
A Controlled Experimental Evaluation of Test Cases Generated from UML
Diagrams

Aynur Abdurazik and Jeff Offutt
Dept of Info and Software Engr

George Mason University
Fairfax, VA 22030-4444

USA
{aynur,ofut}@ise.gmu.edu

Andrea Baldini
Dipartimento di Automatica e Informatica

Politecnico di Torino
Corso Duca degli Abruzzi 24, I-10129, Torino

Italy
baldini@polito.it

Abstract

This paper presents a single project experiment on the
fault revealing capabilities of test sets that are generated
from UML statecharts and sequence diagrams. The results
of this experiment show that the statechart test sets do bet-
ter at revealing unit level faults than the sequence diagram
test sets, and the sequence diagram test sets do better at re-
vealing integration level faults than the statechart test sets.
The experimental data also show that the statecharts result
in more test cases than the sequence diagrams. The experi-
ment showed that UML diagrams can be used in generating
test data systematically, and different UML diagrams can
play different roles in testing.

1. Introduction

There are different ways to develop software. Each
methodology defines its own software life cycle concepts
and uses different notations. All software development life
cycles include five main activities: specification, design,
implementation, testing, and maintenance. Testing activi-
ties are often considered to be the most expensive [4], and
are crucial for establishing confidence in the software.

A programunit is a procedure, function, or method. A
moduleis a collection of related units, for example, a C
file, an Ada package, or a Java class.Unit and module test-
ing (or just unit testing) is the testing of program units and
modules independently from the rest of the software.In-
tegration testingrefers to testing interfaces between units
and modules to assure that they have consistent assumptions
and communicate correctly [4]. This is in contrast tosys-
tem testingwhere the objective is test the entire integrated
system as a whole. Because of the emphasis on testing in-
terfaces, integration testing is usually a white box testing

activity that requires the availability of source code. In con-
trast, system testing usually assumes the absence of source
code, and is thus usually black box.

There are also many approaches to generate test cases.
A testor test caseis a general software artifact that includes
test case input values, expected outputs for the test case,
and any inputs that are necessary to put the software system
into the state that is appropriate for the test input values.
Test cases are usually derived from software artifacts such
as specifications, design or the implementations. One sig-
nificance of producing tests from specifications and design
is that the tests can be created earlier in the development
process, and be ready for execution before the program is
finished. Additionally, when the tests are generated, the
test engineer will often find inconsistencies and ambiguities
in the specifications and design, allowing the specifications
and design to be improved before the program is written.

Test engineers measure the extent to which a criterion
is satisfied in terms ofcoverage, which is the percent of
test requirements that are satisfied. There are various ways
to classify adequacy criteria. However, specification-based
testing criteria have been focused on formal specifications
and based on certain specificparts of the specifications.
Large, complex software systems are specified in many
parts that describe different aspects of the software. This
includes such aspects as the overall functional description
of the software, state-based behavior models of the soft-
ware, and connections between software components. Re-
searchers have used this to generate separate types of tests
that are drawn from specific specification descriptions, and
that are intended to target different types of faults.

However, the question of whether this piece-meal ap-
proach to testing will find the different types of faults has
not been empirically validated. This paper carried out an ex-
perimentation on this testing assumption. Specifically, we
ask the dual question of whether tests that are designed from



one type of specification description and target one type
of faults will find the target faults, and whether the same
tests can find other types of faults. In our study, two differ-
ent specification/design sources are used to generate tests,
and their fault revealing capabilities at two testing levels are
compared. The specification/design language for this ex-
perimentation is the Unified Modeling Language, the parts
used are the statecharts and sequence diagrams, and the test-
ing levels are unit and integration testing levels.

2. The Unified Modeling Language

The Unified Modeling Language (UML) is a language
for specifying, visualizing, constructing, and documenting
the artifacts of software systems. It is also used for business
modeling and other non-software systems. The UML rep-
resents a collection of engineering practices that have been
used to model large and complex systems [9].

In the UML, complex systems are designed and modeled
through a small set of nearly independent views of a model.
The UML defines nine graphical diagrams to specify and
design software: use case diagrams, class diagrams, object
diagrams, collaboration diagrams, sequence diagrams, stat-
echart diagrams, activity diagrams, component diagrams,
and deployment diagrams. The following subsections give
a detailed description of statecharts and sequence diagrams,
the two UML diagrams used in this experiment.

2.1. Sequence Diagrams

Sequence diagrams capture time dependent (temporal)
sequences of interactions between objects. Sequence dia-
grams can be transformed to equivalent collaboration dia-
grams. Message sequence descriptions are provided in se-
quence diagrams to elicit meanings of the messages passed
between objects. Sequence diagrams describe interactions
among software components, and thus are considered to be
a good source for integration testing.

Sequence diagrams include flows of events during inter-
actions, with primary flows andalternativeflows. Alter-
native flows represent conditional branches in the process-
ing. For example, we describe the normal flow of events for
“make call” as a flow of events that happen to make a suc-
cessful call. Alternatives for this interaction include other
event flows that cause “make call” to fail, including “callee
busy”, “network unavailable”, and “caller aborts the call be-
fore connection is made”.

2.2. Statechart Diagrams

Statechart diagrams show states and state transitions to
describe the behavior of the system. Statechart diagrams

define the dynamic behavior of a system in response to ex-
ternal stimuli. Statechart diagrams are especially useful in
modeling reactive objects whose states are triggered by spe-
cific events. Statechart diagrams describe behavior of indi-
vidual software components, and thus are considered to be
a good source for unit testing.

3. Description of the Experiment

Basili et al. [3] recommended a framework for design-
ing and analyzing experimental work performed in software
engineering. The suggested framework of experimentation
consists of four phases: (1) definition, (2) planning, (3)
operation, and (4) interpretation. Table 1 shows the def-
inition phase of this experimentation. The motivation of
this experimentation is to understand the roles of different
UML diagrams in test case generation. To achieve this goal,
test cases that are generated from UML statecharts and se-
quence diagrams are used both at unit and integration level
testing, and their fault revealing capabilities are compared.
This experimentation is designed from the perspective of a
researcher, and is carried out as a case study (single project).

3.1. Hypotheses

A number of papers in the literature have made the as-
sumption that effective tests at several levels (unit/module,
integration, and system) can be created by basing the tests
on specification and design artifacts that describe aspects
of the software at those levels. [11, 1, 16, 8, 5]. One of
our long term goals is to use various UML specification and
design descriptions to develop tests, and to evaluate the as-
sumption. As a beginning, we are comparing the fault re-
vealing ability of tests cases generated from artifacts at dif-
ferent levels. We are also interested in the numbers of the
test cases that result from different specification and design
artifacts. We would like to see if there is correlation be-
tween the number of test cases in a test set and the number
of faults revealed by that test set. As a beginning, we ex-
perimentally compare tests derived from UML statecharts,
which are used to describe units and modules, and sequence
diagrams, which are used to define the integration of mod-
ules.

The null hypotheses for our experiment are:

• H01. There is no difference between the number of
faults revealed by statechart and sequence diagram test
sets at unit and integration testing levels.

• H02. There is no difference between the number of
test cases generated from statecharts and sequence di-
agrams.

2



Motivation Understand the roles of different UML diagrams in test case generation.
Object Theory
Purposes Characterize the test cases that were generated from different

UML diagrams, and compare their fault revealing capability.
Perspective Researcher
Domain Project
Scope Single project

Table 1. Study Definition

3.2. Independent and Dependent Variables

Independent variables in this experiment are the types of
UML diagrams, the testing levels used, the criteria used to
create tests, and the faults that are used at each testing level.
Statecharts and sequence diagrams are used because they
are intended to help developers describe software at differ-
ent levels of abstraction and because criteria for generating
tests have previously been defined that easily be applied to
these diagrams. The criteria based on statecharts are de-
signed to be applied during unit and module testing, and the
criteria based on sequence diagrams are designed to be ap-
plied during integration testing. These criteria are defined
in Section 3.4. The faults are inserted by hand.

The dependent variables of the experiment are the two
sets of test cases that are generated and the number of faults
found at each level using these test sets.

3.3. Experimental Subjects

For this experiment, we modeled the software for a stan-
dard cell phone. The experimental materials that needed for
this experiment are the following:

1. Specification and design documents of the cell phone
handset system. This includes a class diagram of six
classes, five statechart diagrams, and six sequence dia-
grams with 37 alternatives.

2. The implementation of the above specification and de-
sign, including eight classes of about 600 lines of Java
code.

3. Test cases that are generated from the statecharts and
sequence diagrams. There were81 tests for the state-
charts and43 from the sequence diagrams.

4. A collection of 49 unit and integration level faults,
each of which was placed into a separate copy of the
program.

5. Unix shell scripts that run the test cases on each faulty
version of the implementation and records the result.

Complete UML diagrams and implementation will be
provided in an accompanying technical report [2]. A high
level class diagram is shown in Figure 1. The cell phone
includes initialization of the system, making a call, an-
swering a call, notification of an incoming call, and no-
tification of an incoming text message. The cell phone
system in this experiment has eight classes. Five of the
classes use state dependent design, hence, we have five
state charts. They areUserInterface , HandsetCon-
troller , NetworkInterface , Transmitter , and
Receiver . The functionalities of the cell phone are de-
scribed with six sequence diagrams with a total of 37 al-
ternatives:Initialization , Making a call , An-
swering a call , Notification of incoming
call , Notification of incoming text mes-
sage , andTurning off the cell phone .

3.4. Generating Test Cases

Test cases were generated by hand following previously-
defined test generation techniques. To eliminate potential
for bias, tests were not generated by the same person who
wrote the software and inserted faults. The test criteria used
and process followed are detailed for each diagram below.

Sequence diagrams: In the UML, amessageis a request
for a service from one UML actor to another, these is typi-
cally implemented as method calls. Each sequence diagram
represents a complete trace of messages during the execu-
tion of a user-level operation. We formmessage sequence
pathsby using the messages and their sequence numbers.
Message sequence pathscan be traces of system level inter-
actions or component (object) level interactions. We de-
fined the following coverage criteria for generating tests
from sequence diagrams was defined elsewhere [1].

Message sequence path coverage:For each sequence
diagram in the specification, there must be at least one test
caseT such that when the software is executed usingT , the
software that implements the message sequence path of the
sequence diagram must be executed.

The message sequence pathcoverage criterion is used
to generate tests from the sequence diagrams. For each se-

3



UserInterface

phoneNumber: String
buttonPressed: String
message: String
main()
getPhoneNumber()
displayMessage()
clear()
actionPerformed()
setConnectinoLevel()
jbInit()
setPhoneNumber()
UserInterface()

HandsetController

ON: Integer=1
OFF: Integer = 0
frame: UserInterface
packFrame: Boolean = true
networkInterface:
NetworkInterface
networkStarted: Boolean
button: String
cellPhoneOn: Boolean = false
availability: Integer
connectionLevel: Integer
incomingSignal: Integer
cellPhone: Integer
receiver: Receiver
transmitter: Transmitter

main()
HandsetController()
buttonPressed()
talk()
start()
incomingCallArrived()
textMessageArrived()
connectionLevelChanged()
timeout()
externalHangup()

Transmitter

thread: Thread
turnOn: Boolean
volume: Integer
sample: AudioSample
transmit: Boolean

startTransmit()
stopTransmit()
start()
turnOff()
turnOn()

Receiver

thread: Thread
turnOn: Boolean
volume: Integer
sample: AudioSample
transmit: Boolean

start()
startReceive()
stopReceive()
turnOff()
turnOn()

AudioSample

 deviceName: String

getSample(): String

*
1

11

1

1

1

1

1
*

NetworkInterface

thread: Thread
powerOn: Boolean
distance: Integer
availability: Integer
random: Random
inComingSignal: Integer
connectionLevel: Integer

start()
stop()
run()
makeConnection()
NetworkInterface()
checkIncomingSignal()
endConnection()
connected()
timeout()

1

1

Figure 1. Cell Phone Class Diagram

quence diagram in the specification, a test case is generated
for each normal and for each alternative message sequence.

Statecharts: UML statecharts are based on finite state
machines using an extended Harel state chart notation, and
are used to represent the behavior of an object. Thestateof
an object is the combination of all values of attributes and
objects the object contains. The dynamics of objects are
modeled through transitions among states.

We use thefull predicatetest case generation criterion
defined by Offutt et al. [12, 10, 11]. Statecharts represent
guardsand actionson transitions using predicates. The
guards are conditions that must be true for the transition to
be taken, and the actions represent what happens when the
transition is taken. Full predicate coverage requires that for
every transition, every predicate and every clause within the
predicate has taken every outcome at least once, and every
clause has been shown to independently affect its predicate.

Full Predicate Coverage:For each predicateP on each
transition, the test set T includes tests that cause each clause
c in P to result in a pair of outcomes where the value ofP
is directly correlated with the value ofc.

In this definition, “directly correlated” means thatc con-
trols the value ofP , that is, one of two situations occurs.
Eitherc andP have the same value (c is true impliesP is
true andc is false impliesP is false), orc andP have oppo-
site values (c is true impliesP is false andc is false implies
P is true). This explicitly disallows cases such asc is true
impliesP is true andc is false impliesP is true.

To satisfy the requirement that thetest clausecontrols
the value of the predicate, other clauses in the predicate
must be eitherTrue or False . For example, if the pred-
icate is(X ∧ Y ), and the test clause isX , thenY must be
True . Likewise, if the predicate is(X ∨ Y ), Y must be
False .

The original full predicate coverage criterion was based
on the notion of a predicate. The criterion considers tran-
sitions that are triggered by change events with or with-
out other conditions that can be expressed in boolean ex-
pressions. However, UML statecharts have other types of
events,call eventsandsignal events. These events cannot
be mapped directly into the existing full predicate testing
method. To generate test cases, we first find out what event
can trigger the starting transition of the statechart and under
what conditions the event can be triggered. We then choose
values to cause that event to occur and to satisfy the condi-
tions.

Test case generation for the cell phone application
yielded 81 test cases from statecharts, and 43 from sequence
diagrams.

3.5. Program Faults

Unit level and integration level faults are inserted into
the implementation by hand. We define unit level faults as
faults that cause obvious and direct incorrect behavior of a
unit. This includes most of the traditional mutation oper-
ators such as variable reference faults, operator reference
faults, associative shift faults, variable negation faults, and
expression negation faults [6, 7]. Integration faults are de-
fined as faults that can cause two or more units to interact
together incorrectly, even they are correct when tested in
isolation. This includes faults such as incorrect method call,
incorrect parameter passing, and incorrect synchronization.
For this experiment, 30 unit level faults and 20 integration
level faults were designed. We found one existing fault in
the implementation, and three integration faults turned out
to be similar and all failed under the same conditions. Thus,
the experiment used 31 unit level faults and 18 integration
faults.

The faults were inserted and tested in the following man-
ner: one faulty version of the program is created at a time,
and then ran against all the test cases one-by-one until ei-
ther the fault is revealed or all test cases are executed. A
fault is considered to berevealedif the output of the faulty

4



version of the program is different from that of the original
program on the same input. That is, we used the original
program as the “oracle”. The faults were kept in separate
versions of the program to make bookkeeping easier (when
a failure occurred, it was clear which fault was found) and
to avoid interactions between faults such as masking.

3.6. Experimental Procedure

The experiment was performed according to the follow-
ing steps.

1. Analyze and specify the cell phone handset system us-
ing UML diagrams. The outcome of the specifica-
tion and design include Class Diagrams, Statecharts,
Collaboration/Sequence Diagrams, and Use Case dia-
grams.

2. Implement the system.

3. Manually generate test cases from statecharts (81) and
sequence diagrams (43) to satisfy the testing criterion.

4. Manually generate faults for unit and integration test-
ing level and insert them into the implementation.

5. Run each set of test cases from each diagram type on
the implementation, and record faults found by their
types.

The specification and implementation of the cell phone
system was done by the first author, and test cases
were generated by the third author. Faults were de-
signed and inserted by the first two authors. Two
software tools were used to specify and implement the
subject system. The TogetherControl Center software
(http://www.togethersoft.com/ ) was used to
specify the cell phone system, and the JBuilder tool
(http://www.borland.com/jbuilder/ ) was used
to implement the system in Java. Both are leading tools that
are widely used in industry.

4. Experimental Results and Analysis

The number of faults found during this experiment are
given in Table 2. The rows represent the two types of faults,
and the columns represent the number of faults found by the
two types of test cases.

We can see from the data in the table that the statechart
tests revealed more unit level faults than the sequence dia-
gram tests, and the sequence diagram tests revealed more in-
tegration level faults than the statechart tests. Also, there are
more statechart tests than sequence diagram tests. Hence,
we can state that both null hypotheses are rejected.

The primary threat to the validity of the experimental
data is external, this is only one application and one set of
tests. Repetition of these results are needed in order to gen-
eralize the results.

There were also several lessons learned during this ex-
periment. One thing that became apparent is that UML stat-
echarts are not always sufficient for specifying low level
details, particularly when great precision is required. The
Object Constraint Language [15] can play a supplementary
role for this purpose, and the integration of the OCL into the
UML will provide better information for testing. Also, we
need to incorporate the previously unconsidered event types
into the full predicate criteria for UML statecharts.

Another problem encountered during this experiment
was with concurrency. The expected execution trace
that was developed from the sequence diagram sometimes
turned out to be different from the actual execution trace be-
cause of concurrency interactions. This could be a potential
problem in automating the testing process, and we proba-
bly need to incorporate some concurrent testing approaches
[13, 14].

5. Conclusions and Future Work

This paper presented a single project experimentation on
the fault revealing capabilities of test sets that are generated
from UML statecharts and sequence diagrams. The results
of this experiment shows that the statechart test sets have
better capability of revealing unit level faults than the se-
quence diagram test sets, and the sequence diagram test sets
have better capability of revealing integration level faults
than the statechart test sets. The experimental data also
shows that the statecharts resulted in more test cases than
the sequence diagrams. The experiment showed that UML
diagrams can be used to generating test data systematically,
and different UML diagrams can play different roles in test-
ing.

This experiment has limitations that difficult to avoid in
this kind of study. We are not able to do statistical analy-
sis because of the limited data from a single project. Also,
we cannot state that this project uses the “sample represen-
tative” of the software population. This is a problem that
plagues almost all software experimentation.

This is but one step in an ongoing research project. We
have defined test criteria for UML statecharts and sequence
diagrams. In the future, we plan to integrate UML specifi-
cations and OCL to generate stronger tests, and to develop
new testing criteria to test concurrency aspects. Finally,
large scale a multi-project experiment will be carried out
to make a general conclusion on this topic.

5



Number of Faults Faults Found by Faults Found by
Inserted Statechart TCs Sequence Diagram TCs

Unit
Faults 31 24 (77%) 20 (65%)
Integration
Faults 18 10 (56%) 15 (83%)

Table 2. Experimental Results

References

[1] Aynur Abdurazik and Jeff Offutt. Using UML collabo-
ration diagrams for static checking and test generation.
In Proceedings of the Third International Conference
on the Unified Modeling Language (UML ’00), pages
383–395, York, England, October 2000.

[2] Aynur Abdurazik, Jeff Offutt, and Andrea Bal-
dini. Experimental evaluation of uml-based testing
on a cell phone. Technical report ISE-TR-02-02,
Department of Information and Software Engineer-
ing, George Mason University, Fairfax VA, 2002.
http://www.ise.gmu.edu/techrep/.

[3] Victor R. Basili, Richard W. Selby, and David H.
Hutchens. Experimentation in software engineer-
ing. IEEE Transactions on Software Engineering, SE-
12(7):733–743, July 1986.

[4] B. Beizer.Software Testing Techniques. Van Nostrand
Reinhold, Inc, New York NY, 2nd edition, 1990. ISBN
0-442-20672-0.

[5] Philippe Chevalley and Pascale Thvenod-Fosse. Au-
tomated generation of statistical test cases from UML
state diagrams. InProc. of IEEE 25th Annual Inter-
national Computer Software and Applications Confer-
ence (COMPSAC2001), Chicago IL, October 2001.

[6] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints
on test data selection: Help for the practicing pro-
grammer.IEEE Computer, 11(4):34–41, April 1978.

[7] R. A. DeMillo and A. J. Offutt. Constraint-based auto-
matic test data generation.IEEE Transactions on Soft-
ware Engineering, 17(9):900–910, September 1991.
http://ise.gmu.edu/faculty/ofut/rsrch/abstracts/cbt.html.

[8] Y. G. Kim, H. S. Hong, S. M. Cho, D. H. Bae, and
S. D. Cha. Test cases generation from UML state dia-
grams.IEE Proceedings – Software, 146(4):187–192,
August 1999.

[9] Object Management Group. OMG UML Spec-
ification Version 1.3, June 1999. Available at
http://www.omg.org/uml/.

[10] A. J. Offutt. Generating test data from require-
ments/specifications: Phase III final report.
Technical report ISE-TR-00-02, Department of
Information and Software Engineering, George
Mason University, Fairfax VA, January 2000.
http://www.ise.gmu.edu/techrep/.

[11] Jeff Offutt and Aynur Abdurazik. Generating tests
from UML specifications. InProceedings of the Sec-
ond International Conference on the Unified Modeling
Language (UML ’99), pages 416–429, Fort Collins,
CO, October 1999.

[12] Jeff Offutt and Shaoying Liu. Generating test data
from SOFL specifications.The Journal of Systems and
Software, 49(1):49–62, December 1999.

[13] K. C. Tai, R. H. Carver, and E. E. Obaid. Debug-
ging concurrent ada programs by deterministic exe-
cution. IEEE Transactions on Software Engineering,
17(1):45–63, January 1991.

[14] R. N. Taylor and L. J. Osterweil. Anomaly detection in
concurrent software by static data flow analysis.IEEE
Transactions on Software Engineering, 6(3):265–277,
May 1980.

[15] Jos Warmer and Anneke Kleppe.The Object Con-
straint Language. Addison-Wesley, 1999. ISBN 0-
201-37940-6.

[16] H. Yoon and B. Choi. Effective testing technique for
the component customization in EJB. InProceedings
of 8th Asia-Pacific Software Engineering Conference
(APSEC 2001), Macau SAR, China, December 2001.
To appear.

6


