata 3 and 4: Consist of a ternary predicatefinalSafeFlow, with the same arguments assafeFlow*, represent-
ing the flow control decisions finally made by FlexFlow. It is used to express conflict resolution policies.
finalSafeFlow(xflowT ,xflowE , +xaction) holds when FlexFlow permits the flow treexflowT and is included in
strata 3.finalSafeFlow(xflowT , xflowE ,-xaction) holds when FlexFlow prohibits the flow treexflowT and is
included in strata 4.

Going back to the example in Figure 1,finalSafeFlow([(Rfinal, eRf), [(z, ez), [(Rtemp, eRt), [(x, ex), (y, ye)]]]],
[Alice], +Add) permits the computation(x+y)+z) . ButfinalSafeFlow([(Rfinal, eRf), [(z, ez),(x, ex),(y, ye)]],
[Alice],-Add) prohibits the computationx+y+z . Notice that this policy accepts left associative binary additions
with a temporary locationRtemp to store intermediate values, but not direct ternary addition of values stored in
variables.

3.2 Rules used in FlexFlow

A FlexFlow specification consists of a finite set of Horn clauses (rules) constructed using above mentioned predicates.
These rules are constructed so that they form a locally stratified logic program. Obtaining a locally stratified logic
program requires that the predicates used in the rules belong to a finite set ofstrata, and the rules follow some syntactic
constraints. Generally, predicates in the body of any Horn clause are from the lower strata than that of the head of the
clause. The only exception to this rule occurs in stratum 2, wheresafeFlow* is allowed to appear in the head and the
body of a rule. Rules that permit the head predicate to appear in the body have to satisfy further syntactic restrictions
that they form alocal stratification. Namely, the occurrence ofsafeFlow* in the body cannot be negative. Logically,
this restriction implies that every instance of the recursive rule can beunravelledin a finite number of steps, where
negation at any suchunravellingis interpreted as failure overprevious unravelling. FlexFlow is stratified by assigning
levels to predicates as shown in Table 1, and the level of a rule is the level of its head predicate. Now we explain rules
at each stratum with some examples.

Stratum 0: Rules in this stratum consists of basic facts related to application specific predicates and list processing
functions. Following facts relate to the syntax tree example in Figure 1.

isEnv(x, [Alice, Bob]) ←
isEnv(y, [Alice, Cindy]) ←

isEnv(z, [Alice, Bob, Cindy]) ←

5

These rules state that [Alice,Bob], [Alice,Cindy] and [Alice,Bob,Cindy] are the access control lists of variables
x , y andz respectively.

Stratum 1: Rules is this stratum have literals from Stratum 0 in their bodies and heads that are instances ofsafeFlow.
Example rules for the syntax tree example of Figure 1 is as follows.

safeFlow(xn, xe, XL, +binaryAdd) ← union([(u, ue)], [(v, ve)], XL), isEnv(u, ue), isEnv(v, ve),
intersection(ue, ve, xe)

The rule says that it is safe for the source listXL to binaryAdd into the root(xn, xe) provided thatXL has
two elements(u, ue) and(v, ve), and the environment ofxe is the intersection of access lists of the sources.
This rule also uses the list processing predicatesunion(A,B,C), intersection(A,B,C) that hold whenC is the
union/intersection of listsA andB respectively.

Stratum 2: Rules in this stratum have literals from Strata 0 and 1 in their bodies and heads that are instances of
safeFlow*. Example rules for the syntax tree of Figure 1 are as follows.

safeFlow∗(xt, xe,+balTree) ← safeFlow(xn, xe, [(u, ue), (v, ve)],+binAdd)
union(ue, ve, xe), append((xn, xe), [(u, ue), (v, ve)], xt)

safeFlow∗(xt, xe,+balTree) ← safeFlow∗(x1, xe1 ,+balTree), safeFlow∗(x2, xe2 ,+balTree)
mkBinTree(x1, x2, xt), union(xe1 , xe2 , xe)

safeFlow∗(xt, xe,+balTree) ← safeFlow∗(x1, xe1 ,+balTree), safeFlow∗(x2, xe2 ,+balancedTree),
mkBinTree(x1, x2, xt), union(xe1 , xe2 , xe),¬equal(x1, x2)

safeFlow∗(xt, xe,−balTree) ← safeFlow∗(x1, xe1, +balTree), safeFlow∗(x2, xe2, +balancedTree),
union(x1, x2, xt), union(xe1, xe2, xe), equal(x1, x2)

The first rule says that a one step flow tree is a safe flow tree. The second rule constructs larger flow trees
from smaller ones. The larger tree is made by using the predicatemkBinTree. mkBinTree(x1, x2, xt) makes a
binary tree rooted atxt with first and second childrenx1 andx2 respectively. In addition, the environment of
the new tree is the union of environments of the two trees used to make up the larger tree. The third rule permits
the construction of balanced binary trees, but ensures the constraint that no two children are shared. The forth
rule explicitly prohibits balanced binary trees created by sharing children. These rules also use the predicate
equal, whereequal(x1, x2) holds whenx1 andx2 are the same node. Hence, the third and the fourth rules are
restrained versions of the second rule.

Stratum 3: Rules in this stratum may contain literals from stratum 0 through 2 in their bodies but onlyfinalSafeFlow
heads that have (+) action terms. They are used to specify conflicts that are resolved in favor of permissions.
Example rules for the syntax tree of Figure 1 is as follows.

finalSafeFlow(xt, xe,+balTree) ← safeFlow∗(xt, xe, +balTree), isMember(Alice, xe), isMember(Bob, xe)
finalSafeFlow(xt, xe,+balTree) ← safeFlow∗(xt, xe, +balTree), isLeafAccessList(xt, X), equal(X,xe).

The first rule says that a flow tree is safe provided that Alice and Bob are included in its environment. The
second rule uses an extra predicateisLeafAccessList. isLeafAccessList(xt, X) holds iff X is the union of all
access lists of the leaves ofxt. The second rule says that a flow tree is safe provided that the environment of the
tree is exactly the union of access control lists of the leaves.

6

Stratum 4: This stratum has one rule only. It is inserted by the FlexFlow system automatically to ensure the com-
pleteness . It reads as follows.

finalSafeFlow(xt, xe,−xaction) ← ¬finalSafeFlow(xt, xe, +xaction)

This rule says that permissions not derivable using given rules are prohibited by the system.

3.3 Semantics of FlexFlow

The semantics of FlexFlow is given through the well known stable model semantics [GL88] and well founded model
semantics [Gel89] of logic programs. In fact, as we showed in Section 3.2, FlexFlow specifications are locally strat-
ified. This property guarantees that their stable model semantics is equivalent to their well founded semantics, thus
ensuring that they have exactly one stable model (this follows from a result of Baral and Subrahmanian [BS92]).

4 Using FlexFlow to Express Existing Flow Control Models

This section shows how FlexFlow can express existing flow control models and their flow control policies. The
first is thelattice based flow control modelproposed by Denning in [Den76]. The second is thedecentralized label
modelproposed by Myers and Liskov in [ML97, ML98, ML00]. The third is theflexible information flow control
modelproposed by Ferrari et al. in [FSBJ97]. The choice of three three existing models are based on following
considerations.

Difference in system levels:The first model is an information flow control model designed for control flows at an
application level. The second model is applicable for detailed runtime-level data-flow analysis [Koz99]. The
third model control data flows within database transactions, viewing a database transaction as a tree of method
calls over an object oriented system.

Difference between mandatory vs. discretionary permissions:The first model uses mandatory permissions (MAC),
where information flow control is based on the security labels assigned to objects. The second and the third mod-
els are based on discretionary permissions (DAC) where every data item has a read-access control list (RACL).
Flow control is based on these RACLs.

Difference in the degree of flexibility: The first model enforces a rigid flow control policy. The second model re-
laxes this rigid flow control policy by allowing owners of an object to specify their own flow policies by using
decentralized labels. The third model relaxes the rigid flow control policy by allowing trusted methods to add
extra readers to RACLs of objects they manipulate.

4.1 The Lattice Based Flow Control Model of Denning [Den76]

In [Den76], an information flow model FM is defined as< N,P, SC,⊕,→>, whereN is a set ofobjects, P is a set of
processesandSC is a set of disjointsecurityclasses.⊕ is a binary operator on SC and→ specifies permissible flows
among security classes. That is, for security classes A and B,A → B iff information in class A is permitted to flow
into class B. Under some assumptions, referred to asDenning’s Axioms, < SC,→,⊕ > form a universally bounded
lattice where< SC,→> forms a partially ordered set.

Supposef is an n-ary computable function, andai are object belonging to security classesai for all i ≤ n. Then
the flow control policy enforced by FM is as follows. If a valuef(a1, . . . , an) flows to an objectb that is statically
bound to a security classb, thena1 ⊕ · · · ⊕ an → b must hold. Iff(a1, . . . , an) flows to a dynamically bound object
b, then (if need be) the classb must be updated so thata1 ⊕ . . . an → b holds.

To specify this flow control policy, we use the following sets.C is a set of classes,Obj is a set of objects,P
is a set of processes. In this example, we useobjectsasnodesandclassesasenvironments of nodesand the root’s
environment as the tree’s environment. In addition, we define application specific predicates shown in Table 2. For
instance,dominate(c, c′) says that the classc dominates classc′ in the class lattice C. The FM policy is now formulated
as follows.

7

Predicate Argument Types Intended Meaning

dominate(c, c′) (class, class) Classc dominate class c’ in the class set C.
class(o, c) (object,class) Objecto belongs to classc.
leastUB(cList, c) (class list,class) The least upper bound of the elements in the class list

cList is c.
setClass(X,Y) ((object,class) pair list, class list) The classes of objects inX constitute class listY .

Table 2: Predicates used to express Lattice based Flow Control Model of Denning [Den76]

class(o1, c1) ←
class(o2, c2) ←

dominate(c1, c2) ←
dominate(xc, zc) ← dominate(xc, yc), dominate(yc, zc).

safeFlow(xo, xc, X, +xaction) ← class(xo, xc), setClass(X, Y), leastUB(Y, x), dominate(xc, x).
safeFlow∗([(xo, xc) | X], xc, +xaction) ← safeFlow(xo, xc, X, +xaction).

finalSafeFlow(X, xc, +xaction) ← safeFlow∗(X, xc + xaction)

The first two rules specify thato1, o2 are associated withc1 andc2 respectively. The third rule says thatc1 dominate
c2 in C. The fourth rule is the transitivity of the dominance relation. The fifth rule says that information from objects
in the listX is allowed to flow intoxo iff the least upper bound of the classes of objects ofX is dominated by the class
of xo. The sixth rule constructs the depth-one permissible flow tree[(xo, xc) | X] with environmentxc. Because the
flow control policy in this lattice based flow control model has only one-step flows, we don’t need to construct flow
trees of depth greater that one. Furthermore, the model doesn’t allow negative permission, so the conflict resolution
policy is simple and given by the last rule. Because FlexFlow does not have a facility to change security labels as a
consequence of permitted flows (fixing that would require enforcing system obligations [BJWW02]) we do not model
updating security classifications for dynamically bound objects.

4.2 The Decentralized Label Model of Mayer and Liskov [ML97, ML98, ML00]

The Decentralized Label Model[ML97, ML98, ML00] of Mayer and Liskov is applied at the runtime data flow
analysis level. This model has variables storing values and updating them during a computation. Values are fed from
external sources to the computation by means of special variables referred to as input channels, and values are fed
back to external sinks through special variables referred to as output channels. Values and variables occurring in
computations have labels. A label contains a list of owners whose data was observed in order to construct the data
value in question. Each owner declares a set of principals that may read the value, referred to as the reader set of that
owner. Each (owner, reader set) pair is said to constitute a per-principal flow control policy. When a value is read from
a variable or an input channel, the value acquires the label of the variable or the input channel. When a value is written
to a variable, a new copy of the value is generated with the label of the variable. The model also uses a principal
hierarchy where some principals are authorized to act for others.

The flow control policy used in this model is that when information flows from one object (here, object refers
variable or channel) to another, the label of the destination must be more restrictive than the label of the source. A
labelL1 is said to be more restrictive than labelL2 iff L1 contains all the owners of labelL2, and the same or fewer
readers for each owner. In other word, a labelL1 is restrictive than labelL2 iff the effective reader set ofL1 is a subset
of labelL2. The effective reader set of a label is the set of readers common to all owners in the label. In addition,
[ML97] allows a principle to read an item provided that it can act for some other permitted readers. Furthermore, the
policy allows owners to add readers, thereby allowing information declassification.

To express the policies of [ML97], we defineObj, P andL as the sets of variables, principals and labels re-
spectively. We use variables (input and output channels included) as nodes of the flow trees and labels of variables

8

Predicate Parameter Types Intended Meaning

label(o, l) (object,label) l is the label of the object o.
eRdSet(l, X) (label, principal list) The effective reader set of labell is X.
cover(X, Y) (principal list, principal list) Every principal inX can act for some principals inY .
listOfRdSet(X,Y) ((obj,label) pair list,list of RdSet) The reader sets of all the labels inX constitute the listY .
allIntersec(X,Y) (list of principal list, principal) The intersection of all the principal lists inX is Y .

Table 3: Predicates used to express Decentralized Label Model of Myers and Liskov [ML97]
.

as environments of the nodes. Before specifying flow control policies as rules, we define some application specific
predicates as shown in Table 3. For example, the predicatelabel(o, l) holds iff l is the label ofo andeRdSet(l, X)
hold iff the effective reader set of labell is X. Flow control policies of [ML97] are now specified in FlexFlow using
the following rules.

safeFlow(xo, xl, Y, +xaction) ← label(xo, xl), listOfRdSet(Y, Y ′), allIntersec(Y ′,W),
eRdSet(xl, X), cover(X,W)

safeFlow∗([(xo, xl) | Y], xl, +xaction) ← safeFlow(xo, xl, Y, +xaction)
finalSafeFlow(X,xl, +xaction) ← safeFlow∗([(xo, xl) | Y], xl, +xaction)

The first rule says that information can flow from objects in the listY to xo provided that each of principals in the
effective reader set of labelxl can act for some principals in the intersections of the effective reader sets of labels inY .
The second rule constructs the depth one permissible flow tree. The third rule specifies the conflict resolution policy.

4.3 The Flexible Information Flow Control Model of Ferrari et al. [FSBJ97]

This model controls the flow of information within transactions [FSBJ97]. Here, a transaction is decomposed into a
tree of method calls. Methods manipulate data objects, and invoke other methods on objects. Based on the invocation
relations between the executions, a transaction is represented as atransaction execution tree, where the nodes are
executions of methods and branches are caller-calee relations between methods. The root of the tree is the execution
invoked by the initiator of the transaction. For example, if executionej invokeseh, theneh is a child ofej in the
transaction execution tree. Each execution has a method namemand an objecto on which it executes symbolized by
the pair(m,o) . Figure 3 gives an exampletransaction execution treesimplified from the example in [FSBJ97]. As
used in [FSBJ97], we use(m,) when the object that is manipulated bym is not relevant for the discussion.

Forward and backward channels for information flow are created from the transaction execution tree. Given exe-
cutionsei, ej andek, there is said to be aforward channelfrom ei to ej if ei invokesek, or ei invokesej and there is
a forward channel fromej to ek. There is abackward channelfrom ek to ei if ei invokesek or ei invokesej and there
is a backward channel fromek to ej . There is aninformation flowfrom oh to ok by eh andek, written(oh, eh, ek, ok)
if the method ofeh is read, the method ofek is write, and there is a transmission channel (perhaps a combination of
some forward and backward channels). According to these definitions, there are four information flow trees deriv-
able from the transaction execution tree of Figure 3. They are(o3, e3, e17, o6), (o4, e9, e17, o6), (o5, e13, e17, o6), and
(o5, e16, e17, o6).

Every object has an access control list (ACL) specifying the users allowed to read and write the object. Based on
these ACL’s, two flow control policies can be specified. In thestrict policy, a flow (oh, eh, ek, ok) is safe iff the ACL
of ok is a subset of the ACL ofoh. Theflexible policyof [FSBJ97] makes exceptions to the strict policy by allowing
trusted methods to retrieve and transmit information without obeying thestrict policy. In order to do so, each method
hasreply and invokewaivers associated with it. Both waivers consist of a set of pairs(O,U), whereO is a set of
objects,U is a set of users. The flexible policy works as follows. Supposemis a trusted method with a reply waiver
RW (m) and an invoke waiverIW (m). If (Oi, Ui) ∈ RW (m), then the information inOi can be released to users
in Ui throughm’s reply even if users inUi are not authorized to read objectoi. If (Oi, Ui) ∈ IW (m), m is allowed

9

bk bk

bk

bk

fw bk

fw

bkfw

bk

bk

Flow TreeTransaction Execution Tree

e9:(r,o4)

e14:(m14,)

e16:(r,o5)

e5:(m5,) e15:(m15,)

e9:(r,o4)

e7:(m7,)

e17:(w,o6)

e6:(m6,) e7:(m7,)

e5:(m5,)

e6:(m6,)

e1:(m1,)

e1:(m1,) e14:(m14,)

e2:(m2,)

e2:(m2,)e13:(r,o5)

e17:(w,o6)e15:(m15,)
e8:(r,o3)

e8:(r,o3)

e13:(r,o5) e16:(r,o5)

Figure 3: A Transaction Execution Tree and its Flow Tree

to write information read fromOi to other objects that the users inUi can read even if these users are not allowed
to accessOi. Thus, under the flexible policy, a flow(oh, eh, ek, ok) is safe iff the union of the reader list and the
waiver lists foroh along the transmission channel fromoh up to but excludingok subsume the readers list ofok. The
execution of a write method is said to be safe iff all flows ending at it are safe.

Because information flow policy applies to flow trees that are embedded in transaction execution trees, we provide
an algorithm referred to as theflow tree generatorto extract all flow trees of a transaction execution tree in Appendix
A. We do so because flow policies apply to flow trees and not directly to transaction execution trees. In flow trees,
the roots have write methods and leaves have read methods. Edges are labelled either forward (fw) or backward (bw).
Figure 3 shows a flow tree embedded in the example transaction execution tree.

Based on the flow trees extracted from the transaction execution tree, we show how to express the flexible flow
control model of [FSBJ97] using FlexFlow, and four sets,Obj, U , M , E for objects, users, methods and executions
respectively. We represent a waiver as a list of[oi, Ui] pairs whereoi is an object,Ui is a set of users who are allowed
to access the information inoi because of the waiver. For example,[[o1, F rank, David], [o3, F rank]] is a waiver
implying thatFrank andDavid can accesso1 andFrank can accesso3 because of this waiver. Our nodes are
executions, and a flow tree environment has all waivers collected along all branches that go up to the root. In this
example we use predicates to associate methods and objects with nodes and executions. In this example, we do not
need node environments, and accordingly they are empty lists. Our predicates are given in Table 4. Some of these
are not standard list manipulation predicates, and therefore we show their definitions in Appendix A.1. Using these
predicates some sample rules that fit in stratum 0 of FlexFlew are as follows.

mtd(e8, r) ←
obj(e8, o3) ←

rAcl(o3, [Ann,Bob, Carol, David]) ←
rW(m3, [[o1, F rank], [o3, F rank]]) ←
iW(m3, [[o4, David], [o5, David]]) ←

fwFlowCH(e14, e5) ←
The first two rule specify thate8 is a read method ofo3. The third rule says that [Ann,Bob,Carol,David] is the ac-

cess control list ofo3. The fourth and fifth rules say thatm3’s reply and invoke waivers are[[o1, F rank], [o3, F rank]]
and[[o4, David], [o5, David]] respectively. The last rule says that there is a one-step forward flow channel frome5 to
e14. One-step information flows are specified using the following two rules.

safeFlow(xe, v, [(ye, v)],+bkChannel) ← bkFlowCH(xe, ye).
safeFlow(xe, v, [(ye, v)], +fwChannel) ← fwFlowCH(xe, ye).

10

Predicate Attribute Types Intended Meaning

obj(e, o) (exec., object) Executione is executed on objecto.
mtd(e,m) (exec., method) The method of executione is methodm.
rAcl(o,X) (object, list of users) The access control list of objecto is X.
rW(m,X) (method,waiver list) X is the reply waiver list associated with

methodm.
iW(m,X) (method,waiver list) X is the invoke waiver list associated with

methodm.
releaseBK(X,m, X ′) (flowE, method, flowE) The result of applying reply waiver of method

m to flow tree environmentX is X ′.
releaseFW(X,m, X ′) (flowE, method, flowE) The result of applying invoke waiver of method

m to flow tree environmentX is X ′.
unionAdd(X, Z) (list of flowE, flowE) The union-add of flow environments inX is Z.
eRdSet(X,Y) (flowE, user list) The effective readers set of flow tree

environment isY .
subset(X, Y) (user list, user list) User listX is subset of user listY .
bkFlowCH(ei, ej) (exec., exec.) There is a backward edge fromej to ei.
fwFlowCH(ei, ej) (exec., exec.) There is a forward edge fromej to ei.
listOfSafeFlow((x, e), Y, a) ((exec.,env.),list, action) For allyi ∈ Y , safeFlow((x, e), yi, +a) holds.
listOfSafeFlow*(X, Y, E, a) (list, list, list,action) For all (xi, ei) ∈ X, yi ∈ Y , andei ∈ E,

safeFlow*(yi, ei, +a) andisHead((xi, ei), yi) hold.
listOfMtd(X, M) (list, list) For allxi ∈ X, mi ∈ M , mtd(xi,mi) holds.
listOfReleaseBK(X, M, Y) (list, list, list) For allxi ∈ X, mi ∈ M , andyi ∈ Y ,

releaseBK(xi,mi, yi) holds.

Table 4: Predicates used to express the Flexible Flow Control Model of Ferrari et al. [FSBJ97]

These two rules say that in order to have one-step forward/backward flow, there must be a one-step forward/backward
channel from the source to the sink. Permissible information flow trees are constructed using the following recursive
rules.

safeFlow∗([xe], [xo|X],+u) ← obj(xe, xo), mtd(xe, r), rAcl(xo, X)
safeFlow∗(XflowT , XflowE , +n) ← mtd(xe, xm), listOfSafeFlow((xe, v), Y, +bkChannel),

¬mtd(xm, w), listOfSafeFlow∗(Y, YflowT , YflowE),

listOfMtd(Y, Ym), listOfReleaseBK(YflowE , Ym, Y
′
flowE),

unionAdd(Y
′
flowE , XflowE), append((xe, v), YflowT , XflowT)

safeFlow∗(XflowT , XflowE , +n) ← safeFlow(xe, v, [(ze, v)],+fwChannel),mtd(ze, zm),
safeFlow∗(ZflowT , ZflowE ,+n), isHead((ze, v), ZflowT),
listOfSafeFlow((xe, v), Y, +bkChannel),
listOfSafeFlow∗(Y, YflowT , YflowE),

listOfMtd(Y, Ym), listOfReleaseBK(YflowE , Ym, Y
′
flowE),

releaseFW(ZflowE , zm, Z
′
flowE),

append(Y
′
flowE , z

′
flowE , X

′
flowE),

unionAdd(X
′
flowE , XflowE), append((xe, v), Z

′
flowT , X

′
flowT),

append(X
′
flowT , YflowT , XflowT)

11

safeFlow∗([xe, [ye|Tail], X, +n) ← safeFlow(xe, v, [(ye, v)], +fwChannel), mtd(xe, w),
safeFlow∗([ye|Tail], Y, +n), mtd(ye, ym),
releaseFW(Y, ym, Y ′), eRdSet(Y ′, Y ′′), obj(xe, xo),
rAcl(xo, X), subset(X, Y ′′)

finalSafeFlow(XflowT , XflowE , +xaction) ← safeFlow∗(XflowT , XflowE , +xaction).

The first rule says that executing a read methodm constructs a one node flow tree that has[o, X] as its environment
whereX is the ACL ofo. Second and third rules recursively constructs flow trees that have non-write roots. Note that
for any node in any flow tree extracted from a given transaction execution tree, there is at most one forward channel
feeding into it. The fourth rule constructs the whole permissible flow tree whose root is a write execution. The last
rule resolves conflicts.

4.4 Comparison

As seen from Sections 4.1, 4.2, and 4.3, FlexFlow can be used to express flow control policies presented in some prior
models. The first two models we used are explicitly for one-step flows. That is their flows are between a collection of
sources and a single destination, and therefore their flow control policies govern one-step flows. Flows in 4.3 are from
multiple sources to a multiples destinations, but flow policies apply to branches that connects each source to its final
destination. Because FlexFlow maintains flow trees, it is capable of modelling both kinds of flows. But in addition,
FlexFlow is also capable of specifying policies that can combine multiple paths at any intermediate node, and thereby
going a step beyond these models.

In addition, we show how to automatically extract flow trees from a transaction tree given in Section 4.3. There-
fore, it is possible to automatically check for policies governing flow control in such transaction systems using an
implementation of FlexFlow.

Additionally, existing models such as those we have shown in Sections 4.1, 4.2, and 4.3 only allow permissions.
But FlexFlow also allows prohibitions. In addition, as will be shown shortly, FlexFlow can specify some constraints
and resolve them.

5 Specifying Constraints

This section shows how to specify static flow constraints using FlexFlow. Enforcing dynamic flow constraints requires
formalizing the execution of FlexFlow trees, a direction currently under study.

In order to motivate the use of static flow constraints, consider a file systems that allows users to copy each other’s
files subjected to some copy protection policies. To make the example concrete, let the file system have a set of objects,
users and their roles given asObj,U andR respectively. The roles form a role hierarchy, referred as RH is shown in
Figure 4. For simplicity, we assume that each user plays a single role and each object has a unique owner. The policy
governing the copy protection read as follows. Different source files can be copied into a single destination file iff the
roles of the owners of the source files are dominated by the role of the owner of the destination file.

In order to show how to specify this copy protection policy, we use objects as nodes and owners as node envi-
ronments. We also use some auxiliary predicates summarized in Table 5. For example,userList(Xl, Xu) says that
user list of the source (object, user) pair listXl is Xu. roleList(Xu, Xr) says that the corresponding roles played
by a list of usersXu is Xr. listDominate(xr, Xr) says that rolexr dominates each role in the list of rolesXr.
These three auxiliary predicates can be defined using normal Prolog rules. For example, we show the definition for
listDominate(xr, Xr).

listDominate(x, []) ←
listDominate(x,X) ← isHead(y, X), isTail(Y, X), listDominate(x, Y), in(y, x)

Using the predicates we state the copy protection policy as follows.

12

Predicate Argument Types Intended Meaning

owner(o, u) (object,user) Useru is the owner ofo.
role(u, r) (user,role) Useru plays roler.
in(r1, r2) (role, role) Roler1 is dominated by roler2 in role hierarchyRH.
userList(X,Y) ((o, u) pair list, user list) The user list of the source (object, user) pair listX is Y .
roleList(X, Y) ((o, u) pair list, role list) The corresponding roles played by a list of usersX is Y .
listDominate(x, Y) (role, role list) The rolex dominates each role in the role listY .

Table 5: Predicates used in the Copy Protection Policy

(b) (c)(a)

f5

f3 f4

f2 f1 f2

f5

f3 f1
programmer

developer tester

director

Figure 4: A Role Hierarchy and Flow Trees that Respect Role Constraints

owner(f1, Alice) ←
owner(f2, Bob) ←

owner(f3, Cindy) ←
owner(f4, David) ←

owner(f5, Eric) ←
role(Alice, programmer) ←
role(Bob, programmer) ←

role(Cindy, tester) ←
role(David, developer) ←

role(Eric, director) ←
safeFlow(xo, xu, Xl, +copy) ← role(xu, xr), userList(Xl, Xu), roleList(Xu, Xr),

listDominate(xr, Xr)
safeFlow∗(XflowT , [], +copy) ← safeFlow(xo, xu, Xl,+copy), isHead((xo, xu), xflowT),

isTail(Xl, xflowT)
safeFlow∗(XflowT , [], +copy) ← safeFlow(xo, xu, Xl,+copy), listOfSafeFlow∗(Xl, YflowT),

append((xo, xu), YflowT , XflowT)

The first ten rules state basic facts about file ownership and user roles. The 11th rule specifies safe one step
flows enforcing the stated copy protection policy. The 12th rule says that a one step flow constitutes a safe depth-one
flow tree. The last rule constructs larger flow trees from the smaller ones. Notice that the last rule uses an auxiliary
predicatelistOfSafeFlow∗(Xl, YflowT), that is definable as follows. Predicatesappend, isHead, andisTail used in
the definition oflistOfSafeFlow* are standard list manipulation predicates.

listOfSafeFlow∗([], []) ←
listOfSafeFlow∗([x|X], [Y |Z]) ← safeFlow∗(Y, [], +copy), isHead(x, Y), listOfSafeFlow∗(X,Z)

Based on stated rules and the role hierarchy shown in Figure 4, many permissible flow trees are derivable.
Two such example are[(f5, Eric), (f3, Cindy), [(f4, David), (f1, Alice), (f2, Bob)]] and[(f5, Eric), (f3, Cindy),

13

(f1, Alice), (f2, Bob)], as shown in Figure 4(b) and (c). Now suppose thatprogrammerandtesterare conflicting roles
and we want to enforce the policy that roles of source objects owners do not conflict. This additional requirements can
be enforced in FlexFlow by changing the 11th rule to read as follows.

safeFlow(xo, xu, Xl, +copy) ← role(xu, xr), userList(Xl, Xu), roleList(Xu, Xr),
listDominate(xr, Xr),¬conflictList(Xr)

HereconflictList(Xr) holds iff the role listXr contains at least one pair of conflicting roles. This predicate can be
defined using the following rule, whereconflict(x, y) holds iff rolesx andy conflict. isMember(x, X) holds iff x is
an element ofX.

conflictList(X) ← isMember(x,X), isMember(y, X), conflict(x, y)

Using the new rule forsafeFlow instead of the original one, some flow trees that were acceptable under the old
policy now become unacceptable. In the given example, the flow tree of Figure 4(c) is no longer permissible, but the
flow tree Figure 4(b) is still permissible. That says information from filef1, f2 andf3 can not be copied into filef5 in
one step. But they can be copied into filef5 in two steps. That is, to copy information fromf1 andf2 into file f4 in
first step and then to copy information fromf3 andf4 into f5 in the second step.

5.1 Prologue

Notice that the given constraint resolution rules enforce a Chinese wall policy. In terms of flow trees, they resolve
static inter-node conflicts. Thus, FlexFlow constructs those tree that do not violate stated constraints because it is
able to exploit the list construction capabilities in logic programming. Notice that frameworks such as FAF specifies
specifies static constraints using Horn clauses that have afalse (i.e. unsatisfiable) head, but do not always resolve
them.

Our example do not explain two other kind of constraints that can be specified and resolved by the same technique.
The first kind is intra-tree conflicts. In order to see the difference, notice that constraints that were avoided in the
example policy are those that existed between nodes, i.e. intra-tree conflicts within a single tree. In addition we can
specify and enforce constraints that are between two trees, i.e. inter-tree conflicts. For example, a policy could require
that David could only be the source of two copy trees. The resolution of such a policy requires FlexFlow to keep
an accurate account of flow trees that have been constructed, and to avoid having two trees with David’s files in their
leaves. This kind of conflict resolution uses lists of basic objects of study (trees in our case) and predicates about them.
We have proposed that for access control elsewhere [WJ03].

The second kind of constraints are dynamic constraints that limits ways in which flow trees can be executed. It is
possible that two trees can execute in isolation, but if a particular flow had occurred in flow tree (such as Frank has
already copied David’s file in one tree) then another flow could not occur in a different flow tree (such as now Mary
cannot copy any of Franks files in another tree). Specifying and enforcing such constraints requires the formalization
of flow executions in flow trees, and that form some of our ongoing work.

6 Related Work

Flow control is a heavily researched area in the context of multi-level security. In the early days, Bell and La-
Padula [BL75] and Denning [Den76] proposed the lattice based models of information flow. There, objects and
subjects have security labels. The labels form a partially ordered lattice. Information flow control prevents informa-
tion flowing from higher levels to lower levels. Some flexibility to Denning’s lattice based model was later added by
Foley [Fol89], where each entity was associated with a label pair instead of a single label.

McCollum et al. [MMN90] presented an Owner Retained Access Control model (ORAC) to control information
dissemination. In ORAC, the user who creates a data object is considered its owner and has the right to define an ACL
for it. The object’s owner and its ACL is carried in the object label and used for access control. With information

14

flowing from object to object, an object may have multiple owner and corresponding ACLs. Here, dissemination
control is achieved by ensuring that all readers of an object are in all the ACLs associated with it.

Samarati et al. [SBCJ97] presents an information flow control model for object-oriented system. In that model,
a process can write an objecto only if o is protected in readingat least asall objects read by the process up to that
point. An objecto is at least asprotected as another objecto′ if the read ACL ofo is contained in the read ACL ofo′.
The information flow control policy in the model in is thestrict policy [SBCJ97].

Bertino et al. [BA99] presented a language to express both static and dynamic authorization constraints as clauses
in a logic program. Although we do not show how to model workflow as elaborately as Bertino et al., we show how to
model security properties such as static separation of duty in this paper. In addition, we can model graphs with splits
and joins that appear in the work of Bertino et al. [BA99].

Our work has been influenced by theFlexible Authorization Framework(FAF) of Jajodia et al. [JSSS01]. FAF
is specifies access control policies, but not flow control policies. As in FlexFlow, FAF is also based on Horn clauses
with stable model semantics. Thus FlexFlow take the same paradigm to flow control, but does so with lists of objects,
instead of objects themselves. In addition, work described in Section 4 as well as those mentioned in this section
have flow control frameworks tailored for specific application domains. But FlexFlow is domain independent, and
meta-policy independent.

7 Conclusions

The FlexFlow framework specifies flow control policies as stratified logic programs consisting of five levels. The first
level allows the specifier to build his/her own structures to express the flow control policies. The second and the third
levels are used to propagate flows. Because FlexFlow allows the derivation of permissions and prohibitions on flows,
there is a need to specifyconflict resolutionaspect of flow control policies. The fourth level does that. The fifth level
completes the polices, in the sense that it enforces that every flow request is either accepted or rejected.

By expressing flow control policies at the programming language and transaction specification we have shown
the generality of FlexFlow. Thereby it can be used to compare and combine flow control polices at different levels.
Currently, we are unaware of such a framework.

Ongoing work on FlexFlow includes designing materialization structures, adding revocations and constructing
constraint compliant flows. Another important issue we are working on is the specification and enforcement of dy-
namic constraints on flows.

15

References

[BA99] E. Bertino and V. Atluri. The specification and enforcement of authorization constraints in workflow
management.ACM Transactions on Information Systems Security, 1(2):65–104, February 1999.

[BJWW02] C. Bettini, S. Jajodia, X.S. Wang, and D. Wijesekera. Obligation monitoring in policy management.
In Proc. 3rd International Workshop on Policies for Distributed Systems and Networks, pages 502–513,
Monterey, CA, June 2002.

[BL75] D.E. Bell and L.J. LaPadula. Secure computer systems: Mathematical foundations and model. Report
M74-244, Mitre Corp., Bedford, MA, 1975.

[BS92] C. Baral and V.S. Subrahmanian. Stable and extension class theory for logic programs and default theo-
ries. Journal of Automated Reasoning, 8:345–366, 1992.

[CM87] W.F. Clocksin and C.S. Mellish.Programming in Prolog. Springer-Verlag, 3 edition, 1987.

[Den76] D.E. Denning. A lattice model of secure information flow.Communication of ACM, pages 236–243, May
1976.

[Fol89] S.N. Foley. A model for secure information flow. InProceedings of the IEEE symposium on Security and
Privacy, Oakland, CA, May 1989.

[FSBJ97] E. Ferrari, P. Samarati, E. Bertino, and S. Jajodia. Providing flexibility in information flow control for
object-oriented systems. InProceedings of the IEEE Symposium on Security and Privacy, pages 130–140,
Oakland, CA, May 1997. IEEE.

[Gel89] A.V. Gelder. The alternating fixpoint of logic programs with negation. InProc. 8th ACM Symposium on
Principles of Database Systems, pages 1–10, 1989.

[GL88] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. InProc. Fifth Interna-
tional Conference and Symposium on Logic Programming, pages 1070–1080, 1988.

[JSSS01] S. Jajodia, P. Samarati, M.L. Sapino, and V.S. Subrahmanian. Flexible support for multiple access control
policies.ACM Transactions on Database Systems, 26(4):1–57, June 2001.

[Koz99] D. Kozen. Language-based security. InProceedings of Mathematical Foundations of Computer Science,
pages 284–298. Springer-Verlag, 1999.

[ML97] A.C. Myers and B. Liskov. A decentralized model for information flow control. InProceedings of the
16th ACM Symposium on Operating System Principles, pages 129–142, Saint-Malo, France, October
1997.

[ML98] A.C. Myers and B. Liskov. Complete, safe information flow with decentralized labels. InProceedings of
the IEEE symposium on Security and Privacy, Oakland, CA, May 1998. IEEE.

[ML00] A.C. Myers and B. Liskov. Protecting privacy using the decentralized label model.ATM Transactions on
Software Engineering and Methodology, (4):410–442, 2000.

[MMN90] C.J. McCollum, J.R. Messing, and L. Notargiacomo. Beyond the pale of mac and dac-defining new
forms of access control. InProceedings of the IEEE symposium on Security and Privacy, pages 190–200,
Oakland, CA, May 1990.

[SBCJ97] P. Samarati, E. Bertino, A. Ciampichetti, and S. Jajodia. Information flow control in object-oriented
systems.IEEE Transactions on Knowledge and Data Engineering, 9(4):524–538, July-Aug. 1997.

[WJ03] D. Wijesekera and S. Jajodia. Obtaining constraint compliant authorization lists in the flexible authoriza-
tion framework. 2003. Submitted for publication.

16

A The Flow Tree Generator

Algorithm Flow Tree Generator
INPUT: Transaction execution treeT .
OUTPUT: A set of Flow trees:flowT1, . . . , f lowTn, n is the number of executions with “w” methods.
1.LetflowTreeRoot =: {er|er ∈ E, mtd(er, w)}
2.For each element offlowTreeRoot: er:

If invoke(eh, er): Inserteh as child ofer, Insert “eh
fw−→ er”, getchildren(eh)

end-for

Proceduregetchildren(current execution : ej)
If ¬mtd(ej , r):

a. If invoke(ei, ej) & precede(ei, parent(ej)):

Insertei as a child ofej , Insert arch “ei
fw−→ ej”, getchildren(ei)

b.If invoke(ej , ek) andek is not the parent ofej :

If ¬mtd(ek, w): Insertek as a child ofej , Insert arch “ek
bk−→ ej”, getchildren(ek)

If mtd(ek, w): removeparent(ej)
end-if

end-if

Procedureremoveparent(current execution : ej)
If ej has no child:

deleteej from his parent’s children set, delete “ej
bk−→ parent(ej)”, removeparent(parent(ej))

end-if

Table 6: The Flow Tree Generator

A.1 Some predicates used in Section 4.3

In this section, we define predicates that are not standard in Prolog, but used in section 4.3. We do so using standard
list manipulation predicates given in Table 7, and defined in [CM87].

Predicate & Arity Meaning

isHead(X, Y) X is the head of listY .
isTail(X, Y) List X is the tail of list Y.
member(X, Y) X is an element ofY .
union(X,Y, Z) The union of listX andY is list Z.
intersection(X, Y, Z) The intersection of listX andY is list Z.
append(X, Y, Z) JoinX andY to getZ.
remove(X, Y, Z) RemoveY from X to getZ.

Table 7: Some Standard List manipulation Predicates in [CM87]

17

Rules for unionAdd(X,Z)

unionAdd([X], X) ← .

unionAdd([Head|Tail], Z) ← unionAdd([Tail], Z ′), binUnionAdd(Head, Z ′, Z).

binUnionAdd(X, [], X) ← .

binUnionAdd([Head1|X], [Head2|Y], Z] ← binUnionAdd(X, Y, Z ′), binBinUnionAdd(Head2, Z
′, Z ′′),

binBinUnionAdd(Head1, Z
′′, Z).

binBinUnionAdd(X, [], X) ← .

binBinUnionAdd(X, Y, Z) ← isHead(o, X), objSet(O, Y),¬member(o,O), append(Y, X, Z).
binBinUnionAdd(X, Y, Z) ← isHead(o, X), member(Y ′, Y), isHead(o, Y ′),

isTail(Tail1, Y
′), isTail(Tail2, X),

intersection(Tail1, Tail2, Tail), remove(Y, Y ′, Y ′′),
append(Y ′′, [o|Tail], Z).

Rules for releaseBK(flowE, m, flowE’)

releaseBK(X, m,X ′) ← rW(m, RW), replyAdd(RW,X,X ′).

replyAdd([], Y, Y) ← .

replyAdd([Head|Tail], Y, Y ′) ← replyAdd(Tail, Y, Y ′′), binReplyAdd(Head, Y ′′, Y ′).

binReplyAdd([], Y, Y) ← .

binReplyAdd(X, Y, Z) ← isHead(o,X), member(Y ′, Y), isHead(o, Y ′), isTail(Tail1, X),
isTail(Tail2, Y

′), union(Tail1, Tail2, Tail), remove(Y, Y ′, Y ′′),
append(Y ′′, [o|Tail], Z).

binReplyAdd(X, Y, Y) ← isHead(o,X), objSet(O, Y),¬member(o,O).

Rules for releaseFW(flowE,m,flowE’)

releaseFW(X, m, X ′) ← iW(m, IW), invokeAdd(RW,X, X ′).

invokeAdd([], Y, Y) ← .

invokeAdd([Head|Tail], Y, Y ′) ← invokeAdd(Tail, Y, Y ′′), binInvokeAdd(Head, Y ′′, Y ′).

binInvokeAdd([], Y, Y) ← .

binInvokeAdd(X, Y, Z) ← isHead(o,X), member(Y ′, Y), isHead(o, Y ′), isTail(Tail1, X),
isTail(Tail2, Y

′), union(Tail1, Tail2, Tail), remove(Y, Y ′, Y ′′),
append(Y ′′, [o|Tail], Z).

binInvokeAdd(X,Y, Y) ← isHead(o,X), objSet(O, Y),¬member(o,O).

Rules for objSet (X,Y)

objSet([], []) ← .

objSet(X, [Head|Tail]) ← objSet(X ′, [Tail]), isHead(o,Head), append(X ′, o,X).

18

Rules for eRdSet(X,Y)

eRdSet([], []) ← .

eRdSet(X, [Head|Tail]) ← eRdSet(X ′, [Tail]), isTail(X ′′, Head), intersection(X ′, X ′′, X).

Rules for listOfSafeFlow((x,e),X,a)

listOfSafeFlow((x, e), [(y, e)], a) ← safeFlow((x, e), [(y, e)], +a)
listOfSafeFlow((x, e), X, a) ← isHead((y, e), X), isTail(TX , X), safeFlow((x, e), [(y, e)],+a),

listOfSafeFlow((x, e), TX , a)

Rules for listOfSafeFlow*(X,Y,E,a)

listOfSafeFlow∗([], [], [], +a) ←
listOfSafeFlow∗(X, E, +a) ← isHead(HX , X), isHead(HY , Y), isHead(HE , E),

isTail(TX , X), isTail(TY , Y)isTail(TE , E),
safeFlow∗(HY ,HE ,+a), isHead(HX ,HY), listOfSafeFlow ∗ (TX , TY , TE , a)

Rules for listOfMtd(X,M)

listOfMtd([], []) ←
listOfMtd(X, M) ← isHead((x, e), X), isHead(m,M), mtd(x, m),

isTail(TX , X), isTail(TM , M), listOfMtd(TX , TM)

Rules for listOfReleaseBK(X,M,Y)

listOfReleaseBK([], [], []) ←
listOfReleaseBK(X, M, Y) ← isHead(HX , X), isHead(m,M), isHead(HY , Y),

isTail(TX , X), isTail(TM ,M), isTail(TY , Y),
releaseBK(HX ,m, HY), listOfReleaseBK(TX , TM , TY)

19

