
Fusionplex: Resolution of Data Inconsistencies in the
Integration of Heterogeneous Information Sources

Philipp Anokhin Amihai Motro

Department of Information and Software Engineering
George Mason University

Abstract

Fusionplex is a system for integrating multiple heterogeneous and autonomous in-
formation sources, that uses data fusion to resolve factual inconsistencies among the
individual sources. To accomplish this, the system relies on source features, which
are meta-data on the quality of each information source; for example, the recentness
of the data, its accuracy, its availability, or its cost. The fusion process is controlled
with several parameters: (1) With a vector of feature weights, each user defines an
individual notion of data utility; (2) with thresholds of acceptance, users ensure min-
imal performance of their data, excluding from the fusion process data that are too
old, too costly, or lacking in authority, or data that are too high, too low, or obvious
outliers; and, ultimately, (3) in naming a particular fusion function to be used for each
attribute (for example, average, maximum, or simply any) users implement their own
interpretation of fusion. Several simple extensions to SQL are all that is needed to
allow users to state these resolution parameters, thus ensuring that the system is easy
to use. Altogether, Fusionplex provides its users with powerful and flexible, yet simple,
control over the fusion process. In addition, Fusionplex supports other critical inte-
gration requirements, such as information source heterogeneity, dynamic evolution of
the information environment, quick ad-hoc integration, and intermittent source avail-
ability. The methods described in this paper were implemented in a prototype system
that provides complete Web-based integration services for remote clients.

1 Introduction and Background

The subject of this paper is the data integration problem. Given a collection of heteroge-
neous and autonomous information sources, provide a system that allows its users to perceive
the entire collection as a single source, query it transparently, and receive a single, unam-
biguous answer. Heterogeneous information sources are sources with possibly different data
models, schemas, data representations, and interfaces. Autonomous information sources are
sources that were developed independently of each other, and are maintained by different
organizations, that may wish to retain control over their sources.

1

An important issue in the data integration problem is the possibility of information
conflicts among the different information sources. The sources may conflict with each other
at three different levels: (1) Schema level: The sources are in different data models or
have different schemas within the same data model. (2) Representation level: The data in
the sources is represented in different natural languages or different measurement systems.
(3) Data level: There are factual discrepancies among the sources in data values that describe
the same objects.

Each level of conflict can only be observed after the previous level has been resolved. That
is, different attribute names in the schemas of different information sources must be mapped
to each other before discrepancies in measurement systems can be observed. Similarly,
different attribute values have to be within the same measurement system to conclude that
these values indeed contradict each other.

The resolution of inconsistencies at the schema level is often performed in the process
of interpreting user queries. Numerous approaches exist that define a global schema that
encompasses the entire collection of sources, and then attempt to enumerate all the possible
translations of a global query to a query over the source descriptions [18, 5, 16, 2, 12, 10, 17,
7, 24, 3, 14]. The optimal translation (optimal in either the cost of retrieval or the number
of participating sources) is then chosen and materialized as an answer to the original query.
To perform such a translation, one needs to map attributes in the schemas of local sources
(the sources being integrated) to the attributes of the global schema.

A good number of approaches also resolve inconsistencies at the representation level.
This is often done by providing means for aggregation and conversion of values to a uniform
standard (e.g., [23, 18]).

Yet, to our knowledge, few systems deal with the issue of possible inconsistencies at the
data level: the discrepancies among the values obtained from different sources for the same
data objects.

HERMES [25] uses software modules called mediators to assemble global objects from
local objects provided by different data sources. Yet, this system does not attempt to detect
data conflicts. The mediators are created manually, and the mediator author must specify
a conflict resolution method wherever a conflict might occur. Also, the available resolution
methods are limited to a number of predefined policies.

Multiplex [20] both detects data inconsistencies and attempts to resolve them. However,
inconsistency is approached at the “record level”: inconsistency occurs when a global query
results in two or more different sets of records. Multiplex then proceeds to construct an
approximation of the true set of records, with a lower bound set of records (a sound answer)
and an upper bound set of records (a complete answer). The two estimates are obtained from
the conflicting answers through a process similar to voting. The lower bound set is contained
in the upper bound set, and the true answer is estimated to be “sandwiched” between these
two approximations.

2

A significant limitation of this approach to inconsistency resolution is that Multiplex
regards two records as describing entirely different objects, even if they are “almost identical”
(e.g., identical in all but one “minor” field). Consequently, when two such records are
suggested by two information sources, there is no attempt to recognize that these might be
two descriptions of the same object, and therefore no attempt to reconcile their conflicting
values. The two records are simply both relegated to the upper bound estimate.

A few approaches exist that resolve data level conflicts based on the content of the
conflicting data and possibly some probabilistic information that is assumed to be avail-
able. They either detect the existence of data inconsistencies and provide their users with
some additional information on their nature (e.g., [1]), or they try to resolve such conflicts
probabilistically by returning a partial value: a set of alternative values with attached prob-
abilities [9, 26, 19, 6].

There is elegance in the probabilistic approach, because probabilistic values are more
general than simple values, and the type of output of their resolution process is the same as
the types of its input (probabilistic values). But the benefit of a probabilistic value to the
database user is often in doubt. Another drawback is that probabilistic information must be
provided for every data item in an information source. This is relatively rare, especially for
Web-based sources. Fundamentally, rather than resolve inconsistencies by concluding data
from the conflicting data values, probabilistic methods focus on concluding probabilities from
the conflicting probability values. In other words, these approaches fuse probabilities not
data, and can be viewed as managing uncertainty, rather than inconsistency.

A drawback common to all the methods discussed is that they disregard the fact that
the information provided by their participating sources is often very different in its quality,
reliability or availability. They ignore any such differences among their sources and simply
assume that all sources are equally good.

Another common drawback is that these methods (with the possible exception of HER-
MES) do not provide their users with any control over the inconsistency resolution process.
Users cannot influence the resolution process to arrive at the “best” answer (where “best”
is defined by the particular user). Often, there are multiple ways to resolve data inconsis-
tencies, and their suitability can only be judged by the user. For example, in one situation
a conflict in a set of values may be deemed to be resolved best by choosing the most recent
value; in another, with the same set of values, the most frequent value (the mode) may well
be preferred.

The Fusionplex system that is the subject of this paper takes a different approach to
inconsistency. The system is a development of the earlier Multiplex system discussed above
(and adopts many of its definitions and basic principles). Thus, it is a general data in-
tegration system, with support for information source heterogeneity, dynamic evolution of
the information environment, quick ad-hoc integration, and intermittent source availability.1

But the focus of Fusionplex is the resolution of data inconsistencies by means of true data
fusion.

1These aspects are explained in detail in Section 2.3.

3

The main principle behind Fusionplex is that “all data are not equal.” The data environ-
ment is not “egalitarian,” with each information source having the same qualifications (as
assumed by Multiplex and other systems). Rather, it is a diverse environment, in which in-
formation providers have their individual advantages and disadvantages. Some data is more
recent, whereas other is more dated; some data comes from authoritative sources, whereas
other may have dubious pedigree; some data may be inexpensive to acquire, whereas other
may be costlier. To resolve conflicts, Fusionplex looks at the qualifications of its individual
information providers. Thus, it uses meta-data to resolve conflicts among data.2

Every Internet user is often confronted with the need to choose between alternatives:
Which is the most trustworthy source? Which is the most reliable download site? Which
is the least expensive newswire service? Some of these meta-data may be provided by the
source itself (e.g., date of last update, cost), other meta-data may be obtained informally
from other Internet users, and there are also Web sites that are dedicated to calculating the
quality of information and services provided by other sites (often through the evaluations of
fellow users). So it is not far-fetched to assume that in the near future, given the Internet’s
continuing, fast-paced expansion, such meta-data will become commonplace, possibly even
in a standard format. In a more restricted information environment, comprising perhaps
only a few dozen sources (perhaps with a focus on a particular subject, such as business or
medicine), it is quite conceivable that the multidatabase administrator will assign meta-data
scores to its sources, and will keep updating these scores.

Our term for such meta-data is information features. Examples of features include:
(1) Timestamp: The time when the information in the source was validated. (2) Cost:
The time it would take to transmit the information over the network and/or the money
to be paid for the information. (3) Accuracy: Probabilistic information that denotes the
accuracy of the information. (4) Availability: The probability that at a random moment the
information source is available. (5) Clearance: The security clearance level needed to access
them information.

The other guiding principle of Fusionplex is that inconsistency resolution is a process in
which users must be given a voice. Depending on their individual preferences (which are
subject to individual situations), users must be allowed to decide how inconsistencies should
be resolved. Decisions are made in two phases: Some decisions are made ad-hoc at query-
time, other decisions are more enduring and control all subsequent queries. One important
query-specific decision is what constitutes “good” data. This decision is implemented by
means of a vector of feature weights. In essence, this information constitutes this query’s
definition of data quality and allows the system to rank the competing values according to
their utility to the user. Other query-specific parameters are thresholds of acceptance with
which users can ensure minimal performance of the data, excluding from the fusion process
data that are too old, too costly, or lacking in authority. It also allows users to reject data
that are too high, too low, or obvious outliers. Yet another decision is the particular fusion

2A somewhat similar approach can be seen in the area of Internet search engines, where Google, one of
the prominent search engines, weighs heavily the authority or importance of individual links in the ranking
of its search results [11].

4

function to be used for a particular attribute; for example, average, maximum, or simply
any. Several simple extensions to SQL are all that is needed to allow users to state these
resolution parameters. Altogether, Fusionplex provides its users with powerful and flexible,
yet simple, control over the fusion process. For more details on this project, see [4].

The formal model of this work is the relational model. This model and the fundamental
concepts of multidatabases are reviewed in Section 2. These fundamental concepts have been
extended to include features. The extensions involve modifications to the basic relational
structures, the algebra, SQL, and the definition of multidatabases. They are discussed in
Section 3.

Unlike query translation approaches that are unconcerned with inconsistencies, Fusion-
plex must retrieve all relevant data from the information sources. Section 4 describes how
Fusionplex concludes which of the available information is relevant, and how this information
is assembled in a “raw” answer. This intermediate product is termed polyinstance and it
contains all the relevant data, including all possible inconsistencies. This polyinstance is the
input to the resolution process. The first step in the resolution process is the identification
of inconsistencies. In this process the tuples of the polyinstance are clustered in polytuples.
The members of each polytuple are the different “versions” of the same information. Essen-
tially, the inconsistency resolution process fuses the members of each polytuple in a single
tuple. This fusion process is multi-phased and is based on information provided either in the
query itself or in the currently prevailing resolution policies. The detection and resolution
of inconsistencies are the subject of Section 5.

The methods described in this paper were implemented in a prototype system called
Fusionplex. The architecture and features of Fusionplex are described in Section 6. Finally,
Section 7 summarizes the contributions of this work and reviews several possible directions
for further research.

2 Multidatabase Concepts

In this section we provide a brief overview of fundamental multidatabase concepts used in
this paper. These concepts are adopted from [20].

2.1 Relational Databases

The relational data model was adopted for this work. This choice was motivated by the fact
that the relational model is widely used and standardized, most production-quality database
management systems implement this model, and most of the information sources that require
integration are relational. Our terminology is mostly standard [21]. Throughout the paper,
we use both relational algebra and SQL notations to describe views and queries.

5

Our resolution methodology could introduce null values into relations. This requires ap-
propriate extensions to the relational model to determine the results of comparisons that
involve nulls. Codd’s three-valued logic [8] is adopted for this purpose. In this logic, com-
parisons that involve nulls evaluate to the value maybe. Different interpretations of such
maybe values can be provided. In general, a permissive interpretation will map maybe values
to true, and a restrictive interpretation will map maybe values to false. In each situation,
the interpretation of choice will be stated.

2.2 Schema Mappings

Consider a database (D, d), where D is the database schema and d is its instance. Let D′

be a database schema whose relation schemas are defined as views of the relation schemas
of D. The database schema D′ is said to be derived from the database schema D. Let d′ be
the database instance of D′ which is the extension of the views D′ in the database instance
d. The database instance d′ is said to be derived from the database instance d. Altogether,
a database (D′, d′) is a derivative of a database (D, d), if its schema D′ is derived from the
schema D, and its instance d′ is derived accordingly from the instance d.

Let (D1, d1) and (D2, d2) be two derivatives of a database (D, d). A view V1 of D1 and a
view V2 of D2 are equivalent, if for every instance d of D the extension of V1 in d1 and the
extension of V2 in d2 are identical. Intuitively, view equivalence allows one to substitute the
answer to one query for an answer to another query, although these are different queries on
different schemas.

Assume two database schemas D1 and D2, that are both derivatives of a database schema
D. A schema mapping (D1, D2) is a collection of view pairs (Vi,1, Vi,2), where Vi,1 is a view
of D1, Vi,2 is a view of D2, and Vi,1 is equivalent to Vi,2, for every i.

As an example, the equivalence of attribute Salary of relation schema Employee in
database schema D1 and attribute Sal of relation schema Emp in database schema D2 is
indicated by the view pair

(πSalary Employee, πSalEmp)

As another example, given the schemas Employee = (Name,Title,Salary,Supervisor) in
database schema D1, and Manager = (Ename, Level, Sal, Sup) in database schema D2,
the following view pair indicates that the retrieval of the salaries of managers is performed
differently in each database:

(πName,Salary σTitle=manager Employee, πEname,SalManager)

Schema mappings are instrumental in our definition of multidatabases.

6

2.3 Multidatabases

Assume that there exists a hypothetical database that represents the real world. This ideal
database includes the usual components of schema and instance, which are assumed to be
perfectly correct. The relationships between actual databases and this ideal database are
governed with two assumptions.

The Schema Consistency Assumption (SCA). All database schemas are derivatives
of the real world schema. That is, in each database schema, every relation schema is a view
of the real world schema. The meaning of this assumption is that the different ways in which
reality is modeled are all correct; i.e., there are no modeling errors, only modeling differ-
ences. To put it in yet a different way, all intensional inconsistencies among the independent
database schemas are reconcilable.

The Instance Consistency Assumption (ICA). All database instances are deriva-
tives of the real world instance. That is, in each database instance, every relation instance is
derived from the real world instance. The meaning of this assumption is that the information
stored in databases is always correct; i.e., there are no factual errors, only different represen-
tations of the facts. In other words, all extensional inconsistencies among the independent
database instances are reconcilable.

In this work we assume that the Schema Consistency Assumption holds, meaning that
all differences among database schemas are reconcilable. These schemas are related through
a multidatabase schema, which is yet another derivative of this perfect database schema.
On the other hands, it is assumed that the Instance Consistency Assumption does not hold,
allowing the possibility of irreconcilable differences among database instances. This means
that the database instances are not assumed to be derivatives of the real world instance.

Formally, a multidatabase is

1. A global schema D.

2. A collection (D1, d1), . . . , (Dn, dn) of local databases.

3. A collection (D,D1), . . . , (D,Dn) of schema mappings.

The first item defines the schema of a multidatabase, and the second item defines the
local databases in the multidatabase environment. The third item defines a mapping from
the global schema to the schemas of the local databases. The schemas D and D1, . . . , Dn

are assumed to be derivatives of the real-world schema, but the instances d1, . . . , dn are not
necessarily derivatives of the real-world instance (see Figure 1). Note that there is no instance
for the global database, and therefore a multidatabase is said to be a virtual database.

The “instance” of a multidatabase consists of a collection of global view extensions that
are available from the local databases. Specifically, the views in the first position of the

7

Global schema D
(derivative of W)

Member schema D1

(derivative of W)
· · · Member schema Dn

(derivative of W)

Member instance d1

(not derivative of w)
Member instance dn
(not derivative of w)

Real schema W
(hypothetical)

Real instance w
(hypothetical)

�
�
�
�
�
�
�

�
�
�	 ?

@
@
@
@
@
@
@
@
@
@R

Figure 1: Consistency assumptions in multidatabases.

schema mappings specify the “contributed information” at the global level, and the views in
the second position describe how these contributions are materialized.

As defined earlier, schema mappings allow to substitute certain views in one database
with equivalent views in another database. In a multidatabase, the former database is the
global database, and the latter is a local database.

The above definition of multidatabases provides four degrees of freedom, which reflect the
realities of multidatabase environments.

First, the mapping from D to the local schemas is not necessarily total; i.e., not all views
of D are expressible in one of the local databases (and even if they are expressible, there is
no guarantee that they are mapped). This models the dynamic situation of a multidatabase
system, where some local databases might become temporarily unavailable. In such cases, the
corresponding mappings are “suspended,” and some global queries might not be answerable
in their entirety.

Second, the mapping is not necessarily surjective; i.e., the local databases may include
views that are not expressible in D (and even if they are expressible, there is no guarantee
that they are mapped). For example, a large database may share only one or two views
with the multidatabase. This enables quick ad-hoc (i.e., not necessarily comprehensive)
integration.

8

Third, the mapping is not necessarily single-valued; i.e., a view of D may be found in
several local databases. This models the realistic situation, in which information is found
in several overlapping databases, and provides a formal framework for dealing with multi-
database inconsistency. Since there is no assumption that the Instance Consistency Assump-
tion holds, the local instances need not be derived from a single instance. Therefore, the fact
that view pairs (V, V1) and (V, V2) participate in schema mapping of a multidatabase does
not imply that the extensions of V in the local databases are identical.

Fourth, while the definition appear to require that the local databases comply with the
relational model, in practice they need not be relational, and the views in the second position
of the schema mappings need not be relational model expressions. The only requirement is
that they compute tabular answers. In other words, this definition allows for heterogeneity
in the participating sources. The relational model provides only a convenient global view,
and a communication protocol.

3 Formal Framework

To achieve our goal of resolving data conflicts, we introduce only one significant addition
to the model described in Section 2, which we call features. This addition requires that we
extend the notations for relational algebra queries (Section 3.2) and SQL queries (Section 3.3)
as well.

3.1 Features

With the growth of the Internet, the number of alternative sources of information for most
applications has increased enormously. To choose the most suitable source among the al-
ternatives, users often evaluate information about the sources. These meta-data — whether
provided by the sources themselves, or by third-party sites dedicated to the ranking of in-
formation sources — help users judge the suitability of each source for the intended use.
Examples of such meta-data include:

• Timestamp: The time when the information in the source was validated.

• Cost: The time it would take to transmit the information over the network and/or
the money to be paid for the information.

• Accuracy: Probabilistic information that denotes the accuracy of the information.

• Availability: The probability that at a random moment the information source is
available.

• Clearance: The security clearance level needed to access the information.

9

These meta-data are referred to as source features. Each feature is associated with a
domain of possible values, and a total order is assumed to be defined on the domain. For
each information source that possesses a particular feature, a value from that domain is
available. For example, the domain of availability could be the interval [0, 1], the values of
cost could range between 0 and M , where M is an arbitrary number, and the domain of
clearance could be {top-secret, secret, confidential, unclassified}.

To facilitate comparisons between different feature values, all features are normalized.
Each feature value is linearly mapped to a number in the interval [0, 1]. The mapping is
done so that high feature values are always more desirable that low values; that is, the worst
feature value is mapped to 0, and the best to 1. For example, higher availability value means
higher probability of the source being available. Similarly, higher timestamp value means the
data is more recent. But notice that higher cost value means the data is cheaper to obtain.

Every information source has a set of features associated with it, and in practice, different
sources may have different features. Therefore, a global set of features F is defined for the
entire multidatabase, as the union of the features of the participating information sources.
Each source feature set is then augmented to the features in F by adding null values for the
features it does not possess. For example, assume the global set of features is F ={timestamp,
cost, availability}. An information source with the current timestamp, zero cost and no data
about availability would have the feature set {timestamp=1, cost=1, availability=null}.

Our definition of features associates the same feature value with the entire information
source. That is, in this work all features are assumed to be inherited by all individual tuples
and all their attribute values. For example, in case of timestamp, it is assumed that the
source-wide timestamp value is also the timestamp value for every attribute in every tuple of
the source. Clearly, this assumption is restricting as it implies that the data in every source
are homogeneous with respect to every feature. However, in situations where an information
source is heterogeneous with respect to a given feature, it might be possible to partition the
source into several disparate parts that would be homogeneous with respect to that feature.
These parts would consequently be treated as separate information sources.

We now update the definition of multidatabases offered in Section 2. The only change is
in the definition of schema mappings. Recall that mappings were made of pairs, where the
first element of each pair was a view of the global database D, and the other a view of a local
database Di. These pairs are now extended to triplets with the addition of the set of source
features F . With this third element, every information source now provides its meta-data
along with its data.

3.2 Extended Relational Model and Algebra

To take advantage of feature meta-data in the processing of global queries, we extend the
standard relational model. We offer extensions to the definitions of relation schemas, relation
instances, and the relational algebra operations that manipulate these structures.

10

Each relation schema is extended with all the features in F . Assuming F = F1, . . . , , Fk,
a relation scheme R = (A1, . . . , Am) is now extended to R = (A1, . . . , Am;F1, . . . , Fk). Cor-
respondingly, the tuples in each relation instance are extended with the appropriate feature
values. Recall that feature columns of source instances have the same value for all their
tuples, and that null is an appropriate value for database attributes as well as features.

The extension to the relational algebra consists of modifications to three basic operations
(selection, projection, and Cartesian product), and two new operations: feature-select and
resolve. The other two basic operations (union and difference) remain unchanged.

The extended selection operation allows only predicates that involve database attributes
(not features). In the case of null attribute values, the selection predicate has two interpreta-
tions: a restrictive interpretation in which it evaluates to false and permissive interpretation
in which it evaluates to true. The extended projection operation is also limited to relation
attributes (it always retains all the feature columns).

The extended Cartesian product concatenates the database values of the participating
relations, but fuses their feature values. The fusion takes the minimum value. Recall that
higher feature values imply better performance. Thus, our worst case approach is intended to
guarantee a minimal performance of the combined information. When one of the two feature
values is null, the resulting feature value is set to null as well, a choice consistent with the
worst case approach. To wit, a null value may be interpreted as any value in the interval
[0,1]. Assume now that the other value is α. The worst case approach implies that their
fusion is in the interval [0,α]. Although more specific, this information is still represented by
the value null.

The first new operation ω is for selecting tuples by feature values. Let ψ be a selection
predicate over the features of an (extended) relation R with (extended) instance r. Then
ωψ(r) is the set of (extended) tuples from r that satisfy ψ. In the case of null feature values,
ψ has two interpretations: a restrictive interpretation in which ψ evaluates to false and
permissive interpretation in which ψ evaluates to true.

The other new operation ρ resolves inconsistencies in relation instances. This operation is
discussed in Section 5.4. We note, however, that the operation depends on a vector of feature
weights ~w as well as a set of system-specified resolution policies. Thus, ρ~w(r) transforms r
to an instance that is free of inconsistencies.

The following example illustrates these extensions to the relational algebra. The relations
are R=(Salary, EmpID) and S=(ID,Name) and the features are timestamp (abbreviated
time), cost, and availability (abbreviated avail). The example follows the construction of an
answer to the query “Salaries and names of employees, where cost is not less then 0.5, and the
importance of timestamp and cost are 0.3 and 0.7, correspondingly. The (extended) relational
algebra expression for this query is πSalary,Name ρ(0.3,0.7,0) ωcost≥0.5 σEmpID=ID (R× S). In the
interest of generality, the feature values in r and s are not uniform; this may be the case if
these relations were created from different sources. Admittedly, at this point the ρ operator
is still unexplained, but note that it identifies Johnson and Johansen.

11

r s
Salary EmpID time cost avail
10000 1002 1 0.5 null
50000 1003 1 1 0.5
20000 1001 0.8 0.2 null

ID Name time cost avail
1002 Johnson 0.7 1 null
1002 Johansen 0.8 0.8 null
1001 Nguyen 1 1 0.1
1004 Smith 1 null 1

t1 = r × s
Salary EmpID ID Name time cost avail
10000 1002 1002 Johnson 0.7 0.5 null
50000 1003 1002 Johnson 0.7 1 null
20000 1001 1002 Johnson 0.7 0.2 null
10000 1002 1002 Johansen 0.8 0.5 null
50000 1003 1002 Johansen 0.8 0.8 null
20000 1001 1002 Johansen 0.8 0.2 null
10000 1002 1001 Nguyen 1 0.5 null
50000 1003 1001 Nguyen 1 1 0.1
20000 1001 1001 Nguyen 0.8 0.2 null
10000 1002 1004 Smith 1 null null
50000 1003 1004 Smith 1 null 0.5
20000 1001 1004 Smith 0.8 null null

t2 = σEmpID=ID(t1)
Salary EmpID ID Name time cost avail
10000 1002 1002 Johnson 0.7 0.5 null
10000 1002 1002 Johansen 0.8 0.5 null
20000 1001 1001 Nguyen 0.8 0.2 null

t3 = ωcost≥0.5(t2)
Salary EmpID ID Name time cost avail
10000 1002 1002 Johnson 0.7 0.5 null
10000 1002 1002 Johansen 0.8 0.5 null

t4 = ρ(0.3,0.7,0)(t3)

Salary EmpID ID Name time cost avail
10000 1002 1002 Johansen 0.8 0.5 null

t5 = πSalary,Name(t4)
Salary Name time cost avail
10000 Johansen 0.8 0.5 null

12

3.3 Queries

For practical purposes, the relational algebra extensions defined earlier have also been incor-
porated into SQL. The extended SQL query statement is

select [restrictive] . . .
from . . .
where . . .
using use stmt
with weight stmt
;

The extensions to the five standard relational algebra operations require no additional syn-
tax (except for the optional keyword restrictive, to be explained below). The two new
operations are handled by two additional clauses: using and with. The using clause is for
specifying the desired features of the answer and corresponds to the new relational operation
ωψ. In analogy with the where clause that restricts the answer set with a condition on
attributes, the using clause restricts the answer set with a condition on features. The syntax
of the using clause is

use stmt ::= feature name comparison feature value
[and feature name comparison feature value]
. . .

The with clause corresponds to the new relational operation ρ~w. With this clause users
assign weights to features. The features not mentioned in the with clause are assigned a
weight of 0. The syntax of the with clause is

weight stmt ::= feature name as feature weight
[, feature name as feature weight]
. . .

When restrictive is present, all comparisons to null values, either in attribute columns (the
where clause) or in feature columns (the using clause) evaluate to false; otherwise, they
are true.

Expressed using the extended SQL statement, the previous query is

select Salary, Name
from r, s
where EmpID = ID
using cost ≥ 0.5
with timestamp as 0.3, cost as 0.7
;

13

All user queries are assumed to be restricted to relational algebra expressions that contain
the aforementioned seven relational algebra operations (projection, positive selection, union,
difference, Cartesian product, feature selection and resolution). Both SQL and relational
algebra notations will be used for query formulation interchangeably.

4 Data Collection and Assembly

4.1 Contributions and Query Fragments

As discussed in Section 1, the most common approach to data integration is query translation.
In this process, each user query, expressed in terms of the global schema, is translated to a
query over the global views (the views that define the information available from the sources).
The challenge in this translation is that some of the data requested by the user query may
not be in any of the available information sources (although it is described in the global
schema), or it may be in several of them.

Most translation methods deal with the former problem by translating the given query
to the maximal possible query over the global views (i.e., a maximal subview of the original
translation). Assuming that no data inconsistencies exist, the latter problem is solved by
selecting one of the sources and ignoring the others. In the following, we extend this query
translation method to handle data inconsistencies.

Recall that each schema mapping is a set of triplets. We amalgamate the triplets of
the different mappings in a single set, and denote each triplet (V , URL, F), where V is
a global view, URL is an expression that is used to materialize this view from one of the
participating information sources, and F is the features of this source. Each such triplet is
called a contribution to the virtual database.

Like most translation methods, we restrict contribution views (the V of each triplet) to
relational algebra expressions that include only projections, selections and joins (PSJ views).
Additionally, we assume that they do not contain comparisons across the view relations.

Obviously, not all contributions are needed for every query. To determine the contribu-
tions that are relevant to a given query, the following two-step process is applied. First, the
sets of attributes of the query and a contribution are intersected. If the intersection is empty,
the contribution is deemed not relevant. Next, the selection predicates of the query and the
contribution are conjoined. If the resulting predicate is not false, then the contribution is
considered relevant to the query.

From each relevant contribution we derive a unit of information suitable for populating
the answer to the query. Such units are termed query fragments. Intuitively, to obtain a
query fragment from a contribution C one needs to remove from C all tuples and attributes
that are not requested in the query, and to add null values for the query attributes that are
missing from the contribution.

14

Figure 2 illustrates the construction of query fragments for a query Q from two relevant
contributions: C1 = (V1, URL1, F1) and C2 = (V2, URL2, F2). The left part of the figure
shows v1 and v2, their intersection (the shaded area), and the “ideal” answer q (the dashed
box). The shaded rectangle represents an area of possible conflicts. The right part of the
figure shows the two resultant query fragments, qC1 and qC2 . The area marked null contains
null values as a result of V2 not including all the attributes of Q.

q

q
c1

q
c2

v1

v2

q

null

{ }

Figure 2: Constructing fragments for query Q from contributions C1 and C2.

At times, a source may provide values for one global attribute, yet through its definition,
values of another global attribute may be inferred. Let V be a view. Assume that V
includes the attributeAi but removes the attributeAj, and assume that its selection predicate
contains the equality Ai = Aj. Clearly, although this contribution does not provide the
attribute Aj, it can be enhanced automatically to include it. Therefore, we add to V the
attribute Aj, and we add to its instance v a column of Aj values which replicates the Ai
values. This process, which is repeated for all equalities in V ’s selection predicate, is called
an enhancement of V and its result is denoted V (the enhanced instance is denoted ~v).

This discussion is summarized in this definition of query fragments:

1. Assume a query Q = πA1,...,Aq ωψ σφ (R1 × . . .×Rp).

2. Assume a contribution C = (V , URL, F).

3. Let V be the enhanced contribution view, and let v be its instance.

4. Denote Y = {A1, . . . , Aq} − V . Y is the difference between the schemas of the query
and the enhanced contribution view. Let y be an instance of Y that consists of a single
tuple tnull composed entirely of null values.

5. Let F be the global feature set, and let p be the tuple of feature values of C. Let p be
the extension of p to the global set F with null values.

6. A query fragment derived from C for a query Q, denoted QC , is a view definition whose
schema is {A1, . . . , Aq}∪F , and for every instance v of V , the instance of QC , denoted
qc, is ωψ σφ (πA1,...,Aq(v)× y × p).

15

The concepts of contribution, enhancement and query fragment are illustrated in the
following example. Assume a multidatabase relation with five attributes and three features:
R = (A,B,C,D,E;timestamp,cost,availability), and consider a query

Q = πA,B,D,E ωtimestamp>0.5 σC<10 R

Further, assume a contribution C = (V, URL, F) where

V = πA,B,C σB>0∧C=E R

F = (timestamp = 0.7, cost = 0.8, availability = 1)

URL = “http : //www.aname.com/smth.cgi?action = retrieve&ID = 517”.

and let the instance v of V be

A B C
1 2 7
2 2 11
3 4 4

First, this instance is extended to include the features:

A B C time cost avail
1 2 7 0.7 0.8 1
2 2 11 0.7 0.8 1
3 4 4 0.7 0.8 1

Next, because the selection predicate of V includes an equality C = E, V is enhanced to

A B C E time cost avail
1 2 7 7 0.7 0.8 1
2 2 11 11 0.7 0.8 1
3 4 4 4 0.7 0.8 1

Finally, the query fragment qc formed from the contribution C is

A B D E time cost avail
1 2 null 7 0.7 0.8 1
3 4 null 4 0.7 0.8 1

Note that the column D contained in Q’s projection set is not available from the contribution,
and is therefore presented as a column of null values.

16

From each relevant contribution a single query fragment is constructed. Some of these
fragments may be empty. The union of all non-empty query fragments is termed a polyin-
stance of the query. Intuitively, a polyinstance encompasses all the information culled from
the data sources in response to a user query.

From a user’s perspective, a query against the virtual database is supposed to return single
consistent answer. By resolving all inconsistencies, the resolve operation (to be described in
Section 5) will convert this polyinstance to a regular instance.

Recall that query translation is a process in which a query over the global relations is
translated to a query over the global views. Since each query fragment is a view over a global
view, the polyinstance is a view over the global views as well. Hence, the construction of the
polyinstance is simply a query translation process. Note that in the absence of data conflicts
(i.e., when the ICA holds), this polyinstance is equivalent to the output of a conventional
query translation algorithm.

4.2 Defining Data Inconsistency

Before addressing issues of data inconsistency, it is necessary to understand the meaning of
this term, because its common use in the literature on information integration and the wide
range of concepts it describes can be misleading.

Often, the term data inconsistency is used to describe schematic differences among het-
erogeneous databases. As an example, assume a global relation Employee = (Name, Salary,
Sex) and two local sources S1 = (Name, Income, Status) and S2 = (LastName, Salary)
that describe female and male employees correspondingly. The local attributes Name and
LastName should be mapped to the global attribute Name, the local attributes Income
and Salary should both be mapped to Salary, and the values of the global attribute Sex
should be inferred from the source descriptions. Clearly, the inconsistencies resolved here
are schematic.

The term data inconsistency is also used to describe representation inconsistencies. Even
when global and local attributes are mapped successfully, they might still conflict in their
representations of their data [23, 18]. A classic example is currency. One source can contain
currency expressed in USA dollars, and the other in Swedish kronors. Another example of
difference in data representations is when one attribute is calculated as a sum of two others.
Although this type of conflict is seemingly based on the content and not the schema, it can
be resolved by a simple conversion and therefore does not constitute a factual discrepancy
among the sources.

Common to the approaches that handle the above two types of inconsistency is an implicit
assumption that the contents of all the information sources are mutually consistent [20].

This is further illustrated in the following example. One source of data may be in English
and contain the attribute EyeColor and specify an individual’s eye color as “dark.” Another

17

data source may be in Russian and contain the attribute CvetGlaz (eye color in Russian)
and specify the eye color of the same individual as “korichnevyj” (brown in Russian). The
two values are expressed in different languages and one subsumes the other, but the sources
do not contradict one another. This paper addresses situations similar to one in which the
former source would specify the eye color of this individual as “blue.”

More formally, a data inconsistency exists when two objects (or tuples in the relational
model) obtained from different information sources are identified as versions of each other
(i.e., they represent the same real-world object) and some of the values of their corresponding
attributes differ. Note that such identification is only possible when both schema incompat-
ibilities and representation differences have been resolved. The process of data integration
requires two steps: inconsistency detection and inconsistency resolution.

5 Data Inconsistency Detection and Resolution

5.1 Data Inconsistency Detection

Data inconsistency detection begins by identifying tuples of the polyinstance that are versions
of each other. Several techniques have been suggested for identifying tuples or records
originating from multiple sources [13, 22, 15]. The work described here assumes that any
one of these methods. For simplicity, we assume that identification is by keys.

We assume that each global relation is fitted with a key. Subsequently, to find the tuples
in the polyinstance that are versions of each other, one needs to construct the key of the
answer and use it to cluster the polyinstance. The resulting clusters are termed polytuples.
Each polytuple may be visualized as a table:

SSN Name Age Salary time cost avail
326435218 Smithson 38 75000 0.8 0.5 1
326435218 Smith 35 null 0.7 0.2 null
326435218 Schmidt 35 77000 0.7 0.8 1

It is possible to improve the efficiency and accuracy of polytuple clustering, by considering
only “horizontal slices” of the polyinstance in which there is possible contention (recall the
shaded areas in Figure 2). These slices may be determined from the selection predicates of
the individual contributions. For example, if φ1 and φ2 are the selection predicates of two
contributions, then only the slice defined by φ1∧φ2 might have conflicts. In other words, the
membership of polytuples cannot span across different slices. For brevity, we do not address
this refinement here, and additional details may be found in [4].

Consider now a contribution C = (V , URL, F) and the view instance v materialized
from this contribution. There is always a possibility that v is not an acceptable instance of
V . For example, V may be a Cartesian product of two global relations, but the set of tuples

18

materialized from the URL could not possibly be a Cartesian product. As another example,
V may involve a selection A = a, yet v includes in its column A values different than a. In
this paper, a contribution v that contradicts its definition V is ignored.

Once data inconsistencies have been detected, they need to be resolved; i.e., every poly-
tuple should be reduced to a single tuple. This process is performed in two passes. In the
first pass (Section 5.2), the members of each polytuple are ranked and purged according
to user-specified preferences. In the second pass (Section 5.3), in each polytuple, in each
attribute, remaining values are purged and then fused in a single value. Similarly, in each
polytuple, in each feature, different values are fused in a single value. This procedure is the
actual definition of the extended relational algebra operation resolve, introduced earlier.

5.2 Utility Function

Recall that the resolve operation requires the specification of a vector of feature weights ~w.
With these weights, users prescribe the relative importance of the features in the resolution
process. To use this information, a utility function is calculated for each member of every
polytuple. Assume the user assigns weights w1, . . . , wk to the features F1, . . . , Fk. Then a
member with feature values f1, . . . , fk receives utility u =

∑k
i=1 wifi. These utility values are

used to rank the members of each polytuple. Using a pre-defined utility threshold, members
of insufficient utility are discarded. Utility is calculated using only the features that are
non-null for all members of the polytuple.

Since a polytuple may have several members of acceptable utility, this process is not
sufficient for resolving polytuples. Actual resolution is achieved in a second pass, described
next.

5.3 Resolution Policies

The resolution of inconsistencies among different values can be based either on their features,
such as timestamp, cost or availability (feature-based resolution policies), or on the data
themselves (content-based policies). Ideally, a conflict resolution policy should be provided
whenever data inconsistency is possible. However, to keep the number of policies under
control, a policy will be defined per each global attribute.

Consequently, within each polytuple, data inconsistency is resolved in each attribute sep-
arately (i.e., each column of values in the polytuple is fused in a single value). To perform
such resolution, the polytuple is first split into several smaller structures: mono-attribute
polytuples, each consisting of the polytuple key and one additional attribute. These struc-
tures are obtained from the polytuple by projections. Figure 3 shows these mono-attribute
polytuples for the previous example. Next, each mono-attribute polytuple is resolved with
a single attribute value and its corresponding unique feature values. Finally, the mono-
attribute tuples are joined back together, resulting in a single tuple.

19

SSN Name Salary time cost avail
326435218 Smithson 75000 0.8 0.5 1
326435218 Smith null 0.7 0.2 null
326435218 Schmidt 77000 0.7 0.8 1

↓
SSN Name time cost avail

326435218 Smithson 0.8 0.5 1
326435218 Smith 0.7 0.2 null
326435218 Schmidt 0.7 0.8 1

SSN Salary time cost avail
326435218 75000 0.8 0.5 1
326435218 null 0.7 0.2 null
326435218 77000 0.7 0.8 1

Figure 3: A polytuple split into two mono-attribute polytuples.

As already noted, resolution is performed in each mono-attribute polytuple separately.
This process consists of two steps. First, some of the rows in the mono-attribute polytuple
are eliminated, based on attribute or feature values. Then, the remaining rows are fused,
producing single values for both the attribute and the features. Correspondingly, a resolution
policy is defined as a sequence of elimination functions, followed by a fusion function.

Elimination functions are either content-based or feature-based. Examples of elimination
functions are min and max. In the previous example, consider the mono-attribute polytuple
Salary. Possible eliminations include max(timestamp), max(availability), min(cost), and
max(Salary). The former three are feature-based, whereas the latter is content-based. But
other functions may also be used; for example, over average, top five percent and within
standard deviation of the mean. Each function is applied in its turn (according to its place
in the sequence) to the corresponding column of the mono-attribute polytuple, eliminating
all but one value. However, this step can still result in multiple values (e.g., several Salary
values may share the maximal availability). Such polytuples are handled subsequently by
the fusion function.

Fusion functions are always content-based. The fusion function is applied to the values of
the global attribute and to the values of the features, resulting in a single resolved value for
each of them. Examples of fusion functions are any and avg. Consider the mono-attribute
polytuple Salary from the previous example. Applying any gives quick resolution by choosing
a tuple at random, for example (326435218, 7000; 0.7, 1). Applying avg results in the Salary
value 76000, but average feature values may not reflect the feature values of 76000. As with
the extended Cartesian product, a conservative approach is used that adopts the minimum
of the feature values, yielding (326435218, 76000; 0.7, 1) as the resolved mono-attribute
polytuple. This guarantees that the resulting features are at least those specified. Functions
other then any or avg may also be used. For example, mode, average without extreme values,
or any other function of the conflicting values.

To give users full control over the process of inconsistency resolution, we provide a pow-
erful and flexible resolution statement. This statement implements the full set of features
discussed in this section:

20

for Ai
[keep [restrictive] e1(F1), ..., en(Fn)]
fuse f

Here, Ai is a global attribute name, e1, ..., en is a sequence of elimination functions for
this attribute and f is a content-based fusion function. Each Fi is a feature, and ei(Fi)
indicates feature-based elimination (e.g., max(timestamp) eliminates all but the most recent
value). If Fi is not given, the elimination is content-based (e.g., min() retains the smallest
value). Elimination functions are applied in the order in which they appear in the keep
clause. Note that the entire keep clause is optional. Frequently, multiple attributes would
share the same resolution policy. To facilitate the specification, the resolution statement
allows multiple attributes in its for clause: for Ai1 , . . . , Aim .

The handling of null values during the elimination phase is controlled by the restric-
tive keyword. The decision whether the value null satisfies an elimination function (either
content-based or feature-based) is similar to the decision on null comparison in the using
and where clauses: If the keyword restrictive is present, a null is assumed to not satisfy the
elimination function; otherwise, it is assumed to satisfy it. Regardless, in the fusion phase,
attribute values that are null are discarded, under the common assumption that, whenever
available, non-null values should be preferred (if all the attribute values are null, then the
fusion value is null). When determining the features of the fusion value, it may be necessary
to take the minimum of several feature values (for example, if the function was avg). In that
case, if any of these values is null, then the feature of the fusion value is null.

A resolution statement is required for each attribute of the global schema. These state-
ments may be supplied by the system, a group of domain experts, or defined by users at
run-time.

When every mono-attribute polytuple has been resolved, the results are joined in a
single tuple. Recall that the (extended) Cartesian product used in this join fuses the al-
ternative feature values in their minimum. To illustrate, consider this example with at-
tributes K, A and B (K is key) and features F , G, and H, and let (k, a; fa, ga, ha) and
(k, b; fb, gb, hb) be the resolutions of two mono-attribute polytuples. The final tuple is
(k, a, b;min(fa, fb),min(ga, gb),min(ha, hb)).

This resolution process yields a single tuple for every polytuple. Altogether, the polyin-
stance is reduced to a simple instance. This set of tuples is then presented to the user as an
inconsistency-free answer to the query.

The following three examples illustrate different kinds of resolution policies. The exam-
ples all use the query

πName,Age,Salary σPosition=′′Manager′′ Employee.

and the polytuple

21

SSN Name Age Salary time cost avail
326435218 Smithson 38 75000 0.8 0.5 1
326435218 Smith 35 null 0.7 0.2 null
326435218 Schmidt 35 77000 0.7 0.8 1

1. Content-based policy. Consider this resolution policy that chooses any Name, the
average Age and the minimal Salary:

for Name fuse any
for Age fuse avg
for Salary keep min() fuse any

This policy uses only attribute values for elimination. Its result is

SSN Name Age Salary time cost avail
326435218 Smith 36 75000 0.7 0.2 1

2. Feature-based policy. Consider this resolution policy that chooses the Name that
is most recent, and the Age and Salary that are least costly:

for Name keep max(timestamp) fuse any
for Age keep max(cost) fuse avg
for Salary keep max(cost) fuse any

Note that least costly translates to maximal cost. This policy uses only feature values for
elimination. Its result is

SSN Name Age Salary time cost avail
326435218 Smithson 35 77000 0.7 0.2 1

3. Mixed policy. Consider this resolution policy that chooses the Name that is least
recent, the lowest Age and the Salary that is least costly:

for Name keep min(timestamp) fuse any
for Age keep min() fuse avg
for Salary keep max(cost) fuse random

This policy uses both attribute values and feature values for elimination. Its result is

SSN Name Age Salary timestamp cost availability
326435218 Schmidt 35 75000 0.7 0.2 1

22

5.4 The Overall Resolution Procedure

Our inconsistency resolution methodology is summarized in the following procedure for re-
solving data inconsistencies. The procedure begins with a polyinstance: the “raw” answer,
comprising the union of the query fragments that are extracted from the information sources,
clustered into polytuples. Its output is a simple instance: the final, inconsistency-free answer
to the query.

Input:

1. A feature-based selection predicate ψ, obtained from the query’s using clause.

2. A vector of feature weights ~w, obtained from the query’s with clause.

3. A utility threshold 0 ≤ α ≤ 1 to be used in conjunction with the weights.

4. A resolution policy for every attribute of the global schema.

The first two items are specified by the user as part of the query. The last two items are
assumed to be pre-specified (e.g., provided by either administrators or users).

Procedure:

1. In each polytuple, remove members that do not satisfy the predicate ψ.

2. In each polytuple, calculate the utility of each remaining member: u =
∑k
i=1 wifi, and

rank the members by their utility. Let u0 denote the highest utility in the polytuple.
Discard members whose utility is less than (1− α)u0.

3. Decompose each polytuple to its mono-attribute polytuples.

4. In each mono-attribute polytuple, apply the resolution policy for that attribute: Elim-
inate attribute values according to the keep clause, and fuse the remaining values
according to the fuse clause.

5. Join the resulting mono-attribute tuples in a single tuple, using the (extended) Carte-
sian product. This assigns each feature the minimum of the values of its mono-attribute
components.

6. The tuples thus obtained for each polytuple comprise the final answer to the query.

Unless the keyword restrictive is specified in the query, polytuples may have members
with null feature values. In such cases, features that include nulls are ignored, so that
ranking is based on the features that are available for all members. For example, assume
the utility function u = 0.3 · timestamp + 0.5 · cost + 0.2 · availability and the previous
polytuple. The non-null features are timestamp and cost, and the utility function is changed
to u = 0.3 · timestamp+ 0.5 · cost.

23

If a global attribute is non-numeric (i.e., of type string), then the choice of possible
elimination and fusion function is more limited. Some of the common functions may have
to be specifically defined to operate on non-numerical values (for example, min or max may
use lexicographical order). Other functions become meaningless; for example, avg is unlikely
to be used as a fusion function for non-numeric attributes.

6 Implementation

The solutions presented in this paper were implemented in a prototype system. The system,
called Fusionplex, is described in this section. Figure 4 illustrates the overall architecture of
Fusionplex.

Schema mapping

View URL Features

Web-based client

Wrapper WrapperWrapperWrapper

Query parser

Query
translator

Fragment
factory

Query
processor

View
retriever

Relational
DBMS

Inconsist.
detection
module

Inconsist.
resolution
module

Query

Answer

Relational
database

Object-
oriented
database

Plain

fileUnix

Web-db
with form
interface

Internet

Internet

Figure 4: Architecture of Fusionplex.

Fusionplex conforms to a server-client architecture. The server is implemented in Java
and contains the core functionalities described in this paper. At startup time, the server
reads all configuration files, caches all source descriptions and creates temporary tables in a
relational Database Management System. Then it starts listening for incoming connections
from clients. Clients connect to the server using simple line-based protocol. Each client
passes to the server the name of a database that the client wishes to query and the query
itself. The server processes the query and returns its result to the client, which formats it
and delivers it to its user.

24

The core of Fusionplex consists of the seven functional blocks:

1. The query parser parses the user query, checks its syntax and ensures that the relation
and attribute names mentioned in the query are valid in the current virtual database.

2. The query translator determines the source contributions that are relevant to the
given query by testing the intersection of the selection conditions of the query and
of each contribution. It then calls the view retriever with the specifications of the
contributions that were found relevant.

3. The view retriever consults the schema mapping and retrieves the relevant view in-
stances from their corresponding URLs. It then attempts to enhance each instance with
any attributes that participate in the view selection condition as part of an equality.

4. The fragment factory constructs the query fragments from the enhanced views and
stores them in the relational database management system.

5. The conflict detection module assembles a polyinstance of the answer from the
fragments, determines the possible areas of inconsistency by examining the selection
predicates associated with the fragments and constructs the polytuples.

6. The conflict resolution module resolves data conflicts in each polytuple according
to the appropriate resolution policies. First, each mono-attribute polytuple is resolved
with a single value. Then the features of the resolved tuples are determined.

7. The query processor processes the union of all the resolved tuples, by applying
further aggregating and ordering that may be specified in the query, and returns the
query result.

Fusionplex also provides a client with a graphic user interface (GUI). This web-enabled
client supports both direct input of queries as simple text and guided query construction
through the use of its Query Assistant. The Query Assistant allows users to create queries
using an intuitive visual interface. The client consists of a set of CGI-scripts written in
Perl and allows for minimal correctness check at the client side. Figure 5 shows the client
interface with an ongoing Query Assistant session.

As soon as the interaction with the Query Assistant is completed, a query in the SQL-like
query language of Fusionplex is constructed and displayed in the query window. When the
Submit button is pressed, this query is transmitted to the server, and the results returned
from the server are displayed by the client (Figure 6).

Fusionplex also incorporates a database management tool for defining and maintaining
virtual databases. Authorized users can create new virtual databases, and modify existing
ones. To create a new virtual database, the user must define its global relations and plug-
in any number of contributions from existing information sources. In each contribution,
the user must specify a global view, a matching URL, and the appropriate source features.
Existing virtual databases can be modified by adding or removing relations or contributions.

25

Figure 5: The Fusionplex GUI and a Query Assistant session

To experiment with the Fusionplex system, several information sources were constructed.
For the purpose of heterogeneity, these sources were stored in four different types of systems:
a relational database, an object-oriented database, a plain file in a Unix system, and a Web-
based resource available only through a form interface. The latter format is typical of how
information is retrieved from Web information sources. These sources were fitted with simple
“wrapping” software that implements a relational model “communication protocol” between
the sources and the system. In one direction, each wrapper translates Fusionplex queries to
the local query language; in the opposite direction, it assembles the source response in the
tabular format that is understood by Fusionplex.

The overall architecture of Fusionplex and its tools provide for a flexible integration ser-
vice. A remote user wishing to integrate several information sources (possibly, sources from
this user’s own enterprise), logs into the server, provides it with the appropriate definitions,
and can begin using its integration services right away. Future updates are fairly simple. For
example, to integrate a new information source requires only a view definition (essentially, an
SQL query) and a URL specification. Similarly, to expand the scope of the virtual database
requires only a definition of a new virtual relation.

26

Figure 6: Query result in Fusionplex

7 Conclusion

In any realistic scenario of large-scale information integration, some of the information
sources would be expected to “overlap” in their coverage. And in such situations, it is practi-
cally unavoidable that they would occasionally provide inconsistent information. From users’
perspective, the desirable behavior of an integration system is to present them with answers
that have been cleansed of all inconsistencies. This means that whenever multiple values
contend for describing the same real world entity, they should be fused in a single value.

When humans are confronted with the need to choose a single value from a set of alter-
natives, they invariably consider the qualifications of the providers of these alternatives (and
when they decide to take a simple average of the alternatives, or to choose one at random,
it is usually because they conclude that the providers all have comparable qualifications).

The approach taken by the Fusionplex system formalizes these attitudes with the con-
cept of source features, which quantify a variety of performance parameters of individual
information sources.

27

Another observable behavior is that different individuals (or the same individuals in
different situations) often apply different fusion policies. One individual might emphasize the
importance of information recentness, whereas for another, cost might weight heaviest. As
another example, in one situation, an individual would choose the average of the contending
values, in another he would adopt the lowest, and in yet another he would pick the one that
occurs most frequently.

Recognizing this, Fusionplex provides for powerful and flexible user control over the fusion
process. In the two examples just mentioned, importance is conveyed by means of feature
weights, and the preferred resolution method is stated in a policy that combines quality
thresholds, elimination guidelines and appropriate fusion functions.

The practicality of these principles has been demonstrated in a prototype implementa-
tion of Fusionplex. Besides its fusion strengths, this implementation provides a sound overall
information integration environment, with support for information source heterogeneity, dy-
namic evolution of the information environment, quick ad-hoc integration, and intermittent
source availability. These aspects are delivered in a client-server architecture that provides
remote users with effective integration services, as well as convenient virtual database man-
agement tools.

Research on Fusionplex is still continuing, with several issues currently under investiga-
tion, and other research directions being considered. We discuss briefly seven such issues
and directions.

Suppose fusions are implemented as linear combinations of the conflicting values (i.e., a
generalization of average), and suppose users express their preferences in a utility function
that is a linear combination of the features (as they do now). Not only can the conflicting
values be ranked according to their utility to the user (this is done now in the procedure
described in Section 5.4), it should also be possible to determine whether the utility of the
fusion value is indeed higher than the utility of the existing values; i.e., if fusion is indeed
profitable. Moreover, it should also be possible to generate automatically the optimal fusion
policy: the fusion coefficients that optimize the utility function.

The resolution algorithm described in Section 5.4 assumes a utility threshold (denoted
α), which must be provided. This threshold determines the percentage of tuples of highest
quality that will participate in the inconsistency resolution process. It may be possible to
choose this threshold at run-time, based on the data to be integrated, so that the overall
utility of the result is optimized. Both of the last two directions remove the need for user
input, by choosing parameters that optimize utility.

Inconsistency detection and fusion are performed at the attribute level. This implies that
each of the values of a result tuple could come from a different version of the information.
In some situations, this may be undesirable. Consider this example in which two different
versions of postal address information exist, each with City and Postal code attributes.
Conceivably, the address generated by fusion could include a city from one version, and
a postal code from another, resulting in incorrect information. In this example, City and

28

Postal code should constitute a single fusion unit. The methodology should be extended to
allow the specification of such units and to handle their fusion correctly.

During query translation, every contribution that is found to be relevant is materialized
from its provider. Since providers are assumed to be able to deliver their contributions only
as defined, inefficiencies may result. For example, a particular contribution may provide a
large relation, of which the query might require only a few tuples. This is analogous to an
Internet user downloading a large file, when in practice only a small portion of it is needed.
The reason for this situation is that, in the interest of generality, we assumed that providers
do not have capabilities for satisfying requests for subsets of their contributions. It would be
useful to allow different classes of providers. Those that can only deliver their contributions
verbatim, and those with capabilities of satisfying partial requests. Processing at the source
would reduce considerably transmission and processing times for many queries.

As mentioned in Section 5.1, discrepancies might exist between the data “promised” in
the view V of a contribution, and the data actually delivered when the URL is materialized.
Fusionplex assumes that the information has been altered after the contribution has been
plugged-in, and discards such contributions. It may be possible, however, to salvage some
of the information by “repairing” contributions to correspond to their definitions.

To participate in Fusionplex virtual database, information providers must deliver their
data in tabular format. XML [27] (the Extensible Markup Language) is quickly becoming
a standard of data exchange. It would be beneficial to adopt XML as the communication
protocol between Fusionplex and its information providers.

Finally, at times, users may benefit from having access to the entire set of alternative
values when inconsistency occurs. This would allow them to monitor the performance of
their fusion (and possibly to redefine it). Presently, Fusionplex does not have this ability to
“explain” its behavior.

References

[1] S. Agarwal, A.M. Keller, G. Wiederhold, and K. Saraswat. Flexible Relation: An
Approach for Integrating Data from Multiple, Possibly Inconsistent Databases. In Pro-
ceedings of ICDE-95, the Eleventh International Conference on Data Engineering, pages
495–504, 1995.

[2] R. Ahmed, J. Albert, W. Du, W. Kent, W. Litwin, and M-C. Shan. An Overview of
Pegasus. In Proceedings RIDE-IMS-93, the Third International Workshop on Research
Issues in Data Engineering: Interoperability in Multidatabase Systems, pages 273–277,
1993.

[3] J.L. Ambite, N. Ashish, G. Barish, C.A. Knoblock, S. Minton, P.J. Modi, I. Muslea,
A. Philpot, and S. Tejada. ARIADNE: A System for Constructing Mediators for Internet

29

Sources. In Proceedings ACM SIGMOD-98, International Conference on Management
of Data, pages 561–563, 1998.

[4] P. Anokhin. Data Inconsistency Detection and Resolution in the Integration of Het-
erogeneous Information Sources. Ph.D. thesis, School of Information Technology and
Engineering, George Mason University, 2001.

[5] Y. Arens, C.A. Knoblock, and W. Shen. Query Reformulation for Dynamic Information
Integration. Journal of Intelligent Information Systems, 6(2/3):99–130, 1996.

[6] D. Barbara, H. Garcia-Molina, and D. Porter. The Management of Probabilistic Data.
IEEE Transactions on Knowledge and Data Engineering, 4(5):487–502, 1992.

[7] M.L. Barja, T. Bratvold, J. Myllymaki, and G. Sonnenberger. Informia: A Mediator for
Integrated Access to Heterogeneous Information Sources. In Proceedings of the ACM
CIKM-98, International Conference on Information and Knowledge Management, pages
234–241, 1998.

[8] E.F. Codd. Extending the Database Relational Model to Capture More Meaning. ACM
Transactions of Database Systems, 4(4):397–434, 1979.

[9] L.G. DeMichiel. Resolving Database Incompatibility: An Approach to Performing Re-
lational Operations over Mismatched Domains. IEEE Transactions on Knowledge and
Data Engineering, 1(4):485-493, 1989.

[10] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J.D. Ull-
man, V. Vassalos, and J. Widom The TSIMMIS Approach to Mediation: Data Models
and Languages Journal of Intelligent Information Systems, 8(2):117–132, 1997.

[11] Google. http://www.google.com.

[12] M.R. Genesereth, A.M. Keller, and O. Duschka Infomaster: An Information Integration
System. In Proceedings of ACM SIGMOD-97, International Conference on Management
of Data, pages 539–542, 1997.

[13] M.A. Hernandez and S.J. Stolfo. Real-world Data is Dirty: Data Cleansing and The
Merge/Purge Problem. Data Mining and Knowledge Discovery, 2(1)9–37, 1998

[14] V. Josifovski, and T. Risch. Integrating Heterogeneous Overlapping Databases through
Object-Oriented Transformations. In Proceedings of VLDB-99, 25th International Con-
ference on Very Large Data Bases pages 435–446, 1999.

[15] L. Kaufman and P.J. Rousseeuw. Finding Groups in Data: an Introduction to Cluster
Analysis. John Wiley and Sons, 1990.

[16] L.V. Lakshmanan, F. Sadri, and I.N. Subramanian. SchemaSQL — A Language for
Interoperability in Relational Multi-database Systems. In Proceedings of VLDB-96,
22th International Conference on Very Large Data Bases, pages 239–250, 1996.

30

[17] T.A. Landers and R. Rosenberg. An Overview of MULTIBASE. In Proceedings of the
Second International Symposium on Distributed Data Bases, pages 153–184, 1982

[18] A.Y. Levy, A. Rajaraman, and J.J. Ordille. Querying Heterogeneous Information
Sources Using Source Descriptions. In Proceedings of VLDB-96, the 22nd International
Conference on Very Large Data Bases, pages 251–262, 1996.

[19] E.-P. Lim, J. Srivastava, and S. Shekhar. Resolving Attribute Incompatibility in
Database Integration: An Evidential Reasoning Approach. In Proceedings of ICDE-
94, the Tenth International Conference on Data Engineering, pages 154–163, 1994.

[20] A. Motro. Multiplex: A Formal Model for Multidatabases and Its Implementation. In
Proceedings of NGITS-99, 4th International Workshop on Next Generation Information
Technologies and Systems. Lecture Notes in Computer Science, Volume 1649, pages 138–
158. Springer-Verlag, 1999.

[21] R. Ramakrishnan and J. Gehrke. Database Management Systems (2nd Edition).
McGraw-Hill, 1997.

[22] E.M. Rasmussen. Clustering Algorithms. In W.B. Frakes, R. A. Baeza-Yates, editors,
Information Retrieval: Data Structures and Algorithms, pages 419–442. Prentice-Hall,
1992.

[23] A. Rosenthal and E. Sciore. Description, Conversion, and Planning For Semantic Inter-
operability. In Proceedings of the DS-6, Sixth IFIP TC-2 Working Conference on Data
Semantics, pages 140-164, 1995.

[24] L.A. Shklar, A.P. Sheth, V. Kashyap, and S. Thatte. InfoHarness: A System for Search
and Retrieval of Heterogeneous Information. In Proceedings of ACM SIGMOD-95,
International Conference on Management of Data, page 478, 1995.

[25] V.S. Subrahmanian, S. Adali, A. Brink, R. Emery, J.J. Lu, A. Rajput, T.J. Rogers,
R. Ross, and C. Ward. HERMES: Heterogeneous Reasoning and Mediator System.
http://www.cs.umd.edu//projects/hermes/publications/abstracts/hermes.html, 1994.

[26] F.S-C. Tseng, A.L.P. Chen, and W-P. Yang. A Probabilistic Approach to Query Pro-
cessing in Heterogeneous Database Systems, In Proceedings of RIDE-TQP-92, Sec-
ond International Workshop on Research Issues on Data Engineering: Transaction and
Query Processing, pages 176–183, 1992

[27] Extensible Markup Language (XML). http://www.w3.org/XML.

31

