
OLAP Means On-Line Anti-Privacy∗

Lingyu Wang, Duminda Wijesekera and Sushil Jajodia
Center for Secure Information Systems, George Mason University

Fairfax, VA 22030-4444, USA
{lwang3,dwijesek,jajodia}@gmu.edu

June 19, 2003

Abstract

In this paper we investigate the privacy breaches caused by multi-dimensional range sum queries
in OLAP (Online Analytic Processing) systems. Our results show that the sensitive information stored
in the underlying data warehouses can be easily compromised by malicious users with legitimate range
queries. This compromise is possible even when users are restricted to some special class of range
queries. We present algorithms that compromise individual tuples with only range queries. We study the
conditions under which the compromises are possible. We also analyze the number of queries required
for each compromise, as well as the complexity and completeness of those algorithms. Our study reveals
the seriousness of the privacy issue in OLAP systems and provide better understanding of the problem
for further research on the control methods.

1 Introduction

Online analytical processing (OLAP) is an important decision support tool. OLAP is intended to assist users
in exploiting the large amount of data stored in underlying data warehouses for useful trends and patterns.
Contrary to this initial objective, OLAP systems can be misused to gain access to the protected sensitive data.
This results in the breach of individual’s privacy and jeopardy organizational interest. Access control alone
is insufficient to thwart such misuses, because information not directly disclosed can be inferred indirectly
from the answers to legitimate queries, which is known as theinference problem. Unfortunately, most of
today’s OLAP applications do not take into account the privacy threats caused by the inference problem. It
is the subject matter of this paper to demonstrate how easily privacy can be breached can be achieved and
how serious the threats can be.

One feature that distinguishes OLAP systems from general-use databases is the restricted form of queries
and the high efficiency in answering such queries. Typically OLAP users are only interested in certain
classes of well-formed queries. For example, multi-dimensional range query [19] is one of the most im-
portant OLAP queries. Such well formed queries usually survey information about the general properties
rather than the specific details. Hence they better serve the need of OLAP users in discovering know ledges
than randomly formed queries do. Although those queries usually involve aggregations of a large amount

∗This work was partially supported by the National Science Foundation under grant CCR-0113515.

1

of data, they can be answered by most OLAP systems in merely a few seconds. This is achieved through
pre-computation and materialization of multi-dimensional views from which the queries can be easily de-
rived. For example, data cubes [18] organize multi-dimensional aggregates into hierarchies for the fast
computation of OLAP queries.

Because OLAP systems may work with restricted forms of queries, a natural question is to ask whether
the privacy breaches caused by the inference problem may be eliminated or alleviated by such restrictions.
This conjecture is strengthen by the fact that compromising general-purpose databases usually depends on
the availability of randomly formed queries. For example, the so-called Tracker [10, 11] and the linear
system attack [14] both need to inquire about the sum of arbitrary subsets of sensitive values, which are
likely meaningless to OLAP users and are therefore restricted. However, the answer to the question isno.
Our results show that although more sophisticated mechanisms are required, it is usually possible and easy
to attack the OLAP systems with legitimate queries. Our algorithms can find trackers using merely range
queries to subvert the restrictions on small queries. Even if only the range queries involving even numbers
of tuples are answered, our algorithms are still capable of compromises in most cases.

Another weaker but seemingly more plausible conjecture is that at least the restricted form of queries may
alleviate the damages of such attacks. For example, the compromised sensitive values may only comprise a
small portion of the entire data warehouses. If so then the privacy issue can still be ignored. Unfortunately,
it is untrue according to our study. We discuss the methods that can compromise the entire data warehouses
in the worst case.

Finally, it seems attractive to directly apply existing inference control methods to OLAP systems. The
inference problem in general-purpose statistical databases has been investigated since 70’s with many infer-
ence control methods proposed. However, as discussed above, general-purpose databases are not optimized
for any specific kinds of queries and inference control methods must cope with all possible queries. As
a natural trade-off, the run time of those methods are usually proportional to the size of the queries. For
example, the Audit Expert [6] needsO(mn) time to process a single query, wherem andn is the number of
answered queries and tuples respectively. Moreover, most inference control methods in statistical databases
are launched only after queries have arrived. Therefore, the time consumed by those methods adds to the
total response time. This prohibitive overhead renders them impractical for OLAP systems as they demand
instant responses to large queries.

The first contribution of this paper is that it demonstrates the privacy breaches caused by the inference
problem to be an important issue to OLAP systems. Although a similar issue has received attentions recently
in off-line applications such as data mining [3, 2, 16, 15, 13], it is still ignored in on-line systems such as
OLAP. In this paper we elaborate on this issue by showing how easy a compromise is, and how serious
the threats can be. Secondly, our study provides a better understanding of the inference problem in OLAP
systems. We study the inference methods that exploit only multi-dimensional range queries and data cubes.
The insights will fertilize further studies on inference control methods.

The rest of the paper is organized as the follows. Section 2 reviews existing inference control methods.
Section 3 reviews basic concepts of OLAP and introduces our model. Section 4 studies the inferences caused
by unrestricted range queries. Section 5 discussed compromising with restricted range queries. Section 6
introduces a demo system that we have implemented. Section 7 concludes the paper.

2

2 Related Work

Inference control has been extensively studied in statistical databases [9, 1, 12] and the proposed methods are
roughly classified into two main categories;restriction basedtechniques andperturbation basedtechniques.
Perturbation-based techniques usually do not apply to on-line systems such as OLAP, and therefore we do
not discuss them here. Restriction based techniques include restricting the size ofquery sets(i.e., the entities
that satisfy a single query) [17], restricting the size of overlaps [14] between query sets, detecting inferences
by auditing all queries asked by a specific user [6, 22, 4], suppressing sensitive data in released statistical
tables [7], grouping data and treating each group as a single entity [5, 23]. These inference control methods
proposed for statistical databases are designed to control random queries and hence are usually infeasible
for OLAP applications which demand short response time for large queries.

Recently a variation of the inference control problem has received attentions in off-line knowledge dis-
covery applications such as data mining [3, 2, 16, 24, 15, 13]. Those work resemble the perturbation-based
methods in statistical databases, but they focus on preserving the data distribution model instead of the pre-
cision of point estimators after random perturbation [3]. Applying such approaches to online systems like
OLAP encounters a fundamental difficulty. That is, it is hard to predict the purpose of online data analysis.
As a decision support tool, OLAP allows users to interactively exploit the data. However, OLAP systems
can not make assumptions about the knowledge users want to discover from the data. Users may be looking
for association rules, but they may also be interested in classification results instead. Hence it is difficult to
decide on users’ behalf what is the purpose of the knowledge discovery. Without this prediction, the bias
and inconsistence introduced by random perturbations may render query results imprecise and useless.

The inference control of OLAP data cubes and multi-dimensional range queries is discussed in [25, 26].
In [25] sufficient conditions are given which guarantee data cubes to be safe from inferences when the data
core is full or dense (i.e., the number of known values is zero or under the given bound respectively), and
only skeleton queriesare allowed. More general multi-dimensional range queries are considered in [26]. By
reducing such queries to a simpler form, efficient methods are proposed to determine whether the data core
can be compromised. Those studies provide partial solutions to the inference problem of OLAP systems.
However, they also reveal new vulnerabilities of OLAP systems to inferences. In this paper we study the
problem from a totally different perspective. That is, the attacker’s perspective. We refer to some of the
theoretic results presented in [25, 26] but use them to attack on privacy.

3 Preliminaries

This section reviews the basic concepts about OLAP data cubes and their inference control. We then intro-
duce the model and notations used in the rest of the paper.

3.1 An Example of Data Cube and Its Inference Problem

We first illustrate the basic concepts of OLAP data cubes and their inference problem by an example. Sup-
pose a portion of thedata coreis shown as a relation in Figure 1. The attributesY ear andName are
dimensions, and the attributeAdj is ameasure.

A data cube [18] can be constructed from the relationSalary Adjustment as shown in the cross-tabular

3

Year Name Adj

2002 Alice 1000

2002 Bob 500

2002 Mary -2000

2003 Bob 1500

2003 Mary -500

2003 Jim 1000

Figure 1: RelationSalary Adjustment.

in Figure 2. The data cube is grouped by the dimensionsY ear andName, and theaggregation functionis
theSUM . The first column and the first row of the table corresponds to the values of the dimensionY ear

andName, respectively. The values of the measureAdj is shown in the middle of the table. Each value in
the last column and the last row (but not both) gives the aggregationSUM(Adj) for the corresponding row
and column, respectively. The value at the last column and row is the aggregationSUM(Adj) for all the
values ofAdj in the table.

Alice Bob Mary Jim SUM(Adj)

2002 1000 500 -2000 N/A -500
2003 N/A 1500 -500 1000 2000

SUM(Adj) 1000 2000 -2500 1000 1500

Figure 2: An Example of a Two-dimensional Data Cube.

The SUMs shown in Figure 2 are calledskeleton queries, because they involve whole columns (or rows)
of the table. More generally,multi-dimensional range queries(or range queries for short) aggregate values
in continuous multi-dimensional ranges of the table. For example, in Figure 2, the summation of Alice
and Bob’s salary adjustments in 2002 is a range query, but that of Alice and Mary’s is not. Range queries
involving partial columns or rows correspond to theslicingor dicingoperations of data cubes.

We adopt an intuitive notation for denoting multi-dimensional ranges from now on. For example, the
range[(2002, Alice), (2002, Jim)] includes Alice, Bob and Mary’s salary adjustments in 2002. Similarly
[(2002, Alice), (2003, Bob)] includes Alice and Bob’s salary adjustments in 2002 and 2003.

Suupose the company invites an analyst Mallory to analyze the data, but worries that Mallory may misuses
the sensitive information about each individual. Hence Mallory is not supposed to know any values of the
measureAdj in Figure 2, but is allowed to access any aggregations of those values. Moreover, Mallory is
free to inquiry about the dimensionsY ear andName.

Suppose Mallory asks a range sum query for[(2002, Alice), (2003, Alice)]. Alice’s salary adjustment in
2002 is disclosed by the answer to this query, although Mallory is not supposed to know this value. Hence
this value iscompromised, and an inference occurs. This kind of trivial inferences are easy to prevent by
restricting queries involving single values. An alternative way for Mallory to learn the same value is to
ask two range sum queries,[(2002, Alice), (2002,Mary)] and [(2002, Alice), (2002, Bob)], and then to
calculate their difference. It is more difficult to detect such kind ofoverlap attacksor more generallylinear

4

system attacks[6, 14], because these usually require the system to audit the entire history of queries asked
by each user. Moreover any control mechanism can be easily subverted if users collude.

3.2 The Model

We useI,R, Ik,Rk andRm×n for the set of integers, reals,k-dimensional integer vectors,k-dimensional
real vectors andm×n, respectively. For any real vectorsu, v, t ∈ Rk, we use the notationu ≤ v to mean that
u[i] ≤ v[i] for all 1 ≤ i ≤ k, andt ∈ [u, v] to mean thatu ≤ v andmin{u[i], v[i]} ≤ t[i] ≤ max{u[i], v[i]}
for 1 ≤ i ≤ k.

Data Cubes Instead of using relational terms, it is more convenient to model a data cube as a system of
sets of integer vectors, where each integer vector stands for a tuple and each set stands for a range query
(we say a query we refer to both the query specification and the set of tuples aggregated by the result to the
query).

We use closed integer intervals[1, di] (1 ≤ i ≤ k for some fixedk) for the dimensionsby assuming a
one-to-one mapping between the integers and the dimension values. Atuple is an integer vector of the form
(x1, x2, . . . , xk), where eachxi is an integer in[1, di]. The Cartesian product

∏k
i=1[1, di] contains all the

possible tuples that may appear in any data core. In another word, adata coreis a subset of this Cartesian
product. We use the same notation to specifyrange queriesas in Section 3.1. We assumeSUM queries
and omit the aggregation function. That is,[t1, t2] is a range query over the data coreC, and the result to
the query is the set{t : t ∈ [t1, t2]}. However, we may directly refer to such a set as a query. The following
example illustrates these concepts.

Example 1 We translate the example in Section 3.1 into the stated notations. The two dimensions are[1, 2]
and[1, 4]. The Cartesian product[1, 2]× [1, 4] contains eight tuples, but only six of them appear in the data
core{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (2, 4)}. In Figure 3 we model the data cube shown in Figure 2 as a
system of sets of integer vectors.

1 2 3 4

1 (1,1) (1,2) (1,3) [(1,1),(1,4)]
2 (2,2) (2,3) (2,4) [(2,1),(2,4)]

[(1,1),(2,1)] [(1,2),(2,2)] [(1,3),(2,3)] [(1,4),(2,4)] [(1,1),(2,4)]

Figure 3: A Data Cube Modeled as A System of Sets of Integer Vectors.

Inferences Because we denote a group of range queries over a data core as a set system, theincidence
matrix of the set system can be used to characterize the queries (letS andM(S) be the set system and its
incidence matrix, thenM(S)[i, j] = 1 if the jth element is a member of theith set, andM(S)[i, j] = 0
otherwise). Example 2 shows an example of incidence matrices.

5

Example 2 In Figure 3, the incidence matrixM(S1) of the groupS1 = {[(1, 1), (1, 1)]} consists of a single
row [1, 0, 0, 0, 0, 0]. The incidence matrixM(S2) of S2 = {[(1, 1), (1, 3)], [(1, 2), (1, 3)]} is:(

1 1 1 0 0 0
0 1 1 0 0 0

)

We introduce aderivability relation¹ between two groups of range queriesS1 andS2 over the same data
core. LetM(S1) andM(S∈) be the incidence matrix ofS1 andS2, respectively. Then we say thatS1 is
derivable fromS2, denoted asS1 ¹ S2, if M(S1) = M · M(S2) for someM ∈ R|S1|×|S2|. We say that a
tuple t is compromisedby a group of range queriesS if {{t}} (or t for short) is derivable fromS, that is,
t ¹ S. We say thatS is safe if no tuple in the data core is compromised.

Example 3 Following Example 2, we have thatS1 ¹ S2, becauseM(S1) = [1,−1] ·M(S2). HenceS2 is
unsafe because it compromises the tuple(1, 1).

We do not have measures in our model because they are not relevant for the type of inferences we dis-
cuss. For example, the inferences discussed in Section 3.1 does not depend on the specific values of the
measureAdj we use in Figure 1. We deal with the general case where sensitive measures are unbounded
real numbers. Hence the only way that users can learn such values is through the derivability relation. In
some special cases where the measures are bounded and users happen to know the boundaries, potentially
more information may be inferred [22, 21].

4 Compromising Using Random Range Queries

This section discusses inferences caused by random range queries. We discuss two kind of attacks, namely,
trivial attacksandtracker attackswith range queries.

Trivial Attacks with Range Queries We begin with no restriction on the range queries users may ask. In
such a case inferences are trivial, because users can simply ask a range query containing only the targeted
tuple with an aggregation function such asSUM , AV G, or MAX or MIN . This is known as thesmall
query set attackin statistical databases [8].

Definition 1 (Trivial Attack) A trivial attack happens when range queries containing only the targeted
tuple are answered.

In order to compromise a tuplet, users can simply ask the query[t, t]. An alternative way is to ask a
query [t1, t2], wheret1, t2 are two distinct tuples satisfying thatt ∈ [t1, t2] and | [t1, t2] |= 1. To satisfy
t ∈ [t1, t2], t1 andt2 can be chosen in such a way thatt1[i] ≤ t[i] ≤ t2[i] holds for ordered dimensions, and
t1[i] = t[i] = t2[i] for dimensions without order. The condition| [t1, t2] |= 1 can be determined by asking
the query[t1, t2] with COUNT .

The trivial attack can be easily prevented by executing the query and examining the cardinality of the
results before releasing them to users. The query[t, t] can be simply denied even without execution, because
even if | [t, t] |= 0, answering such a query still discloses the fact that no tuple satisfies the condition

6

specified byt, known asnegativeinferences [8]. It may be appealing to scrutinize theCOUNT queries,
such that users can not find two tuplest1 andt2 to satisfy the condition| [t1, t2] |= 1. However,COUNT

queries might be very difficult to control because users have the extra knowledge that each tuple contributes
either zero or one to the result of aCOUNT query. The complexity of inference control for such binary
values is very high [20]. For this reason we make a conservative assumption that users are not restricted to
COUNT queries and they know which tuple is present and which is absent.

Tracker Attack with Range Queries One simple mechanism to subvert the restriction that queries con-
taining single tuples are denied is thetracker [10]. The basic idea of tracker is to pad the restricted queries
with more tuples such that they become legitimate, and then remove the padding with subsequent queries.
Tracker attacks can be used either to directly compromise tuples or as intermediate steps to obtain restricted
queries required by other attacks. Finding a tracker composed of merely multi-dimensional range queries is
more difficult than with random queries, but nevertheless possible.

Definition 2 [Tracker Attack With Range Queries] Suppose only the range queries containing no less than
nt tuples are answerable. Given a targeted range query[t1, t2] that is not answerable, a tracker attack
happens when there exists a group of answerable range queriesS satisfying[t1, t2] ¹ S.

Algorithm RangeTrackershown in Figure 4 builds a tracker to derive the restricted range query[t1, t2]
by using totallyk + 2 range queries. Intuitively, we can view[t1, t2] as ak-dimensionalbox (some of the
dimensions may have the size one) obtained by the intersection of totally2k planes. Those planes divide
the data coreC into 3k disjointed blocks including[t1, t2] itself. The algorithm starts by searching through
the3k − 1 blocks around[t1, t2] for [ta, tb] that contains no less thannt tuples. If the algorithm can find
[ta, tb] then it returns the followingk+1 range queries besides[ta, tb]; [tc, td] is the smallest range query that
contains both[ta, tb] and[t1, t2]; and the[ui, vi]s are the largest range queries that is contained by[tc, td],
and contain[ta, tb] but not[t1, t2].

Proposition 1 justifies the correctness of the AlgorithmRangeTrackerand gives a sufficient condition
for finding a tracker. The result shows that unless the thresholdnt is very large, finding a tracker with range
queries is always possible. However, choosing a largent may render the system useless because many
drill-down queries having small cardinalities will be denied.

Proposition 1 The resultS of AlgorithmRangeTrackerhas the following properties:

• [t1, t2] ¹ S.

• All range queries inS are answerable with respect tont.

• S can always be obtained ifnt ≤ |C|
3k .

Proof:

• [t1, t2] can be calculated fromS with the a series of set operations as the follows.

[t1, t2] = [tc, td]−
k⋃

i=1

([ui, vi]− [ta, tb])− [ta, tb].

7

Algorithm RangeTracker
Input: A data coreC with k dimensions[1, di] (1 ≤ i ≤ k), a thresholdnt, and the targeted range query

[t1, t2] with | [t1, t2] |< nt holds.
Output: a group ofk + 2 queriesS if successful,φ otherwise.
Method:

(1) Let [ta, tb] be a range query satisfying:
| [ta, tb] |≥ nt, and for1 ≤ i ≤ k one of the follows holds

ta[i] = 1 andtb[i] = t1[i]− 1,
ta[i] = t1[i] andtb[i] = t2[i], or
ta[i] = t2[i] + 1 andtb[i] = di.

(2) Then
Let [tc, td] be a range query satisfying that

tc[i] = min{ta[i], t1[i]} andtc[i] = max{tb[i], t2[i]} for 1 ≤ i ≤ k.
For 1 ≤ i ≤ k

Let [ui, vi] be a range query satisfying that
ui[i] = t1[i], vi[i] = t2[i] and
ui[j] = tc[j], vi[j] = td[j] for j 6= i.

Let S = {[ui, vi] : 1 ≤ i ≤ k} ∪ [ta, tb] ∪ [tc, td].
(3) Else

Let S = φ.
(4) Return S.

Figure 4: An Algorithm For Constructing A Tracker Using Range Queries

It then follows that[t1, t2] ¹ S becauseM([t1, t2]) = M ·M(S), whereM = [−1,−1, . . . ,−1, k−
1, 1] ∈ R1×(k+2).

• First | [ta, tb] |≥ nt is given by the step (2) of AlgorithmRangeTracker. Then because[ta, tb] ⊆
[ui, vi] for 1 ≤ i ≤ k, we have that| [ui, vi] |≥| [ta, tb] |≥ nt. Similarly we have| [tc, td] |≥ nt.
Hence all the range queries inS can be answered with respect tont.

• The algorithmRangeTrackeris successful if it can find the range query[ta, tb] satisfying| [ta, tb] |≥
nt. The 4k values1, t1[i], t2[i], d[i] (1 ≤ i ≤ k) divide the data coreC into totally 3k disjointed
blocks with[t1, t2] in the middle (some of the ranges may be empty). One out of the3k ranges must
contain |C|

3k or more tuples. Because| [t1, t2] |< nt ≤ |C|
3k , [ta, tb] can always be found.

2

Example 4 Figure 5 gives an example of trackers using two dimensional range queries. Suppose that
| [t1, t2] |< nt holds for soment ≤ |C|

9 . Then one of the eight blocks around[t1, t2] must contain no less
thannt tuples. Suppose| [ta, tb] |≥ nt. Then we can calculate[t1, t2] as [t1, t2] = [tc, td] − ([u1, v1] −
[ta, tb]) − ([u2, v2] − [ta, tb]) − [ta, tb]. Clearly all the queries at the right side of this equation have a
cardinality greater or equal tont.

8

t1

t2

ta , u2

tb , v1

tc , u1

td , v2

C

Figure 5: An Example of Trackers Using Two Dimensional Range Queries.

The tracker found by AlgorithmRangeTracker uses onlyk + 2 range queries to derive the restricted
query. The queries are all formed in constant time. The running time of the algorithm is dominated by the
searching for[ta, tb], which can be implemented by asking at most3k − 1 rangeCOUNT queries.

Tracker attack, as well as the more generallinear system attack[14], exploits the derivability relation
between groups of queries to achieve inferences. The same technique can be used to deter the attack. For
example, auditing the entire history of queries asked by each user and constantly checking for any possible
inferences [6]. Such an approach suffers from several inherent drawbacks. An attacker can easily achieve
his objective by manipulating a few queries, but the system must check all the answered queries. Knowing
this weakness, an attacker can paralyze the system by asking the desired queries one at a time, padded
with a large amount of dummy safe queries involving many tuples. Such an behavior might be suspicious in
general-purpose databases but just normal in OLAP systems. Another drawback is that the set of answerable
queries depends on the order in which users ask queries [4]. A badly chosen order may render the number
of answerable queries very small. This may not be an issue in general-purpose databases because users only
ask the desired queries. However, in OLAP systems users tend towastequeries. More specifically, users
ask queries in large batches, such as a data cube, and many of those queries are only used to stage further
interactions. Under the auditing control such kind of operations may likely result in the situation where
users find that they can not ask any more queries after only a few interactions.

5 Compromising with Restricted Range Queries

In the previous section we have seen that it is relatively easy to compromise the data core when no restriction
is enforced on the type of range queries that users may ask. In this section we shall investigate the cases
where users are only allowed to ask a special class of range queries. We show that although considerably
more difficult than with random range queries, inferences are still possible under such restrictions.

9

5.1 Even Range Query Attack

First we consider answering only theeven range queries. The intuition is that any union or difference of two
even range queries yield another even range query. Hence compromises with such simple set operations will
not succeed, since a single tuple composes anodd range query. For example, the inference in Example 3
will fail because the query[(1, 1), (1, 3)] is an odd range query and will be suppressed. Under this restriction
it is less straightforward to compromise any tuple in the data core. Nevertheless, we show in Example 5 that
inferences are still possible in this case.

Example 5 For the data core shown in Figure 3, we can compromise the tuple(1, 1) in a more sophisticated
way using only even range queries. First considerS = {[(1, 1), (1, 2)], [(1, 2), (2, 2)], {(1, 1), (2, 2)}}.
Obviously we have thatM((1, 1)) = [12 ,−1

2 , 1
2] · M(S). Now the question is how do we get the answer

to {(1, 1), (2, 2)} since it is not even a range query. We need more queries for this purpose. LetS ′ =
{[(1, 1), (2, 4)], [(1, 2), (1, 3)], [(2, 3), (2, 4)]}. Clearly all queries inS ′ are even range queries. Moreover
we have thatM({(1, 1), (2, 2)}) = [1,−1,−1] · M(S ′).

Definition 3 (Even Range Query Attack) Even range query attack happens when a group of range queries
S compromises the targeted tuple and all range queries inS contain even number of tuples.

The key observation in Example 5 is that the three queries inS form anodd cycle. Here we consider each
tuple as a vertex in a graph and each set of two tuples as an edge (notice that the set system we used to model
the data cube is naturally a hypergraph). With such an odd cycle we can always compromise any tuple in
the cycle. Basically we begin from the targeted tuple and traverse the cycle. At each step we couldremove
a tuple shared by the two adjacent edges. Then when we reach the last edge we complete the compromise
with the targeted tuple being added twice and all other tuples in the cycle being removed.

However, the attack works only if all the edges in the cycle are even range queries or can be derived from
even range queries as in Example 5. For this purpose we need theQDT Graphintroduced in [26]. TheQDT
graph has the data core as its vertex set and a special group of sets of two tuples as its edge set. A brief
algorithm is given in Figure 5.1 to explain how QDT graph is constructed from the data core for the given
even range query[t1, t2]. Basically wepair adjacent vertexes (tuples) by adding edges (sets of two tuples) to
the QDT graph. The Proposition 2 states that the algorithm guarantees every edge added to the QDT graph
to be derivable from some set of even range queries over[t1, t2].

Proposition 2 Any edge{ta, tb} in the output of the AlgorithmQDT Graphcan be derived from a set of
even range queries over the input[t1, t2].

Proof (Sketch): The AlgorithmQDT Graphpairs vertexes in totallyk rounds, with the vertexes differing
in the lasti dimensions being paired in theith round. We prove by induction oni. The initial case with
i = 1 is trivial because the added edges are even range queries.

Suppose in the edges added in up to thei − 1 round satisfy the hypothesis. In theith round an edge
{ta, tb} is added intoE. Let Sa andSb be the sets of vertexes that have the same firstk − i dimensions as
ta andtb, respectively. Then we know that all vertexes inSa andSb are already paired up in the firsti − 1
rounds and the edges between them therefore satisfy the hypothesis. Moreover, letSc be the set of vertexes

10

Algorithm QDT Graph
Input: a data coreC and an even range query[t1, t2].
Output: an edge setE.
Method:

(1) Let S = [t1, t2] andE = φ.
(2) For i = 1 to k

Let ta, tb be two tuples inS satisfying:
(2.a)ta andtb differ in the lasti dimensions,
(2.b) there does not existstc ∈ S such that

ta[j] = tc[j] for all j < i andta[i] < tc[i] < tb[i].
Let E = E ∪ {{ta, tb}}.
Let S = S − {ta, tb}.

(3) Return E.

Figure 6: An Algorithm for Constructing a QDT Graph

satisfying that for anytc ∈ Sc, ta[j] = tc[j] for all j < i andta[i] < tc[i] < tb[i] holds. The condition (2.a)
of the AlgorithmQDT Graph implies thatSc must be an even range query. LetSab = Sa ∪ Sb ∪ Sc, then
Sab must also be an even range query. We conclude the proof by deriving{ta, tb} as the follows:

M({ta, tb}) = [1,−1,−1,−1] ·M({Sab, Sc, Sa, Sb}) (1)

2

Now that all edges in a QDT graph are guaranteed to be derivable from even range queries, we can com-
promise the data core by searching for an odd cycle in the QDT graph. AlgorithmEvenRangeQueryAttack
given in Figure 5.1 additively builds an QDT graph for the even range queries enclosing the targeted tuple
t. It then utilize a breadth-first-search (BFS) in the QDT graph starting fromt, in the attempt to find an odd
cycle containingt. If it finds such an cycle, it returns the set of even range queries from which all the edges
in the cycle can be derived. This set of even range queries can be found using equation (1) in the proof of
proposition 2. If a cycle cannot be found, then the algorithm begins to build the QDT graph for another even
range query. The process is repeated with the cardinality of the even range query (for which the QDT graph
is built) increasing until eithert is compromised or no even range query is left unprocessed.

The algorithmEvenRangeQueryAttackattempts to compromiset by asking as few range queries as
possible. The algorithm achieves the goal with two heuristics. Firstly, it begins to build QDT graph for
smaller even range queries, and moves to larger queries only if an odd cycle can not be found. The second
heuristic is that the BFS in QDT graphs finds the shortest odd cycle, which implies that less number of even
range queries are required to derive the targeted tuple. Despite those efforts, the number of queries required
for the compromise largely depends on the actual data core and could be large. The running time of the
algorithm is dominated by the construction of QDT graphs. Constructing a QDT graph for one range query
can be fulfilled in linear time in the cardinality of the query. However, in the worst case the algorithm has to
build QDT graphs for all possible range queries containing the targeted tuple before a failure is reported. In
comparison to the tracker attack discussed in Section 4, the potentially high complexity of even range query

11

Algorithm EvenRangeQueryAttack
Input: a data coreC and a targeted tuplet.
Output: a set of even range queriesS compromisingt if successful, orφ if failed.
Method:

(1) Let S = φ andE = φ.

(2) For i = 1 to b |C|2 c
While there exists an un-processed range query[ta, tb] satisfying

| [ta, tb] |= 2i, andt ∈ [ta, tb].
Let E = E∪ QDT Graph(ta, tb, C)
Do BFS inG(C, E) to find an odd cycleE containingt.
If E exists

Let S be a set of even range queries satisfying
E ¹ S.

Return S.
Else

Let [ta, tb] be marked as processed.
(3) Return φ.

Figure 7: An Algorithm for Even Range Query Attack

attack reflects the effectiveness of the control of even range query.

5.2 Indirect Even Range Query Attack

The completeness of the AlgorithmEvenRangeQueryAttack is left open in the previous section. That
is, when the algorithm fails, is there any other way to compromise the targeted tuple? Unfortunately, the
answer isyes. We shall show that the tuple can be compromised in a more indirect manner when an cycle
cannot be found after QDT graphs have been constructed for all the range queries containing the targeted
tuple.

Definition 4 Indirect even range query attack happens when the targeted tuple is compromised through the
compromises of other tuples.

Example 6 In Figure 3, after we compromise the tuple(1, 1) basically we could successively compromise
all other tuples using the even range queries connecting each pair of them.

First we need the following result proved in [26], which states that for any range query[t1, t2], if we build
QDT graphs for all the even range queries contained in[t1, t2] and additively union the edge sets of all those
QDT graphs, then the final outcome must be a connected graph.

Lemma 1 Given any even range query[t1, t2] over the data coreC, let S be the group of all even range
queries contained by[t1, t2] and letE =

⋃
∀[ta,tb]∈S QDT Graph(ta, tb, C). Then the graphG(C, E) must

be connected.

12

2

Because of Lemma 1, we could compromise the targeted tuplet by first compromising any other tuplet1
using the AlgorithmEvenRangeQueryAttack. We then find the shortest pathP from t to t1 in the graph
G(C, E) described in Lemma 1. All tuples fromt1 to t can then be successively compromised. The set
of even range queries for indirect even range query attack is stated in AlgorithmIndirect Attackshown in
Figure 5.2.

Algorithm Indirect Attack
Input: a data coreC and a targeted tuplet.
Output: a set of even range queriesS if successful,φ otherwise.
Method:

(1) Let S =EvenRangeQueryAttack(C, t).
(2) If S = φ

For any unprocessed tuplet1 ∈ C − {t}
Let S1 =EvenRangeQueryAttack(C, t1)
If S1 6= φ

LetP be the shortest path betweent andt1
LetS2 be the set of even range queries satisfyingP ¹ S2.
LetS = S1 ∪ S2.
Return S.

Else
Lett1 be marked as processed.

(3) Return φ.

Figure 8: An Algorithm for Indirect Even Range Query Attack

Several heuristics may help the AlgorithmIndirect Attackto minimize the number of even range queries
required by the actual attack, although the number could be huge in some cases. Firstly, the intermediate
tuple t1 may be chosen in such a way that compromisingt1 requires as few queries as possible. Secondly
the tuplet1 should be close tot such that the pathP is short. Those two goals must be balanced to reduce
the overall number of required queries. Finally redundant construction of QDT graphs should be avoided.
While processing a new tupletnew, the QDT graph of any even range query that contains bothtnew and at
least one processed tuple must have already been constructed and should not be considered again.

The completeness of the algorithmIndirect Attack is guaranteed by the following result proved in [26].
Given a data core, if all possible QDT graphs has been constructed and their edge sets are unioned but still
no odd cycle can be found, then the data core is safe from even range query attack. Hence if the algorithm
Indirect Attack returns an empty set for any targeted tuplet, then we know that there is no other way to
compromiset. Moreover, no other tuple can be compromised by even range query attack.

13

5.3 Skeleton Query Attack

When users are restricted to only skeleton queries with trivial attacks suppressed, compromises is not always
possible.. For example, the data core in Figure 3 is safe under such restrictions. In [25] we give other
sufficient conditions for the data core to be safe from such compromises. However, in some cases such an
attack is still attainable.

Definition 5 A skeleton query attack happens when the targeted tuple is compromised by skeleton queries
that contain more than one tuples.

Example 7 The data core shown in Figure 9 is subject to skeleton query attack. First observe that all
skeleton queries contain more than one tuple, and hence trivial attack is impossible. The skeleton query can
be obtained through the following equation:

M({(1, 1)}) = [1, 1,−1,−1] · M({[(1, 1), (1, 4)], [(2, 1), (2, 4)], [(1, 2), (4, 2)], [(1, 3), (4, 3)]}) (2)

1 2 3 4

1 (1,1) (1,2) (1,3)
2 (2,2) (2,3)
3 (3,1) (3,4)
4 (4,1) (4,4)

Figure 9: A Data Core Subject to Skeleton Query Attack.

The general skeleton query attack can be achieved using the similar techniques used in linear system
attack [6]. That is, we first transform the incidence matrix of a group of queries into its reduced row echelon
form (RREF). Then the queries compromise the targeted tuple iff a row vector in the RREF contains only
one non-zero element corresponding to the targeted tuple. However, compared to the linear time of building
a QDT graph in previous sections, the elementary row transformation used to obtain RREF form queries
runs inO(m2) time. Hence when the number of range queries required for compromises increases, the
attack may become infeasible. Nevertheless, compromising is still easier than controlling the compromises
because attackers can focus on the queries essential for the attack but the system has to check all answered
queries.

The AlgorithmSkeletonQueryAttackshown in Figure 5.3 exploits a simple heuristic to reduce the size
of matrices to be transformed. It starts from the targeted tuple and check all the skeleton queries containing
this tuple. If no compromise is possible, it checks more tuples that overlap the checked queries with at least
one tuple. This is based on the simple fact that if a group of queries compromise a tuple, then any query
in the group must share at least one tuple with some other query in the group, and at least one query must
contain the compromised tuple.

14

Algorithm SkeletonQueryAttack
Input: a data coreC and a targeted tuplet.
Output: a set of skeleton queriesS if sucessful,φ otherwise.
Method:

(1) Let S = φ andT = {t}.
(2) While T is not empty

Let T be the set of unprocessed skeleton queries
containing at least one tuple inT .

Let S = S ∪ T .
Let M = M(S).
If the RREF ofM contains a unit row vector corresponding tot

Return S.
Else

Let all tuples inT be marked as processed.
Let T be the unprocessed tuples contained in at least one query inS.

(3) Return φ.

Figure 10: An Algorithm for Skeleton Query Attack

6 A Demo System

We are in the progress of developing a demo system to demonstrate the privacy breaches in practical OLAP
systems. The system is implemented in Java and composes of three basic components. An attack module
implements the algorithms presented in this paper to compromise targeted tuples with specified classes of
range queries. An evaluation module determines if the attacks are theoretically possible by checking the
RREF of incidence matrices. A backend processing module answers the range queries posed by the other
two modules. The current implementation uses files as data sources but future work may provide interfaces
to actual data warehouses. Ongoing work also includes experiments using the system with both synthetic
data and real data in order to exploit the effectiveness of various control mechanisms.

7 Conclusion

In this paper we have shown the privacy breaches caused by the multi-dimensional range queries to be a
serious threat to OLAP systems. We showed that it is easy to compromise a targeted tuple or restricted query
with only a few legitimate range queries, when the type of range queries is not restricted. We then showed
that restricting users to even range queries makes compromises more difficult. However, the compromise
is still possible with the algorithms we presented. Finally we showed that even when users are restricted to
skeleton queries only, compromise can still be achieved. Those findings invoke more research on this issue
and also provide a better understanding of the problem.

15

References

[1] N.R. Adam and J.C. Wortmann. Security-control methods for statistical databases: a comparative
study.ACM Computing Surveys, 21(4):515–556, 1989.

[2] D. Agrawal and C.C. Aggarwal. On the design and quantification of privacy preserving data mining al-
gorithms. InProceedings of the Twentieth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 247–255, 2001.

[3] R. Agrawal and R. Srikant. Privacy-preserving data mining. InProceedings of the 2000 IEEE Sympo-
sium on Security and Privacy, pages 439–450, 2000.

[4] L. Brankovic, M. Miller, P. Horak, and G. Wrightson. Usability of compromise-free statistical
databases. InProceedings of ninth International Conference on Scientific and Statistical Database
Management (SSDBM ’97), pages 144–154, 1997.

[5] F.Y. Chin and G.Özsoyoglu. Security in partitioned dynamic statistical databases. InProc. of IEEE
COMPSAC, pages 594–601, 1979.

[6] F.Y. Chin and G.Özsoyoglu. Auditing and inference control in statistical databases.IEEE Trans. on
Software Engineering, 8(6):574–582, 1982.

[7] L.H. Cox. Suppression methodology and statistical disclosure control.Journal of American Statistical
Association, 75(370):377–385, 1980.

[8] D. Denning.Cryptography and data security. Addison-Wesley, 1982.

[9] D.E. Denning and P.J. Denning. Data security.ACM computing surveys, 11(3):227–249, 1979.

[10] D.E. Denning, P.J. Denning, and M.D. Schwartz. The tracker: A threat to statistical database security.
ACM Trans. on Database Systems, 4(1):76–96, 1979.

[11] D.E. Denning and J. Schlorer. A fast procedure for finding a tracker in a statistical database.ACM
Transactions on Database Systems, 5(1):88–102, 1980.

[12] D.E. Denning and J. Schlörer. Inference controls for statistical databases.IEEE Computer, 16(7):69–
82, 1983.

[13] I. Dinur and K. Nissim. Revealing information while preserving privacy. InProceedings 2003 ACM
PODS Symposium on Principles of Database Systems, 2003.

[14] D. Dobkin, A.K. Jones, and R.J. Lipton. Secure databases: protection against user influence.ACM
Trans. on Database Systems, 4(1):97–106, 1979.

[15] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy preserving data mining.
In Proceedings 2003 ACM PODS Symposium on Principles of Database Systems, 2003.

[16] A. Evfimievski, R. Srikant, , R. Agrawal, and J. Gehrke. Privacy preserving mining of association
rules. InProceedings of the 8th Conference on Knowledge Discovery and Data Mining (KDD’02),
2002.

16

[17] L.P. Fellegi. On the qestion of statistical confidentiality.Journal of American Statistic Association,
67(337):7–18, 1972.

[18] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational operator generalizing
group-by, crosstab and sub-totals. InProceedings of the 12th International Conference on Data Engi-
neering, pages 152–159, 1996.

[19] D.T. Ho, R. Agrawal, N. Megiddo, and R. Srikant. Range queries in olap data cubes. InProceedings
1997 ACM SIGMOD International Conference on Management of Data, pages 73–88, 1997.

[20] J. Kleinberg, C. Papadimitriou, and P. Raghavan. Auditing boolean attributes. InProc. of the 9th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pages 86–91, 2000.

[21] Y. Li, L. Wang, X.S. Wang, and S. Jajodia. Auditing interval-based inference. InProceedings of the
14th Conference on Advanced Information Systems Engineering (CAiSE’02), pages 553–568, 2002.

[22] F.M. Malvestuto and M. Mezzini. Auditing sum queries. InProceedings of the 9th International
Conference on Database Theory (ICDT’03), pages 126–146, 2003.

[23] J.M. Mateo-Sanz and J. Domingo-Ferrer. A method for data-oriented multivariate microaggregation.
In Proceedings of the Conference on Statistical Data Protection’98, pages 89–99, 1998.

[24] S. Rizvi and J.R. Haritsa. Maintaining data privacy in association rule mining. InProceedings of the
28th Conference on Very Large Data Base (VLDB’02), 2002.

[25] L. Wang, D. Wijesekera, and S. Jajodia. Cardinality-based inference control in sum-only data cubes. In
Proceedings of the 7th European Symposium on Research in Computer Security (ESORICS’02), pages
55–71, 2002.

[26] L. Wang, D. Wijesekera, and S. Jajodia. Precisely answering multi-dimensional range queries without
privacy breaches. Technical Report, 2003. Available at http://ise.gmu.edu/techrep/2003/.

17

