

Integration Testing of Object-oriented Components
Using FSMS: Theory and Experimental Details

GMU Technical Report ISE-TR-04-04, July 2004

Leonard Gallagher
Information Technology Laboratory
National Institute of Standards and

Technology
Gaithersburg MD 20899-8970 USA

lgallagher@nist.gov

Jeff Offutt†
Information and Software Engineering

George Mason University
Fairfax VA 22032-4400 USA

ofut@ise.gmu.edu

Abstract

In object-oriented terms, one of the goals of integration testing is to ensure that
messages from objects in one class or component are sent and received in the
proper order and have the intended effect on the state of external objects that
receive the messages. This research extends an existing single-class testing
technique to integration testing. The previous method models the behavior of a
single class as a finite state machine, transforms that representation into a data flow
graph that explicitly identifies the definitions and uses of each state variable of the
class, and then applies conventional data flow testing to produce test case
specifications that can be used to test the class. This paper extends those ideas to
inter-class testing by developing flow graphs and tests for an arbitrary number of
classes and components. It introduces flexible representations for message sending
and receiving among objects and allows concurrency among any or all classes and
components. A second major result is the introduction of a novel approach to
performing data flow analysis. Data flow graphs are stored in a relational database,
and database queries are used to gather def-use information. This approach is
conceptually simple, mathematically precise, quite powerful, and general enough to
be used for traditional data flow analysis. This testing approach relies on finite state
machines, database modeling and processing techniques, and algorithms for
analysis and traversal of directed graphs. A proof-of-concept implementation is
used to illustrate how the approach works on an extended example.

Keywords: Software integration testing, conformance testing, data flow testing,
data modeling, finite state machines, object-oriented

† Partially supported by the U.S. National Science Foundation under grant CCR-98-04111.

This work was prepared by United States Government employees as part of their official duties
and is, therefore, a work of the U.S. Government and not subject to copyright.

1 Introduction

Testing of object-oriented software is complicated by the fact that software being tested is often constructed from a combination

of previously written, off-the-shelf components with some new components developed to satisfy new requirements. The

previously written components are often �sealed� so that source code is not available, yet objects in the new components will

interoperate via messages with objects in the existing components. Software conformance testing is the act of determining

whether or not a software product conforms to a functional specification, where the functional specification is a set of rules that

the product must satisfy. The goal of this paper is to provide conformance-testing techniques for the integration of individual

components within a complete software system.

Each component is assumed to be object-oriented, that is, it is implemented with objects that have state and behavior. In this

paper, a class is the basic unit of semantic abstraction, a component is a closely related collection of classes, and a system is a

collection of components designed to solve a problem. An object is an instance of a class. Each object has state and behavior,

where state is determined by the values of variables of the class, and behavior is determined by methods (i.e. functions or

procedures) defined in the class that operate on one or more objects to read and modify their state variables. The behavior of an

object when acted upon by a method can be modeled as the effect the method has on the variables of that object together with the

messages it sends to other objects. Variables declared by the class that have one instance for each object are called instance

variables, and variables that are shared among all objects of the class (static in Java) are class variables. The results in this paper

are programming language-independent, but this paper uses a mix of Java and C++ terminology.

If a finite state machine represents the states and transitions of a class, then the behavior of an object can be captured as a set of

transition rules for each method. Thus finite state machines are often used for class specification in object-oriented analysis and

design [9, 11, 29, 39]. The behavior of a component is specified by the behavior of its constituent classes. The public interface

to a component is a list of public classes, which are accessed through the public methods in those classes. A state transition

specification for a class is the set of state transition rules for each method of the class. The state of an object is determined by the

values of its instance and class variables, which are collectively called state variables. Given a state transition specification for

each class in a software system, the goal of this research is to construct test specifications that can be used to construct an

executable test suite to determine if an implementation of a software system conforms to its functional specification.

This paper uses definitions from Booch [6] and Rumbaugh et al. [38] to characterize an object as something that has state,

behavior, and identity, and to characterize an object's class in terms of the states, events, and transitions of a finite state machine.

 A graph model of the software is used as a basis for generating test specifications. Hong et al. [22] developed a class-level flow

graph to represent control and data flow within a single class. Since testing a single instance of a single class greatly limits the

usefulness of the approach, this research uses their ideas as a basis for integration testing of multiple interacting classes. The

state transition specification is stored in a database, which is then used as a basis for creating a component flow graph, which

 -3-

includes control and data flow information. Test criteria are defined on this graph, and test specifications are generated to satisfy

the criteria.

This research began as an attempt to determine a sample space for data flow analysis in object-oriented software so that software

testing by statistical methods [5] could be applied. This paper provides a process that results in a set of test specifications that

could be used as a statistical sample space, but specific statistical methods have not been considered. The paper describes a

process that begins with state transition specifications for each class in an object-oriented software system, defines the transitions

that are relevant to a specific component of that system, and then translates the relevant transitions into a component flow graph

with nodes and edges labeled for control, and variable definitions and uses. Test criteria are defined on this graph, and sets of

paths are selected that constitute test specifications to satisfy the criteria. An executable test suite to determine whether a

software product conforms to its specification may then be constructed from the test specifications.

This paper introduces a novel approach to storing and computing data flow analysis information. Instead of the traditional

storage within program data structures, all information is stored in a relational database. Instead of complicated algorithms,

straightforward queries are used to record and process data flow information. This technique enhances scalability, because a lot

of information can be stored in the database in an efficient manner, and it makes the computation of data flow information

relatively simple. The database schemas and SQL queries are based on rather complex mathematical expressions, but the

mathematics is not necessary to understand or use the representation technique.

Moreover, this technique allows additional information to be provided to the tester. In traditional data flow testing [15], the tester

is provided with pairs of definitions and uses of variables (DU-pairs), and the tester attempts to find tests to cover those DU-

pairs by supplying tests through an instrumented program. These tests are sometimes random, arbitrary, automatically generated,

or generated by humans with well-defined goals. Traditional data flow testing works for individual functions because the number

of possible tests is fairly small, but is likely to run into trouble during inter-class testing because the number of possible tests is

much larger. Thus it is necessary to provide the tester with more information. The database representation allows more

information to be provided; instead of simply identifying def-use pairs, the tester is given full paths between the definitions and

uses (DU-paths). In traditional code-based data flow testing, storing the complete path predicates for anything more than a tiny

(20 to 50 LOC) function is impractical, and this has been a major factor in the lack of widespread adoption of the technique.

Using the database allows these potentially large predicates to be stored off-line, and all the I/O is handled invisibly by the

database.

The attributes and constraints of classes and methods are modeled as attributes and constraints of tables in a relational database.

In this manner, mathematical specifications over the class properties can be translated to database operations. Sections 3 through

6 describe the process of representing state transition specifications in a database, determining relevant transitions in the state

machine, generating a component flow graph, and determining test specifications. Section 7 presents an extended example of

this technique applied to an extended version of the common automobile cruise control system that includes the engine, brakes,

gas, throttle, displays and clutch.

2 Background

 -4-

Much of testing has been based on data and control flow through programs [15, 35]. In such testing, graphs are defined in which

nodes are formed from basic blocks, which are sequences of straight-line statements with the property that if the first statement is

executed, then all the statements will be executed. In a control flow graph, edges are formed from the branching statements of

the program. In a data flow graph, edges are formed from definitions (defs) and uses of the same memory locations. These

memory are usually referenced by one variable, but can also be referenced by multiple variable names through aliasing. A def of

a location x is a node in which x is given a value, and a use is a node in which the value is accessed. An edge is formed from

nodes in which a location is defined to nodes in which the location is used and there is a def-clear control path from the def to

the use. A def-clear subpath for a location X is a control subpath that does not contain a definition of X. A DU-pair is a

definition and a use of the same location such that there is a def-clear subpath from the def to the use. A DU-path is a def-clear

subpath from a specific definition to a use.

Data flow testing criteria [15, 20] require tests that execute from data definitions to data uses under various conditions. Most

research papers in data flow analysis have derived graphs directly from the code; called traditional data flow analysis here. This

paper uses a form of data flow analysis that is defined on finite state machines that are derived from the behavior of classes, thus

there may be no direct relationship to the implementation. This makes the technique more suitable for conformance testing.

Harrold and Rothermel describe an approach that applies traditional data-flow analysis to classes [21]. That approach

emphasizes three levels of testing: (1) intra-method testing, in which tests are constructed for individual methods; (2) inter-

method testing, in which multiple methods within a class are tested in concert; and (3) intra-class testing in which tests are

constructed for a single class, usually as sequences of calls to methods within the class. Integration testing attempts to test

interactions among different classes, thus we introduce the term inter-class testing, in which more than one class is tested at the

same time. To perform these analyses, Harrold and Rothermel represent a class as a Class Control Flow Graph (CCFG), which

contains information that can be used during testing.

Most research in object-oriented testing has been at the intra-class level. This includes work by Hong et al. [22], Parrish et al.

[37], Turner and Robson [39], Doong and Frankl [14], and Chen et al. [7]. Intra-class testing strategies focus on one class at a

time, so does not find problems that exist in the interfaces between classes, or in inheritance and polymorphism among classes.

In their TACCLE methodology [8] Chen et al. define class semantics algebraically as axioms and construct test cases as paths

through a state-transition diagram with path selection based on attributely non-equivalent ground terms. They extend this

methodology to multiple classes by defining inter-class semantics in terms of contracts. The contract notion increases

complexity substantially and is difficult to re-use when other components are added to the system.

Inter-class testing work has been done by Jin and Offutt [25], who defined coupling-based testing, which requires tests to be

found that cover control and data couplings between methods in different classes. Alexander and Offutt [2, 3] have extended

these ideas to cover couplings formed from inheritance and polymorphism. Chen and Kao [9] describe an approach to testing

object-oriented programs called Object Flow Testing, in which testing is guided by data definitions and uses in pairs of methods

that are called by the same caller, and testing should cover all possible type bindings in the presence of polymorphism. Kung et

al. [27] address object-oriented testing of inheritance, aggregation, and association relationships among multiple classes in C++

 -5-

source code by automatically generating an object-relation diagram and by finding a test order to minimize the effort to construct

test stubs. It is difficult to apply this technique to conformance testing since there is no functional specification of class

semantics.

Some related work has been done on the subject of testing web software. Kung et al. [27, 28, 30] have carried out some initial

work in this area. They have developed a model to represent web sites as a graph, and provide preliminary definitions for

developing tests based on the graph in terms of web page traversals. They define intra-object testing, where test paths are

selected for the variables that have def-use chains within an object, inter-object testing, where test paths are selected for

variables that have def-use chains across objects, and inter-client testing, where tests are derived from a reachability graph

related to the data interactions among clients.

This paper extends the intra-class data flow work by Hong et al. to the inter-class level, thus providing full integration level

testing. This paper does not explicitly deal with inheritance and polymorphism, which are left to future research.

Following Rumbaugh et al. [38], the behavior of classes is specified as finite state machines in terms of states and events. When

an event is received, a transition occurs and the current state, a guard, and the event determine the next state. A state is

represented by a categorization of values of the state variables, i.e. by a predicate that evaluates to true. Note that state

predicates are explicitly allowed to overlap, that is, two states may have the same predicate. In this case, a target state is

determined by all of the properties of a transition, not just the predicate that defines the target state.

A transition is composed of a source state, a target state, an event, a guard, and a sequence of actions. Events are represented as

calls to member functions of the class. A guard is a predicate that must be true for the transition to be taken; guards are

expressed in terms of predicates over state variables and input parameters to the event function. An action is an operation that is

performed when the transition occurs; actions are usually expressed as assignments to class member variables, calls sent to other

objects, and values that are returned from the event method. A sequence of actions is assumed to be a block of code in which all

operations are executed if any one is executed.

Pre-conditions and post-conditions of methods in a class can be derived directly from the transitions. The pre-condition is a

combination of the source state and the guard; the post-condition is the predicate of the target state. Note that the post-condition

derived from the transitions is not the strongest post-condition. The post-condition of a transition is the state predicate of the

target state. If the tester desired, state definitions could be more refined, which would allow stronger post-conditions. In turn,

stronger post-conditions would yield larger graphs and more tests, so this becomes a choice of granularity that results in a cost

versus potential benefit tradeoff. Although future experimentation may provide some guidance, it is likely that the wisdom and

experience of both system analysts and test engineers will be needed to make the best choice of granularity.

A single-class state machine (CSM) is defined in Definition 2.1. This definition is exactly the same as Hong�s [22], except for

the addition of the parameter set P, which is needed for multiple classes. The CSM is extended to a combined CSM in Section

2.2.

 -6-

Definition 2.1 (CSM): A class state machine of a class C is a tuple M = (V, F, P, S, T), where

• V is a finite set of instance variables of C.

• F is a finite set of member functions of C.

• P is a finite set of parameters of mutator member functions.

• S is a finite set of states, S = {s | s = (pred)} where pred is a predicate on the instance variables in V.

• T is a finite set of transitions, T = {t | t = (source, target, fn, guard, action)} where:

o source, target ∈ S are the states before and after the transition.

o fn ∈ F is a member function that triggers t if the guard predicate evaluates to true.

o guard is a predicate on instance variables in V and parameters of member functions in F.

o action is a sequence of computations on instance variables in V and parameters of member functions in F.

2.1 Single-class example – Engine

As a simple example, consider a class Engine, which has states ON and OFF, instance variables speed and keyOn, and methods

Start(S) and Stop(). Each state is associated with values of the instance variables as follows:

 OFF: speed = 0 ∧ KeyOn = false ON: 0 ≤ speed ≤ 110 ∧ KeyOn = true

In the Engine example, the transition from OFF to ON is triggered by the member function Start(). The guard for this transition

should require the key to be in (KeyOn = true), and the action should specify that the speed is set (speed = S). The sets of

variables, member functions, states, and transitions are defined as follows:

S = {S0, Sf, ON, OFF}
V = {int speed, boolean KeyOn}
F = {Engine (), ~Engine (), setKeyOn (boolean in), Start (int S), Stop (), setSpeed (int S), int getSpeed ()}
P = {setKeyOn:in, Start:S, setSpeed:S }
T = {ti | 1 ≤ i ≤ 9}
 t1 = (S0, OFF, Engine(), true, {speed = 0, KeyOn = false})
 t2 = (OFF, OFF, getSpeed(), true, {return speed})
 t3 = (OFF, OFF, setKeyOn(in), true, {KeyOn = in})
 t4 = (OFF, ON, Start(S), KeyOn==true ∧ 0 ≤ S ≤ 110, {speed = S })
 t5 = (OFF, Sf, ~Engine(), true, { })
 t6 = (ON, ON, getSpeed(), true, {return speed })
 t7 = (ON, ON, setSpeed(S), 0 ≤ S ≤ 110, {speed = S})
 t8 = (ON, OFF, Stop(), true, {speed = 0})
 t9 = (ON, Sf, ~Engine(), true, { })

Engine() and ~Engine() are the class constructors and destructors. setKeyOn() allows the key to be inserted into or removed

from the ignition, and setSpeed() and getSpeed() control the speed of the engine. Start() starts the engine running at a certain

speed, and Stop() turns the engine off. The state transition diagram for Engine is shown in Figure 1, with each transition

represented as a labeled arc between states.

 -7-

OFF ON
t 1

t 7

t 2 t 3

t 4

t 8
t 9 t 5

t 6

S f

S 0

Figure 1: Class State Transition Machine for Engine

In the class Engine, the engine is turned on (transition t4) by method Start(S), and can only be turned on if the key is in the

ignition and the initial speed is between 0 and 110 (the guard KeyOn==true ∧ 0 ≤ S ≤ 110). If the guard is true, then the new

speed is set to the parameter given to the Start() method (the action speed = S). The other transitions are similar to t4.

2.2 Multi-class example - Automobile

Inter-class integration testing addresses interactions among multiple components, so this example modifies the Engine class from

Section 2.1 and integrates it with other components. Each received message is an event on the recipient object. Components can

function as independent processes, possibly running at remote locations and possibly receiving concurrent messages from many

sources, so the sending object may not be certain of the recipient object�s state when the event is processed.

The Automobile system consists of seven core components: Acceleration, Brakes, Clutch, CruiseControl, Engine,

InstrumentPanel, and SystemControl. This example tests how the CruiseControl component integrates with the remainder of the

system. The classes that make up the components are shown in Table 1.

Component Classes

Acceleration GasUser, Throttle

Brakes BrakeUser, BrakeControl

Clutch ClutchUser

CruiseControl CruiseUser, CruiseUnit

Engine Engine

InstrumentPanel Gauges

SystemControl AutoSystem

Table 1: Classes in Cruise Control Components

The GasUser, BrakeUser, ClutchUser, and CruiseUser classes have external interfaces that are accessible to a human driver. The

Gauges are all read-only for external users, but these human observations are not part of the automobile specification. The

CruiseUser class has an On/Off switch, as well as Cancel, Resume/Accel (RA) and Set/Decel (SD) buttons for Cruise Control. If

 -8-

the user holds the RA or SD button down, the user mode is that button, and when the button is released the user mode returns to

Neutral (NT). Environmental conditions such as wind and hills are simulated by an externally controlled Drag variable. The

externally invokable methods are:

 BrakeUser.IsActive (x) x ∈ {true, false}
 BrakeUser.PedalPressure (x) 0 ≤ x ≤ 99
 ClutchUser.PedalPosition (x) 0 ≤ x ≤ 99
 CruiseUser.Cancel ()
 CruiseUser.Mode (x) x ∈ {NT, SD, RA}
 CruiseUser.Switch (x) x ∈ {On, Off}
 Engine.ExternalDrag (x) -9 ≤ x ≤ 9
 GasUser.PedalPosition (x) 0 ≤ x ≤ 99

All other methods are internal methods that can only be invoked by internal actions. The CruiseUser class has a number of non-

feasible transitions; for example, the cruise control RA button cannot be pushed at the same time as the SD button because their

physical placement prohibits them from being depressed simultaneously. Alternatively, the second button could just be ignored

when the first is engaged.

Definition 2.1 is extended to define a combined Class State Machine for multiple classes by adding a set of classes and

parameters that are inputs to mutator functions. The Automobile example is represented as a tuple (C, V, F, P, S, T) where C is a

set of 10 classes, V is a set of 46 variables consisting of the union of all state variables from each class, F is a set of 97 rows

consisting of the union of all member functions from each class, P is a set of 41 parameters representing inputs of mutator

functions, S is a set of 76 states consisting of the union of all states from each class, and T is a set of 143 transitions consisting of

the union of all transitions from each class. A database schema for representing these sets and the relationships among them is

defined in Section 3 and a partial table that lists relevant transitions for the CruiseControl component of an expanded Class State

Machine is in Appendix I.

Figure 2 presents a directed graph that shows an abstraction of the relevant communication paths among the classes. Since the

Gauges class is passive, the arrows between CruiseUnit and Gauges indicate that methods in CruiseUnit can read from and write

to state variables in Gauges. The Throttle class, however, is active and can change the pedal position in GasUser as well as

increase the gas supply to the Engine. In order to simulate road conditions such as hills, the Engine class has an externally

controlled drag variable that is used in the speed calculation.

Clutch
User

Brake
User

Auto
System

Cruise
User

Gauges Engine

Gas
User Throttle Brake

Control

Cruise
Unit

Figure 2: Class-to-Class Data Flow

 -9-

The automobile example uses some special syntax to distinguish a situation where an object sends an asynchronous message to

itself with the intent that the message is put on a queue to be acted upon in a subsequent transition. This is used in several

classes in lieu of a system clock to keep processes from terminating. For example, in most of the cruise control transitions, the

action of the transition will set parameters for gas flow and throttle, but before relinquishing control they will send an

asynchronous message back to the underlying object to check all of the gauges to see if further action is required. This message

will be put on a queue along with other explicit messages received from other components and will be executed when it moves to

the head of the queue. The cruise control component could be in a different state when this message is finally handled. Different

priorities for handling these messages are not addressed.

2.3 Overview of Methodology

The overall goal is to automate the process of developing integration tests from the behavioral specifications of the various

components. To begin, a state/transition specification must exist for each class, with behavior specified by a Class State Machine

as in Definition 2.1. The CSM could have been produced during design, perhaps as UML diagrams, or may be produced by the

tester. The CSMs for each class are combined and represent the resulting sets according to the database schema defined in

Section 3. Particular attention is paid to associations between the sets such as when a state or guard references a state variable

from its own class or calls a get function to reference a state variable from some other class. Each action of a transition is also

analyzed to identify all calls of actor or mutator functions from other classes and the passing of state variables as parameters of

mutator functions.

Once the software system is represented in the DB schema, the next step is to focus on individual components and how they

integrate with other components. In the Automobile example, the focus is on the CruiseControl component and its relevant

interactions with other classes in the Automobile system. Since CruiseControl activity is canceled whenever a brake or clutch is

active, or whenever an emergency state is entered, this example safely ignores the complex BrakeControl behavior dealing with

anti-lock brakes and all of the AutoSystem behavior dealing with such items as air bags. Section 4 defines relevant transitions

for a given component, thereby focusing only on the transitions in the entire software system that are both feasible and relevant

to the component being tested.

The next step is to model all potential finite state transitions as a directed graph. Section 5 begins with the relevant transitions

and treats those transitions, together with all of the states and guards associated with those transitions, as the nodes of a graph.

All data and control flow is modeled as directed edges between these nodes. Following the example of Hong et al. [22], the

process starts with directed edges from a source state node to the guard node or transition node of each transition, from all guard

nodes to their corresponding transition node, and from all transition nodes to their target state nodes. In addition, each call of an

actor function results in directed edges from potential transitions of the called object to states, guards, or transitions of the calling

object, and each call of a mutator function in the action of a transition results in edges from the calling transition to potential

source states of the called object. If a mutator function returns a value, then there are edges from potential called transitions back

to the calling transition. This results in a component flow graph (formally defined in Section 5).

 -10-

The next step is to choose a testing criterion and to adapt it to the information stored in the DB schema and the component flow

graph. The all-uses criterion is adapted by defining defs and uses in terms of references to class variables (formally defined in

Section 6). Each def takes place at a transition node and each use takes place either at a transition node or at a state-to-guard or

guard-to-transition edge. The procedure looks for candidate test paths through the component flow graph for each def-use pair.

Much of the remaining effort in Section 6 is to construct candidate test paths that are potentially feasible and def-free. The goal is

to find paths that result in executable test cases for each def-use pair, or to prove that such a path cannot exist. It is just as

valuable to prove that a feasible path cannot exist as it is to find one. A prototype implementation has been developed that

constructs a small collection of candidate test paths for each def-use pair or proves that the pair is def-bound so that no such path

can exist. Much of the effort in Section 6 is to ensure that the collection of candidate tests paths for each pair is as small as

possible. If none of the candidate test paths result in an executable test case, then the new information learned from that failure is

added to the information base and the methodology is applied again to all untested pairs.

This implementation is not a typical testing tool that consists of compiled programs. Instead, it consists primarily of the system

information represented in a highly structured database schema, together with database queries and other database operations

that implement each step in the process. The logical requirements of the algorithm for path generation are implemented as

queries and updates in order to leverage the database system for powerful logical computation and I/O management. This allows

the methodology to be applied to integration testing in software systems that might otherwise be too large for easy manipulation

in main memory. We know of no other methodology that can leverage database capabilities in this manner or that can handle

data flow testing with graphs this large.

Section 7 demonstrates this methodology on the CruiseControl component of the Automobile example to analyze 3433 def-use

pairs, constructing candidate test paths for 1933 pairs and proving that the remaining 1500 pairs are def-bound with no possible

def-free path. There is no guarantee that the candidate test paths will yield test cases, but they serve to substantially reduce the

search space, making it much more likely to find a test case. The processing time for this moderate example is reasonable, even

though up to 200 MB of storage is required for some intermediate results. At the conclusion of the process, many of the shorter

test paths are subsumed by longer paths, and many of the paths are connectable end-to-end to produce executable test cases that

test multiple def-use pairs. We intend to pursue the development of efficient executable test case development from candidate

test paths in subsequent research efforts, probably adapting algorithms that were previously developed for specification-based

testing [35].

3 Representing Component Specifications

A specification that defines the states and transitions for each class in a system must be available before test development can

begin. This specification will include names of classes, methods, and variables. Some of these methods will be invoked from an

external interface; they will be the names that are used in the test cases. The eventual test cases will be expressed in terms of

these names. These names may or may not be used by the programmers in the eventual implementation of the system, but for the

context of this work, it is assumed that the names are the same. If not, then additional work will need to be done to apply the

resulting tests to the software; specifically, the test specifications will need to be translated to a form that can be used by the

implementation. The mapping for this translation will need to be supplied by the designers or programmers of the software.

 -11-

Each class C is used to derive a Class State Machine as defined in Definition 2.1. Using the relational database model [12, 13,

32], classes and sets associated with classes are represented as relational tables.

Figure 3 shows the UML class diagram [40] of a general schema definition for representing class state machines. This schema

allows representation of class state machines in a way that is convenient to store, access, and process the information. Without

loss of generality, it is assumed that all methods and procedures can be represented as functions. Each of the six UML classes

represents a table in the model and each row of the table identifies an instance of that class: (1) the Class table contains

information about the classes that have been defined for the system, (2) the Variable table defines instance variables for each

class, (3) the Function table identifies all of the methods that are associated with each class, (4) the Parameter table identifies

the input and output parameters for each function, (5) the State table contains information about the states in the class state

machine, and (6) the Transition table describes all transitions among the states.

Since variable, function, and state names need be unique only within a class, and parameter names need be unique only within a

function body, compound identifiers are used for each. For example, (c, v) is a unique identifier for a variable v that is defined in

class c. Similarly (c, f) and (c, s) are compound identifiers for functions and states, and (c, f, n) is a unique identifier for the n-th

parameter of a function. In each case, the ordered tuple becomes the primary key of the underlying table. In addition, c serves as

a foreign key back to the class definition and fully represents the one-to-many associations identified in the diagram by

ClassHasStateVariables, ClassHasMethods, FnHasParameters, and Defined States. The associations SourceState and

TargetState from Transition to Class represent referential integrity constraints on the sourceState and targetState attributes of the

Transition table. An additional constraint is that source and target states for a transition are always from the same class. The

Method association from Transition to Function represents a referential integrity constraint on the method attribute of the

Transition table. The remaining associations identify many-to-many relationships among Transitions, States, Variables,

Functions, and Parameters derived from syntactic analysis of guard and state predicates and transition actions. They are

explained further below.

A unique ClassId identifies each class in the Class table, which is the primary key of the Class table. The className is a

surrogate for ClassId and is used to reference the class in state and guard predicates, and in the actions of transitions. Similarly,

variableName, funName, parmName, and stateName are surrogates for hidden identifiers for variables, functions, parameters,

and states, respectively; each need be unique only within its class. Each class is owned by exactly one component, identified by

componentName, but may be used by many components. In the syntax for predicates, guards, and actions, fully qualified names

are used to disambiguate the references when necessary.

In the Function table, the availability attribute defines functions to be private (PRI), protected (PRO), public (PUB), or external

(EXT). Public functions may be invoked from other classes in the system, whereas external functions are part of the external

component interface and can be invoked by other systems. External functions typically represent actions that are available to the

human user or for black-box testing purposes. The inputType values identify the number of input variables, as well as their data

types, so className, funName, inputType, and returnType determine the complete signature of a function. The effect attribute

allows functions to be categorized as Get, Set, Constructor, Actor, Mutator, etc.. These are based on standard object-oriented

 -12-

concepts: a Get function is read-only and is said to be an actor method on the object, a Set function can update state variables

and is said to be a mutator method. The following pays particular attention to classifying all methods as actor, mutator, or

mutator with return. In the Parameter table, both position and parmName uniquely identify a parameter, and one will determine

the other. A parameter is used by name, but is set by position. Each parameter has a data type and a direction, i.e. In, Out, or

InOut.

In the State table, the defnPredicate is a Boolean predicate over the state variables. It may reference an in-class variable by name

only, and may reference a variable in another object by invoking the appropriate actor method, if it is available, to read the value

of that external variable. Only actor methods can be called from a state's definition predicate. Mutator and constructor methods

may only be called from an action that is part of a state transition.

In the Variable table, the dataType attribute identifies the data type of the variable, the defaultValue identifies all automatic

value assignments upon creation of a new class instance, and the constraint attribute identifies a post-assignment requirement on

every variable definition.

DefinedStates

ClassHasMethods

SourceState TargetState

ClassHasStateVariables

Method

ActionDefVar

0..*

0..*

ActionRefVar
0..*

0..*

StateRefVar

0..*

0..* StateRefActorFn

0..*

0..*

GuardRefActorFn

0..*

0..*

ActionRefActorFn0..*

0..*

ActionRefMutatorFn0..*

0..*

GuardRefVar
0..*

0..*

FnHasParameters

ActionRefParm0..*

0..*

ActionSetsParm

0..*

0..*

GuardRefParm0..*

0..*

Function
+
+
+
+
+
+

funName
inputType
returnType
availability
effect
description

: identifier
: signature
: typeName
: enumeration
: enumeration
: string

Class
+
+
+
+
+

className
descriptiveName
componentName
systemName
description

: identifier
: string
: identifier
: identifier
: string

State
+
+

stateName
defnPredicate

: identifier
: predicate

Transition
+
+
+
+
+
+

sourceState
guard
method
targetState
isFeasible
action

: State
: predicate
: Function
: State
: boolean
: programBlock

Variable
+
+
+
+
+

variableName
dataType
defaultValue
constraint
description

: identifier
: typeName
: literal
: predicate
: string

Parameter
+
+
+
+
+

position
parmName
type
direction
description

: integer
: identifier
: typeName
: enumeration
: string

For a class c and a transition t, the primary key of the Transition table is the pair (c, t), which determines all of the other

properties of a transition. Some transitions may be well defined in the model, but the implementation will not be able to execute

Figure 3: DataBase Schema as a UML Class Diagram

 -13-

them because of a rule or by physical or mechanical impossibility. Such transitions are identified by the isFeasible attribute.

These types of transitions can be divided into three categories.

1. Category one is an error handling transition. Consider an elevator example where a user is at floor 5. It is an error to

push the button to go to floor 5.

2. Category two transitions are prevented by hardware. For example, hardware interlocks prevent doors from opening

when an elevator is between floors.

3. Category three transitions represent logical and physical impossibilities. For example, it is not possible to transition

from the �not pushing button� state to the �not pushing button� state.

Transitions in category one will be tested as a natural result of the technique presented in this paper. Transitions in category

three do not need to be tested. Whether to test transitions in category two depends on the goals of the testers. Since the situation

is controlled by hardware, not software, any testing that only involves the software (integration and subsystem testing) may be

able to safely ignore these transitions. At the system level, however, these transitions must be carefully tested.

The predicates on guards and transitions may reference variables, and the actions of predicates may reference and assign values

to variables. Just as in traditional data flow analysis [15], predicates reference a set of objects (use) and actions define a set of

values (def). Of course, how to determine the defs and uses depends on the semantics of the language used to express the

predicates and transitions of the class state machine. The prototype implementation uses a general simple language to describe

state machines, which allows the analysis to proceed in a fairly straightforward manner. In subsequent work, we hope to expand

this part of the prototype to include syntactic analysis of predicates and actions specified in UML [40], Java [24], and other

commonly used class definition languages.

Once this syntactic analysis is complete, the results can be captured in the UML diagram of Figure 3 as many-to-many

associations among classes. In the database representation, each such association will be a new table. Each of the new tables

satisfies appropriate referential integrity constraints to the corresponding Transition, Variable, Function, Parameter, or State

tables.

Every state variable in a class definition is associated with two pre-defined methods, one to get its value and one to set its value.

An additional association VarAssocFn is defined between Variable and Function to maintain the relationship between a state

variable and the get function that reads its value. This association is not visible in Figure 3 but it is represented by a table of

tuples (c, v, f) where (c, v) identifies the state variable and (c, f) identifies the function.

The ActionSetsParm association defined above identifies all transitions that (1) call an external function and (2) set some

parameter of that function to a non-constant value. It is particularly important if the setting of a parameter involves a state

variable either from the same class as the calling transition or from some other class. Thus a new 3-way association among

transitions, state variables, and parameters is defined. This is denoted by ActionSetsParmUsingVar as a table of tuples (ct, t, cf, f,

n, cv, v) where (ct, t, cf, f, n) is a tuple in the ActionSetsParm association and (cv, v) identifies a state variable that is referenced in

the setting of that parameter. If the state variable is from the same class as the transition, then ct=cv, and cf=cv if the state variable

is from the same class as the called function, but in general (cv ,v) could identify a variable in any class that is called by the get

function on that variable. Appendix I shows examples of the first and second alternatives, e.g. several transitions derived from

 -14-

CheckState() in CruiseUnit call the Position variable from Throttle and pass it back to Throttle by setting Throttle�s Floor

variable.

It is sometimes necessary to consider the case where the action of a transition makes an asynchronous call to a method defined

by the same class: it does not wait for a reply before completing the transition, and the call does not return a value. Instead, the

function call is put on an input queue for that class and considered later. An additional association ActionRefLocalAsyn is

defined between Transition and Function to represent such calls. This association is not visible in Figure 2 but it is represented

by a table of tuples (c, t, f) where (c, t) identifies the transition and (c, f) represents the asynchronously called function. In the

Automobile example, many of the CruiseUnit transitions seen in Appendix I have final actions that put CheckState() on a queue

to be executed by CruiseUnit when it�s not busy with other requests.

Although this information is conveniently stored in database tables, it is helpful to consider the tables as sets for most of the

development of this work. A straightforward mapping does this. Every table can be associated with a mathematical set, where

the set is a set of sequences consisting only of the primary key values of the table. In this sense, the sequence (c, f) is an element

of the Function set if and only if there exists a row in the Function table with primary key values (c, f). If X is such a table-

derived set, if w is a non-key column of the corresponding table T, and if x ∈ X, then w(x) is defined to be the value in column w

of the row of table T identified by x. For example, in the ActionRefVar association defined above, SeqNbr(c,v,t) identifies the

value of the SeqNbr attribute of that instance. This notational convenience is used freely in the following sections, with C, F, P,

V, S, and T, as the sets derived from the tables Class, Function, Parameter, Variable, State, and Transition.

4 Choosing Relevant State Machine Transitions

Given even a moderately large system, the number of transitions available over all class state machines could be quite high.

Developing tests over such a large scope would probably be prohibitively expensive, and would properly be considered system

testing as well. Testing is divided into pieces by focusing on one component at a time, and generating tests based on that

component�s integration interactions with other components.

The test component M is the component whose interactions are being tested. The procedure first determines which transitions

from the overall system specification are relevant to M. Relevant transitions fall into two types. In transitions represent actions

or data that flow into M, that is, transitions from any class in the system that can modify the value of a state variable in any of

M�s classes. Out transitions flow out from M to classes in other components, that is, transitions that can be invoked, directly or

indirectly from actions on transitions in any of M�s classes. Transitions from classes in M are called Base transitions, since they

are the starting points for a recursive process that finds the transitive closure of relevant transitions.

This process begins by putting all feasible Base transitions from any class in M into the set R0. The iterative process starts with

R0. At each step, assume that n steps of the process have been completed, resulting in a set Rn of relevant transitions, each of

which is labeled as In, Out, or Base. A transition may appear in Rn as many as three times with different labels. To create the

next set of relevant transitions, Rn+1, first initialize Rn+1 to be Rn, and then insert newly labeled transitions as indicated below. A

mutator function that returns a usable value to the calling action results in both In and Out labels for each of its transitions. The

 -15-

following rules control how and when transitions are handled. In some cases, decisions were made to try to balance performance

with effectiveness. Further experimentation may cause some decisions to be refined.

• Let t be a feasible transition and let f be an actor or mutator with return function that is the method associated with t. If the

State, Guard, or Action of any transition in Rn calls f, then t is added to Rn+1 with an In label.

• Let t be a feasible transition and let f be a mutator or constructor function that is the method associated with t. If the Action

of any Base or Out labeled transition in Rn calls f, then t is added to Rn+1 with an Out label.

• Let t be a feasible transition. Let t' be any transition in Rn labeled either as a Base transition or as an Out transition. Let f' be

an actor function that is the method associated with t'. If the Action of t calls f', then t is added to Rn+1 with an Out label.

• Let t be a feasible transition. Let t' be any transition in Rn and let f' be a mutator function that is the method associated with

t'. If the Action of t calls f', then t is added to Rn+1 with an In label.

• Let t be a feasible transition and let f be a function that is the method associated with t. Let t' be a transition in Rn, from the

same class as t, labeled either as a Base transition or as an Out transition. If the Action of t' calls f asynchronously, then t is

added to Rn+1 with an Out label.

• Let t be a feasible transition whose Action defines a state variable v. Let t' be any transition in Rn, from the same class as t,

labeled as an In transition. If the method associated with t' is the get method for the variable v, then t is added to Rn+1 with

an In label.

• Let t be a feasible transition. Let t' be any transition in Rn, from the same class as t, labeled as an Out transition. If the

Action of t' defines a state variable v, and if the method associated with t is the get method for v, then t is added to Rn+1 with

an Out label.

Since there are only a finite number of transitions in the system, and since {Rn} is a monotonically increasing sequence of sets,

the process must terminate at some iteration with no new additions. At that point, the transition labels are discarded and the

remaining unlabeled transitions are defined to be the set of transitions in the system that are relevant to M. These are the

transitions that will determine the component flow graph when integrating M with the system.

Definition 4.1 (relevant transitions): Let M be any component of a software system S. R(M) is the set of all transitions from S

that are determined to be relevant to M according to the preceding iterative process.

The initial collection of transitions in the Automobile example includes several transitions in the BrakeControl class that deal

with anti-lock brakes and many in the Gauges class that deal with gauges on the instrument panel but that are unrelated to cruise

control. The above procedure focuses only on transitions relevant to CruiseControl and eliminates these unrelated transitions.

Each relevant transition that has a non-trivial action is listed in Appendix I.

5 A Data-flow Graph Model of State Transitions

The traditional testing literature [15, 26, 33, 37, 39] defines a data flow graph to be a graphical representation of a program's

control structure and the flow of data through that structure. A data flow graph is composed of nodes, which represent

 -16-

statements or basic blocks, and edges, which represent flows of data between basic blocks. If a variable X is given a value, or

defined in a node d, and that value can be used in another node u, then there is a data flow dependency from d to u. The two

nodes d and u form a def-use pair for the variable X.

This research expands the traditional notion of data flows among statements in a program to be defined among states, guards,

and transitions in finite state machines. A component flow graph is defined to represent both the control and data flows for the

state transitions of the classes of a component and its relevant transitions from other classes in the software system. The

definitions in this paper extend those of Hong et al. [22] from the single-class case to the multiple-class case.

In a component flow graph, nodes and edges are derived from the relevant transitions of that component. Each such transition

has pre-determined associations with the states, guards, variables, and functions of other transitions, as defined in Section 3 and

represented in Figure 3.

Definition 5.1 (component flow graph): Let M be any component of a software system S, and let R (M) be the set of all

transitions in S that are relevant to M. Then the component flow graph G of M in S is a directed graph G = (N, E), where N is

drawn from elements of the relevant transitions and E represents potential flows of data between nodes in N.

Specifically, the nodes N in G are formed from the union of states, transitions, and guards that appear in the relevant transitions

of M as follows:

N = Ns ∪ Nt ∪ Ng where

• Ns is the set of all states in the finite state machine that are source states or target states of a relevant transition

• Nt is the set of all relevant transitions

• Ng is the set of all guards in the finite state machine that are non-trivial guards of a relevant transition

The edges are derived from potential data flows among states, transitions, and guards in the relevant transitions. Some of the

edges represent actions in the action sequence of a transition that call methods from other classes. Each edge that results from a

call to any external function is labeled with the sequence number of that call in the action sequence of the transition. However, it

helps to distinguish these labels as being on out-going edges or on in-coming edges, so the sequence number label for an edge

that represents an out-going call of a mutator function is defined to be the OutSeq number and the sequence number label for an

edge that represents an in-coming data flow from an actor function, or from a mutator function that returns a value, is defined to

be the InSeq number. All other edges will be left unlabeled. No edge carries more than one such label.

Nine types of edges are defined. Four of these types come from Hong et al.�s paper [22] and are termed �intra-class� edges

because they are all defined within a single class. These intra-class edges are also synchronous in the sense that in all messages

that are sent, the caller waits for the callee to complete before proceeding. To handle multiple classes, four new inter-class edge

types and one new intra-class edge type are introduced. The inter-class edges are potentially asynchronous because each

component is assumed to be a separate executable process. The new intra-class edge type that is introduced (Ects) is

asynchronous, as explained below. The total set of edges E is defined as:

 -17-

E = Est ∪ Esg ∪ Egt ∪ Ets ∪ Egtg ∪ Ests ∪ Exts ∪ Extt ∪ Ects

Hong�s four original intra-class edge types are:

• Est edges represent data flow from states to transitions. The the transition has no non-trivial guard (guard is true).

• Esg edges represent data flow from states to guards. The state is the source state of the transition that specifies the non-

trivial guard.

• Egt edges represent data flow from guards to transitions. The guard is non-trivial and is specified by the transition.

• Ets edges represent data flow from transitions to states. The state is the target state of the transition.

There are four inter-class, potentially asynchronous types of edges. These are more complicated than intra-class edges. They are

constructed when guards, states, and transitions invoke methods in other classes. The invoking guard (g), state (s) or transition

(t) may be the source or the target of the edge, depending on whether the data flow is in or out of that node.

• Egtg edges represent data flow triggered by a guard that flows from an external transition back to that guard. The predicate of

the guard invokes an actor function from an external class and data flows from transitions in that class back to the guard.

The GuardRefActorFn association determines these edges. The Automobile example has three instances of this type of

edge.

• Ests edges represent data flow triggered by a state that flows from an external transition back to that state. The predicate of

the state invokes an actor function from an external class and data flows from transitions in that class back to the state. The

StateRefActorFn association determines these edges and the Automobile example has 10 instances.

• Exts edges represent data flow triggered by an external transition to a state in a different class. The action of the transition

invokes a mutator function from a different class, and data flows from the transition to the source state of any transition in

that class that has the mutator function as its method. The target of the flow is the source state rather than the other transition

because it may be subject to the constraint of a guard and because the state the other object might be in when the request is

received cannot be known. These out-going edges are labeled with an OutSeq number equal to the SeqNbr of the call of the

mutator method in the action sequence of the calling transition. These edges are also labeled with the function name of the

mutator function. Section 6 defines additional conditions on path segments from the transition node, to a source state node,

to a guard node of a transition derived from the called mutator function. The ActionRefMutatorFn association determines

these edges and the Automobile example has 161 instances.

• Extt edges represent data flow from an external transition to a transition in a different class. The action of the target transition

invokes a method from an external class and data flows from any transition in that class derived from that function back to

the target transition. These in-coming edges are labeled with an InSeq number equal to the SeqNbr of the method call in the

action sequence of the calling transition. The ActionRefMutatorFn and ActionRefActorFn associations determine these

edges and the Automobile example has 58 instances.

There is one new intra-class asynchronous edge type:

 -18-

• Ects edges represent intra-class data flow from transitions to states. The transition calls a mutator function, asynchronously,

in its own class. Since the call is asynchronous, it is put on a queue and the class may be in some other state when the

function is executed. These out-going edges are labeled with an OutSeq number equal to the SeqNbr of the method call in

the action sequence of the transition. These edges are also labeled with the function name of the mutator function. The

ActionRefLocalAsyn association determines these edges and the Automobile example produces 38 instances.

Section 5 of an earlier technical report [18] provides a more formal specification of how these edges are derived from the

referenced associations.

Transition nodes whose method has External (EXT) availability determine the external interface to the system. Input values can

only be provided through this interface in black box testing. Such transitions are marked with a virtual edge from a virtual EXT

User node. In the Automobile example, the 8 EXT methods listed in Section 2.2 produce 24 such virtual edges. Various

combinations of these inputs will produce different paths through the component flow graph. The goal is to find appropriate

paths through the graph to ensure that all aspects of the specification are thoroughly covered, and then to choose input values for

these EXT methods to execute those paths. The paths through the graph are called test specifications and the input values are

called executable test cases.

6 Generating Test Requirements

A testing criterion is a rule or collection of rules that imposes requirements on a set of test cases. Test engineers measure the

extent to which a criterion is satisfied in terms of coverage: A test set achieves 100% coverage if it completely satisfies the

criterion. Coverage is measured in terms of the requirements that are imposed; partial coverage is defined to be the percent of

requirements that are satisfied. Test requirements are specific things that must be satisfied or covered; for example, the

requirements for statement coverage are individual statements that must be reached.

A number of different coverage criteria can be defined on data flow graphs, including all-defs, all-uses, and all-paths. These

have been discussed and compared extensively in the literature [15, 33]. Many researchers have concluded that the all-defs and

all-uses criteria provide adequate coverage at acceptable cost for most testing purposes [10, 16, 17, 20, 23, 31, 34].

The formal definitions for variable definitions and variable uses to the component flow graphs defined in the preceding section

are in a previous technical report [18] and are presented informally here. First, the various types of uses (direct/indirect,

predicate/computation) are defined, and then used to define def-use pairs and then DU-pairs.

Defs and uses are defined in terms of the associations defined in the DB schema of Figure 3. Using the notation introduced in

Section 3, let V be the set of all variables in the software system and let the variables be defined by the Greek nu, ν = (c, v) ∈ V,

where c identifies the class that contains the variable, that is c ∈ C.

 -19-

Definition 6.1 (definitions and uses): Let M be any component of a software system S, let R(M) be the set of transitions in S

that are relevant to M, and let G = (N, E) be the component flow graph of M in S.

• ν is defined at a transition-node nt ∈ Nt if the variable and the transition are from the same class and if they satisfy the

association (c, t, v) ∈ ActionDefVar. Each variable definition carries along the SeqNbr attribute of the ActionDefVar

association.

• ν is directly computation-used at a transition-node nt ∈ Nt if the variable and the transition are from the same class and if

they satisfy the association (c, t, v) ∈ ActionRefVar.

• ν is indirectly computation-used at a transition-node nt ∈ Nt if the variable is associated with the get method f in its class c

and if the transition and the function satisfy the association (ct, t, c, f) ∈ ActionRefActorFn.

• ν is directly predicate-used at any state-transition-edge (ns, nt) ∈ Est if the state satisfies the association (c, s, v)

∈ StateRefVar.

• ν is indirectly predicate-used at any state-transition-edge (ns, nt) ∈ Est if the variable is associated with the get method f in

its class c and if the state and that function satisfy the association (cs, s, c, f) ∈ StateRefActorFn.

• ν is directly predicate-used at any state-guard-edge (ns, ng) ∈ Esg if the state satisfies the association (c, s, v) ∈ StateRefVar.

• ν is indirectly predicate-used at any state-guard-edge (ns, ng) ∈ Esg if the variable is associated with the get method f in its

class c and if the state and the method satisfy the association (cs, s, c, f) ∈ StateRefActorFn.

• ν is directly predicate-used at a guard-transition-edge (ng, nt) ∈ Egt if the transition satisfies the association (ct, t, c, v)

∈ GuardRefVar.

• ν is indirectly predicate-used at a guard-transition-edge (ng, nt) ∈ Egt if the variable is associated with the get method f in its

class c and if the transition and f satisfy the association (ct, t, c, f) ∈ GuardRefActorFn.

• ν is parameter computation-used at a transition-node nt ∈ Nt if the action of the transition associated with nt, called (ct, t),

references the n-th parameter of the function associated with t by name, that is if (ct, t, n) ∈ ActionRefParm, and if the

variable is used to set the n-th parameter of some function, that is if there exists a transition t1 whose action calls a function

(cf, f) such that (ct1, t1, cf, f, n, c, v) ∈ ActionSetsParmUsingVar, and if that function is the function associated with t, that is

if ct = cf and method(t) = f.

• ν is parameter predicate-used at a guard-transition-edge (ng, nt) ∈ Egt if the guard of the transition associated with n, called

(ct, t), references the n-th parameter of the function associated with t by name, that is if (ct, t, n) ∈ GuardRefParm, and if

the variable is used to set the n-th parameter of some function, that is if there exists a transition t1 whose action calls a

function (cf, f) such that (ct1, t1, cf, f, n, c, v) ∈ ActionSetsParmUsingVar, and if that function is the function associated with

t, that is if ct = cf and method(t) = f.

Each computation-used instance carries along the SeqNbr attribute of the association to identify the position of that use in the

action sequence of the transition. Since guard and state predicates do not have sequence numbers, predicate-used instances do

not have such a value. These identifications of defs and uses in a component flow graph are used to define def-use pairs in those

graphs. The Automobile example produces instances for each of these def-use categories, as listed in Section 7.

 -20-

Definition 6.2 (def-use pairs): Let M be any component of a software system S, let R (M) be the set of transitions in S that are

relevant to M, and let G = (N, E) be the component flow graph of M in S. The Greek mu (µ) represents an edge or a node that is

a use. An ordered pair (nt, µ) is said to be a def-use pair for ν if ν is defined at the transition-node nt and if µ is either a node or

an edge in G where ν is directly or indirectly used.1

Not every variable produces a non-empty set of def-use pairs. Some variables, for example class constants, may be defined

when an object is created and never redefined in any relevant transition; others may be defined in a relevant transition as a non-

relevant side effect, but never used in any other relevant transition. All such variables are ignored in the following sections.

Special attention is paid to transition nodes where a variable is both defined and used. Here the order of execution is important,

since a variable may be defined and then used in the same action. If a variable is used first in an action before it is defined, or if

it is defined later after it is used, then that node may continue to be relevant to other definitions or uses of the variable. These

cases are distinguished as follows:

Definition 6.3 (internal def-use pairs): Let ν be a variable that is both defined and used at one or more transition nodes nt∈ Nt.

Denote by DFTU(ν) the set of such nodes where ν is defined first and then used, and denote by UFDL(ν) the set of all such

nodes where ν is used first before it is defined or defined later after it is used. In each case, the content of the set is determined

by a syntactic analysis of the action associated with the transition node nt.

The sets DFTU(ν) and UFDL(ν) are not necessarily mutually exclusive. A transition involving variable x with an action that

consists of the sequence �x := x+1; y := f(x)� would be in both sets.

6.1 Data flow path coverage
To complete the def-use approach to test specification creation, the algorithm looks for paths in the component flow graph that

lead from the definition of a variable to a use. Consider triples (ν, nt, µ) where ν is a variable, nt is a transition node that defines

ν, and µ is a node or edge where ν is used. nt and µ form a DU-pair if there exists a path in the component flow graph leading

from nt to µ, if the path is free of loops, if there are no defs to ν by another transition node in the path, and if the path is

potentially feasible for testing. The definitions in this section clarify these criteria as applied to testing of object components,

and lead to a rigorous definition of test specifications derived from a component flow graph.

Definition 6.4 (path): Let G = (N, E) be an directed graph. A path p in G of length k≥1 is a sequence of nodes n1 .. nk such that

(ni, ni+1) ∈ E for 1 ≤ i ≤ k-1. If p is a path, then the head of p, denoted by H(p), is the first element of the sequence, the tail of p,

denoted by T(p) is the last element of the sequence, and the length of p, denoted by L(p), is the number of nodes in the sequence.

 If p and q are two paths such that (T(p), H(q)) ∈ E, then the concatenation of the two sequences, denoted by p:q, is a path with

L(p:q) = L(p) + L(q). If p is a path and n is a node in the sequence that determines p, then n is said to be an element of p,

1 Note that a def-use pair is distinct from a DU-pair in that the def-use pair does not require that there be a def-clear path from the def to the

use.

 -21-

denoted by n∈ p. If p is a path then InSeq(p) or OutSeq(p) denotes the label of its first or last edge. The context makes clear

which is intended.

Feasible paths through a component flow graph must be found, so special attention is paid to path segments in the graph that

flow from a transition node nt1 to a state node ns and then from that state node to a guard node ng or another transition node nt2. If

the edge from nt1 to ns is the result of a call of a mutator function f, that is if the edge has a function label that identifies f, then

the edge from ns to ng, or from ns to nt2, must satisfy some additional feasibility restrictions. In particular, the edge from ns to ng

or nt2 must be from a transition whose function is identical to f, and the guard predicate of any ng must not be incompatible with

the exit conditions from node t1 or with the values of any parameters passed with f. The rules below address the function

constraint. The guard constraint is more difficult to address because of exit conditions and dynamic values of passed parameters.

To help address such guard constraints, a new association among these types of nodes is defined. A triple of nodes (nt, ns, ng) is a

mutator Transition-State-Guard (TSG) path segment if the edge (nt, ns) has a function label. A mutator TSG path segment is

potentially feasible if the edge (ns, ng) is known not to be incompatible with the call of the mutator function. Let MTSG denote

the set of all node triples that are mutator TSG path segments and let FTSG be the subset of MTSG consisting of TSG path

segments that are potentially feasible. The Automobile example produces 283 instances of MSTG, of which 169 are provably

feasible and 53 are provably not feasible, leaving 61 where a simple analysis cannot determine feasibility or non-feasibility.

Appendix I shows the easy situations where a parameter is set to a literal in an action of a transition, and the guards of some of

the transitions associated with the called function test that literal directly. The set FTSG contains all but the provably non-

feasible triples (230 instances in the Automobile example).

Definition 6.5 (DU-path and DU-pair): Let G = (N, E) be a component flow graph in a software system S. Let ν be any

variable in S, let nt be a transition node that defines ν, and let µ be a node or an edge where ν is used. A path p in G is said to be

a DU-path from nt to µ for ν if p = nt:q:µ, where q is a path in G such that no node of q is a definition node for ν and every

mutator TSG path segment in p is potentially feasible . The pair (nt, µ) is said to be a DU-pair for ν if such a path p exists.

Definition 6.6 (candidate test paths): Let G = (N, E) be a component flow graph in a software system. Let VDU be a set of

tuples (ν, nt, µ) where (nt, µ) is a def-use pair for ν and let P be a set of tuples (ν, nt, µ, p) where (nt, µ) is a DU-pair for ν and p is

a DU-path from nt to µ. The set of all such paths p are the candidate test paths in G.

The all-uses testing criterion is satisfied by any path from a def to a use. The construction below looks for the shortest path

because it is more convenient, thus saving computation expense. It is, however, possible that other paths could be �better� in

some sense. A reasonable alternative would be to incorporate a searching procedure that uses some measurement function to

choose from among a set of potential paths. One measurement might be to require that all mutator TSG path segments be known

feasible instead of just known not infeasible, but that is a very difficult measurement to determine or represent.

It is easy to construct the set VDU of Definition 6.6, but the set P may not have any elements. An iterative procedure is defined

to construct the elements of P. It searches for candidate test paths using a breadth-first algorithm for finding paths from one node

to another in a directed graph, a modification of Dijkstra�s shortest-path algorithm that starts at both beginning and end nodes,

and meets in the middle. It works breadth-first from definition nodes and use nodes or edges, simultaneously forming two sets of

 -22-

partial paths. The def-partial paths are paths whose head is the definition node for a state variable and whose tail is a candidate

node for connecting to a use of that variable. The use-partial paths are paths whose tail is a transition node where a variable is

computation-used, or whose last two tail nodes determine an edge where the variable is predicate-used, and whose head is a

candidate node for connecting to a definition of that state variable. Each step of the algorithm looks for an edge that links the tail

of a def-partial path for a state variable to the head of a use-partial path for that same variable. In addition, the algorithm ensures

that all partial paths are def-free by requiring that the new candidate node added as the tail of a def-partial path or the head of a

use-partial path does not define the variable. The algorithm enforces a rule that every mutator TSG path segment be potentially

feasible. The algorithm also enforces a rule that private functions may only be called by methods within their own class and that

protected functions may only be called by methods within their own component (that is, a Java package). Also, if the action of a

transition calls a private function within its own class, and if the next transition in the candidate path is a transition derived from

the private function, the algorithm requires that the target state of the calling transition is the source state of the derived

transition. A typical example of an action calling a private function is the asynchronous call of CheckState() as the final action of

many methods in CruiseUser. Finally, in order to help ensure the construction of DU-paths that result in feasible test cases the

construction of both sets of partial paths is required to satisfy a set of rules involving SeqNbr, InSeq, and OutSeq labels to ensure

that edges entering or leaving a transition node occur in a feasible order for the action sequence of that transition.

The iterative process stops when the set P = ∪ Pi. This must happen for some value of i less than the number of edges in the

graph since cycles were avoided by ensuring that no edge appears more than once in any of the partial paths. It is possible for

some state nodes and some transition nodes to appear more than once in a partial path. Not all elements (ν, nt, µ) ∈ VDU will

yield a DU-path. Some variables may be defined at a node nt and used at a use item µ, but either no path exists from nt to µ that

satisfies the above constraints, or every such path contains a re-definition of ν.

Definition 6.7 (def-bound): A variable ν is said to be def-bound at a definition node nt of a def-use pair (nt, µ) if there is no path

from nt to µ (p = (ν, nt, µ, p)∈ P).

The def-bound variables surface during the calculation of Bi+1 = Xi - Ai+1 in the iterative process of Definition 6.6. At that point

Ci+1 ⊆ Ai+1 ⊆ Xi. It follows that Bi+1 identifies the def-use pairs that were active during the calculation of Xi, did not find a path

to join in Pi+1, yet are no longer active for Xi+1. They dropped out because in the calculation of the previous Qi there did not exist

a node n to form a new edge in the partial paths. Thus the sets Bi+1 identify new def-bound variables, if they exist, at each step of

the process.

6.2 Executable test cases

If a variable ν is both defined and used, and is not def-bound for a specific def-use pair, then the path generation of the previous

section produces one or more DU-paths linking a definition node nt to its corresponding use item µ. These DU-paths are

considered to be abstract test specifications because no attempt has yet been made to choose explicit parameter values for any of

the function calls. There is no guarantee that an abstract test specification will be feasible because it may contain a TSG path

segment that is not feasible. However, the process carries along all possible potentially feasible TSG path elements for each def-

 -23-

use pair, so there is a good chance that a feasible one will be in the collection P of candidate test paths constructed by the

algorithm of Definition 6.6. If at the end of iteration i, all DU-paths for a DU-pair are discovered to be not feasible, then the def-

use pair is re-inserted into the set Xi of active pairs and the iterative algorithm continues.

Even at the end of this process, there is no guarantee that a feasible abstract test specification will lead to an executable test case.

One must still find externally invokable methods that will trigger each of the function calls in the abstract test specification

without violating any of the constraints against re-definition of the state variable. The authors believe that the methodology

presented in this paper can be used to help find such externally invokable methods. In particular, the algorithm of Definition 6.6

can be used to find potentially feasible paths from the set of externally invokable methods to each of the function calls in an

abstract test specification that is not the result of an internal call. Subsequent research will attempt to use this methodology to

help generate executable test cases automatically from abstract test specifications.

Each DU-pair is equally important because it tests a distinct def and use of some variable. Even if two different DU-pairs share

essentially the same DU-path, an executable test case that follows that path is an effective test case for each DU-pair. Some

paths are included as a subpath within other paths, or shorter paths may be connected end-to-end to produce longer paths, so a

traversal of a longer path by an executable test case may test multiple abstract aspects of the state/transition specification at the

same time. From a theoretical perspective, they should still be counted as separate tests. In any statistical analysis of test case

development, it may safely be assumed that the set of all DU-pairs is the sample space from which all executable test cases are

drawn. Such statistical analysis is left as future work.

7 Empirical Results on the Automobile System

This section presents results from testing the Automobile example introduced in Section 2.2 and its CruiseControl component.

Cruise has been used widely in the specification, specification-based testing, and modeling literature [1, 4, 19], but the version

used in this paper includes significantly more components than other versions. The version used by Atlee and Abdurazik et al.

[1, 4] had seven functions, 184 blocks, and 174 decisions. The external interface and the cruise control transitions used in this

paper are modeled on the cruise control characteristics of a 1995 Acura Legend. Instead of the four states found in the other

papers, the system used in this paper contains 10 classes, each of which has a number of states. Combined, these states have 21

relevant variables that appear in more than 3433 def-use pairs. For cruise control testing purposes, only external functions such

as clutch and gas pedal positions and the cruise controls are available to human users. Other functions are encapsulated and

hidden.

Each process in Sections 3 through 6 are followed, using 16 iterations and resulting in the data shown in Table 2. The Process

Time column is from the prototype implementation using an Access database on a Pentium 4 class PC at 1.5 Ghz and 256 MB

RAM. Other columns are explained below.

 New Paths

Pi

New DU-pair

Ci

Active Pairs

Xi

New DefnBnd

Bi

Partial Paths

Qi

Process Time

(m:ss)

 -24-

1 18 18 3433 99 0:01

2 0 0 3316 0 3316 0:01

3 363 363 2948 5 4174 0:03

4 69 69 2879 0 15,077 0:27

5 291 287 2564 28 49,664 1:02

6 526 355 2209 0 71,697 1:25

7 209 85 2080 44 25,851 0:33

8 330 153 1117 810 19,122 0:22

9 130 109 938 70 18,752 0:17

10 263 263 665 10 14,401 0:25

11 231 214 445 6 46,509 0:59

12 26 17 428 0 50,822 0:27

13 0 0 428 0 10,206 0:23

14 0 0 428 0 12,130 0:18

15 0 0 420 8 0 0:05

16 0 0 0 420 0 0:01

Totals 2456 1933 1500 6:47

Table 2: Cruise Control – Candidate Test Paths

Table 2 shows that iteration 5 finds 291 new DU-paths, but only 287 of them identify new DU-pairs. In addition, 28 pairs were

found to be def-bound (Bi). The number of active pairs (Xi) is thus reduced by 287 and 28. Many of the paths are similar to the

above, either composed of successive application of feasible transitions within a class, going through the target state of one

transition to the source state of the next, or involving interactions between classes via calls of mutator functions along MTSG

edges. However, some of the paths introduce the first transition-to-transition edges. For example, Rpm of Engine is defined in

transition t003, but can reach its parameter computation-use in Gauges either by going through the target state of t003 to Gauges

via a call to Engine to read the value of ExternalDrag or by being passed as a parameter via a call of Gauges.Speed(x) to set the

Speed variable in Gauges. A tester could choose either path to test the def-use of Rpm, but might be biased toward the transition-

to-transition path because it does not contain any potentially infeasible MTSG path segments. Similarly, the Speed variable of

Gauges is defined in t017 then called by many CruiseUnit transitions for indirect computation-use. This iteration also discovers

28 new def-bound pairs, primarily because ThrottlePosition is defined in all of the relevant Throttle transitions but its predicate

use in many edges coming out of the Danger state can never be reached.

All DU-path generation takes place in iterations 3 through 12. Iterations 13 through 16 follow potentially feasible paths until it is

no longer possible to extend either the def-partial or use-partial paths without violating one of the path constraints (no new paths

are added). At iteration 16, all 3433 def-use pairs are resolved, finding candidate test paths for 1933 pairs and proving that the

remaining 1500 pairs are def-bound with no possible def-free test path.

 -25-

7.1 Experimentation with test cases

Once the candidate test paths are found, executable test cases are constructed by finding appropriate external calls to execute the

methods on the candidate test paths and appropriate parameter values. Tools for automating this step are under construction. As

an experimental evaluation, we have constructed the tests (145), seeded faults into the program (106), and evaluated the fault-

finding ability of the tests on the seeded faults. The subjects (full specification Engine specifications and tests) are shown in

appendixes of this report; the results will appear in a forthcoming paper. Faults were constructed by modifying the transitions

table in the specification database (Appendix VI). Each fault was created by copying the table and making one change, resulting

in 106 copies of the table. These tables will be provided on request.

8 Conclusions and Future Work

This technical report presents theoretical concepts for constructing tests for component-based testing. This is a method for

integration level, inter-class testing for object-oriented programs using data flow techniques. The data flow and control flow

graphs are stored in a relational database, which is used as a compute engine for deriving DU-pairs and DU-paths to satisfy data

flow testing criteria. Software components are modeled as finite state machines, and data flows are defined on the finite state

machines, yielding DU-paths that are used as a basis for testing.

The database representation provides a convenient way to go one step beyond traditional data flow systems and provide

definition-clear DU-paths rather than just DU-pairs. Traditional code-level data flow systems provide DU-pairs (as statements),

and use instrumentation to check whether separately supplied test inputs cause def-clear paths to be executed from the

definitions to the uses. This is often a hit-or-miss process, with the tester throwing test inputs at the software, hoping that the

data flow system eventually reports that the DU-pairs were covered. It is sometimes very difficult for a tester to find a test case

that will cover a particular DU-pair, and attempts have been made to generate tests by generating and solving predicates [36].

Source code-level data flow analysis has always had problems with the predicates getting too large for memory, which is one

reason why data flow testing is seldom if at all used in practice. The early papers on data flow discussed data flow paths, but

none of the implementations dealt with construction of the paths, which meant that discussions of data flow paths were

theoretical.

Traditional code-level data systems do not provide complete paths for data flow testing, partially because the problems of

finding a feasible path and determining whether the path is def-clear are generally undecidable. In cases where the problem can

be solved, the complexity of the control flow, problems with aliasing and function calls, and the size of the data space make the

cost of the exponential algorithms prohibitive. This work, however, avoids some of the problems associated with code-level data

flow analysis. The �control flow� on average is much simpler than in code-level control-flow graphs, the data space is much

smaller, and there is no aliasing. The point of using the database is that it provides a powerful compute engine for solving

predicates, which is one of the most difficult parts of a data flow analyzer to implement.

 -26-

Although it is true that this work thus far has not assured scalability, the authors have experience both building and using source

code-level data flow analysis software. We know of no source code-level data flow testing systems, either commercial or

experimental, which can handle software specifications that have thousands of DU-pairs, as we have done for the Engine system.

This paper does not explicitly handle class variables (Java static) or inheritance. However, class variables can be modeled by

assuming that they are instance variables in a separate, virtual class, where only one instance of that class is available, and where

the static methods that access the class variables are methods in the separate class. Inheritance of variables from a superclass is

handled by replacing variable references in the subclass with a method invocation of the associated get and set methods of the

superclass. Other aspects of inheritance do not directly impact this model.

For clarity, the definitions and example in this paper only consider one object per class. However, aggregation and consideration

of multiple class instances are essential for practical application. In static environments with static type hierarchies and static

type binding, aggregation and multiple instances are achieved by allowing state variables to be references to some other object.

All such reference variables are collected together, creating a new table in the model with a primary key called RefId. Each row

of the new table identifies an object whose state and behavior must be maintained throughout the testing process. Then the

associations of Figure 3 are extended to be specified in terms of RefIds instead of just ClassIds. The remainder of the test

specification for this situation follows as presented here.

The situation is substantially more complex when class hierarchies with dynamic type binding and polymorphism are used. This

is an issue for future work.

One interesting question is when to employ the techniques presented in this, and three possibilities emerge. The most obvious is

when software components are integrated. At that time, the FSMs can be generated and relevant transitions can be determined to

be those transitions that are included as part of the components in the current integration step. It may also be possible to employ

these techniques during maintenance. If a component is to be changed, the impact of that change can be estimated in terms of the

relevant transitions, and regression testing can proceed on the relevant transitions. Finally, if a new component is to be added to

a system, then relevant transitions (and the resulting tests) can be created in terms of the new component. We hope to explore

this idea in future work.

With the increasing popularity of object-oriented specification methods, e.g. UML [40], and especially state transition

specification of classes, e.g. UML�s state machine package, it becomes possible to more closely align the specification and

testing of object-oriented software, with executable test cases generated automatically from the specification. With the addition

of database tools, it becomes possible to apply finite state analysis and testing methods to moderate-sized software systems.

Follow-on work will focus on further integration of the specification and testing aspects of software development and on the

potential application of statistical methods.

Acknowledgements

It is a pleasure to acknowledge Roger Alexander, Paul Black, and the reviewers for a number of helpful suggestions.

 -27-

References

[1] A. Abdurazik, P. Ammann, W. Ding, and J. Offutt, �Evaluation of Three Specification-based Testing Criteria", in
Proceedings of the Sixth IEEE International Conference on Engineering of Complex Computer Systems (ICECCS '00), pp. 179-
187, Tokyo, Japan, September, 2000.

[2] Roger Alexander and Jeff Offutt, �Analysis Techniques for Testing Polymorphic Relationships,� Proceedings of the Thirtieth
International Conference on Technology of Object-Oriented Languages and Systems (TOOLS USA '99), August 1999, Santa
Barbara, CA, 104-114.

[3] Roger Alexander and Jeff Offutt, �Criteria for Testing Polymorphic Relationships,� Proceedings of the 11th International
Symposium on Software Reliability Engineering (ISSRE ‘00), October, 2000, San Jose, CA, 15-23.

[4] J. M. Atlee, "Native Model-checking of SCR Requirements", in Proceedings of the Fourth International SCR Workshop,
November 1994.

[5] D. Banks, W. Dashiell, L. Gallagher, C. Hagwood, R. Kacker, L. Rosenthal, Software Testing by Statistical Methods:
Preliminary Success Estimates for Approaches Based on Binomial Models, Coverage Designs, Mutation Testing and Usage
Models, NISTIR 6129, U.S. National Institute of Standards and Technology, March 1998. http://www.nist.gov/stsm.html

[6] G. Booch, Object Oriented Design with Applications, Benjamin Cummings, 1991.

[7] H. Y. Chen, T. H. Tse, F. T. Chan, and T. Y. Chen, �In Black and White: An Integrated Approach to Class-Level Testing of
Object-Oriented Programs.� ACM Transactions on Software Engineering Methodology, 7(3):250-295, 1998.

[8] H. Y. Chen, T. H. Tse, and T. Y. Chen, �TACCLE: A Methodology for Object-Oriented Software Testing at the Class and
Cluster Levels,� ACM Transactions on Software Engineering Methodology, 10(4):56-109, 2001.

[9] Mei-Hwa Chen and Ming-Hung Kao, �Testing Object-Oriented Programs -- An Integrated Approach,� Proceedings of the
10th International Symposium on Software Reliability Engineering, IEEE Computer Society, November 1999, Boca Raton, FL,
73-83.

[10] L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil, "A Comparison of Data Flow Path Selection Criteria,"
Proceedings of the Eighth International Conference on Software Engineering, IEEE Computer Society Press, London UK,
August 1985, pp. 244-251.

[11] T. Chow, �Testing Software Design Modeled by Finite-State Machines,� IEEE Transactions on Software Engineering, Vol.
SE-4, No. 3, May 1978, pp. 178-187.

[12] E. F. Codd, �A Relational Model of Data for Large Shared Data Banks,� in Communications of the ACM, Vol. 13, No. 6,
June 1970, pp. 377-387, reprinted in Vol. 26, No. 1, Jan. 1983.

[13] C. J. Date, An Introduction to Database Systems, 6th edition, Addison-Wesley, 1995.

[14] R. K. Doong and P. G. Frankl, �The ASTOOT Approach to Testing Object-Oriented Programs,� ACM Transactions on
Software Engineering and Methodology, 3(2):101-130, April 1994.

[15] P. G. Frankl and E. J. Weyuker, �An Applicable Family of Data Flow Testing Criteria� IEEE Transactions on Software
Engineering, Vol. 14, No. 10, Oct. 1988, pp. 1483-1498.

[16] P. G. Frankl and S. N. Weiss, �An Experimental Comparison of the Effectiveness of Branch Testing and Data Flow
Testing,� Transactions on Software Engineering, 19(8):774-787, August 1993.

[17] P. G. Frankl, S. N. Weiss, and C. Hu, �All-Uses versus Mutation Testing: An Experimental Comparison of Effectiveness,�
The Journal of Systems and Software, Elsevier North Holland Inc, 1997, 38(3):235-253.

 -28-

[18] L. J. Gallagher, Conformance Testing of Object-oriented Components Specified by State/Transition Classes, National
Institute of Standards and Technology Technical Report NISTIR 6592, May 1999.
ftp://xsun.sdct.itl.nist.gov/stsm/NISTIR6592.pdf.

[19] H. Gomaa, �Designing Concurrent, Distributed, and Real-Time Applications with UML�, Addison-Wesley, 2000.

[20] M. J. Harrold and M. L. Soffa, �Selecting and Using Data for Integration Testing,� IEEE Software, 8(2): 58�65, March
1991.

[21] M. J. Harrold and G. Rothermel, �Performing Data Flow Testing on Classes,� in Proceedings of 2nd ACM SIGSOFT
Symposium on Foundations of Software Engineering, Dec. 1994, pp. 154-163.

[22] H. S. Hong, Y. R. Kwon, and S. D. Cha, �Testing of Object-Oriented Programs Based on Finite State Machines,� in
Proceedings of Asia-Pacific Software Engineering Conference, pp. 234-241, 1995.

[23] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, "Experiments on the Effectiveness of Dataflow-and Controlflow-Based
Test Adequacy Criteria," Proceedings of the Sixteenth International Conference on Software Engineering, IEEE Computer
Society Press, May 1994, Sorrento, Italy, pp. 191-200.

[24] Java Development Kit, version 1.2, Sun Microsystems, Inc., Copyright1995, http://java.sun.com/products/jdk/1.2.

[25] Zhenyi Jin and Jeff Offutt, �Coupling-based Criteria for Integration Testing,� The Journal of Software Testing, Verification,
and Reliability, 8(3):133-154, September 1998.

[26] D. Kung, N. Suchak, J. Gao, P. Hsia, Y. Toyoshima, and C. Chen, �On Object State Testing,� in Proceedings of Computer
Software and Applications Conference, 1994, pp. 222-227.

[27] D. Kung, C. H. Liu and P. Hsia, �An Object-oriented Web Test Model for Testing Web Applications,� in Proceedings of
the 24th Annual International Computer Software and Applications Conference (COMPSAC 2000), IEEE Computer Society,
October 2000, Taipei Taiwan, 73-83.

[28] D. Kung, J. Gao, Pei Hsia, Y. Toyoshima, and C. Chen, �A Test Strategy for Object-oriented Programs,� 19th Computer
Software and Applications Conference (COMPSAC 95), August 1995, Dallas, TX, pp. 239-244.

[29] R. J. Linn and M. Ü. Uyar, Conformance Testing Methodologies and Architectures for OSI Protocols, IEEE Computer
Society Press, 1994.

[30] C. H. Liu, D. Kung, P. Hsia and C. T. Hsu, �Structural Testing for Web Applications,� Proceedings of the 11th
International Symposium on Software Reliability Engineering (ISSRE 2000, IEEE Computer Society, October 2000, San Jose
CA, 84-96.

[31] A. P. Mathur and W. E. Wong, "An Empirical Comparison of Data Flow and Mutation-based Test Adequacy Criteria,"
Journal of Software Testing, Verification and Reliability, Wiley, 4(1):9-31, March 1994.

[32] J. Melton and A. Simon, Understanding the New SQL: A Complete Guide, Morgan Kauffman, 1993.

[33] S. C. Ntafos, �A Comparison of Some Structural Testing Strategies,� IEEE Transactions on Software Engineering, Vol. 14,
No. 6, June 1988, pp. 868-874.

[34] A. J. Offutt, Jie Pan, Kanupriya Tewary, and Tong Zhang, "An Experimental Evaluation of Data Flow and Mutation
Testing," Software--Practice and Experience, 26(2):165-176, February 1996.

[35] J. Offutt, Generating Test Data From Requirements/Specifications: Phase II Final Report, Technical Report ISE-TR-99-01,
Department of Information and Software Engineering, George Mason University, Fairfax VA, January 1999,
http://www.ise.gmu.edu/techrep/.

[36] J. Offutt , Z. Jin and J. Pan, "The Dynamic Domain Reduction Approach to Test Data Generation", Software--Practice and
Experience, January 1999, 29(2), pp. 167-193.

 -29-

[37] A. S. Parrish, R. B. Borie, and D. W. Cordes, �Automated Flow Graph-Based Testing of Object-Oriented Software
Modules,� Journal of Systems and Software, 23, 1993, pp. 95-109.

[38] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object Oriented Modeling and Design, Prentice Hall,
1991.

[39] C. D. Turner and D. J. Robson, �The State-based Testing of Object-Oriented Programs,� in Proceedings of the Conference
on Software Maintenance, 1993, pp. 302-310.

[40] Unified Modeling Language, Object Constraint Language Specification and UML semantics, version 1.1, Sept. 1997,
Rational Software, http://www.rational.com/uml/.

[41] Hong Zhu, Patrick A. V. Hall, and John H. R. May, "Software Unit Test Coverage and Adequacy," ACM Computing
Surveys, 29(4):366-427, December 1997.

 -30-

Appendices

The appendices to this report include the full specifications for the Engine system and executable test cases. The specifications

are in several tables. Appendix I lists the thirteen classes of the system. Appendix II lists the external functions of all the classes.

 Appendix III lists the parameters for each of the external function. Appendix IV lists the states for all objects in the Engine

system. Appendix V lists the state variables for the classes in Engine. Appendix VI lists the mutator transitions for all the classes

in the Engine. Appendix VII lists the executable test cases generated by our technique, in the form of sequences of calls to

external functions.

Appendix I: Classes for CruiseControl

ClassI

d ClassAlias ClassName ComponentName SystemName

c01 AutoSystem AutoSystem_ADT SystemControl Automobile
c02 BrakeControl BrakeControl_ADT Brakes Automobile
c03 BrakeUser BrakeUser_ADT Brakes Automobile
c04 ClutchUser ClutchUser_ADT Clutch Automobile
c05 CruiseUnit CruiseUnit_ADT CruiseControl Automobile
c06 CruiseUser CruiseUser_ADT CruiseControl Automobile
c07 Engine Engine_ADT Engine Automobile
c08 GasUser GasPedalUser_AD

T
Acceleration Automobile

c09 Gauges Gauges_ADT InstrumentPanel Automobile
c10 Throttle ThrottleUnit_ADT Acceleration Automobile
c11 Ignition Ignition_ADT IgnitionControl Automobile
c12 Transmissio

n
Transmission_ADT TransmissionBox Automobile

c13 Wheel Wheel_ADT WheelHousing Automobile

 -31-

Appendix II: External Functions for CruiseControl

ClassAlias Avail FunName InputType ReturnType Description

AutoSystem PRO AutoSystem() AutoSystem Creates a new instance of the AutoSystem ADT.

AutoSystem PUB BrakeActive() Boolean Read value.

AutoSystem PUB BrakeActive(x) Boolean Boolean Set value, returns true if successful.

AutoSystem PUB ClutchActive() Boolean Read value.

AutoSystem PUB ClutchActive(x) Boolean Boolean Set value, returns true if successful.

AutoSystem PUB Danger() Boolean Read value.

AutoSystem PUB Danger(x) Boolean Boolean Set value, returns true if successful.

AutoSystem EXT ThrottleFloor() Boolean Read value of CONSTANT.

AutoSystem EXT ThrottleGovernor() Boolean ReadValue or CONSTANT.

BrakeControl PRO BrakeControl() BrakeControl Creates a new instance of the BrakeControl ADT.

BrakeControl PRO IsActive() Boolean Read value.

BrakeControl PRO IsActive(x) Boolean Boolean Set value, returns true if successful.

BrakeControl PRO WheelsTurning() Number(2) Read value.

BrakeControl PRI WheelsTurning(x) Number(2) Boolean Set value, returns true if successful.

BrakeControl PRO LinePressure() Number(2) Read value.

BrakeControl PRI LinePressure(x) Number(2) Boolean Set value, returns true if successful.

BrakeControl PRO PedalPressure() Number(2) Read value.

BrakeControl PRO PedalPressure(x) Number(2) Boolean Set value, returns true if successful.

BrakeUser PRO BrakeUser() BrakeUser Creates a new instance of the BrakeUser ADT.

BrakeUser EXT IsActive() Boolean Read value.

BrakeUser EXT IsActive(x) Boolean Boolean Set value, returns true if successful.

BrakeUser EXT PedalPressure() Number(2) Read value.

BrakeUser EXT PedalPressure(x) Number(2) Boolean Set value, returns true if successful.

ClutchUser PRO ClutchUser() ClutchUser Creates a new instance of the ClutchUser ADT.

ClutchUser EXT PedalPosition() Number(2) Read value.

ClutchUser EXT PedalPosition(x) Number(2) Boolean Set value, returns true if successful.

CruiseUnit PRO CruiseUnit() CruiseUnit Creates a new instance of the CruiseUnit ADT.

CruiseUnit PUB UserSwitch() Enum(On,Off) Reads the Switch state.

CruiseUnit PUB UserSwitch(x) Enum(On,Off) Boolean Sets the Switch state, returns true if successful.

CruiseUnit PUB UserMode() Enum(Null,NT,RA,SD) Reads the Mode state.

CruiseUnit PUB UserMode(x) Enum(Null,NT,RA,SD) Boolean Sets the Mode state, returns true if successful.

CruiseUnit PRI CurrentSpeed() Number(4,1) Reads CurrentSpeed variable.

CruiseUnit PRI CurrentSpeed(x) Number(4,1) Boolean Sets CruiseSpeed variable, returns true if successful

CruiseUnit PRI TargetSpeed() Number(4,1) Reads TargetSpeed variable.

CruiseUnit PRI TargetSpeed(x) Number(4,1) Boolean Sets TargetSpeed variable, returns true if successful.

CruiseUnit PRI TargetThrottle() Number(2) Reads TargetThrottle variable.

CruiseUnit PRI TargetThrottle(x) Number(2) Boolean Sets TargetThrottle variable, returns true if successful.

 -32-

ClassAlias Avail FunName InputType ReturnType Description

CruiseUnit PUB Cancel() Boolean An interrupt - halts any active state, puts system in

Override state, returns true if successful.

CruiseUnit PRI SetSpeed() Boolean Sets CurrentSpeed from Gauges.

CruiseUnit PRI CheckState() Boolean Reads all gauges, checks all state variables, decides

next action.

CruiseUser PRO CruiseUser() CruiseUser Creates a new instance of the CruiseUser ADT.

CruiseUser EXT Switch() Enum(On,Off) Reads the Switch state.

CruiseUser EXT Switch(x) Enum(On,Off) Boolean Sets the Switch state, returns true if successful.

CruiseUser EXT Mode() Enum(NT,RA,SD) Reads the Mode state.

CruiseUser EXT Mode(x) Enum(NT,RA,SD) Boolean Sets the Mode state, returns true if successful.

CruiseUser EXT Cancel() Boolean Sends Cancel message to the CruiseUnit ADT, returns

true if message successfully sent.

Engine PRO Engine() Engine Creates a new instance of the Engine ADT.

Engine PRI Rpm() Number(4) Read value.

Engine PRI Rpm(x) Number(4) Boolean Set value, returns true if successful. Continuous

Update by private process.

Engine PUB GasFlow() Real Read value.

Engine PUB GasFlow(x) Real Boolean Set value, returns true if successful. Controlled by

external calls.

Engine PRI Check() Boolean Check all state variables to see if move to new state.

Engine PUB ExternalDrag() Real Used to simulate hills and wind resistance

Engine EXT ExternalDrag(x) Real Boolean Used to simulate hills and wind resistance (0,2) 1 is

neutral.

GasUser PRO GasUser() GasUser Creates a new instance of the GasUser ADT.

GasUser EXT PedalPosition() Number(2) Read value.

GasUser EXT PedalPosition(x) Number(2) Boolean Set value, returns true if successful.

Gauges PRO Gauges() Gauges Creates a new instance of the Gauges ADT.

Gauges EXT Odometer() Number(7,1) Read value.

Gauges PUB Odometer(x) Number(7,1) Boolean Set value, returns true if successful.

Gauges EXT TripMeter() Number(5,1) Read value.

Gauges PUB TripMeter(x) Number(5,1) Boolean Set value, returns true if successful.

Gauges EXT Tach() Number(4) Read value.

Gauges PUB Tach(x) Number(4) Boolean Set value, returns true if successful.

Gauges EXT Speed() Number(3) Read value.

Gauges PUB Speed(x) Number(3) Boolean Set value, returns true if successful.

Gauges PUB OilPressure() Number Read value.

Gauges EXT OilPressure(x) Number Boolean Set value, returns true if successful.

Gauges PUB WaterTemp() Number Read value.

Gauges EXT WaterTemp(x) Number Boolean Set value, returns true if successful.

Gauges EXT Cruise() Enum(On,Off) Read value.

 -33-

ClassAlias Avail FunName InputType ReturnType Description

Gauges PUB Cruise(x) Enum(On,Off) Boolean Set value, returns true if successful.

Gauges EXT AbsLight() Enum(On,Off) Read value.

Gauges PUB AbsLight(x) Enum(On,Off) Boolean Set value, returns true if successful.

Gauges EXT Battery() Enum(On,Off) Read value.

Gauges PUB Battery(x) Enum(On,Off) Boolean Set value, returns true if successful.

Gauges EXT OilLight() Enum(On,Off) Read value.

Gauges PRI OilLight(x) Enum(On,Off) Boolean Set value, returns true if successful.

Gauges EXT SeatBelt() Enum(On,Off) Read value.

Gauges EXT SeatBelt(x) Enum(On,Off) Boolean Set value, returns true if successful.

Gauges EXT HandBrake() Enum(On,Off) Read value.

Gauges EXT HandBrake(x) Enum(On,Off) Boolean Set value, returns true if successful.

Gauges EXT LowGas() Enum(On,Off) Read value.

Gauges EXT LowGas(x) Enum(On,Off) Boolean Set value, returns true if successful.

Throttle PRO Throttle(x,y) (Number(2),Number(2)) Throttle Creates a new instance of the Throttle ADT with two

constant values.

Throttle PUB Position() Number(2) Read value.

Throttle PRI Position(x) Number(2) Boolean Set value, returns true if successful.

Throttle PRI GasPedal() Number(2) Read value.

Throttle PUB GasPedal(x) Number(2) Boolean Set value, returns true if successful.

Throttle PUB Floor() Number(2) Read value.

Throttle PUB Floor(x) Number(2) Boolean Set value, returns true if successful.

Throttle PRI Convert(x) Number(2) Number(3,2) Converts Position to GasFlow.

Ignition EXT Ignition() Ignition Creates a new instance of the Ignition ADT

Ignition EXT Key() Enum(On,Off) Always reutrns On when object is active.

Ignition EXT Key(x) Enum(On,Off) Boolean Can only turn Ignition Off - On creates the object

Ignition EXT EngineOn() Boolean Reports if engine has been started.

Ignition PRI EngineOn(x) Boolean Boolean Sets value privately

Ignition EXT StartEngine() Boolean Returns true if successful.

Transmission PRO Transmission() Transmission Creates a new Transmission instance with several

constants

Transmission EXT Gear() Enum(N,R,1,2,3,4,5)

Transmission EXT Gear(x) Enum(N,R,1,2,3,4,5) Boolean Returns true if successful

Transmission PUB DriveRatio() Number Returns multiplier for Engine RPM to Wheel RPM

Wheel PRO Wheel() Wheel Creates a new instance of Wheel ADT

Wheel PRI AxelRpm() Number(4) Reads value

Wheel PUB AxelRpm(x) Number(4) Boolean Return true if successful

Wheel PRI WheelRpm() Number(4) Reads value.

Wheel PRI WheelRpm(x) Number(4) Boolean Private function never called externally.

Wheel PRI WheelDiam() Number Boolean constant function never called externally.

 -34-

ClassAlias Avail FunName InputType ReturnType Description

Wheel PRI CheckState() Boolean Checks all state variables, decides next action.

 -35-

Appendix III: Parameters for CruiseControl Functions

ClassAlias FunName Name Type Constraint Direction

Throttle Throttle(x,y) x Number(2) (x>=0 & x<=99) IN

Throttle Throttle(x,y) y Number(2) (y>=0 & y<=99) IN

Gauges Odometer(x) x Number(7,1) (x>=0 & x<=99) IN

Engine Rpm(x) x Number(4) (x>=0 & x<=99) IN

AutoSystem BrakeActive(x) x Boolean (x=true OR x=false) IN

CruiseUser Switch(x) x Enum(On,Off) IN

CruiseUnit UserSwitch(x) x Enum(On,Off) IN

BrakeUser IsActive(x) x Boolean (x=true OR x=false) IN

BrakeControl IsActive(x) x Boolean (x=true OR x=false) IN

ClutchUser PedalPosition(x) x Number(2) (x>=0 & x<=99) IN

GasUser PedalPosition(x) x Number(2) (x>=0 & x<=99) IN

Throttle Position(x) x Number(2) (x>=0 & x<=99) IN

Ignition Key(x) x Enum(On,Off) IN

Transmission Gear(x) x Enum(N,R,1,2,3,4,5) IN

Wheel AxelRpm(x) x Number(4) (x>=0 & x<=9999) IN

Gauges TripMeter(x) x Number(5,1) (x>=0 & x<=9999.9) IN

AutoSystem ClutchActive(x) x Boolean (x=true OR x=false) IN

CruiseUser Mode(x) x Enum(NT,RA,SD) IN

CruiseUnit UserMode(x) x Enum(NT,RA,SD) IN

BrakeUser PedalPressure(x) x Number(2) (x>=0 & x<=99) IN

BrakeControl WheelsTurning(x) x Number(2) (x>=0 & x<=99) IN

Ignition EngineOn(x) x Boolean (x=true OR x=false) IN

Wheel WheelRpm(x) x Number(4) (x>=0 & x<=9999) IN

Gauges Tach(x) x Number(4) (x>=0 & x<=9999) IN

CruiseUnit CurrentSpeed(x) x Number(4,1) (x>=0 & x<=999.9) IN

BrakeControl LinePressure(x) x Number(2) (x>=0 & x<=99) IN

Throttle GasPedal(x) x Number(2) (x>=0 & x<=99) IN

AutoSystem Danger(x) x Boolean (x=true OR x=false) IN

Gauges Speed(x) x Number(3) (x>=0 & x<=999) IN

CruiseUnit TargetSpeed(x) x Number(4,1) (x>=0 & x<=999.9) IN

BrakeControl PedalPressure(x) x Number(2) (x>=0 & x<=99) IN

Throttle Floor(x) x Number(2) (x>=0 & x<=99) IN

Throttle Convert(x) x Number(2) (x>=0 & x<=99) IN

Gauges OilPressure(x) x Number IN

CruiseUnit TargetThrottle(x) x Number(2) (x>=0 & x<=99) IN

Gauges WaterTemp(x) x Number IN

 -36-

ClassAlias FunName Name Type Constraint Direction

Engine GasFlow(x) x Number(3,2) (x>=0 & x<=9.99) IN

Gauges Cruise(x) x Enum(On,Off) IN

Engine ExternalDrag(x) x Number(1) (x>=-9 & x<=9) IN

Gauges AbsLight(x) x Enum(On,Off) IN

Gauges Battery(x) x Enum(On,Off) IN

Gauges OilLight(x) x Enum(On,Off) IN

Gauges SeatBelt(x) x Enum(On,Off) IN

Gauges HandBrake(x) x Enum(On,Off) IN

Gauges LowGas(x) x Enum(On,Off) IN

 -37-

Appendix IV: Object States for CruiseControl

ClassAlias StateId StateNam

e DefnPredicate

AutoSystem s00 Initial Undefined
AutoSystem s01 Inactive BrakeActive=false & ClutchActive=false & Danger=false
AutoSystem s02 Active BrakeActive=true OR ClutchActive=true OR Danger=true
BrakeControl s00 Initial Undefined
BrakeControl s01 Inactive IsActive=false
BrakeControl s02 Braking IsActive=true & WheelsTurning=true
BrakeControl s03 Locked IsActive=true & WheelsTurning=false
BrakeUser s00 Initial Undefined
BrakeUser s01 Inactive IsActive=false
BrakeUser s02 Braking IsActive=true
ClutchUser s00 Initial Undefined
ClutchUser s01 Inactive PedalPosition=0
ClutchUser s02 Transition PedalPosition>0 & PedalPosition<pconst
ClutchUser s03 Engaged PedalPosition>=pconst
CruiseUnit s00 Initial Undefined
CruiseUnit s01 Off UserSwitch=Off
CruiseUnit s02 Inactive UserSwitch=On & Gauges.Cruise()=Off & TargetSpeed=0 & UserMode=Null
CruiseUnit s03 Cruise UserSwitch=On & UserMode=NT & Gauges.Cruise()=On & SlowCutoff<TargetSpeed<FastCutoff

CruiseUnit s04 Accel UserSwitch=On & UserMode=RA & Gauges.Cruise()=On
CruiseUnit s05 Decel UserSwitch=On & UserMode=SD & Gauges.Cruise()=On
CruiseUnit s06 Override UserSwitch=On & Gauges.Cruise()=Off & SlowCutoff<TargetSpeed<FastCutoff
CruiseUser s00 Initial Undefined
CruiseUser s01 Off Switch=Off
CruiseUser s02 Neutral Switch=On & Mode=NT
CruiseUser s03 Accel Switch=On & Mode=RA
CruiseUser s04 Decel Switch=On & Mode=SD
Engine s00 Initial Undefined
Engine s02 Normal true
GasUser s00 Initial Undefined
GasUser s01 Active PedalPosition>=0
Gauges s00 Initial Undefined
Gauges s01 Normal Speed<180 & OilLight=Off & WaterTemp<100
Gauges s02 Danger Speed>=180 OR OilLight=On OR WaterTemp>=100
Throttle s00 Initial Undefined
Throttle s01 Idle Position=fconst
Throttle s02 Manual fconst<Position<=gconst & Position>Floor
Throttle s03 Automatic fconst<Position<=gconst & Position=Floor
Throttle s04 Danger GasPedal>gconst

 -38-

ClassAlias StateId StateNam

e DefnPredicate

Ignition s00 Initial Undefined
Ignition s01 On Key=On
Transmission s00 Initial Undefined
Transmission s01 Neutral Gear=N
Transmission s02 Reverse Gear=R
Transmission s03 Forward Gear=1 OR Gear=2 OR Gear=3 OR Gear=4 OR Gear=5
Wheel s00 Initial Undefined
Wheel s01 DirectDrive AxelRpm=WheelRpm
Wheel s02 Decel AxelRpm<WheelRpm
Wheel s03 Accel WheelRpm<AxelRpm

 -39-

Appendix V: State Variables for CruiseControl

ClassAlias VariableName DataType Default Constraint Description

AutoSystem BrakeActive Boolean null

AutoSystem ClutchActive Boolean null

AutoSystem Danger Boolean null

AutoSystem ThrottleFloor Number(2) 12 CONSTANT Will determine fconst when Throttle object is

created.

AutoSystem ThrottleGovernor Number(2) 80 CONSTANT Will determine gconst when Throttle objects is

created.

BrakeControl IsActive Boolean null

BrakeControl WheelsTurning Boolean null

BrakeControl LinePressure Number(2) 0

BrakeControl PedalPressure Number(2) 0

BrakeUser IsActive Boolean null

BrakeUser PedalPressure Number(2) 0 0<=PedalPressure<100

BrakeUser pconst Number(2) 5 CONSTANT

ClutchUser PedalPosition Number(2) 0 0<=PedalPosition<100

ClutchUser pconst Number(2) 5 CONSTANT

CruiseUnit UserSwitch Enum(On,Off) Off

CruiseUnit UserMode Enum(Null,NT,RA,SD) NT

CruiseUnit CurrentSpeed Number(4,1) 0 0<=CurrentSpeed<200

CruiseUnit TargetSpeed Number(4,1) 0

CruiseUnit TargetThrottle Number(2) 0 0<=TargetThrottle<99

CruiseUnit SlowCutoff Number(4,1) 25 CONSTANT

CruiseUnit FastCutoff Number(4,1) 95 CONSTANT

CruiseUser Switch Enum(On,Off) Off

CruiseUser Mode Enum(NT,RA,SD) NT

Engine Rpm Number(4) 0 0<=Rpm<=8000

Engine GasFlow Real 0 0<=GasFlow<10

Engine ExternalDrag Real 1 0<ExternalDrag<2 Used to simulate hills and wind resistance

Engine WaterTMin Number(3) 15 CONSTANT

Engine OilPMin Number(2) 8 CONSTANT

GasUser PedalPosition Number(2) 0 0<=PedalPosition<100

Gauges Odometer Number(7,1) previous

value

Odometer>=0

Gauges TripMeter Number(5,1) previous

value

TripMeter>=0

Gauges Tach Number(4) 0 0<=Tach<=8000

Gauges Speed Number(3) 0 0<=Speed<=220 Measured in km/hr

 -40-

ClassAlias VariableName DataType Default Constraint Description

Gauges OilPressure Number null

Gauges WaterTemp Number null

Gauges Cruise Enum(On,Off) Off

Gauges AbsLight Enum(On,Off) Off

Gauges Battery Enum(On,Off) Off

Gauges OilLight Enum(On,Off) Off

Gauges SeatBelt Enum(On,Off) Off

Gauges HandBrake Enum(On,Off) null

Gauges LowGas Enum(On,Off) Off

Throttle Position Number(2) fconst 0<=Position<100

Throttle Floor Number(2) fconst 0<=Floor<100

Throttle GasPedal Number(2) fconst 0<=GasPedal<100

Throttle fconst Number(2) null CONSTANT Default = AutoSystem.ThrottleFloor()

Throttle gconst Number(2) null CONSTANT Default = AutoSystem.ThrottleGovernor()

Ignition Key Enum(On,Off) On

Ignition EngineOn Boolean false

Transmission Gear Enum(N,R,1,2,3,4,5) N

Transmission Ratio_R Number 1.846 CONSTANT

Transmission Ratio_1 Number 2.563 CONSTANT

Transmission Ratio_2 Number 1.552 CONSTANT

Transmission Ratio_3 Number 1.022 CONSTANT

Transmission Ratio_4 Number 0.653 CONSTANT

Transmission Ratio_5 Number 0.471 CONSTANT

Transmission Ratio_Diff Number 4.429 CONSTANT

Wheel AxelRpm Number 0 0<=Rpm<=8000

Wheel WheelRpm Number 0 0<=Rpm<=8000

Wheel WheelDiam Number 0.00056 CONSTANT Measured in Kilometers (56cm)

 -41-

Appendix VI: Mutator Transitions for CruiseControl

ClassAlias Source

State
Targe

tState
Function

Name Guard Action

AutoSystem Initial Inactive AutoSystem() true ThrottleFloor:=12; ThrottleGovernor:=80; Global BrakeControl:=New BrakeControl();

BrakeActive:=false; Global ClutchUser:=New ClutchUser(); ClutchActive:=false;

Global Gauges:=New Gauges(); Danger:=false; Global CruiseUnit:=New CruiseUnit();
AutoSystem Inactive Active BrakeActive(x) x=true BrakeActive:=true; Call CruiseUnit.Cancel();
AutoSystem Inactive Active Danger(x) x=true Danger:=true; Call CruiseUnit.Cancel();
AutoSystem Inactive Active ClutchActive(x

)
x=true ClutchActive:=true; Call CruiseUnit.Cancel();

AutoSystem Active Active BrakeActive(x) x=true BrakeActive:=true; Call CruiseUnit.Cancel();
AutoSystem Active Active ClutchActive(x

)
x=true ClutchActive:=true; Call CruiseUnit.Cancel();

AutoSystem Active Active Danger(x) x=true Danger:=true; Call CruiseUnit.Cancel();
AutoSystem Active Inactive BrakeActive(x) x=false &

ClutchActive=false &

Danger=false

BrakeActive:=false;

AutoSystem Active Inactive ClutchActive(x

)
x=false &

BrakeActive=false &

Danger=false

ClutchActive:=false;

AutoSystem Active Inactive Danger(x) x=false &

BrakeActive=false
Danger:=false;

AutoSystem Inactive Inactive ThrottleFloor() true Return ThrottleFloor;
AutoSystem Inactive Inactive ThrottleGover

nor()
true Return ThrottleGovernor;

AutoSystem Active Active ThrottleFloor() true Return ThrottleFloor;
AutoSystem Active Active ThrottleGover

nor()
true Return ThrottleGovernor;

AutoSystem Inactive Inactive Danger() true Return Danger;
AutoSystem Active Active Danger() true Return Danger;
AutoSystem Inactive Inactive BrakeActive() true Return BrakeActive;
AutoSystem Active Active BrakeActive() true Return BrakeActive;
AutoSystem Inactive Inactive ClutchActive() true Return ClutchActive;
AutoSystem Active Active ClutchActive() true Return ClutchActive;
BrakeControl Initial Inactive BrakeControl() true Global BrakeUser:=New BrakeUser(); IsActive:=false; PedalPressure:=0;

LinePressure:=0; WheelsTurning:=false;
BrakeControl Inactive Braking IsActive(x) x=true IsActive:=true; Call AutoSystem.BrakeActive(true);
BrakeControl Braking Inactive IsActive(x) x=false IsActive:=false; Call AutoSystem.BrakeActive(false);
BrakeControl Locked Inactive IsActive(x) x=false IsActive:=false; Call AutoSystem.BrakeActive(false);
BrakeControl Braking Braking PedalPressure

(x)
x>PedalPressure &

WheelsTurning=true

PedalPressure:=x; LinePressure:=(1.1)*LinePressure; WheelsTurning:=Sensor.Turning();

BrakeControl Braking Braking PedalPressure

(x)
x<PedalPressure &

WheelsTurning=true

PedalPressure:=x; LinePressure:=(0.9)*LinePressure; WheelsTurning:=Sensor.Turning();

 -42-

ClassAlias Source

State
Targe

tState
Function

Name Guard Action

BrakeControl Braking Locked PedalPressure

(x)
WheelsTurning=false PedalPressure:=x; LinePressure:=(0.9)*LinePressure; WheelsTurning:=Sensor.Turning();

BrakeControl Locked Locked PedalPressure

(x)
WheelsTurning=false

OR x>PedalPressure

LinePressure:=(0.9)*LinePressure; WheelsTurning:=Sensor.Turning();

BrakeControl Locked Braking PedalPressure

(x)
WheelsTurning=true&

x<PedalPressure
LinePressure:=(0.9)*LinePressure; WheelsTurning:=Sensor.Turning();

BrakeUser Initial Inactive BrakeUser() true IsActive:=false; PedalPressure:=0; pconst:=5;
BrakeUser Inactive Braking IsActive(x) x=true IsActive:=true; Call AutoSystem.BrakeActive(true); Call BrakeControl.IsActive(true);
BrakeUser Braking Inactive IsActive(x) x=false IsActive:=false; Call AutoSystem.BrakeActive(false); Call BrakeControl.IsActive(false);
BrakeUser Braking Braking PedalPressure

(x)
x<pconst PedalPressure:=x;

BrakeUser Braking Braking PedalPressure

(x)
x>=pconst &

x<>PedalPressure
PedalPressure:=x; Call BrakeControl.PedalPressure(PedalPressure);

ClutchUser Initial Inactive ClutchUser() true pconst:=5; PedalPosition:=pconst;
ClutchUser Inactive Transition PedalPosition(

x)
x>0 PedalPosition:=x; Call AutoSystem.ClutchActive(true);

ClutchUser Transition Inactive PedalPosition(

x)
x=0 PedalPosition:=x; Call AutoSystem.ClutchActive(false);

ClutchUser Transition Engaged PedalPosition(

x)
x>pconst PedalPosition:=x; Call ClutchUnit.PedalDown(true);

ClutchUser Engaged Transition PedalPosition(

x)
x<=pconst PedalPosition:=x; CallClutchUnit.PedalDown(false);

CruiseUnit Initial Off CruiseUnit() true Global CruiseUser:=New CruiseUser(); UserSwitch:=Off; SlowCutoff:=25; FastCutoff:=95;

UserMode:=Null; CurrentSpeed:=0; TargetSpeed:=0; TargetThrottle:=0;
CruiseUnit Off Off Cancel() true

CruiseUnit Off Off CheckState() true

CruiseUnit Off Off SetSpeed() true CurrentSpeed:=Gauges.Speed();
CruiseUnit Off Off UserMode() true Return UserMode;
CruiseUnit Off Off UserMode(x) true

CruiseUnit Off Off UserSwitch() true Return UserSwitch;
CruiseUnit Off Off UserSwitch(x) x=Off

CruiseUnit Off Inactive UserSwitch(x) x=On UserSwitch:=On;
CruiseUnit Inactive Inactive Cancel() true

CruiseUnit Inactive Inactive CheckState() true

CruiseUnit Inactive Inactive SetSpeed() true CurrentSpeed:=Gauges.Speed();

 -43-

ClassAlias Source

State
Targe

tState
Function

Name Guard Action

CruiseUnit Inactive Inactive UserMode() true Return UserMode;
CruiseUnit Inactive Inactive UserMode(x) x=NT &

UserMode=SD &

(Gauges.Speed()<=Sl

owCutoff OR

Gauges.Speed()>=Fa

stCutoff)

UserMode:=NT;

CruiseUnit Inactive Inactive UserMode(x) x=NT &

UserMode<>SD

CruiseUnit Inactive Cruise UserMode(x) x=NT &

UserMode=SD &

(SlowCutoff<Gauges.

Speed()<FastCutoff)

&

AutoSystem.BrakeActi

ve()=false &

AutoSystem.ClutchAct

ive()=false

UserMode:=NT; CurrentSpeed:=Gauges.Speed();

TargetSpeed:=CurrentSpeed; TargetThrottle:=Throttle.Position();

Call Gauges.Cruise(On); Call Throttle.Floor(TargetThrottle); Put CheckState() on Call Queue;

CruiseUnit Inactive Inactive UserMode(x) x<>NT UserMode:=x;
CruiseUnit Inactive Inactive UserSwitch() true Return UserSwitch;
CruiseUnit Inactive Off UserSwitch(x) x=Off UserSwitch:=Off;
CruiseUnit Inactive Inactive UserSwitch(x) x=On UserSwitch:=On;
CruiseUnit Cruise Override Cancel() true Call Gauges.Cruise(Off); Call Throttle.Floor(0);
CruiseUnit Cruise Cruise CheckState() UserMode<>NT

CruiseUnit Cruise Cruise CheckState() ABS(TargetSpeed-

CurrentSpeed)<0.5
Pause; CurrentSpeed:=Gauges.Speed(); Put CheckState() on Call Queue;

CruiseUnit Cruise Cruise CheckState() 0.5<=ABS(TargetSpe

ed-

CurrentSpeed)<1.0

CurrentSpeed:=Gauges.Speed(); Put CheckState() on Call Queue;

CruiseUnit Cruise Cruise CheckState() ABS(TargetSpeed-

CurrentSpeed)>=1.0

&

Throttle.Position()>Th

rottle.Floor()

CurrentSpeed:=Gauges.Speed(); Put CheckState() on Call Queue;

CruiseUnit Cruise Cruise CheckState() CurrentSpeed-

TargetSpeed>=1.0 &

Throttle.Position()=Th

rottle.Floor()

Call Throttle.Floor(Throttle.Floor()-0.5); Pause; CurrentSpeed:=Gauges.Speed();

Put CheckState() on Call Queue;

CruiseUnit Cruise Cruise CheckState() TargetSpeed-

CurrentSpeed>=1.0 &

Throttle.Position()=Th

rottle.Floor()

Call Throttle.Floor(Throttle.Floor()+0.5); Pause; CurrentSpeed:=Gauges.Speed();

Put CheckState() on Call Queue;

CruiseUnit Cruise Cruise SetSpeed() true CurrentSpeed:=Gauges.Speed();
CruiseUnit Cruise Cruise UserMode() true Return UserMode;

 -44-

ClassAlias Source

State
Targe

tState
Function

Name Guard Action

CruiseUnit Cruise Decel UserMode(x) x=SD TargetSpeed:=TargetSpeed-1; UserMode:=SD; Put CheckState() on Call Queue;
CruiseUnit Cruise Accel UserMode(x) x=RA TargetSpeed:=TargetSpeed+1; UserMode:=RA; Put CheckState() on Call Queue;
CruiseUnit Cruise Cruise UserSwitch() true Return UserSwitch;
CruiseUnit Cruise Cruise UserSwitch(x) x=On

CruiseUnit Cruise Off UserSwitch(x) x=Off Call Gauges.Cruise(Off); UserSwitch:=Off; UserMode:=Null; Call Throttle.Floor(0);
CruiseUnit Decel Override Cancel() true Call Gauges.Cruise(Off); UserMode:=Null; Call Throttle.Floor(0);
CruiseUnit Decel Override Cancel() UserMode<>SD

CruiseUnit Decel Decel CheckState() UserMode<>SD

CruiseUnit Decel Decel CheckState() CurrentSpeed>SlowC

utoff
Call Throttle.Floor(Throttle.Position()-0.5); Pause; CurrentSpeed:=Gauges.Speed();

Put CheckState() on Call Queue;
CruiseUnit Decel Override CheckState() CurrentSpeed<=Slow

Cutoff
Call Gauges.Cruise(Off); UserMode:=Null; Call Throttle.Floor(0);

CruiseUnit Decel Decel SetSpeed() true CurrentSpeed:=Gauges.Speed();
CruiseUnit Decel Decel UserMode() true Return UserMode;
CruiseUnit Decel Override UserMode(x) x=RA Call Gauges.Cruise(Off); UserMode:=Null; Call Throttle.Floor(0);
CruiseUnit Decel Cruise UserMode(x) x=NT UserMode:=NT; TargetSpeed:=Gauges.Speed();

TargetThrottle:=Throttle.Position(); CurrentSpeed:=TargetSpeed;

Put CheckState() on Call Queue;
CruiseUnit Decel Decel UserSwitch() true Return UserSwitch;
CruiseUnit Decel Off UserSwitch(x) x=Off Call Gauges.Cruise(Off); UserSwitch:=Off; UserMode:=Null; Call Throttle.Floor(0);
CruiseUnit Decel Decel UserSwitch(x) x=On

CruiseUnit Accel Override Cancel() true Call Gauges.Cruise(Off); UserMode:=Null; Call Throttle.Floor(0);
CruiseUnit Accel Override Cancel() UserMode<>RA

CruiseUnit Accel Accel CheckState() UserMode<>RA

CruiseUnit Accel Accel CheckState() CurrentSpeed<FastC

utoff
Call Throttle.Floor(Throttle.Position()+0.5); Pause; CurrentSpeed:=Gauges.Speed();

 Put CheckState() on Call Queue;
CruiseUnit Accel Override CheckState() CurrentSpeed>=Fast

Cutoff
Call Gauges.Cruise(Off); UserMode:=Null; Call Throttle.Floor(0);

CruiseUnit Accel Accel SetSpeed() true CurrentSpeed:=Gauges.Speed();
CruiseUnit Accel Accel UserMode() true Return UserMode;
CruiseUnit Accel Override UserMode(x) x=SD Call Gauges.Cruise(Off); UserMode:=Null; Call Throttle.Floor(0);
CruiseUnit Accel Cruise UserMode(x) x=NT UserMode:=NT; TargetSpeed:=Gauges.Speed();

TargetThrottle:=Throttle.Position(); CurrentSpeed:=TargetSpeed;

Put CheckState() on Call Queue;
CruiseUnit Accel Accel UserSwitch() true Return UserSwitch;

 -45-

ClassAlias Source

State
Targe

tState
Function

Name Guard Action

CruiseUnit Accel Off UserSwitch(x) x=Off Call Gauges.Cruise(Off); UserSwitch:=Off; UserMode:=Null; Call Throttle.Floor(0);
CruiseUnit Accel Accel UserSwitch(x) x=On

CruiseUnit Override Override Cancel() true

CruiseUnit Override Override CheckState() true

CruiseUnit Override Override SetSpeed() true CurrentSpeed:=Gauges.Speed();
CruiseUnit Override Override UserMode() true Return UserMode;
CruiseUnit Override Override UserMode(x) x<>NT OR

Gauges.Speed()<=Sl

owCutoff OR

Gauges.Speed()>=Fa

stCutoff

UserMode:=x;

CruiseUnit Override Cruise UserMode(x) x=NT &

UserMode=SD &

(SlowCutoff<Gauges.

Speed()<FastCutoff)

&

AutoSystem.BrakeActi

ve()=false &

AutoSystem.ClutchAct

ive()=false

CurrentSpeed:=Gauges.Speed(); TargetSpeed:=CurrentSpeed;

TargetThrottle:=Throttle.Position(); Call Gauges.Cruise(On);

Call Throttle.Floor(TargetThrottle); UserMode:=NT; Put CheckState() on Call Queue;

CruiseUnit Override Cruise UserMode(x) x=NT &

UserMode=RA &

(SlowCutoff<Gauges.

Speed()<FastCutoff)

&

AutoSystem.BrakeActi

ve()=false &

AutoSystem.ClutchAct

ive()=false

Call Throttle.Floor(TargetThrottle); Call Gauges.Cruise(On);

UserMode:=NT; Pause; CurrentSpeed:=Gauges.Speed();

Put CheckState() on Call Queue;

CruiseUnit Override Override UserMode(x) x=NT &

UserMode=Null
UserMode:=NT;

CruiseUnit Override Override UserMode(x) x=NT &

UserMode=NT
UserMode:=NT;

CruiseUnit Override Override UserSwitch() true Return UserSwitch;
CruiseUnit Override Off UserSwitch(x) x=Off UserSwitch:=Off; UserMode:=Null;
CruiseUnit Override Override UserSwitch(x) x=On

CruiseUser Initial Off CruiseUser() true Switch:=Off; Mode:=NT;
CruiseUser Off Neutral Switch(x) x=On Switch:=On; Call CruiseUnit.UserSwitch(On);
CruiseUser Neutral Off Switch(x) x=Off Switch:=Off; Call CruiseUnit.UserSwitch(Off);
CruiseUser Neutral Accel Mode(x) x=RA Mode:=RA; Call CruiseUnit.UserMode(RA);

 -46-

ClassAlias Source

State
Targe

tState
Function

Name Guard Action

CruiseUser Accel Neutral Mode(x) x=NT Mode:=NT; Call CruiseUnit.UserMode(NT);
CruiseUser Decel Neutral Mode(x) x=NT Mode:=NT; Call CruiseUnit.UserMode(NT);
CruiseUser Neutral Decel Mode(x) x=SD Mode:=SD; Call CruiseUnit.UserMode(SD);
CruiseUser Accel Off Switch(x) x=Off Switch:=Off; Mode:=NT; Call CruiseUnit.UserSwitch(Off);
CruiseUser Decel Off Switch(x) x=Off Switch:=Off; Mode:=NT; Call CruiseUnit.UserSwitch(Off);
CruiseUser Neutral Neutral Cancel() true Call CruiseUnit.Cancel();
CruiseUser Off Off Cancel() true

CruiseUser Off Off Switch(x) x=Off

CruiseUser Off Off Mode(x) true

CruiseUser Neutral Neutral Mode(x) x=NT Call CruiseUnit.UserMode(NT);
CruiseUser Neutral Neutral Switch(x) x=On

CruiseUser Accel Accel Cancel() true Call CruiseUnit.Cancel();
CruiseUser Accel Accel Switch(x) x=On

CruiseUser Accel Accel Mode(x) x<>NT

CruiseUser Decel Decel Cancel() true Call CruiseUnit.Cancel();
CruiseUser Decel Decel Switch(x) x=On

CruiseUser Decel Decel Mode(x) x<>NT

Engine Initial Normal Engine() true Rpm:=0; GasFlow:=0; ExternalDrag:=1; WaterTMin:=0; OilPMin:=0;
Engine Normal Normal GasFlow() true Return GasFlow;
Engine Normal Normal GasFlow(x) true GasFlow:=x; Rpm:=(2-ExternalDrag)*GasFlow*630;

Call Gauges.Tach(Rpm); Call Wheel.AxelRpm(Rpm*Transmission.DriveRatio());
Engine Normal Normal ExternalDrag() true Return ExternalDrag;
Engine Normal Normal ExternalDrag(

x)
true ExternalDrag:=x; Rpm:=(2-ExternalDrag)*GasFlow*630;

Call Gauges.Tach(Rpm); Call Wheel.AxelRpm(Rpm*Transmission.DriveRatio());
GasUser Initial Active GasUser() true PedalPosition:=0;
GasUser Active Active PedalPosition(

x)
x>0 &

x<>PedalPosition
PedalPosition:=x; Call Throttle.GasPedal(PedalPosition);

GasUser Active Active PedalPosition(

)
true Return PedalPosition;

Gauges Initial Normal Gauges() true Speed:=0; Cruise:=Off; Tach:=0; OilPressure:=0; OilLight:=Off; Odometer:=Null;

TripMeter:=Null; WaterTemp:=0; AbsLight:=Off; Battery:=Off; SeatBelt:=Off;

 HandBrake:=Null; LowGas:=Off;

 -47-

ClassAlias Source

State
Targe

tState
Function

Name Guard Action

Gauges Normal Normal Odometer() true Return Odometer;
Gauges Normal Normal Odometer(x) true Odometer:=x;
Gauges Normal Normal TripMeter() true Return TripMeter;
Gauges Normal Normal TripMeter(x) true TripMeter:=x;
Gauges Normal Normal Tach() true Return Tach;
Gauges Normal Normal Tach(x) true Tach:=x;
Gauges Normal Normal Speed() true Return Speed;
Gauges Normal Normal Speed(x) x<180 Speed:=x;
Gauges Normal Danger Speed(x) x>=180 Speed:=Min(x,250); Call AutoSystem.Danger(true);
Gauges Normal Normal OilPressure() true Return OilPressure;
Gauges Normal Danger OilPressure(x) x>=57; OilPressure:=x; OilLight:=On; Call AutoSystem.Danger(true);
Gauges Normal Normal OilPressure(x) x<57 OilPressure:=x;
Gauges Normal Normal WaterTemp() true Return WaterTemp;
Gauges Normal Danger WaterTemp(x) x>=100 WaterTemp:=x; Call AutoSystem.Danger(true);
Gauges Normal Normal WaterTemp(x) x<100 WaterTemp:=x;
Gauges Normal Normal Cruise() true Return Cruise;
Gauges Normal Normal Cruise(x) true Cruise:=x;
Gauges Normal Normal AbsLight() true Return AbsLight;
Gauges Normal Normal AbsLight(x) true AbsLight:=x;
Gauges Normal Normal Battery() true Return Battery;
Gauges Normal Normal Battery(x) true Battery:=x;
Gauges Normal Normal OilLight() true Return OilLight;
Gauges Normal Normal OilLight(x) true Private method!
Gauges Normal Normal SeatBelt() true Return SeatBelt;
Gauges Normal Normal SeatBelt(x) true SeatBelt:=x;
Gauges Normal Normal HandBrake() true Return HandBrake;
Gauges Normal Normal HandBrake(x) true HandBrake:=x;
Gauges Normal Normal LowGas() true Return LowGas;
Gauges Normal Normal LowGas(x) true LowGas:=x;
Gauges Danger Danger Odometer(x) true Odometer:=x;
Gauges Danger Danger TripMeter(x) true TripMeter:=x;
Gauges Danger Danger Tach(x) true Tach:=x;
Gauges Danger Danger Speed(x) x>=180 Speed:=Min(x,250);
Gauges Danger Normal Speed(x) x<180 & OilLight=Off

& WaterTemp<100
Speed:=x; Call AutoSystem.Danger(false);

Gauges Danger Danger OilPressure(x) x>=57 OilPressure:=x;
Gauges Danger Normal OilPressure(x) x<57 & Speed<180 &

WaterTemp<100
OilPressure:=x; OilLight:=Off; Call AutoSystem.Danger(false);

Gauges Danger Danger WaterTemp(x) x>=100 WaterTemp:=x;
Gauges Danger Danger WaterTemp(x) x<100 & OilLight=Off WaterTemp:=x; Call AutoSystem.Danger(false);

 -48-

ClassAlias Source

State
Targe

tState
Function

Name Guard Action

& Speed<180
Gauges Danger Danger Cruise(x) true Cruise:=x;
Gauges Danger Danger AbsLight(x) true AbsLight:=x;
Gauges Danger Danger Battery(x) true Battery:=x;
Gauges Danger Danger SeatBelt(x) true SeatBelt:=x;
Gauges Danger Danger HandBrake(x) true HandBrake:=x;
Gauges Danger Danger LowGas(x) true LowGas:=x;
Gauges Danger Danger Cruise() true Return Cruise;
Gauges Danger Danger AbsLight() true Return AbsLight;
Gauges Danger Danger Tach() true Return Tach;
Gauges Danger Danger Speed() true Return Speed;
Gauges Danger Danger WaterTemp() true Return WaterTemp;
Gauges Danger Danger OilPressure() true Return OilPressure;
Throttle Initial Idle Throttle(x,y) x=0 OR x>=y OR

y=100
Configuration Error! Do not consider.

Throttle Initial Idle Throttle(x,y) 0<x & x<y & y<100 fconst:=x; gconst:=y; Position:=fconst; Call Engine.GasFlow(Convert(Position));

Floor:=fconst; Call GasUser.PedalPosition(fconst);
Throttle Idle Manual GasPedal(x) x>fconst GasPedal:=x; Position:=Min(GasPedal,gconst); Call Engine.GasFlow(Convert(Position));
Throttle Manual Idle GasPedal(x) x<=fconst GasPedal:=x; Position:=fconst; Call Engine.GasFlow(Convert(fconst));

Call GasUser.PedalPosition(fconst);
Throttle Idle Automatic Floor(x) x>fconst Floor:=Min(x,gconst); Position:=Floor; Call Engine.GasFlow(Convert(Position)); Call

GasUser.PedalPosition(Position);
Throttle Automati

c
Idle Floor(x) x<=fconst Floor:=fconst; Position:=fconst; Call Engine.GasFlow(Convert(Position)); Call

GasUser.PedalPosition(fconst);
Throttle Manual Automatic GasPedal(x) x>fconst & x<=Floor GasPedal:=x; Position:=Floor; Call Engine.GasFlow(Convert(Position));

Call GasUser.PedalPosition(Floor);
Throttle Manual Automatic Floor(x) x>=Position Floor:=Min(x,gconst); Position:=Floor;

Call Engine.GasFlow(Convert(Position)); Call GasUser.PedalPosition(Floor);
Throttle Automati

c
Manual GasPedal(x) x>fconst & x>Floor &

x<=gconst
GasPedal:=x; Position:=x; Call Engine.GasFlow(Convert(Position));

Throttle Automati

c
Automatic Floor(x) x>fconst Floor:=Min(x,gconst); Position:=Floor;

Call Engine.GasFlow(Convert(Position)); Call GasUser.PedalPosition(Position);
Throttle Manual Danger Position(x) true Position is Private!!
Throttle Automati

c
Danger Position(x) true Position is Private!!

Throttle Idle Idle Convert(x) 0<=x<100 Return x/10;
Throttle Initial Initial Convert(x) 0<=x<100 Return x/10;
Throttle Manual Manual Convert(x) 0<=x<100 Return x/10;
Throttle Automati

c
Automatic Convert(x) 0<=x<100 Return x/10;

Throttle Idle Idle Position() true Return Position;
Throttle Manual Manual Position() true Return Position;

 -49-

ClassAlias Source

State
Targe

tState
Function

Name Guard Action

Throttle Automati

c
Automatic Position() true Return Position;

Throttle Danger Danger Position() true Return Position;
Throttle Idle Idle Floor() true Return Floor;
Throttle Manual Manual Floor() true Return Floor;
Throttle Automati

c
Automatic Floor() true Return Floor;

Throttle Danger Danger Floor() true Return Floor;
Throttle Idle Idle GasPedal(x) x<=fconst GasPedal:=x;
Throttle Idle Idle Floor(x) x<=fconst Floor:=fconst;
Throttle Manual Manual GasPedal(x) x>fconst & x<=gconst

& x>Floor
GasPedal:=x; Position:=x; Call Engine.GasFlow(Convert(Position));

Throttle Manual Danger GasPedal(x) x>gconst GasPedal:=x; Position:=gconst; Call Engine.GasFlow(Convert(Position)); Call

GasUser.PedalPosition(gconst);
Throttle Manual Manual Floor(x) x<Position Floor:=Max(fconst,x);
Throttle Automati

c
Danger GasPedal(x) x>gconst GasPedal:=x; Position:=gconst; Call Engine.GasFlow(Convert(Position)); Call

GasUser.PedalPosition(gconst);
Throttle Automati

c
Automatic GasPedal(x) x>fconst & x<=Floor GasPedal:=x;

Throttle Danger Automatic GasPedal(x) x<Floor GasPedal:=x; Position:=Floor; Call Engine.GasFlow(Convert(Position)); Call

GasUser.PedalPosition(Position);
Throttle Danger Danger GasPedal(x) x>gconst GasPedal:=x;
Throttle Danger Manual GasPedal(x) x>=Floor & x<=gconst GasPedal:=x; Position:=x; Call Engine.GasFlow(Convert(Position));

Call GasUser.PedalPosition(Position);
Throttle Danger Danger Floor(x) true Floor:=Max(fconst,Min(x,gconst));
Throttle Automati

c
Manual Floor(x) x>fconst & x<Floor Left over from some earlier analysis? NOT exclusive with c10t009!

Throttle Idle Danger GasPedal(x) x>gconst Not Feasible because GasPedal cannot "jump" this far!
Throttle Danger Idle Position(x) true Position is Private!!
Ignition Initial On Ignition() true Key:=On; EngineOn:=false; Global AutoSystem:=New AutoSystem();
Ignition On Initial Key(x) x=Off Key:=Off; EngineOn:=false; Destroy Throttle; Destroy Engine; Destroy AutoSystem;

 Destroy Self;
Ignition On ?? Key(x) x=On Can not turn Key On when already On!
Ignition On On StartEngine() EngineOn=false Global Transmission:=New Transmission(); Global Engine:=New Engine();

Global GasUser:=New GasUser();

Global Throttle:=New Throttle(AutoSystem.ThrottleFloor(),AutoSystem.ThrottleGovernor());

 EngineOn:=true;
Ignition On On StartEngine() EngineOn=true GrindingNoise;
Ignition On On EngineOn(x) true Private method -- variable can only be set internally to object.
Ignition On On EngineOn() true Private method -- variable can only be read internally by object.
Ignition On On Key() true Return Key;
Transmission Initial Neutral Transmission() true Gear:=N; Ratio_R:=1.846; Ratio_1:=2.563; Ratio_2:=1.552; Ratio_3:=1.022;

Ratio_4:=0.653; Ratio_5:=0.471; Ratio_Diff:=4.429; Global Wheel:=New Wheel();

 -50-

ClassAlias Source

State
Targe

tState
Function

Name Guard Action

Transmission Neutral Neutral Gear() true Return N;
Transmission Neutral Reverse Gear(x) x=R Gear:=R;
Transmission Neutral Neutral Gear(x) x=N

Transmission Neutral Forward Gear(x) x=1 OR x=2 OR x=3

OR x=4 OR x=5
Gear:=x; Call Wheel.AxelRpm(Gauges.Tach()*DriveRatio());

Transmission Reverse Neutral Gear(x) x=N Gear:=N;
Transmission Forward Neutral Gear(x) x=N Gear:=N; Call Wheel.AxelRpm(0);
Transmission Forward Forward Gear(x) x=1 OR x=2 OR x=3

OR x=4 OR x=5
Gear:=x; Call Wheel.AxelRpm(Gauges.Tach()*DriveRatio());

Transmission Neutral Neutral DriveRatio() true Return 0;
Transmission Reverse Reverse DriveRatio() true Return -1/(Ratio_R * Ratio_Diff);
Transmission Forward Forward DriveRatio() Gear=2 Return 1/(Ratio_2 * Ratio_Diff);
Transmission Forward Forward DriveRatio() Gear=3 Return 1/(Ratio_3 * Ratio_Diff);
Transmission Forward Forward DriveRatio() Gear=5 Return 1/(Ratio_5 * Ratio_Diff);
Transmission Forward Forward DriveRatio() Gear=4 Return 1/(Ratio_4 * Ratio_Diff);
Transmission Forward Forward DriveRatio() Gear=1 Return 1/(Ratio_1 * Ratio_Diff);
Transmission Reverse Reverse Gear() true Return R;
Transmission Forward Forward Gear() true Return Gear;
Wheel Initial DirectDrive Wheel() true AxelRpm:=0; WheelRpm:=0; WheelDiam:=0.00056;
Wheel DirectDriv

e
DirectDrive AxelRpm(x) ABS(x-

WheelRpm)<=2
AxelRpm:=x; WheelRpm:=x; Call Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);

Wheel DirectDriv

e
Decel AxelRpm(x) x+2<WheelRpm AxelRpm:=x; WheelRpm:=WheelRpm-1;

 Call Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);

 Put CheckState() on Call queue;
Wheel DirectDriv

e
Accel AxelRpm(x) x-2>WheelRpm AxelRpm:=x; WheelRpm:=WheelRpm+1;

Call Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);

Put CheckState() on Call queue;
Wheel Decel Decel AxelRpm(x) x+2<WheelRpm AxelRpm:=x; WheelRpm:=WheelRpm-1;

 Call Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);

Put CheckState() on Call queue;
Wheel Decel Accel AxelRpm(x) x-2>WheelRpm AxelRpm:=x; WheelRpm:=WheelRpm+1;

Call Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);

 Put CheckState() on Call queue;
Wheel Decel DirectDrive AxelRpm(x) ABS(x-

WheelRpm)<=2
AxelRpm:=x; WheelRpm:=x; Call Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);

Wheel Accel Decel AxelRpm(x) x+2<WheelRpm AxelRpm:=x; WheelRpm:=WheelRpm-1;

Call Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam); Put CheckState() on Call queue;
Wheel Accel DirectDrive AxelRpm(x) ABS(x-

WheelRpm)<=2
AxelRpm:=x; WheelRpm:=x; Call Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);

Wheel Accel Accel AxelRpm(x) x-2>WheelRpm AxelRpm:=x; WheelRpm:=WheelRpm+1;

Call Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);

 Put CheckState() on Call queue;

 -51-

ClassAlias Source

State
Targe

tState
Function

Name Guard Action

Wheel DirectDriv

e
DirectDrive CheckState() true

Wheel Decel Decel CheckState() AxelRpm+2<WheelRp

m
WheelRpm:=WheelRpm-1; Call Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);

Put CheckState() on Call queue;
Wheel Decel DirectDrive CheckState() AxelRpm+2>=WheelR

pm
WheelRpm:=AxelRpm; Call Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);

Wheel Accel Accel CheckState() AxelRpm-

2>WheelRpm
WheelRpm:=WheelRpm+1; Call Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);

 Put CheckState() on Call queue;
Wheel Accel DirectDrive CheckState() AxelRpm-

2<=WheelRpm
WheelRpm:=AxelRpm; Call Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);

 -52-

Appendix VII: Executable Test Cases

SeqNbr VDUs ExecutableCall WaitFunction Comments
1 0 Ignition.Ignition() Pause(5) Starts application and initializes several classes
2 4 AutoSystem.ThrottleFloor() Pause(5) read only - no effect
3 4 AutoSystem.ThrottleGovernor() Pause(5) read only - no effect
4 4 Gauges.Tach() Pause(5) read only - no effect
5 4 Gauges.Speed() Pause(5) read only - no effect
6 4 Gauges.Cruise() Pause(5) read only - no effect
7 7 Ignition.StartEngine() Pause(8) Initializes several other classes
8 1 Transmission.Gear() Pause(5) read only - no effect
9 40 Transmission.Gear(1) Pause(5) Puts car in gear at Idle speed

10 1 Gauges.Tach() Pause(5) read only - no effect
11 1 Gauges.Speed() Pause(5) read only - no effect
12 1 Gauges.Cruise() Pause(5) read only - no effect
13 45 GasUser.PedalPosition(15) Pause(10) Higher manual speed in first gear - approx 8
14 1 Gauges.Tach() Pause(5) read only - no effect
15 2 Transmission.Gear(2) Pause(5) Higher gear - higher speed < 25 - approx 14
16 2 CruiseUser.Switch(On) Pause(5) Prepare Cruise for action - no other effect
17 3 CruiseUser.Mode(RA) Pause(5) No effect because speed < 25
18 4 CruiseUser.Mode(NT) Pause(5) No effect because speed < 25
19 0 CruiseUser.Mode(SD) Pause(5) No effect because speed < 25
20 8 CruiseUser.Mode(NT) Pause(5) No effect because speed < 25
21 4 CruiseUser.Cancel() Pause(5) No effect because speed < 25
22 4 GasUser.PedalPosition(20) Pause(10) increases speed - approx 19
23 0 Transmission.Gear(3) Pause(10) Higher gear - higher speed - approx 25
24 0 GasUser.PedalPosition(25) Pause(10) increases speed - approx 35
25 0 Transmission.Gear(4) Pause(15) Higher gear - higher speed - approx 55
26 0 GasUser.PedalPosition(30) Pause(10) Car at Hwy speed - 4th gear - approx 66
27 0 CruiseUser.Cancel() Pause(5) No effect on Cruise in this state
28 1 CruiseUser.Mode(RA) Pause(5) No effect on Cruise in this state
29 2 CruiseUser.Mode(NT) Pause(5) No effect on Cruise in this state
30 0 CruiseUser.Mode(SD) Pause(5) No effect on Cruise in this state - but prepares for "Set"
31 67 CruiseUser.Mode(NT) Pause(5) Sets Cruise at Hwy speed - approx 66
32 1 Gauges.Cruise() Pause(5) read only - no effect
33 2 Engine.ExternalDrag(0.9) Pause(10) speed increases - downhill or tailwind - Cruise maintains @ 66
34 72 Engine.ExternalDrag(1.1) Pause(10) speed decreases - uphill or headwind - Cruise maintains @ 66
35 37 GasUser.PedalPosition(50) Pause(40) Manual throttle to pass a car or something - Max speed 105 > FastCutoff
36 24 Engine.ExternalDrag(0.8) Pause(30) speed increases - Throttle still manual - approx 162
37 2 Engine.ExternalDrag(1.6) Pause(80) speed decreases until reaches Targetspeed - May fail here and get oscillation!!

Intermitant!

 -53-

SeqNbr VDUs ExecutableCall WaitFunction Comments
38 9 GasUser.PedalPosition(20) Pause(45) To ensure that Cruise and Throttle return to Automatic state - speed approx 66
39 3 Engine.ExternalDrag(1.0) Pause(30) speed increases - downhill or tailwind - Cruise maintains @ 66
40 0 Engine.ExternalDrag(1.1) Pause(5) speed decreases - uphill or headwind - Cruise maintains @ 66
66 21 CruiseUser.Mode(SD) Pause(6)

67 14 CruiseUser.Mode(NT) Pause(10) Car in new slower cruise speed - approx 57

68 17 CruiseUser.Mode(RA) Pause(6)

69 13 CruiseUser.Mode(NT) Pause(10) Car in new faster cruise speed - approx 66

70 8 CruiseUser.Cancel() Pause(5) Cruise in Override state - speed starts to fall

71 4 CruiseUser.Mode(RA) Pause(2) no effect - prepare to Resume

72 45 CruiseUser.Mode(NT) Pause(40) Return to Cruise state - speed increases to that of #69 - approx 66

73 8 Engine.ExternalDrag(1.04) Pause(10) drag decreases - speed increases - Cruise maintains @ 66

74 5 Engine.ExternalDrag(1.3) Pause(30) drag increases - speed decreases - Cruise maintains @ 66

75 4 GasUser.PedalPosition(50) Pause(15) Manual override to pass car or something - speed approx 80

76 0 Engine.ExternalDrag(0.8) Pause(60) drag decreases - speed increases even more - approx 137

77 0 Engine.ExternalDrag(1.0) Pause(20) drag increases - speed decreases - approx 117

78 0 GasUser.PedalPosition(20) Pause(15) To ensure that Cruise and Throttle return to Automatic state @ ??

81 0 Engine.ExternalDrag(1.0) Pause(10)

82 0 Engine.ExternalDrag(0.9) Pause(10)

83 0 Engine.ExternalDrag(0.8) Pause(10)

84 0 Engine.ExternalDrag(0.7) Pause(10) The VDUs identified in tests 33 - 37 above are really

85 0 Engine.ExternalDrag(0.6) Pause(10) spread out over these External Drag actions and those

86 0 Engine.ExternalDrag(0.5) Pause(10) identified in 121 - 135 below.

87 0 Engine.ExternalDrag(0.67) Pause(10)

88 0 Engine.ExternalDrag(0.77) Pause(10)

89 0 Engine.ExternalDrag(0.87) Pause(10) Testing for gradual changes in external drag

90 0 Engine.ExternalDrag(0.97) Pause(10) at smooth increments down-up-down

91 0 Engine.ExternalDrag(1.07) Pause(10)

92 0 Engine.ExternalDrag(1.17) Pause(10)

93 0 Engine.ExternalDrag(1.27) Pause(10)

94 0 Engine.ExternalDrag(1.37) Pause(10)

95 0 Engine.ExternalDrag(1.47) Pause(10)

96 0 Engine.ExternalDrag(1.57) Pause(10)

97 0 Engine.ExternalDrag(1.67) Pause(10)

98 0 Engine.ExternalDrag(1.53) Pause(10)

99 0 Engine.ExternalDrag(1.43) Pause(10)

100 0 Engine.ExternalDrag(1.33) Pause(10)

101 0 Engine.ExternalDrag(1.23) Pause(10)

102 0 Engine.ExternalDrag(1.13) Pause(10)

 -54-

SeqNbr VDUs ExecutableCall WaitFunction Comments
103 0 Engine.ExternalDrag(1.03) Pause(10)

104 0 Engine.ExternalDrag(1.0) Pause(10)

106 7 CruiseUser.Mode(RA) Pause(5)

107 0 CruiseUser.Mode(NT) Pause(20) Car in new faster cruise speed - approx 77

108 7 CruiseUser.Mode(SD) Pause(5)

109 0 CruiseUser.Mode(NT) Pause(20) Car in new slower cruise speed - approx 71

110 1 CruiseUser.Cancel() Pause(5) Speed falls - catch before < 30

111 0 CruiseUser.Mode(SD) Pause(0)

112 22 CruiseUser.Mode(NT) Pause(30) Car in new slower cruise speed - approx 55
113 36 CruiseUser.Mode(RA) Pause(3) Speed increases - stop before 70
114 4 CruiseUser.Mode(NT) Pause(15) Car in new faster cruise speed - approx 64
115 0 CruiseUser.Mode(RA) Pause(3) Speed increases - stop before 80
116 0 CruiseUser.Mode(NT) Pause(15) Car in new faster cruise speed - approx 71
117 4 CruiseUser.Mode(SD) Pause(6) Speed decreases - stop before 65
118 1 CruiseUser.Mode(NT) Pause(15) Car in new slower cruise speed - approx 62
119 0 CruiseUser.Mode(SD) Pause(3) Speed decreases - stop before 55
120 0 CruiseUser.Mode(NT) Pause(15) Car in new slower cruise speed - approx 55
121 3 Engine.ExternalDrag(1.2) Pause(1)

122 0 Engine.ExternalDrag(0.82) Pause(1)

123 0 Engine.ExternalDrag(0.62) Pause(1)

124 0 Engine.ExternalDrag(0.52) Pause(1)

125 0 Engine.ExternalDrag(0.56) Pause(1)

126 0 Engine.ExternalDrag(0.78) Pause(1)

127 0 Engine.ExternalDrag(0.98) Pause(1) Testing for rapid changes in external drag
128 0 Engine.ExternalDrag(1.18) Pause(1) at both smaller and larger increments
129 0 Engine.ExternalDrag(1.20) Pause(1) encompassing down-up-down
130 0 Engine.ExternalDrag(1.48) Pause(1)

131 0 Engine.ExternalDrag(1.58) Pause(1)

132 0 Engine.ExternalDrag(1.54) Pause(1)

133 0 Engine.ExternalDrag(1.34) Pause(1)

134 0 Engine.ExternalDrag(1.14) Pause(1)

135 0 Engine.ExternalDrag(1.0) Pause(1)

148 0 CruiseUser.Mode(SD) Pause(2) Speed decreasing - stop before 45
149 27 CruiseUser.Cancel() Pause(1) Hit cancel while holding SD down - Special override (Usermode null)
150 5 CruiseUser.Mode(NT) Pause(2) No effect because Usermode is null. Speed falling - keep > 35
151 0 CruiseUser.Mode(SD) Pause(0)

152 27 CruiseUser.Mode(NT) Pause(5) New Cruise speed set > 35
153 7 CruiseUser.Cancel() Pause(1) Speed falls again - keep > 25

 -55-

SeqNbr VDUs ExecutableCall WaitFunction Comments
154 0 CruiseUser.Mode(SD) Pause(0)

155 0 CruiseUser.Mode(NT) Pause(5) New Cruise speed set > 25 - approx 29
156 0 CruiseUser.Mode(RA) Pause(6) Speed starts increasing - keep < 70
157 2 CruiseUser.Cancel() Pause(2) Hit Cancel while holding RA down - Special override (Usemode null)
158 1 CruiseUser.Mode(NT) Pause(3) No effect because Usermode is null. Speed falling
159 0 CruiseUser.Mode(RA) Pause(0) To resume previous speed set at #155 - approx 30
160 14 CruiseUser.Mode(NT) Pause(5) Speed identical to #155 speed - approx 30
161 2 CruiseUser.Mode(SD) Pause(4) Hold SD down until speed < SlowCutoff
162 0 CruiseUser.Mode(NT) Pause(5) No effect - Cruise in Override state
163 48 GasUser.PedalPosition(26) Pause(5) Throttle in Manual state - speed approx 60
164 0 CruiseUser.Mode(SD) Pause(1)

165 9 CruiseUser.Mode(NT) Pause(5) New Cruise Hwy speed - approx 60
166 65 CruiseUser.Cancel() Pause(4) speed falls - keep > 25
167 0 CruiseUser.Mode(RA) Pause(0)

168 28 CruiseUser.Mode(NT) Pause(5) Resume cruise speed of #165 - approx 60
169 37 GasUser.PedalPosition(30) Pause(5) Pass a car with Throttle in Manual state
170 7 GasUser.PedalPosition(20) Pause(5) Cruise keeps speed approx 60 and resets Pedal to approx 26
171 16 CruiseUser.Mode(RA) Pause(3) Speed increases - keep < 70
172 4 CruiseUser.Mode(NT) Pause(5) New higher Cruise speed - approx 70
173 2 CruiseUser.Mode(RA) Pause(6) Hold until speed > HighCutoff Speed begins to fall
174 0 CruiseUser.Mode(NT) Pause(3) No effect - Cruise in special Override state - speed falling
175 0 CruiseUser.Mode(RA) Pause(3) Hold until speed approx 45
176 4 CruiseUser.Mode(NT) Pause(20) Resume cruise speed of #172 - approx 70
177 11 CruiseUser.Switch(Off) Pause(5) Speed begins to fall
178 1 CruiseUser.Cancel() Pause(5) No effect - speed continues to fall - Test may be INFEASIBLE since CruiseUser is

OFF
179 1 CruiseUser.Mode(SD) Pause(5) No effect - speed continues to fall - Test may be INFEASIBLE since CruiseUser is

OFF
180 0 GasUser.PedalPosition(25) Pause(5) Puts speed at slow hwy speed like #24 - approx 35-40
181 57 CruiseUser.Switch(On) Pause(5) Prepare for new Cruise actions - no other effect
182 0 CruiseUser.Mode(SD) Pause(1)

183 15 CruiseUser.Mode(NT) Pause(5) Sets Cruise at slow hwy speed equal to #180 - approx 35-40
184 26 CruiseUser.Cancel() Pause(5) Cruise in Override state - speed begins to fall
185 2 CruiseUser.Switch(Off) Pause(5) Cruise in Off state - speed continues to fall - ends at Idle state

