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Abstract A sequence of queries submitted by a database user within a short period of
time may have a single, illuminating explanation. In this paper we consider se-
quences of single-record queries, and attempt to guess what information their
authors may be trying to accumulate. Query sequences may reflect clandes-
tine intentions, where users attempt toavoid direct querieswhich may disclose
their true interests, preferring instead to obtain the same information by means
of sequences of smaller, less conspicuous, queries. Sequences of queries may
also reflect attempts tocircumvent retrieval restrictions, where users attempt to
approximate information which is inaccessible, with sequences of legitimate re-
quests (in the latter case, our explanations may lead database owners to either
tightenaccess, or, conversely, to reorganize their interfaces tofacilitate access).
Because the true objective of a sequence may be clouded by the retrieval of spu-
rious records, our approach considers all the possible aggregates that a user may
accumulate with a sequence, and torank them, search-engine style, according
to their plausibility as retrieval objectives. Our method is probabilistic in nature
and postulates that the likelihood that a set of records is the true objective of the
user is inverse proportional to the likelihood that this set results from random
selection. Our method is shown to have good performance even in the presence
of noise (spurious records) as high as 40–50%.
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1. Introduction

Often, the owner of a database may ask “what are users retrieving from this
database?” The answer to this question appears to be straightforward: It is the
collection of queries submitted to the database, readily available in the system
logs. However, such an answer, while correct, might not be very informative,
as it could be long and complicated (e.g., hundreds of SQL expressions). In
many cases, a more abstract answer would be preferred.
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This problem is best described by analogy to data mining. Data mining is
the essential activity of discovering trends, rules and other abstractions in large
repositories of data. By analogy, the issue here is mining trends, intentions,
patterns of use and other abstractions in collections of queries. The accu-
mulated queries may be available either intensionally, as collections of user
requests (e.g., SQL statements), or extensionally, as collections of database
answers (i.e., tables), or possibly both.

The problem is different from conventional data mining. When considering
intensions, we would be mining for abstractions in “data” that are collections
of short programs; i.e., query statements. When considering extensions, we
would be mining in data that are collections of sets of elements; i.e., a sought-
after discovery would be a characterization of a collection ofsets of elements,
rather than of a collection ofelements. In a way, this task may be considered
second-order mining.

In this paper we focus on a particular form of query mining that involves
sequences ofsingle-record queries(queries answered by a single database
record) that are submitted by the same user (or by a small group of users)
within a short period of time.

This problem is applicable toinformation assurance, as a sequence of queries
may have a clandestine explanation:

1 It may be an attempt tohide the particular objective of the user. Even
though a particular query may be permitted, a user may want to conceal
his interest in the subject, preferring to obtain the same information by
means of a sequence of smaller, less conspicuous, queries.

2 It may be an attempt tocircumventa retrieval restriction. A particular
type of request might not be feasible; yet a combination of other requests
may provide a means to approximate the same information.

The latter circumvention may also reflect a more benign situation, in which a
user is forced through a sequence of small queries, because the database inter-
face is inadequate for the purpose. Given explanations of their users’ true ob-
jectives, information providers may then choose to reorganize their databases
and user interfaces to facilitate such quests.

In either of the cases described, the user submits a sequence of queries in
order to construct off-line an aggregate of records that constitutes an answer to
a database query, a query which the user either is unable to submit or prefers
not to submit. We shall refer to this aggregate as thegoal of the user. After an
aggregate is identified as a likely goal, its semantics still need to be captured in
a description that can be communicated easily to the database owner. We shall
refer to this description as anexplanation. Essentially, this explanation should
correspond to the true query that the user has in mind. Hence, an explanation
is an intensional expression whose extension corresponds to the goal with high
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accuracy [15]. Because this aspect of our problem has been investigated and
standard solutions have been developed, in this paper we do not address this
final annotation of the most plausible goals.

Users who attempt to conceal their true objective are likely to include spuri-
ous requests in their sequence. Users who try to circumvent a retrieval restric-
tion are likely to submit some erroneous requests. Consequently, our approach
to the problem is that the goal of the user could be any subset of the set of
records that were obtained by means of the query sequence. Our method as-
signs each subset a likelihood of being the goal of the user, and then uses
this likelihood to rank the different subsets, search-engine style, from the most
likely to be the goal of the user to the least likely.

Our approach is based on probability and it postulates that the likelihood
that a set of records is the true goal of the user is inverse proportional to the
likelihood that this set results from random selection. Clearly,generaldatabase
queries (those that retrieve sets of records that satisfy a condition) tend to be
deliberate (non-random) selections. Hence, our method is likely to discover
attempts to approximate general queries with sequences of single-record re-
trievals.

For each candidate goal, the proportion of spurious records that are retrieved
by the query sequence is referred to asnoise. Our method obtains good results
with noise as high as 40–50%. The amount of statistical analysis required
limits the length of query sequences that can be handled effectively. Our ex-
periments show that a typical server can handle effectively sequences of up to
10–20 queries, depending on the demands of the application (a 10-query se-
quence may take about 1 second, whereas a 20-query sequence may take about
16 minutes).

The overall approach is formalized in Section 2. Section 3 outlines the val-
idation methodology and analyses the experiments that have been performed.
Section 4 provides the appropriate context for this research work by surveying
related works. Section 5 summarizes the results and describes additional work
that is being pursued.

2. Overall Approach

Assume a single database fileD with fieldsA1, . . . , Al and a total ofn
records. Some of the fields ofD areaccessible(fields that users can query and
retrieve), other fields arehidden(fields that are not available for querying and
are not retrieved; indeed, their presence in the database may not be known to
users).1

Let Q1, . . . Qk be a sequence of single-record queries submitted by a user
against the fileD; i.e., each query in the sequence retrieves a single record of
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the file. Single-record queries are fairly common; for example, any database
interface based on database keys generates single-record queries.

LetQ denote the set of records targeted by this query sequence. That is,Q
is the set of records that satisfy some search goal known only to the author of
the query sequence. Thus, the query sequenceQ1, . . . , Qk is an attempt by its
author to materializeQ. Our purpose here is to develop methods with which
the database system can approximateQ with high accuracy.

LetG be the aggregate of records actually retrieved by this sequence, and let
m (m ≤ k) denote the cardinality ofG. Thesem records can be assembled into
p = 2m − 1 aggregates. We refer to these aggregates ascandidate goalsand
denote themG1, . . . , Gp. The candidate goals include every possible subset of
the retrieved records. In trying to rank these candidate goals according to their
likelihood of being the true objective of the user, we compare the distribution
of the values in each field in the candidate goal with its distribution in the
database. We postulate thatthe likelihood that a set of records is the objective
of the user is inverse proportional to the likelihood that it results from random
selection.

In defense of this postulate, we note that it is likely to endorse candidate
goals that correspond to general selection queries (queries that retrieve sets
of records that satisfy a condition), because answers to such queries tend to be
non-random. For example, a query to a student database onMajor =“English”
andResidence =“Virginia” is likely to produce non-random sampling in these
two fields. Consequently, our method is likely to discover attempts to approxi-
mate general selection queries with sequences of single-record retrievals. Con-
versely, candidate goals that resemble random samples of the database will be
ranked low. Of course, goals whose characterizing attribute is not included in
the database will be ranked low as well. In the above example, a query se-
quence that accumulates records of students who are older than 40 years will
appear to be a random sample if the database does not include a fieldAge.

Measuring Randomness

We test each of thep candidate goals for the randomness of its fields. That
is, in each subset of records we compare the distribution of values in each of
the fields to the distribution of the corresponding field in the original file. The
basic statistical issue here is to assess whether a given set of elements is a
random sample from a larger population. The more a set of elements appears
to be random, the lower its likelihood of being an objective of retrieval. We
have experimented with several statistical tests and the test that we describe in
the following has given us the best results.2
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Our measure is based on the concept of joint probability distributions of
random variables. In essence, it calculates how improbable is a given subset of
records, assuming all selections are random.

Let Aj be an arbitrary field ofD, and letv1, . . . , vd denote the different
values that occur in this field. Letni denote the number of occurrences ofvi in
the fieldAj . Hence,n = Σd

i=1ni.
Consider an arbitrary candidate goalGi. Letm denote its number of records,

and letmi denote the number of occurrences ofvi in the same fieldAj of Gi.
Similarly,m = Σd

i=1mi.
Consider the values in the fieldAj ofGi as arandom sampleof sizem from

the fieldAj of D. If we assume that each query in the sequence returns a new
record, then the sampling iswithout replacement, and the probability of this
sample is
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If we assume that each query is independent of previous queries (and can thus
retrieve records that have already been retrieved), then each query hasmulti-
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The probability of a sample is known as theFisher’s likelihoodand is com-
monly used to estimate the parameters of the population. Here, we use the
same probability as an indicator of randomness. Our argument is that random
sampling is likely to produce sets of records that are representative of the file,
and would result in highp(GAji ) values. Hence, lowp(GAJi ) values are likely
the result of non-random sampling.

Sincep(GAji ) is taken to indicate the level of randomness, we rank the dif-

ferent candidate goals based on their1 − p(GAji ) scores: high values indicate
high likelihood that the values in this field are the result of deliberate (non-
random) selection.

Fusing Multiple Rankings

The measure described above can be used to rank the candidate goals with
respect to each individual field. Consequently, a candidate goalG1 may rank
high with respect to fieldA1 (its A1 values suggest a deliberate selection of
records), but low with respect to fieldA2 (its A2 values appear to be repre-
sentative of the file values). How should these ranks be combined? More
specifically, assume a candidate goalG1 with scores of 0.9 and 0.2 and 0.1
for fieldsA1, A2 andA3, respectively, and a candidate goalG2 with scores of



6

0.4. 0.4 and 0.4 for the same fields. Which of these is more likely to be the
objective of the user?

Similar ranking fusion problems occur in Internet meta-search engines, which
forward the same query to different search engines (each with different ranking
algorithms) and combine the resultant rankings. Perhaps the most straightfor-
ward way of achieving this is to rank each document according to the sum of
its ranks in the individual rankings. In analogy, each candidate goal is ranked
with respect to thesumof the ranks it achieves for each individual field. Let
Ri,j denote the rank of candidate goali (1 ≤ i ≤ p) with respect to fieldj
(1 ≤ j ≤ l). Then the overall rank of this candidate goal is

∑l
j=1Ri,j . An-

other ranking fusion possibility is to assign each candidate goal themaximal
rank it achieved in its individual fields:maxlj=1Ri,j .

3. Validation

Methodology

Our purpose is to determine the set of records that the author of a sequence
of queries is attempting to accumulate,4 and our method is torank the possible
sets according to their perceived plausibility. Testing any method that claims
to achieve this purpose requires inviting sequences of queries against a test
database, and then comparing the professed targets of these sequences with
the results generated by our method. The results should take into account the
level of noise present in the sequence (the discrepancy between the professed
target and the complete set of records retrieved by the sequence). Our valida-
tion methodology corresponds largely to such a test, except that much of it is
simulated.

The first challenge is to simulate a query sequence that “attacks” a specific
retrieval goal. We define a user’s retrieval goal by means of a selection condi-
tion that involves several of the fields of the file, and we retrieve the database
records that satisfy the goal. LetQ denote this set of records, and letm denote
its cardinality. To generate a query sequence with noise levelq (0 ≤ q ≤ 1),
we randomly sampleq ·m records from the setQ and(1− q) ·m records from
the rest of the file. Denote the set of sampled recordsG. We then form a se-
quence ofm single-record queries, each targeting a different record ofG (these
queries simply specify key values). This sequence is taken as an “attack” on
the retrieval goalQ. We now perform the statistical analysis and ranking, as
described in Section 2. The result is a ranking of the2m − 1 candidate goals.

We now describe how we measure the success of this method. It must be
noted that when comparing the set of records accumulated by a sequence,G,
with the user’s retrieval goal,Q, one observes two discrepancies: records in
G − Q and records inQ − G. Records inG − Q are the spurious requests
(noise), which have already been discussed. Records inQ−G are records in the
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user’s retrieval goal that have not been retrieved. Since we limited the search
for explanations to subsets ofG, these records are not being considered in
measuring the success of our method. Hence, our method should be considered
fully successful if it identifies thepracticable goalQ ∩G. It is the purpose of
the eventual phase of annotating goals with explanations to “compensate” for
this omission. That is, the optimal explanation for a candidate goalGi should
be a concise expression whose extensionEi “fits” Gi optimally, minimizing
both discrepanciesEi − Gi andGi − Ei. This expression could encompass
records that have not been retrieved by the query sequence.

In summary, our method is consideredfully successful if its top-ranked goal
is identical to the practicable goal. Otherwise, we judge itslevel of success
with the goal’ssimilarity to the practicable goal. Our definition of similarity
is the overlap measurewhich quantifies the similarity of two sets with the
proportion of the cardinalities of their intersection and their union:

Ω(Gi) =
|(Gi ∩ (Q ∩G))|
|(Gi ∪ (Q ∩G))|

=
|(Gi ∩Q)|

|(Gi ∪ (Q ∩G))|
(3)

The value of the overlap measure is between 0 and 1; it is 0 when the sets
are disjoint and 1 when they are identical. The measure may be considered a
combination of the dualrecall andprecisionmeasures known from classical
information retrieval.

It is possible that our method will fail to place the practicable goal at the very
top of its ranking, yet nonetheless this goal will be ranked high. As we assume
that the database owner is to be presented with a set of the most plausible ex-
planations, we shall consider such situations as partially successful. Therefore,
completesuccess is when the candidate goals are ordered in descending order
with respect to their similarity to the practicable goal (theirΩ scores). Other-
wise, therateof success is calculated as the deviation of our method’s ranking
from this ideal ranking.

Table 1 shows a small example in which the total number of retrieved records
ism = 3 and the number of candidate goals is 7. The true goal isQ = {a, b, c},
the records retrieved areG = {a, b, d}, and the practicable goal isQ ∩ G =
{a, b}. The level of noise is therefore 33%. The table lists the candidate goals,
their similarity scores and the different rankings: The columnIdeal is the rank-
ing by similarity and the columnMethodis the ranking by our method.5

There are various alternatives for measuring the difference between the two
rankings. As each ranking is a permutation of the integers1, . . . , p, one pos-
sibility is to measure thedistancebetween the two permutations. Another
possibility is to compare the similarity scores of candidate goals that occupy
the same position in the two rankings. The error in each position is measured
by the square of the difference between the similarity scores, and then the er-
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Goal Ω Ranking Ranking
Score (Ideal) (Method)

G1 = {a, b, d} 0.67 2 1
G2 = {a, b} 1.0 1 3
G3 = {a, d} 0.33 5 2
G4 = {b, d} 0.33 6 4
G5 = {a} 0.5 3 7
G6 = {b} 0.5 4 6
G7 = {d} 0 7 5

Table 1. Rankings for a 3 query sequence.

ror is totaled for the entire set of candidate goals. When the two rankings are
identical, the total error is 0.

Since our interest is primarily in the performance of our method with respect
to the top part of its ranking (theheadof the ranking), we choose to compare
the meansimilarity scores of the heads of the rankings (of course, the mean
similarity scores of the entire rankings are identical). Themethod’s meanis the
average similarity to the practicable goal exhibited by the top ranked candidate
goals, when they are ordered according to our method. Theideal meanis
the average similarity exhibited by the top ranked candidate goals, when they
are ordered according to their similarity to the practicable goal. Clearly, the
ideal mean is the highest mean that a ranking could achieve. Theratio of our
method’s mean to the ideal mean is adopted as an indication of the success of
this method.

Table 2 shows these mean similarity scores for the previous example, as-
suming that the head of the ranking is defined as the top 3 positions. The
average similarity of the top ranked candidate goals to the practicable goal is
0.67. The highest possible average similarity of the top ranked candidate goals
(in any ranking) to the practicable goal is 0.71. The success ratio is therefore
is 0.92. In other words, at 33% noise level, the loss of average similarity at the
top 3 positions is less than 8%.

Rank Ω Score Ω Score
Position (Ideal) (Method)
1 1.0 0.67
2 0.67 0.33
3 0.5 1.0
Mean 0.72 0.67

Table 2. Mean similarity scores for the heads of the rankings.
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Finally, one may also consider the method successful, if it places the prac-
ticable goal the among the top ranked candidate goals (i.e., at the head of the
ranking). In the example, the method succeeds, becauseG2, the practicable
goal, is ranked third.

Experimentation and Analysis

The database of the experiment was a 13-field file with a total of 4,000
records, created using real world data [19]. Two different retrieval goals were
tried: (1) acomplexretrieval goal defined by a query with a conjunctive selec-
tion condition spanning 4 fields (3 equality comparisons and one range com-
parison), and (2) asimpleretrieval goal defined by a query with a selection
condition of a single equality comparison. We analyzed query sequences of
length 10, and we experimented with 10 noise levels: from 0% to 90% with
10% increments. At each noise level, 10 different query sequences were at-
tempted according to the methodology described earlier (with the exception of
the 0% noise level, for which only one query sequence is possible). Altogether,
for each retrieval goal, 91 query sequences were attempted. The number of
candidate goals for sequences of length 10 is 1,023, and the head of a ranking
was defined to consist of the top 10 candidate goals (less than 1% of the entire
set). To fuse the rankings of independent fields (Section 2.3), both thesumand
maxmethods were attempted. The results obtained with thesummethod were
significantly and uniformly superior to those obtained with themaxmethod,
leading us to adopt thesumfusion method. The results presented here are for
this fusion method only.

Tables 3 and 4 summarize the results of these two experiments. Each row
shows the average performance of 10 query sequences at the specified noise
level (except for the first row which shows the performance of only one query
sequence).Mean Positionis the average position of the practicable goal in
the ranking given by our method. For example, if the practicable goal was
listed twice in position 1, 3 times in position 2, 3 times in position 3 and twice
in position 4, the mean position would be 2.5. The final three columns mea-
sure the success of our method with the ratio of our method’s head-of-ranking
mean similarity to the ideal head-of-ranking mean similarity. The first of these
columns is the mean of the mean similarity scores in our method’s ranking; that
is, the head-of-ranking mean similarity scores are averaged for all the tests at
the same noise level. The next column is the head-of-ranking mean similarity
in the ideal ranking (this score is identical for all tests at the same noise level).
The final column is the mean rate of success.

The results in the complex query experiment are quite strong. For example,
at noise levels up to 20%, the practicable goal was, on the average, in the top
3 positions, and at noise levels up to 40%, it was, on the average, in the top
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8 positions. As expected, as noise increases, the values in the third column
declined more rapidly than the values in the fourth column, resulting in ever-
decreasing success ratio. Still, at 60% noise level, the ratio was over 0.8; that is,
at this noise level, the loss of average similarity among the top ranked candidate
goals was, on the average, less than 20%.

Noise Mean MeanΩ MeanΩ Mean
Level Position (Method) (Ideal) Success
0% 1.00 0.8678 0.9100 0.9536

10% 2.50 0.8348 0.9011 0.9264
20% 3.00 0.8127 0.8903 0.9129
30% 5.50 0.7911 0.8768 0.9023
40% 7.60 0.7707 0.8595 0.8966
50% 12.90 0.7098 0.8367 0.8484
60% 26.30 0.6596 0.8050 0.8193
70% 39.50 0.5171 0.7583 0.6818
80% 66.70 0.4203 0.6833 0.6151
90% 92.60 0.1847 0.5500 0.3358

Table 3. Experiment with complex retrieval goal.

The simple query experiment was a bit less successful. At 20% and 40%
noise levels, the mean position was within the top 6 and 9 positions, respec-
tively (compared with 3 and 8, respectively, for the complex query). The suc-
cess ratio dropped below 0.8 at a noise level of 50% (compared with 70% for
the complex query). Figure 1 plots the success ratios of the complex and sim-
ple queries. This difference in performance is fairly simple to explain. As
discussed earlier (Section 2.2), each comparison in the selection condition of
the query is likely to affect the distribution of the values in a particular field.
Thus, a query with a single comparison is likely to result in at least one field in
which deliberate sampling is apparent, whereas a query with four comparisons
is likely to result in at least four fields in which deliberate sampling is appar-
ent. Therefore, complex queries provide our method with more “evidence” of
deliberate sampling.

Overall, the results were strong enough to suggest that unless users spend
themajorityof their queries to retrieve information they do not want, the expla-
nation for their true intentions can be found among a very small set of possible
explanations.

Performance

So far, our main concern in validating our method has been its ability to
detect successfully the true intentions of authors of query sequences. Another
important concern is thetimeperformance of the method. Our attempt to ex-
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Noise Mean MeanΩ MeanΩ Mean
Level Position (Method) (Ideal) Success
0% 1.00 0.8556 0.9100 0.9402

10% 3.70 0.7938 0.9011 0.8809
20% 5.60 0.7813 0.8903 0.8775
30% 8.10 0.7535 0.8768 0.8594
40% 8.70 0.7047 0.8595 0.8199
50% 12.20 0.6666 0.8367 0.7967
60% 33.30 0.5154 0.8050 0.6402
70% 45.40 0.4686 0.7583 0.6179
80% 76.30 0.3543 0.6333 0.5184
90% 276.80 0.1553 0.5500 0.2823

Table 4. Experiment with simple retrieval goal.
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Figure 1. Comparison of the success rates of the complex and simple queries.

amineall the subsets of the records aggregated by a user (therefore allowing
for an arbitrarily high level of noise), results in a process whose complex-
ity is exponential in the length of the query sequence. On a typical computer
server, the 10-query sequences of our experiments can be analyzed in about 1
second each. Sequences of 20 queries can take up to 16 minutes each. If we
assume that input sequences have noise levels that do not exceed 50%, then we
can limit our analysis to subsets that include at least 50% of the accumulated
records. This reduces the number of candidate goals considerably, cutting the
analysis times to about 0.6 second for a 10-query sequence, and 9 minutes for
a 20-query sequence. A decision to avoid analyzing very small candidate goals
may be justified by the fact that for very large levels of noise, the method is of
limited benefit, anyway.
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Another issue of performance may be suggested by the formulas used to
calculate the probabilitiesp(GAji ) (Section 2.2). When the fileD is large (n is
high), and the candidate goalGi approaches in size to about half of this size (m
is close ton/2), the numerators and denominators in Formula 1 can become
excessively large. Nonetheless, ifm is the range of 10–20, as suggested above,
we get effective calculations for files withn as large as 1,000,000.

4. Background

The subject of this paper is the interpretation of sequences of single-record
queries (i.e., sets of records accumulated by users). This subject has applica-
tions both in acooperative setting, where the objective of the database system
is to learn the query patterns of its users with the intention of facilitating the
attainment of their eventual goals, and in acontrolled setting, where the objec-
tive of the database system is to ascertain that users do not circumvent retrieval
restrictions that protect specific portions of the database. We are unaware of
previous work that is related to the former objective; the latter objective has
been addressed in the areas ofdata mining, statistical databases, anddatabase
security. Below, we briefly position our work in these contexts.

The advent of data mining [14] and especially the development of increas-
ingly effective and efficient methods of discovering associations and depen-
dencies in vast amounts of data [2] have brought about considerations of se-
curity and privacy. Both these considerations arise from the fact that it is pos-
sible to ascertain confidential data by processing related but unrestricted in-
formation. Especially with large databases or data warehouses, the inference
of confidential information, such as details regarding individuals, is a signif-
icant risk. As an abstract example, assume thatB is a restricted field of the
database butA is unrestricted. The discovery of an association rule of the kind
(A = a) → (B = b) can be used to (1) determine the value ofB whenever
the value ofA is known to bea, or (2) circumvent a restriction on retrieval
of records by(B = b), substituting it with retrieval on(A = a). There have
been several studies that have tried to strike a compromise between the legit-
imate need to mine data for general trends on one hand, and the protection of
sensitive details on the other. One method is to introduce perturbations in in-
dividual data items without disturbing the general properties of the data as a
whole [3]. Another method is to restrict disclosure of the results of data mining
experiments according to thresholds on support and confidence [9].

For similar reasons, such controls have also been important in statistical
databases. The main purpose again is to prevent disclosure of specific infor-
mation, pertaining to individuals. An extensive survey of the methods used is
given in [1]. The basic methods involve not returning results smaller than a
given threshold or returning only aggregate results. One emphasis is the defeat
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of tracker methods [11, 12], methods used by attackers to infer specific data
(data about individuals) by manipulating carefully selected aggregates, while
conforming to the restriction on the minimal size of queries.

In the related field of database security, two forms of attack on secure databases
have gained wide attention: inference and aggregate attacks. Aninference at-
tack is an attempt to uncover classified information by combining knowledge
of unclassified information with “outside knowledge” (e.g., association rules
of the kind discussed earlier). Anaggregate attackis an attempt to gain ac-
cess to a classified aggregate of records by accumulating a sizeable number
individual, unprotected records from this aggregate [4, 8, 16]. Practical appli-
cations center on thepreventionof such attacks, whereas our work here may
be regarded asdetectionof possible attacks. Although detection can lead to
prevention, it is not the central aim of this study, which is to uncover possible
leakage of information.

Methods that have been developed to detect inference and aggregate attacks
can be classified asschema levelanddata leveldetections. Our approach here
is of the latter type.

In its simplest form, schema level detection attempts to recognize the ex-
ploitation of functional dependencies in the schema of a database [13]. An ex-
ploitable “opening” that allows users to conclude classified information from
unclassified information is referred to as aninference channel. One major ap-
proach links different elements in the schema to each other using semantic
metadata specific to particular domains. This is then used by logical infer-
ence engines to decide whether involuntary disclosures are being made [10].
Other methods require less markup at the schema level but depend on expert
information about the domain in the form of inference rules. For example,
[5] illustrates the use of a monitor that keeps track of all a user’s queries, con-
stantly compares them to a set of predetermined inference channels, and denies
any requests for objects that may satisfy the premise (antecedent) of an infer-
ence channel when combined with previously retrieved objects. A more recent
method avoids the need to maintain complete query histories by keeping track
of the number of building blocks already disclosed from the premise of an
inference channel [18].

In general, schema level methods are efficient in operation and thus are suit-
able for real-time detection and prevention techniques. However, their proper
operation mandates thatall the possible inference channels be identified be-
forehand, and therefore requires exhaustive knowledge of the domain.

Data level inference detection, on the other hand, analyzes the values of
fields in a file and the relationship of these values to values in other fields. This
may lead to the discovery of previously unknown inference channels, channels
that may be intrinsic to the application domain or the specific database at hand.
It has been shown experimentally [20] that data level analysis is much more
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comprehensive, in that inference channels that are not apparent in schema level
analysis are actually found. The disadvantage of data level inference detection,
again as stated in [20], is that it is computationally expensive and is therefore
best done off-line.

In terms of effective implementation, to our knowledge, no complete data
level inference detection system exists. There have been studies detailing the
use of data mining techniques such as decision trees [6] and Bayesian net-
works [7] to discover inference channels in an automated way. These iden-
tified channels create a rule base with which the database owner may then
restrict access to otherwise unclassified items lest they form precursors for an
inference attack. This restriction can be absolute, or can rely on a process,
such as those proposed by [5] and [18] above, that monitors the disclosure and
restricts access only when a certain situation is reached. Using data mining
methods requires extensive data preprocessing, however, and this may not be
possible on an active database.

One method, described in [21], is similar to ours in that it applies proba-
bilistic assessments to detect inference. The method proposes using rough-set
theory [17] to label each object in the database with probabilities of causing
an inference risk if disclosed. While this approach does not depend on prede-
termined rules, the inference rules identified are limited to binary relationships
between field names and values.

We conclude by reiterating that our method does not assume any domain
knowledge or prior identification of inference rules or channels. Additionally,
it is not restricted by the relatively simple inference rules or channels assumed
elsewhere. Since our method altogether disregards the conditions specified in
the retrieval requests, it is not subject to the limitations of an “antecedent”
(the premise of the inference channel), and its “consequent” (the target of the
inference channel) can be a rather complex expression incorporating multiple
basic comparisons.

5. Conclusion

We considered the issue of single-record query sequences that are submitted
by a single user within a short period of time, and we attempted to discover the
true intention of that user; that is, the subset of the record set accumulated
by that user that is most likely the actual retrieval goal. This research has
obvious applications for information providers, who may use the discoveries
to facilitate access to their information, as well as in information assurance,
where the discoveries may indicate more clandestine intentions, and may lead
to betterprotectionof the information.

Were it not for spurious requests in the sequence, the complete set of records
accumulated by the sequence would correspond to the true retrieval goal. How-
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ever, the possibility of spurious requests (whether the result of errors, unsuc-
cessful guessing, or deliberate attempts at concealing intentions) dictates that
any subset of the accumulated records must be considered a candidate for being
the true retrieval goal.

Our method is purely statistical and does not assume any prior knowledge
about specific retrieval targets embedded in the database; indeed, any collec-
tion of records that is the result of a selection query is a conceivable target.
The output of our analysis is a ranking of the candidate goals, according to
their likelihood of being the true retrieval target.

Our experiments show very good performance. At noise levels (percentage
of spurious requests) of up to 50%, the true retrieval target may be expected to
be found among the top 1% of the rankings. In other words, unless users spend
themajorityof their queries to retrieve information they do not want, the expla-
nation for their true intentions can be found among a very small set of possible
explanations (on the “first page”). Indeed, it is unlikely that any method could
identify a coherent retrieval goal when the level of noise is extremely high.

Considering all the possible subsets of the accumulated record set implies
that processing cost is exponential in the number of accumulated records (roughly,
the length of the sequence). In practice, query sequences of length 10 require
less than 1 second, performance which is acceptable for real-time analysis. The
performance for longer sequences render the analysis more suitable for off-line
application; for example, a sequence of length 20 requires about 9 minutes.

The work described here continues in several directions and we describe
here three such directions.

1. Performance. One obvious objective is the improvement of performance.
We are investigating methods that will avoid the exponential cost of exhaustive
analysis of all possible subsets of records. Recall that the true retrieval goal is
generally found in the top 1% of the rankings. Our interest is in heuristics that
will get us faster to these record subsets.

2. Real-time mode. Conceivably, there are two different modes in which our
method can be applied. For the most part, the discussion in this paper corre-
sponds to the method’soff-linemode, in which the query sequence is obtained
from a log and is analyzed after the queries have been executed. The benefits
of this mode are mostly informational. In thereal-timemode, a small “sliding
window” on the query sequence is to be observed and analyzed. The purpose
would be to detect when a query sequence is “converging” into a plausible
goal, and promptly alert the database system. In this mode, the limitation on
the length of the query sequence would have much less significance.

3. Robustness.For successful application to information assurance, one
must worry whether the method can be deceived. We assumed that decep-
tion would be in the form of spurious records, but our tacit assumption has
been that these would be chosen randomly. Yet, with sufficient knowledge of
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the records in the database, one could compose a sequence in which the spu-
rious records would constitute a “decoy” target; for example, a sequence of
10 queries would retrieve two “clusters” of records: the larger cluster (say, 6
records) would consist a decoy target, whereas the true retrieval goal would be
the smaller cluster. In such cases, our method is likely to rank the true target
well below the decoy target.

Finally, the research reported here is part of a larger investigation of what we
call second-order data mining: Finding trends, intentions, patterns of use and
other abstractions incollectionsof database queries. Of the many additional
research issues in this general area, we mention three.

1. More general queries. Our focus was on single-record selection queries.
In the general case, one must consider queries that retrieve arbitrary numbers
of records, as well as queries that involve joins, projections or aggregate func-
tions.

2. Additional characterizations. The problem we addressed was to find a
single explanation for a sequence of query. In the general case, one should
consider other characterizations of a set of queries, including statistical con-
clusions, clustering, association rules and other abstractions.

3. Intensional form. In this paper we analyzed the set of records retrieved
by a sequence (theextensionof the queries). In the general case, it may be
advantageous to consider the intensional form of queries as well (e.g., the SQL
statements).

Notes

1. Our database model may be viewed as relational, though we use the generic termsfile, recordand
field rather thanrelation, tupleandattribute.

2. In particular, it deals well with samples that could be rather small — just a few elements.

3. Multinomial distributions can also be assumed in the case of sampling without replacement, when
the population is large and the sample is relatively small.

4. And subsequently annotate this set of records with a descriptive explanation.

5. The values in theMethodcolumn are just illustrative, as the entire file is not known in this example.
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