
Abstract–Web software applications have become complex, sophisticated programs that are

based on novel computing technologies. Although powerful, these technologies bring new

challenges to developers and testers. Checking static HTML links is no longer sufficient;

Web applications must be evaluated as complex software products. This paper focuses on

two unique aspects of Web applications, an extremely loose form of coupling that features

dynamic integration and the ability that users have to directly change the potential flow of

execution. Taken together, these allow the potential control flow to vary with each execu-

tion, and means the possible control flows cannot be determined statically. Thus we cannot

perform standard analysis techniques that are fundamental to many software engineering

activities. This paper presents a new theoretical model of new couplings and the dynamic

flow of control of Web applications. This model is based on atomic sections, which allow

tools to build the equivalent of a control flow graph for Web applications. The atomic section

model is used to propose new test criteria for Web applications, and results are shown from

a case study on a moderate-size application.

Index Terms–Testing strategies, software engineering for Internet projects, analysis, object-

oriented programming
†This work was sponsored in part by the National Science Foundation under grant number CCR-0097056

and CCR-0097056 (supplemental).

wuye
Ye Wu, Jeff Offutt and Xiaochen Du

wuye
Information and Software Engineering Department
4400 University Dr.
George Mason University
Fairfax, VA, 22030 USA

wuye
Modeling and Testing of Dynamic Aspects of Web Applications

wuye
(wuye,ofut,xdu)@ise.gmu.edu

1 Introduction

The World Wide Web gives software developers a new way to deploy software. The first pro-

grams deployed on the Web were simple applications that accepted form data from HTML

pages and processed or stored the data. Modern Web applications are sophisticated, interac-

tive programs with complex GUIs and large amounts of back-end software that is integrated

in novel and interesting ways. Analyzing, evaluating, maintaining and testing these applica-

tions present many new challenges for software developers and researchers.

In a previous paper, Offutt explained why large Web applications need to be highly

reliable, very secure, continually maintainable, and constantly available [23]. Problems with

Web applications can affect hundreds of thousands of people and can cost millions of dollars.

For example, a glitch during an unscheduled maintenance at Amazon.com in 1998 put the

site offline for several hours, with an estimated cost as high as $400,000 US. More recently,

in early 2003 a public University’s Web site was hacked into and thousands of social security

numbers were released to the public. In another instance at another University, hundreds of

acceptance letters were emailed to applicants who had previously (and correctly) been denied.

Even more than the monetary costs, the relationship between customers and organizations

can be seriously damaged by such problems; the users do not care why the problem happened,

but they will find another site to do business with.

Industry has been responding to these needs by developing new technologies and pro-

gramming models that impact the way software is designed, built, tested and maintained.

While solving some important problems, these technologies also introduce other problems

that need the attention of software researchers. This research project is investigating these

problems.

This paper defines a Web page to be information that can be viewed in a single browser

window. A Web page may be stored as a static HTML file, or it may be dynamically

2

generated by software such as a JSP or Java Servlet. A Web site is a collection of Web pages

and associated software elements that are related semantically by content and syntactically

through links and other control mechanisms. A static Web page is unvarying and the same to

all users, and is usually stored as an HTML file on the server. A dynamic Web page is created

by a program on demand, and its contents and structure may be determined by previous

inputs from the user, the state on the Web server, and other inputs such as the location

of the user, the user’s browser or operating system, and time of day. A Web application is

a software program that is deployed across the Web. Users access Web applications using

HTTP requests and the user interface typically executes within a browser on the user’s

computer.

Web software is built with many different technologies, including scripting languages

that run within HTML on the client (JavaScript, VBScript), interpretive languages that run

on the server (Perl), compiled module languages on the server (Servlets, ASPs), scripted

page modules on the server (JSPs, ASPs), general purpose programming languages (Java,

C#), programming language extensions (JavaBeans, EJBs), data manipulation languages

(XML) and databases. These diverse technologies (and others) cooperate to implement Web

applications, resulting in a heterogenous, multi-platform software environment where the

software components are loosely and dynamically coupled.

Whereas the high quality requirements of Web software, multi-platform issues, concur-

rency, and issues arising from heterogenous languages are problems that have been addressed

in other types of software, some of the issues involving coupling and integration are new to

Web software. This paper presents a novel analysis and modeling technique that addresses

the problem of dynamic integration of Web software applications. The issue is discussed

and the problem is presented, then a solution using atomic and composite sections is devel-

oped. This model offers a fundamental way to model dynamic aspects of Web software in

a technologically independent way. The model can support a variety of different software

3

engineering activities by allowing analysis techniques such as control flow, data flow and

slicing to be applied. The paper also presents specific integration testing criteria and results

from an empirical study.

1.1 Problems in Testing Web Applications

The literature on testing Web applications is still scarce and there is no widespread agree-

ment on how to categorize the technical problems. An important factor that influences

Web applications is how the different pieces are connected. We make an initial attempt to

categorize Web application testing in terms of the following connections.

1. Static links (HTML → HTML): Most of the early literature on Web testing focused

on link validation. Note that this does not address any software or dynamic issues.

2. Dynamic links (HTML → software): HTML links call software components to execute

some process. This kind of coupling is difficult to test because of the networked nature

of the software.

3. Dynamic form links (HTML → software): HTML forms send data to software compo-

nents that process the data. One issue with testing dynamic links is that data must

be found or created for the forms.

4. Dynamically created HTML (software → HTML): Web software typically responds to

the user with HTML documents. The contents of the HTML documents often depend

on inputs, which complicates testing.

5. State specific GUIs (software + state → HTML): HTML documents whose contents

and form are determined not just by inputs, but by part of the state on the server,

such as the data or time, the user, or session information.

4

6. Operational transitions (user): Transitions that the user introduces into the system

outside of the control of the HTML or software. Operational transitions include use of

the back button, the forward button, and URL rewriting.

7. Software connections: This includes connections among back-end software components,

such as method calls.

8. Off-site software connections: Some Web applications will access software components

that are available at a remote site. This type of connection, while powerful, is difficult

to test because little is known about the off-site software.

9. Dynamic connections: Both the J2EE platform and .NET allows new Web components

to be installed dynamically during execution, and the Web application can detect and

use the new components. Web services in J2EE uses Java reflection to accomplish this.

This type of connection is especially difficult to test because the tester cannot be sure

how the components will behave before deployment and execution.

2 Dynamic Integration of Web Software

The term software coupling has been in use since at least the 1970s, with general acceptance

that “less” coupling is better. However, it has been difficult to define or quantify “less” or

“more” coupling. We offer the following as working definitions that are useful in building

our model, without claiming that they are universally applicable. We use the term method

generically to refer to methods, procedures, subprograms and functions. A program exhibits

tight coupling if dependencies among the methods are encoded in the logic of the methods.

That is, if A and B are tightly coupled, and A calls B, a change in A might require the

logical structure of B to be changed.

A program exhibits loose coupling if dependencies are encoded in the structure and

flows of data among the methods. This typically occurs when data is defined in the callers

5

and used in the callees, or one method calls two different methods, one that defines a data

object and the other that uses it. One ramification is that if A and B are loosely coupled,

and A calls B, a change in A might result in the structure of the data changing, which in

turn requires changes in the way B uses data items that are defined in A. Loose coupling is

normally seen when data abstraction and information hiding is employed.

A program exhibits extremely loose coupling (ELC) if dependencies among the methods

are encoded entirely in the contents of the data being transmitted, not in the structure.

For example, extremely loose coupling is achieved when XML messages are exchanged and

when HTTP requests are made. If A and B are extremely loosely coupled, and A sends data

to B, a change in A might change the contents of the data that B uses, but not the structure

of the data. Thus a change in A would have minimal, and perhaps no effect on B.

Although some programmers have used ELC in other types of software, Web software

actively encourages extremely loose coupling. Indeed the multi-platform (usually multi-tier)

design of Web applications makes it difficult to use loose or tight coupling. For example,

data that is passed from an HTML page on the client to a servlet on the server is transmitted

in HTTP requests. The data formatting must satisfy a strict definition of structure or the

two programmers will not get the interaction right. Applications can even require ELC, for

example by using XML messages. This is common among Web services, which are Web

applications that communicate with other Web applications without user interaction.

Extremely loose coupling allows non-obvious engineering practices such as software mod-

ules that dynamically integrate with other software modules that use the same data structure.

A very simple example is that of a Java servlet that can accept and process form data from

any arbitrary HTML page, an ability that allows it to dynamically integrate with new soft-

ware components. A simplified demo of this capability that is used as a classroom example

is available at: http://www.ise.gmu.edu/∼ofut/formhandler/. The HTML page is a

simple form whose contents are sent to a generic Java servlet that can process inputs from

6

any HTML form. This kind of dynamic integration, usually coupled with more advanced

technologies like enterprise Java beans, is sometimes used by Web software applications to

look for and use an appropriate handler or service during execution.

An important problem for testing and analysis is that parts of Web software applications

can be created dynamically. Server-side JSPs and servlets create HTML pages that contain

data, responses to users, and user interfaces. These pages contain JavaScripts, hyperlinks,

and content that is created dynamically. Server-side components such as Enterprise Java

Beans (EJBs) can be inserted into the system at any time, and existing (even currently

running) Web software applications have the ability to recognize and begin using them

immediately.

These abilities mean that parts of Web software applications are generated dynamically.

Another way to say this is that different users will see different programs at different times!

One common example is that of news sources such as washingtonpost.com, which shows

different content based on the time of day and user’s location as determined by the IP

address. Another is amazon.com, which makes different features available to users depend-

ing on whether they have logged in, have an active Amazon cookie on their computer, or

where they are located as determined by their IP address. Still another example is IEEE’s

manuscriptcentral.com (built by ScholarOne, Inc.), which offers different programs to

users depending on their login information.

Web software applications also allow unusual changes in the control of execution of the

application. In traditional programs, the control flow is fully managed by the program, so

the user can only affect it with inputs. Control flow graphs can be derived statically based on

the structures in the programming language. Control flow graphs for traditional programs

can describe all the possible sequence of statements that users can execute.

Web applications do not have this same property. When executing Web applications,

users can break the normal control flow without alerting the program controller. This can

7

be done by pressing the back or refresh buttons in the browser or by directly modifying

the URL in the browser. These interactions introduce arbitrary changes in the execution

flow, creating control paths in the software that are impossible to represent with traditional

techniques such as control flow graphs. Users can also directly affect data in unpredictable

ways, for example, by modifying values of hidden form fields. Furthermore, changes in the

client-side configuration may affect the behavior of Web applications. For example, users

can turn off cookies, which can cause subsequent operations to malfunction.

Although these dynamic properties of Web applications are powerful and offer advan-

tages to the developers, they introduce new problems to software engineers. Specifically,

traditional analysis structures such as control flow graphs, call graphs, data flow graphs,

and data dependency graphs can no longer accurately represent the program. That is, the

program’s possible flow of control cannot be known statically. These analysis structures are

needed for data flow analysis and slicing, techniques that are used in many activities, includ-

ing design, testing, and maintenance. New techniques are needed to model our program to

support these activities.

3 Modeling Web Applications

This paper introduces a new model based on elemental pieces of software components for

describing Web applications that can be used to model all possible execution flows, just as

control flow graphs can be used for traditional programs. This model begins by describing

elements of dynamically created Web pages. The analysis model then uses regular expression

notation to combine the elements. Criteria for developing tests are presented in Section 4.

3.1 Analysis Model

A key element of Web applications is the collection of interactions among the software

components. A typical Web application works as depicted in Figure 1. A client first retrieves

8

Client
Web browser

running on a user's
computer

Server
Web server running

on a networked
computer

Servlet
Compiled-module

software
component

JSP
Scripted page

software
component

Data
Base

1. Request URL

4. Response HTML

5. Request URL +
Data

10. HTML with Data

2. Run

3. Print

6. Run

9. Format

7. Access DB

8. Data

Figure 1: Typical execution flow among Web application components.

information from a server by requesting a particular URL, the server runs a servlet, which

prints HTML, which is then returned to the client as an HTML document. The client then

sends a request with data to a server, which runs a Java server page, which in turn accesses

a database, and finally returns formatted data to the client in the form of HTML. Although

not all interactions are done through HTML pages, this is a useful model to start with and

this paper assumes that clients and servers interact through HTML pages. In the future,

this model can be applied to other forms of interactions, such as software that uses XML.

Without loss of generality, we assume that each Web application uses a unique start

page S. If there is more than one start page (S1, S2, ..., Sk), then we assume a unique start

page can be created that has links to each actual start page.

Clients and servers interact with each other through requests and HTML messages.

Many Web software applications generate HTML pages dynamically by assembling pieces

from separate files and program statements. This process needs to be formalized before we

can model interactions among Web applications. Thus we first identify the basic elements

that can be generated, then define a set of operations that can be used to generate new

compound elements.

9

3.2 Atomic Sections

An atomic section (AtS) is a section of HTML (possibly including scripting language code

such as JavaScript) that has the property that if part of the section is sent to a client,

the entire section is. This is called an “all-or-nothing property” and atomic sections are

analogous to basic blocks in traditional programs (although the focus is on data presentation,

not execution, and many executable statements are ignored). The simplest AtS is a complete

static HTML file. Dynamically generated HTML pages are typically comprised of several

atomic sections from a server program that prints HTML. An AtS may be constant (pure

HTML), it may be an HTML section that has a static structure with content variables, or

it may be empty. A content variable is a program variable that provides data to the HTML

page but not structure.

Figure 2 illustrates a pair of stylized dynamically created Web pages for a fictional Web

application called WebPics. They appear to be made up of at least four atomic sections.

The first consists of the header welcome message and the search box, which have been

personalized to the user. The second consises of the list of recommended movies, which

depends on data on the customer drawn from the data base. The third consists of the short

menu, which again is customized to the user. Finally, the fourth ATS contains an extra

interface point to the program, and is only available to the customer on the left.

Figure 3 shows a Java servlet from a server component P that produces six atomic

sections (p1 .. p6). Note that only output statements are annotated as atomic sections.

To be precise, only the output of those statements are atomic sections, not the actual Java

code, but we show the atomic sections with the surrounding code for clarity. Section p5 is

an example of an empty AtS; even though it may not be in the original program, it must

be included as an alternative to p2.

Atomic sections can be thought of as being analogous to basic blocks in traditional

10

Search

Recommended Movies

X XXXXX

Examine queue (Warning : Queue empty)

View account

Search

Recommended Movies

A CB

Examine queue

View account

D

WebPics WebPics
Welcome John Knight! Huan ying guang ling, Wu Qi Xin!

Frequent customer bonus

Figure 2: Stylized Web pages to illustrate atomic sections in dynamically created Web pages.

programs, but have many distinct differences. First, Web applications are extremely loosely

coupled and have frequent dynamic interactions through HTTP requests. Atomic section

analysis can ignore most of the internal processing of the software and focus on the HTML

responses. The example in Figure 4 contains nine basic blocks but only three atomic sections.

The atomic sections reflect the relationship of this component with other components, while

the first six basic blocks are only relevent to the internal processing of this module.

3.3 Composite Sections

Atomic sections are combined together to form more complex units, called composite sec-

tions. The composition is usually done dynamically and the actual composition is affected by

the control flow of the server component. Different users will get different complete HTML

pages, and thus different user interfaces. In effect, they have access to different programs.

Possible compositions are sequence, selection, iteration, and aggregation. Formally, p is a

11

PrintWriter out = response.getWriter();
p1 = out.println ("<HTML>");

out.println ("<HEAD><TITLE>" + title + "</TITLE></HEAD>");
out.println ("<BODY>");
if (isUser) {

p2 = out.println ("<CENTER>Welcome!</CENTER>");
for (int i=0; i<myVector.size(); i++)

if (myVector.elementAt(i).size > 10)
p3 = out.println ("<P>" + myVector.elementAt(i) + "</P>");

else
p4 = out.println ("<P>" + myVector.elementAt(i) + "</P>");

}
else

p5 = { }
p6 = out.println("</BODY></HTML>");

out.close();

Figure 3: Servlet atomic section example.

composite section of a server program P in the following situations.

1. Basis: p is an atomic section.

2. Sequence: (p → p1 · p2): p1 and p2 are composite sections, and p is composed of p1

followed by p2.

3. Selection (p → p1 | p2): p1 and p2 are composite sections, and the server selects either

p1 or p2, but not both.

4. Iteration (p → p∗1): p1 is a composite section, and the server selects repeated copies of

p1.

5. Aggregation (p → p1{p2}): p1 and p2 are composite sections, p2 is included as part of

p1 when p1 is transmitted to the client. For example, a function call in p1 or a file

inclusion command will include p2 in p1.

12

String manufacture = request.getParameter ("manufacture");
String productName = request.getParameter ("productname"); BB1
String minPrice =request.getParameter ("minPrice")
if (productname != null)

queryCriterion = "Where productname=’"+productname+"’"; BB2
if (manufacture != null)

if (queryCriterion == null)
queryCriterion = "Where manufacture=’"+manufacture+"’"; BB3

else
queryCriterion = queryCriterion + " and manufacture=’" + BB4

manufacture + "’";
if (minPrice != null)

if (queryCriterion == null)
queryCriterion = "Where price >"+minPrice; BB5

else
queryCriterion = queryCriterion + " and price >>"+minPrice; BB6

ResultSet rs=dbConnection.executQuery ("select * from db " +
queryCriterion);

PrintWriter out = response.getWriter();
p1 = out.println ("<HTML>") BB7

out.println ("<BODY>")
out.println ("<FORM action=’http://ise.gmu.edu/servlet/selectProduct’>")
while (rs.next())

p2 = out.println ("<INPUT type=checkbox name=product>"+ BB8
rs.getString ("product"));

p3 = out.println ("<INPUT type=submit><INPUT type=cancel");
out.println ("</BODY></HTML>"); BB9
out.close();

Figure 4: Atomic Section vs. Basic Block

These elementary operations can be extended as needed using typical BNF notation.

For example, p+ can be used to represent one or more composite sections concatenated

together and pn to represent exactly n composite sections. Other expressions can be used as

needed. It is often necessary to denote atomic and composite sections by the program unit

that generates them. We use the “dot” operator, so S.p1 indicates the composite section p1

is produced by program component S.

13

Atomic and composite sections define how HTML pages can be dynamically generated.

Given a server component, a composition rule is a regular expression that represents all

possible complete HTML pages that can be generated by the component. The composition

rule for the example in Figure 3 is P → p1 · (p2 · (p3 | p4)
∗ | p5) · p6. Note that it might be

possible to replace the unbounded iteration in P with “myVector.size().” However, this value

cannot be computed statically, so we choose to model an unknown iteration as unbounded.

That is, a goal of this research is to produce a static analysis technique.

The above representation can be used to model the internal structure of individual

server components. To execute a complete transaction in a Web application, the client

and server components link the dynamically generated HTML pieces together. Interactions

among client and server components are generally more complex than those of traditional

applications. Most traditional applications have deterministic function invocations; even the

uncertainty caused by polymorphism is limited by, for example, the polymorphic call set of

Alexander and Offutt [1]. Web applications, on the other hand, have function invocations

whose binding cannot be known or even limited statically. The functions that can potentially

be invoked are not necessarily known until execution time.

3.4 Modeling Dynamic Interaction

Web applications use HTML and action links to combine components. When HTML pages

are generated dynamically, these links may rely on dynamic information, which means the

contents are not known until execution time. Furthermore, users can modify the execution

flow of Web applications, taking some of the control away from server and client components.

The simplest example is when a user hits the back button in the browser, causing the

application to return to a previous screen. This changes the control flow without notifying

either the server or client components, and can introduce data anomalies if the data on

the screen does not match the current state. To fully model the behavior of dynamic Web

14

applications, the AtS analysis model defines dynamic interactions.

The interactions among different server components can be classified into four types

of transitions. In the following, p and q are composite sections and s is a servlet or other

software component that generates HTML.

1. Link Transition (p −→ q and p —–� q): Invoking a link in p causes a transition to q

from the client to the server. If p can invoke one of several static or dynamic pages,

q1, q2, . . . , qk, then the destination is represented as q1 | q2 | . . . | qk. Link transitions

are divided into two types. A simple link transition, p −→ q, is an HTML link defined

in an <A> tag, and a form link transition, p —–� q, is defined in a <FORM> tag.

2. Composite Transition (s —–◦ p): The execution of s causes p to be produced and

returned to the client. The servlet s will normally be able to produce several composite

Web pages, which can be represented as s = p1 | p2 | . . . | pk.

3. Operational Transition (p ; q): The user can create new transitions out of the soft-

ware’s control by pressing the back button, the refresh button, or directly modifying

the URL in the browser (including adding or modifying parameters). Operational

transitions also model transitions caused by system configurations, for example, the

browser may load a Web page from the cache instead of the server. The notation

“previous S” represents use of the back button and “reload S” represents use of the

refresh button.

4. Forward Transition (p −→+ q): A forward transition is a server-side software transition

that is not under the control of the tester. For example, if a user successfully logs in to

an application, the login component may automatically forward to another component.

15

3.5 A Model of a Web Application

Web applications are modeled at two levels. Atomic and composite sections are used to

model individual components (intra-component) and then the dynamic interactions are used

to create a graph model of the inter-component relations.

3.5.1 The Intra-component Level

A Web component is modeled as a quintuple WC = (S, C, T, ATS, CS), where S is the

start page, C is a set of composition rules for each server component, T is a set of transition

rules, ATS is the set of atomic sections, and CS is the set of composite sections.

The example in Figure 5 is an HTML page that uses the Java servlet in Figure 6 to

provide online grade queries to students. A student must access the main page first to enter

an id and password. Then a servlet validates the id and password; if successful, the servlet

retrieves the grade information and sends it back to the student. If unsuccessful, an error

message is returned to the student asking the student to either retry or send an email to

the instructor for further assistance. This small application includes a static HTML file, a

query servlet, and another servlet that processes the email to the instructor (not shown).

The HTML file uses a “hidden” form field to keep track of how many login attempts the

user has made. A hidden form field is an INPUT tag that has the attribute type HIDDEN

(<INPUT Type="HIDDEN" Name="RETRY" Value="0"> in Figure 5). Web browsers do not

render hidden form fields on the user’s screen, but the data that is stored in the field is

submitted to the server. Hidden form fields are sometimes used to keep data persistent from

one request from the same user to the other. Although called hidden, it should be noted

that the HTML source is stored on the user’s computer and the hidden form field can be

seen, used, and modified.

The atomic sections for GradeServlet are shown in Figure 6. GradeServlet uses three

methods, Validate(), CourseName() and CourseGrade() (which are omitted for brevity).

16

<HTML>

<HEAD>

<TITLE>Grade Query Page</TITLE>

</HEAD>

<BODY>

<FORM Method="GET" Action="GradeServlet">

Please input your ID and password:

<INPUT Type="TEXT" Name="ID" Size="10">

<INPUT Type="PASSWORD" Name="PASSWD" Size="20">

<INPUT Type="HIDDEN" Name="RETRY" Value="0">

<INPUT Type="SUBMIT" Name="SUBMIT" Value="SUBMIT">

<INPUT Type="RESET" Value="RESET">

</FORM>

</BODY>

</HTML>

Figure 5: Simple HTML login page.

The start page, composition rules, and transition rules for GradeServlet are:

S = {index.html}
C = {GradeServlet = p1 · ((p2 · p∗3) | p4) · p5 }
T = {S −→ GradeServlet, GradeServlet.p4 −→ SendEmail | GradeServlet}

It should be noted that when link transitions are generated dynamically, the composite

sections that are targeted cannot be known statically.

3.5.2 The Inter-component Level

The software is modeled by combining AtS and composite sections into a Web Application

Graph (WAG) in which nodes are Web components and edges are links and other types

of transitions among the nodes. Formally a Web application is modeled as a quintuple

WAG = (C, L, T, s, f), where C is a finite set of Web components, L is a set of link

transitions, T is the transition relation (a subset of C×L×C), s ∈ C is the initial component,

and f ∈ C is the final component.

The proliferation of technologies means that there are many types of components, in-

cluding HTML pages, Java Servlets, JSPs, PHPs, ASPs, Java Beans, CGI files, and Java

17

ID = request.getParameter ("ID");
passWord = request.getParameter ("PASSWD");
retry = request.getParameter ("RETRY");
PrintWriter out = response.getWriter();

p1 = out.println ("<HTML>");
out.println ("<HEAD><TITLE>" + title + "</TITLE></HEAD>");
out.println ("<BODY>");
if (Validate (ID, passWord) && retry < 3)
{

p2 = out.println (" Grade Report ");
for (int I=0; I < numberOfCourse; I++)

p3 = out.println ("<P>" + CourseName(I) + "" + CourseGrade(I) + "</P>");
}
else
{

p4 = retry++;
out.println ("Wrong ID or wrong password");
out.println ("<FORM Method=\"GET\" Action=\"GradeServlet\">);
out.println ("<INPUT Type=\"TEXT\" Name=\"ID\" Size=\"10\">");
out.println ("<INPUT Type=\"PASSWORD\" Name=\"PASSWD\" Width=20>");
out.println ("<INPUT Type=\"HIDDEN\" Name=\"RETRY\" Value=" + (retry) + ">");
out.println ("<INPUT Type=\"SUBMIT\" Name=\"SUBMIT\" Value=\"SUBMIT\">");
out.println ("Send Mail to the Instructor");
out.println ("<INPUT Type=\"RESET\" Value=\"RESET\"></FORM>");

}
p5 = out.println ("</BODY></HTML>");

out.close();

Figure 6: Atomic sections of servlet GradeServlet.

classes. An advantage of this model is that the information being captured is independent

of the technology used to create the components (although extracting the information cer-

tainly depends on the technology). A second advantage is that the model does not depend

on whether the software components are on the same computer, two computers, or multiple

computers. One restriction to note is that this model requires access to the source.

As defined in Section 3.4, transitions are categorized as link transitions (simple and

form), composite transitions, operational transitions, and forward transitions. This model

explicitly ignores method calls, assuming they are tested by traditional modeling and testing

18

login.html

sendMail

component simple link transition form link transition

GradeServlet

P1

P3

P4

P2

P5

GET
(ID,PASSWD,RETRY)

GET
(ID,PASSWD,RETRY)

Atomic
Section

Figure 7: Web application graph for GradeServlet.

techniques. Figure 7 shows the WAG for the GradeServlet example. The WAG has only

three components, the login HTML page, GradeServlet, and sendMail. The GradeServlet

component is drawn with its atomic sections, arranged in a graph representation of the

composite section rules, to illustrate the two levels of this model.

Inter-component links are also annotated with two types of information. The first

indicates what type of HTTP request was used in the transition. These are most commonly

get and post, although others are available. Calls to non-web specific software components

(for example, normal Java classes) are not modeled separately, but considered as part of the

Web component. Likewise, JSP include files are considered to be part of the including JSP

file. The second annotation is the data that is being transmitted, usually in the form of

parameters.

The WAG may also include a current state representation to model execution informa-

tion. During execution, each component has a CurrentState, which is a set of name-value

pairs for the component’s static variables, application scope attributes, session scope at-

19

tributes, and session objects. These are the values that can be shared among two or more

components in a single Web application. Variables that cannot be shared (local scope vari-

ables) are not used in this model.

4 Generating Web Application Tests

A test case for a Web application is specified as a sequence of interactions between com-

ponents on clients and servers. Graph coverage criteria [2, 28] can be used to cover the

graph model in Section 3.5, with details supplied by the atomic and composite sections. An

important consideration with Web applications is that of invalid transitions, which are not

considered in traditional graph coverage criteria. Thus it is necessary to extend the criteria

to cover invalid transitions.

A sequence of interactions is represented as a derivation, which is a sequence of transi-

tions that begins at the start page S, and uses composition and transition rules to reach a

desired page. A subsequence of a derivation is the sequence of transitions between two inter-

mediate Web pages. A derivation for a normal grade query from the GradeServlet example

in Figure 6 combines both the link transitions and atomic sections:

S —–� GradeServlet —–◦ p1 · p2 · p3 · p5

This derivation starts at the start page S (the login HTML page), then submits the form

and moves to GradeServlet, and the composite transition yields the title (p1), header (p2),

one grade (p3), and the ending HTML commands (p5).

Several derivations can be made when a student enters an incorrect ID or password.

Note that the WAG can contain loops, which traditionally cause difficulties with coverage

criteria. We handle loops in WAGs by using the relatively new criterion prime path coverage

[3]. Derivations for incorrect ID or passwords are:

1. S —–� GradeServlet —–◦ p1 · p4 · p5

20

2. S —–� GradeServlet —–◦ p1 · p4 · p5 −→ SendMail . . .

3. S —–� GradeServlet —–◦ p1 · p4 · p5 ; previous S —–�
GradeServlet —–◦ p1 · p2 · p3 · p5

4. S —–� GradeServlet —–◦ p1 · p4 · p5 ; previous S —–�
GradeServlet —–◦ p1 · p4 · p5 ; previous S —–�
GradeServlet —–◦ p1 · p4 · p5 ; previous S —–�
GradeServlet —–◦ p1 · p2 · p3 · p5

Note that in the fourth derivation above the user tried three wrong usernames and

passwords, as indicated by the inclusion of AtS p4. The variable RETRY was then equal to

three and further access should be denied. However, the user used the browser’s back button

to reload the previous page, as indicated by the transition previous S. This meant the value

of the hidden form field for RETRY was reset to zero and the servlet was not able to recognize

that the retry limit was reached. Traditional analysis techniques would not be able to model

this interaction, and thus would be unlikely to help the tester find a test to find that fault

in the software1.

Each derivation represents a specification for a test case and the CurrentState in-

formation for each component is then used to create executable test cases. For complex

applications, the number of possible derivations on the WAG can be very large or infinite,

so test criteria are used to choose derivations.

4.1 Coverage Criteria

Test coverage can be applied at both the intra-component level (using the composite sections)

and the inter-component level (using the WAG). As is usually the case, the tests at the two

levels could be independent or could be merged into one set of tests. And as noted previously,

1As an aside, we have found a similar fault with the National Science Foundation’s FastLane system.
Specifically, login information is stored in hidden fields in the Web pages, and use of the back button can
put the system into unstable states.

21

any graph coverage criterion can be used.

The empirical validation in Section 5 applies graph coverage techniques to the WAG

and to the transitions in the composite sections, including link, composite, and operational

transitions. Coverage criteria are divided into several levels to evaluate the effectiveness of

the unique aspects of the model. Past research on Web application testing [19, 21, 25] has

focused exclusively on link transitions, with little attention paid to composite transitions

and none at all to operational transitions.

For a comparative evaluation, we apply three separate coverage criteria. The first is

the prime criterion, defined by Ammann and Offutt to explicitly and quantitatively allow

loops to be covered [2, 3]. A subpath in a graph from node ni to nj is prime if no node

appears more than once on the subpath, with the exception that the first and last nodes

may be identical. A test path is a complete sequence of nodes in a graph from a start node

to an end node. A test path p is said to tour a subpath q if and only if q is a subpath of p.

Touring paths in graphs with loops is not very practical because there are an infinite number

of loops. The notion of touring with a “sidetrip” allows a test path to tour q while at the

same time adding a few nodes “in the middle” of q, that is, executing a loop more than one

time. Formally, A test path p is said to tour a subpath q with sidetrips if and only if every

edge in q is also in p in the same order.

Figure 8 illustrates touring. Nodes S0 and Sf are the initial and final nodes. The prime

subpath [a, b, d] can be toured by sidetrips by a test path that executes the loop from b to c

an arbitrary number of times, such as by [S0, a, b, c, b, d, Sf]. The set of prime subpaths

on the graph in Figure 8 includes [c, d], [b, c, b], and [c, b, c] (among others), so a set of

test paths to satisfy prime coverage can be { [S0, a, b, c, d, Sf], [S0, a, b, c, b, d, Sf],

[S0, a, b, c, b, c, d, Sf] }.
The second criterion used is new to this paper, but quite simple. The intent is to model

the situation when users, either accidentally or purposefully, apply operational transitions

22

S0 a b

c

Sfd
1

3

4

52

[a, b, d] is a prime path

Figure 8: Touring a graph with sidetrips.

by entering into the middle of a Web application. This is called invalid access (IA), and each

test is exactly one sequence long; a URL to a non-start page.

The third criterion, invalid path (IP), extends the first criterion by adding operational

transitions. Prime paths are extended by two transitions: the first adds one operational

transition, and if that is feasible, the second adds every valid transition out of the new

node. Sometimes the first transition is feasible but the second is not, so it is necessary to

distinguish between the two. In these cases, they are referred to as IP-1 and IP-2. If applied

to all prime paths, the invalid path criterion has the potential to lead to a very large number

of paths. So the invalid path criterion is defined at two levels. All invalid paths requires that

every prime path be extended with all possible operational transitions. Each node invalid

path requires that for each node in the graph, exactly one prime path that ends in that node

is extended.

Previous research in testing Web applications did not include operational transitions,

so had nothing comparable with the invalid access and invalid path criteria. Moreover, the

prime criterion subsumes edge coverage and edge-pair coverage, so can be considered a very

strenuous graph coverage test. These criteria are illustrated on Figure 9, which has three

nodes, all of which are considered to be final nodes. Node 1 is the only start node.

There are a total of 12 prime paths on the graph in Figure 9; four paths of length 1,

five paths of length 2, and three of length 3.

23

1 2

3

Figure 9: Graph to illustrate coverage criteria.

[1, 2] [2, 1] [2, 3] [3, 1]

[1, 2, 1] [1, 2, 3] [2, 1, 2] [2, 3, 1] [3, 1, 2]

[1, 2, 3, 1] [3, 1, 2, 3] [2, 3, 1, 2]

The prime paths can be toured with the following two test paths:

[1, 2, 3, 1, 2, 3]

[1, 2, 1, 2]

There are two invalid access tests to the two non-start nodes, [2] and [3]. With this

small example there are only two invalid transitions, [1, 3] and [3, 2]. To compute the

invalid paths, we start with the eight prime paths that end in nodes 1 and 3, add another

(invalid) transition to each, and then the transition [3, 1] to the paths that end with 3

and the two transitions [2, 1] and [2, 3] to the paths that end with 2. This results in

the following 11 paths to cover.

[2, 1, 3, 1]

[2, 3, 2, 1] [2, 3, 2, 3]

[3, 1, 3, 1]

[1, 2, 1, 3, 1]

[1, 2, 3, 2, 1] [1, 2, 3, 2, 3]

[2, 3, 1, 3, 1]

24

[1, 2, 3, 1, 3, 1]

[3, 1, 2, 3, 2, 1] [3, 1, 2, 3, 2, 3]

These can be toured with the following test paths:

[1, 2, 1, 2, 3, 2, 1]

[1, 2, 1, 2, 3, 2, 3]

[1, 2, 3, 1, 3, 1]

[1, 2, 1, 3, 1]

[1, 2, 3, 1, 2, 3, 2, 1]

[1, 2, 3, 1, 2, 3, 2, 3]

5 Empirical Evaluation

To validate the model and test criteria, we applied them to a small but non-trivial Web

application. The Small Text Information System (STIS) helps users keep track of arbitrary

textual information2. Text records are stored and associated with categories. STIS stores all

information in a database (currently mysql) and is comprised of 17 Java Server Pages and

5 Java bean classes. STIS requires users to log in. After being successfully authenticated,

users can search and view records ordered by categories, create categories and new records.

The Web application graph model of STIS is shown in Figure 10. Eleven of the seventeen

Web components are shown. Four Java server pages (HEAD, FOOT, BAR and SEARCH) are

statically included inside the other components so are not shown. Two others are used only

with administrative access and we chose to omit them from the graph and the experiment.

In theory, operational transitions exist between every pair of components, but they are not

2STIS was implemented by a summer student working on an NSF-sponsored Research Ex-
perience for Undergraduate supplemental grant. A demo version can be viewed online at
http://www.ise.gmu.edu:8080/ofut/jsp/stis/, with userid “demo” and password “demo.”

25

index

categories
record_add

browse

login

 post
(userid, password)

update_search_paramsrecord_insert

 post
(category,search_name)

logout

 post
(name,cotegory,content)

record_edit

record_delete

category_edit

post
(action, categoryName)

component
simple link transition composite link transitionform link transition

forward transitionoperational transition

Figure 10: STIS Web application graph model.

shown on this graph to reduce eyestrain. Also, the composite transitions are internal to the

nodes, and are not shown in this graph.

Atomic section analysis is performed by an automated tool that parses Java servlets,

Java Server Pages, and other Java classes. The composition section rules for the 17 JSP

components in STIS are shown in Table 1. The number of atomic sections for each component

is given in the third column. This count includes empty sections, and each occurence of an

included JSP (HEAD, FOOT, BAR, and SEARCH) is counted as one atomic section. The

instances of the included JSPs are used as abbreviations for their composite sections. When

expanded, the rule for browse is:

browse —–◦ p1 · ((p2 · (p3 | e) · p4) | p5) · p6 · p7
∗ · p8 · (p10 · p11

∗ | p9) · p12 · p13
∗ · p14·

((p15 · (p16 | e) · p17) | p18) · (p19 | e) · p20

The empirical evaluation proceeded according to the following steps. Each step is anno-

26

Table 1: Composition rules for STIS components.

Component Composition Rule ATS
index —–◦ HEAD · p1 · FOOT 3
login —–◦ p1 · ((HEAD · p2) | (HEAD · p3) | (p4 · BAR · p5)) 8
browse —–◦ HEAD · p1 · SEARCH · p2 · (p3 | p4 · p5

∗) · p6 · SEARCH · FOOT 10
record add —–◦ HEAD · p1 · p2

∗ · p3 · FOOT 5
categories —–◦ HEAD · p1 · (p2 | (((p3 | e) | e) · p4 · ((p5 · p6

∗ · p7) | p8) · p9)) · FOOT 13
record insert —–◦ HEAD · p1 · (e | (p2 · p3

∗ · p4)) · FOOT 7
update search params —–◦ e 1
logout —–◦ p1 · ((p2 · HEAD · p3) | p4) 5
record edit —–◦ HEAD · p1 · (e | (p2 · (p3 | e) · p4 · (p5 · (p6 | e) · p7)∗ · p8) · FOOT 13
record delete —–◦ HEAD 1
category edit —–◦ HEAD · p1 · (p2 | (p3 | e) · p4) · p5 · FOOT 8
register —–◦ HEAD · p1 · (p2 | p3) · FOOT 5
register save —–◦ p1 · ((p2 · HEAD · p3) | (HEAD · p4 · FOOT)) 7
HEAD: page header —–◦ p1 · BAR 2
FOOT: page footer —–◦ BAR · (p1 | e) · p2 4
BAR: navigation bar —–◦ (p1 · (p2 | e) · p3) | p4 5
SEARCH: record search —–◦ p1 · p2

∗ · p3 · (p4 | e) · p5 6

tated with whether it was accomplished automatically or by hand in this experiment. Proper

tool support should be able to automate every step but the last.

1. Determine atomic sections (automatically)

2. Derive the web application graph (by hand)

3. Determine prime paths for the WAG (automatically)

4. Determing test paths to tour the prime paths (automatically)

5. Determine invalid access transitions (automatically)

6. Extend prime paths to create invalid paths (automatically)

7. Choose input values for forms (by hand)

8. Run tests and record results (by hand)

27

9. Determine AtS coverage (automatically, with instrumentation)

10. Develop tests to complete AtS coverage (by hand)

5.1 Test Value Selection

Testing Web applications requires more than just covering transitions; input values also must

be supplied. In Web applications, most inputs are accepted through HTML forms. For this

experiment, strings were generated by hand and for the most part arbitrarily. The exception

was with userids and passwords, which must match a pair in the database for the test to

proceed past the login.

The test requirements were refined into actual tests by adding input values. They were

run through a Web browser by entering values into the HTML forms by hand. Consider the

following test requirement to execute an operational transition:

index —–� login −→+ browse −→ logout ; record add —–� record insert

The first transition is a form link transition and values for the form are userid =

"demo" and password = "demo". Since the login was successful, a forward transition is taken

to browse. The test logs out with a simple link transition, and then accesses the record add

component with an operational transition. From there, the test requires values for the form,

which are chosen arbitrarily as name="X", category="A", and content="xxx", and takes a

form link transition to record insert. This test resulted in a failure, because the record was

added after the logout.

5.2 Test Coverage Analysis

Tests for STIS are presented as test specification derivations and the intra- and inter-

component tests are merged. A parsing tool was used to generate the atomic sections and

to generate the composite sections; the WAG was generated by hand, as were the test spec-

ifications. Values for form parameters were selected by hand, mostly arbitrarily except for

28

userid and passwords. STIS contains 91 atomic sections, combined into the 17 composite

sections listed in Table 1. The atomic and composite sections were used as a method for

test evaluation; tests were measured by calculating the number of atomic sections that were

reached. A total of 156 tests were generated.

The complete set of tests resulted in a total of 56 failures. All failures were naturally

occurring and not known before testing began. Table 2 provides data on the tests and the

test results. For each group of tests, Table 2 shows the number of test requirements, the

number of test requirements that could not be satisfied, and the actual number of tests

created. The number of atomic sections covered are shown for each group of tests (the total

AtS coverage is cumulative across the test sets, not a sum). Finally, the number of failures

found for each group is shown.

STIS has over 11,100 full invalid paths, so this experiment used the each node version

of the invalid path criterion. Data for the invalid path tests are also split into two columns

to separate the IP-1 and IP-2 tests. Recall that invalid tests were created by extending

prime path tests by adding a sequence of two transitions. IP-1 tests are those that contain

only the first (operational) transition. 40 of those paths were infeasible, 20 produced correct

output, and 30 produced incorrect output. Of the 30 failing tests, 13 caused a runtime

failure of STIS and 17 caused incorrect output. The second transitions (extending IP-1 tests

to IP-2) could not be executed on the 40 infeasible paths or the 13 that resulted in runtime

failure, so were infeasible. Of the 210 IP-2 tests, 92 were created by extending IP-1 tests

that were infeasible and 18 from IP-1 tests that had a runtime failure. Of the remaining

100 IP-2 tests, the last transitions for 31 were unavailable because the incorrect output from

the operational transition resulted in the links for the transition not being present. An

additional 5 were infeasible because of forward transitions. The next to last node contained

a forward transition, which went to another node, thus the last transition in the IP-2 test

was unavailable. So there were 92+18+31+5 = 146 infeasible IP-2 tests.

29

Table 2: Test coverage and failure data.
Prime Invalid Invalid Path Total
Path Access IP-1 IP-2

Number of test requirements 32 10 90 210 342
Infeasible test requirements 0 0 40 146 186
Number of tests 32 10 50 64 156
ATS coverage (91 total) 75 44 79 79 79

Total number of failures 0 7 30 19 56

Table 3 lists the number of failures found by each group of tests. The failures are divided

into nine categories. This is not meant to be a comprehensive list of Web application failure

categories, merely a categorization of the failures observed when testing STIS. In the first two

categories, a component of the software on the server failed and no valid page was returned.

These included the 13 failures that prohibited invalid path tests from being completed.

Categories 3, 4 and 5 allowed users to access STIS without being properly authenticated

through the login. Categories 6 through 9 are not as severe. Category 6 allowed users to

edit categories that were not in the database, category 7 allowed empty records to be added,

category 8 allowed the user to see the wrong content and category 9 failures were messages

that were irrelevant or invalid.

5.3 AtS Coverage

The 156 tests from the WAG covered 79 of 91 atomic sections (86.8%). While this seems

like good coverage, at least on the surface, it is important to understand why coverage

was not complete. Specific questions are: why did the tests not cover the remaining 13

atomic sections, how difficult would it be to achieve 100% AtS coverage by hand, and how

many more failures would be detected if 100% AtS coverage was achieved? Accordingly, we

analyzed the remaining atomic sections and generated tests by hand to cover them.

1. Five atomic sections display information when the database fails. During the origi-

30

Table 3: Types of failures found.
Failure Category Prime Invalid Invalid Total

Path Access Path-1 Path-2
1. Runtime failure 0 2 8 2 12
2. Unhandled software excep-

tion
0 0 5 0 5

3. Unexpected page content
displayed w/o authentica-
tion

0 4 6 0 10

4. Record added w/o authen-
tication

0 1 2 2 5

5. Search allowed w/o authen-
tication

0 0 0 2 2

6. Editing non-existent cate-
gory

0 0 2 0 2

7. Adding a record with empty
fields; value is null

0 0 5 4 9

8. Unexpected content dis-
played with authentication

0 0 2 6 8

9. Irrelevant message 0 0 0 3 3

Total number of failures 0 7 30 19 56

31

nal tests, the database never failed, so those atomic sections were not covered. This

can be considered to be a question of controllability because it is difficult to force a

database failure through testing. The specific atomic sections from Table 1 that were

not covered are login.HEAD (the second occurrence), login.p3, logout.p2, logout.p3

and logout.HEAD.

2. Three atomic sections, login.p4, login.BAR, and login.p5 from Table 1, are displayed

when the user uses an invalid userid or password. All of the original tests used correct

user ids and passwords.

3. Two atomic sections, login.HEAD (the first occurrence) and login.p2, are displayed

when the user does not completely fill out the login form, leaving missing values.

4. One atomic section, BAR.p2, displays the link for the STIS administrator to add new

user accounts. We did not test STIS using the administrator account, so this atomic

section was not covered.

5. One atomic section, categories.p8, is displayed when there is no category in the database.

During our testing, the database was already initialized with categories, so this AtS

was not covered.

6. One atomic section, record edit.p3, displays an error message when there is something

wrong when editing a record. No inputs were selected to enforce this message, so this

AtS was not covered.

Based on the above analysis, we generated seven additional test cases. Data base failure

was simulated for two tests by closing the connection before running tests. A third test

case was created that uses an invalid user id and password. One test case was generated by

leaving the password field blank. A fifth was created to log in to the administrator’s account.

32

A sixth was created by deleting all categories. A final test changed the name of a record to

a name that already existed in the database.

The sixth test found an additional failure, a database integrity problem. Removing the

cateogry names cause the remaining records to have null categories. That is, the software did

not delete records in a category or change the records’ categories to “none” when category

names are deleted. These additional seven tests gave 100% AtS coverage, and found one

more failure.

5.4 Analysis and Discussion

One point to note is that the number of tests in Table 2 is slightly overstated. The exper-

imental process of this paper resulted in 342 test requirements and 156 tests. If applied in

actual practice, a test engineer would directly create the invalid path-2 tests and skip the

prime path and invalid path-1 tests. The test and results listed under the prime path and

invalid path-1 columns would be invalid path-2 tests that did not complete. If infeasible

tests could be detected automatically, which is possible, only 74 tests would be needed for

STIS.

The fact that the prime path tests did not find any failures is particularly noteworthy,

because those are the most “traditional” tests, and prime path coverage is a very strong

graph-based criterion (it subsumes node and edge coverage, among others). Other research

papers have suggested testing static transitions, but this is the first research that tests

operational transitions. All of the failures in this study were found by using operational

transitions and invalid form data, testing for web applications that is new to this paper.

The AtS coverage of the 156 WAG tests is worthy of detailed consideration. For most

practical use of test criteria, 87% coverage is considered reasonable and probably sufficient.

Many of the 13 atomic sections that were not covered are particularly difficult to formulate

tests for, particularly when generating tests automatically. Incompletely entering forms

33

is already a known technique [9, 25], and one that can easily be incorporated into AtS

testing. Simulating a database failure is a testing step that should be fairly obvious to a

human tester, but somewhat complicated to achieve with purely automated testing. It is

also fairly obvious to generate invalid logins and to enter new records incorrectly, but these

require rather specific inputs that are more likely to be generated by a human tester than

an automated tool. The “no category” failure is particularly devious. Putting the system

in a state where there are no categories, yet records still exist for categories that used to

be present, is difficult to do automatically. Yet, this test revealed a serious problem in

the software. To summarize, the automated testing achieved good coverage and found lots

of failures, yet not quite full coverage and not quite all failures. Whether it is worth the

extra manual analysis and test generation is not just an engineering decision, economics and

marketing factors must also be considered.

Because the Web is a relatively new way to deploy software, it is instructive to look

closely at some of the new types of failures that occur. An example of an operational tran-

sition error is that of editing a deleted data record in STIS. If the user enters a record R,

then deletes R, it should be removed from the database. In fact, it is correctly removed.

However, an operational transition (back button) can be used to return to a screen where

R was shown! If the user then tries to edit R, STIS creates a page with the record la-

bel but an erroneous message in the field (“User not found”). This exact error was also

found in a commercial Web application deployed at the authors’ university for faculty use.

This behavior is only possible because the client caches data locally, and then redraws it

when operational transitions are used. Non-web applications could not exhibit this type of

behavior.

Another example is when the software developers assume that the users will only access

Web applications through existing links. However, clever (or even careless) users can access a

Web application by entering URLs directly in the browser’s URL window or by bookmarking

34

and reusing URLs. Sometimes this can be used to bypass security to directly access parts of

the Web application that should be protected. Sometimes this can be used to discover files

that the developers assume are hidden. For example, the second author was putting quizzes

in a directory before class, and found that some students were finding the quizzes early

by guessing the file names. Also, temporary or “debug” Web components are occasionally

stored in a directory with the rest of a Web application. If a user discovers and uses these

components, either accidentally or intentionally, the application may be put into an invalid

state.

5.5 Limitations and Threats to Validity

The STIS case study, though informative, has some limitations, including two threats to

external validity. STIS is only one application and it is not certain that results on STIS

will apply to other Web applications. Concern about this threat should be ameliorated

somewhat by the anectodal examples of failures in commercial Web applications mentioned

in the paper. Second, STIS was built by an inexperienced student and all the failures found

were naturally occurring. It is possible that a more experienced developer would not make

so many mistakes of this type (although we have found several faults of this type in deployed

programs, including the NSF’s FastLane).

Another issue is with input values. Input values to the HTML forms were generated by

hand, and composed mostly of arbitrary strings. This is a cumbersome process. The subject

application, STIS, does not actually do much with the input data except pass it through to

a database, which avoided some problems in this study. However, a more robust method

to generate values is needed. Other researchers are investigating this problem, both in the

context of Web applications [4, 9] and for general GUI applications [22].

Finally, the test process in this paper used a mix of automation and manual work.

With proper tool development, nearly all of the steps can be automated. The most glaring

35

exception, of course, is the final step to ensure 100% AtS coverage. This requires careful

semantic analysis of the uncovered atomic sections and the software, and further work to

create the tests.

6 Related Work

Web applications tend to be based on gathering, processing, and transmitting data among

heterogeneous hardware and software components so data flow approaches may be useful if

adapted to Web software [11, 13, 14, 28]. Most Web software is object-oriented in nature, so

inter-class [8, 18, 24, 26] and intra-class [1] testing techniques can also help find some faults.

Most research in testing Web applications has focused on client-side validation and static

server-side validation of links. An extensive listing of existing Web test support tools is on a

Web site maintained by Hower [16]. The list includes link checking tools, HTML validators,

capture/playback tools, security test tools, and load and performance stress tools. These

are all static validation and measurement tools, none of which support functional testing or

black box testing. This project addressed problem 1 in Section 1.1.

The Web Modeling Language (WebML) [6, 7] allows Web sites to be conceptually de-

scribed. The focus of WebML is primarily from the user’s view and the data modeling.

Modeling the dynamic integration aspects of the software as presented here is complemen-

tary to the solutions proposed by WebML.

More recent research has looked into testing software as statically determined, but none

have addressed the problem of dynamic integration. Kung et al. [19, 21] have developed a

model to represent Web sites as a graph, and provide preliminary definitions for developing

tests based on the graph in terms of Web page traversals. Their model includes static link

transitions and focuses on the client side without limited use of the server software. They

define intra-object testing, where test paths are selected for the variables that have def-use

chains within the object, inter-object testing, where test paths are selected for variables that

36

have def-use chains across objects, and inter-client testing, where tests are derived from

a reachability graph that is related to the data interactions among clients. This research

addressed problems 1 and 7 in Section 1.1.

Ricca and Tonella [25] proposed an analysis model and corresponding testing strategies

for static Web page analysis. As Web technologies have developed, more and more Web

applications are being built on dynamic content, and therefore strategies are needed to model

these dynamic behaviors, thus this paper goes further by investigating more and different

execution paths. Ricca and Tonella addressed problems 1, 2, and 3 in Section 1.1.

Benedikt, Freire and Godefroid [5] presented VeriWeb, a dynamic navigation testing

tool for Web applications. VeriWeb explores sequences of links in Web applications by

nondeterministically exploring “action sequences”, starting from a given URL. Excessively

long sequences of links are limited by pruning paths in a derivative form of prime path

coverage. VeriWeb creates data for form fields by choosing from a set of name-value pairs

that are initialized by the tester. VeriWeb’s testing is based on graphs where nodes are

Web pages and edges are explicit HTML links, and the size of the graphs is controlled by a

pruning process. This research addressed problems 1 and 2 in Section 1.1.

Elbaum, Karre and Rothermel [9] proposed a method to use what they called “user

session data” to generate test cases for Web applications. Their use of the term “user session

data” was nonstandard for Web application developers. Instead of looking at the data kept

in J2EE servlet session, their definition of user session data was input data collected and

remembered from previous user sessions. The user data was captured from HTML forms and

included name-value pairs. Experimental results from comparing their method with existing

methods show that user session data can help produce effective test suites with very little

expense. The user session data approach addresses the testing of Web applications whose

inputs are entered via forms, problem 3 in Section 1.1.

Lee and Offutt [20] describe a system that generates test cases using a form of muta-

37

tion analysis. It focuses on validating the reliability of data interactions among Web-based

software system components. Specifically, it considers XML based component interactions,

since one of the primary vehicles for transmitting data among components is now XML [10].

This approach tests Web software component interactions, whereas our current research is

focused on the Web application level. This research addressed problem 7 in Section 1.1.

Yang et al. [27] focused on the so called “three-tier” model, and developed a tool that

helps to manage a test process across the three tiers. Their tool supports six subsystems

to help track documents, monitor the processes, monitor tests, monitor failures and support

test measurement, but does not directly address test generation. Their tool does not help

generate tests or provide criteria for which tests should be designed.

Jia and Liu [17] proposes an approach for formally describing tests for Web applications

using XML. A prototype tool, WebTest, based on this approach was also developed. Their

XML approach could be combined with the test criteria proposed in this paper by expressing

the tests in XML.

7 Conclusions and Future Work

This paper has presented three results. First, a new theoretical model that captures dynamic

aspects of Web applications was introduced. Second, test criteria based on the model were

developed and defined. Third, results from applying the model and tests on a case study

were presented. The tests caused a number of failures that were related to transitions that

are not modeled by other analysis and testing techniques.

The AtS model is based on identifying atomic elements of dynamically created Web

pages that have static structure and dynamic data contents. These elements are combined

to create composite Web pages using sequence, selection, aggregation, and regular expres-

sions. This modeling technique solves a significant problem with analyzing Web software

applications – that of statically representing the dynamic integration. This in turn allows

38

analysis techniques such as control flow analysis, data flow analysis, and slicing to be used

to support software engineering activities in testing and maintenance.

The AtS model only depends on the properties of HTTP and HTML, thus is inde-

pendent of software implementation technology. An application to testing Web applications

was also introduced. The testing uses the model of the Web application’s behavior to define

tests as sequences of user interactions. Previous research [19, 21, 25] developed tests that

addressed issues similar to the static link prime tests, the other tests are new to this paper

and were found to be the most effective at finding failures.

A number of open issues still remain with the model and the test criteria. The problem

of finding values to fill forms must be addressed. Solutions from other research efforts can

probably be incorporated into the test criteria described in this paper. In our study, we

generated the WAG by hand, but relatively straightforward algorithms can identify the

various transitions and construct the graph automatically. The tests were also submitted by

hand, but this can be automated by use of a tool like httpUnit, which allows web applications

to be accessed by bypassing the browser [12, 15].

Problems with session data, multiple users, and concurrency have not explicitly been

addressed. The Web transition model can be used to support maintenance and regres-

sion testing by helping the developer determine which software components are affected by

changes. We expect that adding data flow information to the model and understanding the

types of couplings among Web software components will help those problems. We also plan

to address ancillary problems such as automatically deriving test cases.

Another issue is that of output validation. This is particularly difficult with Web ap-

plications because of the low observability. The simplest form of output validation is simply

to check the result that is sent to the client. However, other parts of the output are stored

as state on the server, including files, data bases, and in-memory data stores such as session

data and beans. Some parts of this state are hard to view and may be used by the same

39

client in the same session, the same client in another session, or other users. Tracking these

kinds of outputs is very difficult and we are not aware of any research that has addressed

this problem as yet.

8 Acknowledgments

We would like to thank Paul Ammann for help identifying a key problem in this research,

Anneliese Andrews and Roger Alexander for helpful discussions on atomic sections, and

Yuan Yang for implementing STIS.

References

[1] Roger T. Alexander and Jeff Offutt. Criteria for testing polymorphic relationships. In

Proceedings of the 11th International Symposium on Software Reliability Engineering,

pages 15–23, San Jose CA, October 2000. IEEE Computer Society Press.

[2] Paul Ammann and Jeff Offutt. Coverage Criteria for Software Testing. In preparation,

2004.

[3] Paul Ammann, Jeff Offutt, and Liu Ling. Touring prime paths. In preparation, 2004.

[4] Anneliese Andrews, Jeff Offutt, and Roger Alexander. Testing Web applications. Soft-

ware and Systems Modeling, 2004. To appear.

[5] Michael Benedikt, Juliana Freire, and Patrice Godefroid. Veriweb: Automatically test-

ing dynamic Web sites. In Proceedings of 11th International World Wide Web Confer-

ence (WW W’2002), Honolulu, HI, May 2002.

[6] Stefano Ceri, Piero Fraternali, and Aldo Bongio. Web modeling language (WebML):

A modeling language for designing Web sites. In WWW9 Conference, Amsterdam,

Netherlands, May 2000.

[7] Stefano Ceri, Piero Fraternali, Aldo Bongio, Marco Brambilla, Sara Co-

mai, and Maristella Matera. Designing Data-Intensive Web Applica-

tions. Morgan Kaufmann, December 2002. Information available online at:

http://webml.elet.polimi.it/webml/book.html.

40

[8] M. H. Chen and M. H. Kao. Testing object-oriented programs - An integrated ap-

proach. In Proceedings of the Tenth International Symposium on Software Reliability

Engineering, pages 73–83, Boca Raton, FL, November 1999. IEEE Computer Society

Press.

[9] Sebastian Elbaum, Srikanth Karre, and Gregg Rothermel. Improving Web application

testing with user session data. In Proceedings of the 25th International Conference

on Software Engineering, pages 49–59, Portland, Oregon, May 2003. IEEE Computer

Society Press.

[10] S. Feldman. Electronic marketplaces. IEEE Internet Computing, pages 93–95, 2000.

[11] P. Frankl and E. J. Weyuker. An applicable family of data flow testing criteria. IEEE

Transactions on Software Engineering, 14(10):1483–1498, October 1988.

[12] Russell Gold. Httpunit home. online: SourceForge, 2003.

http://httpunit.sourceforge.net/, last access February 2004.

[13] M. J. Harrold and Gregg Rothermel. Performing data flow testing on classes. In Sym-

posium on Foundations of Software Engineering, pages 154–163, New Orleans, LA,

December 1994. ACM SIGSOFT.

[14] M. J. Harrold and M. L. Soffa. Selecting data flow integration testing. IEEE Software,

8(2):58–65, March 1991.

[15] Erik Hatcher and Steve Loughran. Java Development with Ant. Manning Publications,

August 2002.

[16] Rick Hower. Web site test tools and site management tools, 2002.

www.softwareqatest.com/qatweb1.html, last access February 2004.

[17] Xiaoping Jia and Hongming Liu. Rigorous and automatic testing of Web applications.

In 6th IASTED International Conference on Software Engineering and Applications

(SEA 2002), pages 280–285, Cambridge, MA, November 2002.

[18] Zhenyi Jin and Jeff Offutt. Coupling-based criteria for integration testing. Journal of

Software Testing, Verification, and Reliability, 8(3):133–154, September 1998.

41

[19] D. Kung, C. H. Liu, and P. Hsia. An object-oriented Web test model for testing

Web applications. In Proc. of IEEE 24th Annual International Computer Software and

Application Conference (COMPSAC 2000), Taipei, Taiwan, October 2000.

[20] Suet Chun Lee and Jeff Offutt. Generating test cases for XML-based Web component

interactions using mutation analysis. In Proceedings of the 12th International Sympo-

sium on Software Reliability Engineering, pages 200–209, Hong Kong China, November

2001. IEEE Computer Society Press.

[21] C. H. Liu, D. Kung, P. Hsia, and C. T. Hsu. Structure testing of Web applications. In

Proceedings of the 11th Annual International Symposium on Software Reliability Engi-

neering, pages 84–96, San Jose CA, October 2000.

[22] A. M. Memon, M. L. Soffa, and M. E. Pollack. Hierarchical GUI test case generation

using automated planning. IEEE Transactions on Software Engineering, 27(2):144–155,

February 2001.

[23] Jeff Offutt. Quality attributes of Web software applications. IEEE Software: Special

Issue on Software Engineering of Internet Software, 19(2):25–32, March/April 2002.

[24] A. Parrish and S. H. Zweben. Analysis and refinement of software test data adequacy

properties. IEEE Transactions on Software Engineering, 17(6):565–581, June 1991.

[25] F. Ricca and P. Tonella. Analysis and testing of Web applications. In Proceedings of

the 23rd International Conference on Software Engineering (ICSE 2001), pages 25–34,

Toronto, CA, May 2001.

[26] C. D. Turner and D. J. Robson. The state-based testing of object-oriented programs. In

IEEE International Conference on Software Maintenance, Montreal, Quebec, Canada,

September 1993.

[27] Ji-Tzay Yang, Jiun-Long Huang, Feng-Jian Wang, and William C. Chu. An object-

oriented architecture supporting Web application testing. In Proceedings of IEEE

23th Annual International Computer Software and Application Conference (COMPSAC

2000), Phoenix, Arizona, October 2000.

[28] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software unit test coverage and

adequacy. ACM Computing Surveys, 29(4):366–427, December 1997.

42

