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Abstract 
 

In object-oriented terms, one of the goals of integration testing is to ensure that 
messages from objects in one class or component are sent and received in the 
proper order and have the intended effect on the state of external objects that 
receive the messages.  This research extends an existing single-class testing 
technique to integration testing. The previous method models the behavior of a 
single class as a finite state machine, transforms that representation into a data flow 
graph that explicitly identifies the definitions and uses of each state variable of the 
class, and then applies conventional data flow testing to produce test case 
specifications that can be used to test the class.  This paper extends those ideas to 
inter-class testing by developing flow graphs and tests for an arbitrary number of 
classes and components.  It introduces flexible representations for message sending 
and receiving among objects and allows concurrency among any or all classes and 
components.  A second major result is the introduction of a novel approach to 
performing data flow analysis. Data flow graphs are stored in a relational database, 
and database queries are used to gather def-use information. This approach is 
conceptually simple, mathematically precise, quite powerful, and general enough to 
be used for traditional data flow analysis. This testing approach relies on finite state 
machines, database modeling and processing techniques, and algorithms for 
analysis and traversal of directed graphs.  A proof-of-concept implementation is 
used to illustrate how the approach works on an extended example.  
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1 Introduction 
 

Testing of object-oriented software is complicated by the fact that software being tested is often constructed from a combination 

of previously written, off-the-shelf components with some new components developed to satisfy new requirements.  The 

previously written components are often �sealed� so that source code is not available, yet objects in the new components will 

interoperate via messages with objects in the existing components.  Software conformance testing is the act of determining 

whether or not a software product conforms to a functional specification, where the functional specification is a set of rules that 

the product must satisfy. The goal of this paper is to provide conformance-testing techniques for the integration of individual 

components within a complete software system. 

 

Each component is assumed to be object-oriented, that is, it is implemented with objects that have state and behavior.  In this 

paper, a class is the basic unit of semantic abstraction, a component is a closely related collection of classes, and a system is a 

collection of components designed to solve a problem.  An object is an instance of a class.  Each object has state and behavior, 

where state is determined by the values of variables of the class, and behavior is determined by methods (i.e. functions or 

procedures) defined in the class that operate on one or more objects to read and modify their state variables.  The behavior of an 

object when acted upon by a method can be modeled as the effect the method has on the variables of that object together with the 

messages it sends to other objects. Variables declared by the class that have one instance for each object are called instance 

variables, and variables that are shared among all objects of the class (static in Java) are class variables. The results in this paper 

are programming language-independent, but this paper uses a mix of Java and C++ terminology. 

 

If a finite state machine represents the states and transitions of a class, then the behavior of an object can be captured as a set of 

transition rules for each method.  Thus finite state machines are often used for class specification in object-oriented analysis and 

design [9, 11, 29, 39].  The behavior of a component is specified by the behavior of its constituent classes.  The public interface 

to a component is a list of public classes, which are accessed through the public methods in those classes.  A state transition 

specification for a class is the set of state transition rules for each method of the class. The state of an object is determined by the 

values of its instance and class variables, which are collectively called state variables. Given a state transition specification for 

each class in a software system, the goal of this research is to construct test specifications that can be used to construct an 

executable test suite to determine if an implementation of a software system conforms to its functional specification. 

 

This paper uses definitions from Booch [6] and Rumbaugh et al. [38] to characterize an object as something that has state, 

behavior, and identity, and to characterize an object's class in terms of the states, events, and transitions of a finite state machine. 

 A graph model of the software is used as a basis for generating test specifications. Hong et al. [22] developed a class-level flow 

graph to represent control and data flow within a single class. Since testing a single instance of a single class greatly limits the 

usefulness of the approach, this research uses their ideas as a basis for integration testing of multiple interacting classes.  The 

state transition specification is stored in a database, which is then used as a basis for creating a component flow graph, which 
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includes control and data flow information.  Test criteria are defined on this graph, and test specifications are generated to satisfy 

the criteria. 

 

This research began as an attempt to determine a sample space for data flow analysis in object-oriented software so that software 

testing by statistical methods [5] could be applied. This paper provides a process that results in a set of test specifications that 

could be used as a statistical sample space, but specific statistical methods have not been considered. The paper describes a 

process that begins with state transition specifications for each class in an object-oriented software system, defines the transitions 

that are relevant to a specific component of that system, and then translates the relevant transitions into a component flow graph 

with nodes and edges labeled for control, and variable definitions and uses.  Test criteria are defined on this graph, and sets of 

paths are selected that constitute test specifications to satisfy the criteria.  An executable test suite to determine whether a 

software product conforms to its specification may then be constructed from the test specifications. 

 

This paper introduces a novel approach to storing and computing data flow analysis information.  Instead of the traditional 

storage within program data structures, all information is stored in a relational database.  Instead of complicated algorithms, 

straightforward queries are used to record and process data flow information. This technique enhances scalability, because a lot 

of information can be stored in the database in an efficient manner, and it makes the computation of data flow information 

relatively simple. The database schemas and SQL queries are based on rather complex mathematical expressions, but the 

mathematics is not necessary to understand or use the representation technique. 

 

Moreover, this technique allows additional information to be provided to the tester. In traditional data flow testing [15], the tester 

is provided with pairs of definitions and uses of variables (DU-pairs), and the tester attempts to find tests to cover those DU-

pairs by supplying tests through an instrumented program. These tests are sometimes random, arbitrary, automatically generated, 

or generated by humans with well-defined goals. Traditional data flow testing works for individual functions because the number 

of possible tests is fairly small, but is likely to run into trouble during inter-class testing because the number of possible tests is 

much larger. Thus it is necessary to provide the tester with more information. The database representation allows more 

information to be provided; instead of simply identifying def-use pairs, the tester is given full paths between the definitions and 

uses (DU-paths). In traditional code-based data flow testing, storing the complete path predicates for anything more than a tiny 

(20 to 50 LOC) function is impractical, and this has been a major factor in the lack of widespread adoption of the technique. 

Using the database allows these potentially large predicates to be stored off-line, and all the I/O is handled invisibly by the 

database. 

 

The attributes and constraints of classes and methods are modeled as attributes and constraints of tables in a relational database.  

In this manner, mathematical specifications over the class properties can be translated to database operations.  Sections 3 through 

6 describe the process of representing state transition specifications in a database, determining relevant transitions in the state 

machine, generating a component flow graph, and determining test specifications.  Section 7 presents an extended example of 

this technique applied to an extended version of the common automobile cruise control system that includes the engine, brakes, 

gas, throttle, displays and clutch. 

 

2 Background 
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Much of testing has been based on data and control flow through programs [15, 35].  In such testing, graphs are defined in which 

nodes are formed from basic blocks, which are sequences of straight-line statements with the property that if the first statement is 

executed, then all the statements will be executed. In a control flow graph, edges are formed from the branching statements of 

the program. In a data flow graph, edges are formed from definitions (defs) and uses of the same memory locations. These 

memory are usually referenced by one variable, but can also be referenced by multiple variable names through aliasing.  A def of 

a location x is a node in which x is given a value, and a use is a node in which the value is accessed.  An edge is formed from 

nodes in which a location is defined to nodes in which the location is used and there is a def-clear control path from the def to 

the use. A def-clear subpath for a location X is a control subpath that does not contain a definition of X. A DU-pair is a 

definition and a use of the same location such that there is a def-clear subpath from the def to the use. A DU-path is a def-clear 

subpath from a specific definition to a use. 

 

Data flow testing criteria [15, 20] require tests that execute from data definitions to data uses under various conditions.  Most 

research papers in data flow analysis have derived graphs directly from the code; called traditional data flow analysis here.  This 

paper uses a form of data flow analysis that is defined on finite state machines that are derived from the behavior of classes, thus 

there may be no direct relationship to the implementation. This makes the technique more suitable for conformance testing. 

 

Harrold and Rothermel describe an approach that applies traditional data-flow analysis to classes [21]. That approach 

emphasizes three levels of testing: (1) intra-method testing, in which tests are constructed for individual methods; (2) inter-

method testing, in which multiple methods within a class are tested in concert; and (3) intra-class testing in which tests are 

constructed for a single class, usually as sequences of calls to methods within the class. Integration testing attempts to test 

interactions among different classes, thus we introduce the term inter-class testing, in which more than one class is tested at the 

same time. To perform these analyses, Harrold and Rothermel represent a class as a Class Control Flow Graph (CCFG), which 

contains information that can be used during testing. 

 

Most research in object-oriented testing has been at the intra-class level.  This includes work by Hong et al. [22], Parrish et al. 

[37], Turner and Robson [39], Doong and Frankl [14], and Chen et al. [7].  Intra-class testing strategies focus on one class at a 

time, so does not find problems that exist in the interfaces between classes, or in inheritance and polymorphism among classes. 

In their TACCLE methodology [8] Chen et al. define class semantics algebraically as axioms and construct test cases as paths 

through a state-transition diagram with path selection based on attributely non-equivalent ground terms. They extend this 

methodology to multiple classes by defining inter-class semantics in terms of contracts. The contract notion increases 

complexity substantially and is difficult to re-use when other components are added to the system. 

 

Inter-class testing work has been done by Jin and Offutt [25], who defined coupling-based testing, which requires tests to be 

found that cover control and data couplings between methods in different classes.  Alexander and Offutt [2, 3] have extended 

these ideas to cover couplings formed from inheritance and polymorphism.  Chen and Kao [9] describe an approach to testing 

object-oriented programs called Object Flow Testing, in which testing is guided by data definitions and uses in pairs of methods 

that are called by the same caller, and testing should cover all possible type bindings in the presence of polymorphism. Kung et 

al. [27] address object-oriented testing of inheritance, aggregation, and association relationships among multiple classes in C++ 
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source code by automatically generating an object-relation diagram and by finding a test order to minimize the effort to construct 

test stubs. It is difficult to apply this technique to conformance testing since there is no functional specification of class 

semantics. 

 

Some related work has been done on the subject of testing web software. Kung et al. [27, 28, 30] have carried out some initial 

work in this area. They have developed a model to represent web sites as a graph, and provide preliminary definitions for 

developing tests based on the graph in terms of web page traversals. They define intra-object testing, where test paths are 

selected for the variables that have def-use chains within an object, inter-object testing, where test paths are selected for 

variables that have def-use chains across objects, and inter-client testing, where tests are derived from a reachability graph 

related to the data interactions among clients. 

 

This paper extends the intra-class data flow work by Hong et al. to the inter-class level, thus providing full integration level 

testing.  This paper does not explicitly deal with inheritance and polymorphism, which are left to future research.  

 

Following Rumbaugh et al. [38], the behavior of classes is specified as finite state machines in terms of states and events. When 

an event is received, a transition occurs and the current state, a guard, and the event determine the next state. A state is 

represented by a categorization of values of the state variables, i.e. by a predicate that evaluates to true.  Note that state 

predicates are explicitly allowed to overlap, that is, two states may have the same predicate.  In this case, a target state is 

determined by all of the properties of a transition, not just the predicate that defines the target state. 

 

A transition is composed of a source state, a target state, an event, a guard, and a sequence of actions. Events are represented as 

calls to member functions of the class. A guard is a predicate that must be true for the transition to be taken; guards are 

expressed in terms of predicates over state variables and input parameters to the event function. An action is an operation that is 

performed when the transition occurs; actions are usually expressed as assignments to class member variables, calls sent to other 

objects, and values that are returned from the event method. A sequence of actions is assumed to be a block of code in which all 

operations are executed if any one is executed. 

 

Pre-conditions and post-conditions of methods in a class can be derived directly from the transitions. The pre-condition is a 

combination of the source state and the guard; the post-condition is the predicate of the target state. Note that the post-condition 

derived from the transitions is not the strongest post-condition. The post-condition of a transition is the state predicate of the 

target state. If the tester desired, state definitions could be more refined, which would allow stronger post-conditions. In turn, 

stronger post-conditions would yield larger graphs and more tests, so this becomes a choice of granularity that results in a cost 

versus potential benefit tradeoff. Although future experimentation may provide some guidance, it is likely that the wisdom and 

experience of both system analysts and test engineers will be needed to make the best choice of granularity. 

 

A single-class state machine (CSM) is defined in Definition 2.1. This definition is exactly the same as Hong�s [22], except for 

the addition of the parameter set P, which is needed for multiple classes. The CSM is extended to a combined CSM in Section 

2.2. 
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Definition 2.1 (CSM):  A class state machine of a class C is a tuple M = (V, F, P, S, T), where 

• V is a finite set of instance variables of C. 

• F is a finite set of member functions of C. 

• P is a finite set of parameters of mutator member functions. 

•  S is a finite set of states, S = {s | s = (pred)} where pred is a predicate on the instance variables in V. 

• T is a finite set of transitions, T = {t | t = (source, target, fn, guard, action)} where: 

o source, target ∈  S are the states before and after the transition. 

o fn ∈  F is a member function that triggers t if the guard predicate evaluates to true. 

o guard is a predicate on instance variables in V and parameters of member functions in F. 

o action is a sequence of computations on instance variables in V and parameters of member functions in F. 

 

2.1 Single-class example – Engine 
 

As a simple example, consider a class Engine, which has states ON and OFF, instance variables speed and keyOn, and methods 

Start(S) and Stop(). Each state is associated with values of the instance variables as follows: 

 

 OFF: speed = 0 ∧  KeyOn = false ON: 0 ≤ speed ≤ 110 ∧  KeyOn = true 

 

In the Engine example, the transition from OFF to ON is triggered by the member function Start().  The guard for this transition 

should require the key to be in (KeyOn = true), and the action should specify that the speed is set (speed = S). The sets of 

variables, member functions, states, and transitions are defined as follows: 

S = {S0, Sf, ON, OFF} 
V = {int speed, boolean KeyOn} 
F = {Engine (), ~Engine (), setKeyOn (boolean in), Start (int S), Stop (), setSpeed (int S), int getSpeed ()} 
P = {setKeyOn:in, Start:S, setSpeed:S } 
T = {ti | 1 ≤ i ≤ 9} 
      t1 = (S0, OFF, Engine(), true, {speed = 0, KeyOn = false}) 
      t2 = (OFF, OFF, getSpeed(), true, {return speed}) 
      t3 = (OFF, OFF, setKeyOn(in), true, {KeyOn = in}) 
      t4 = (OFF, ON, Start(S), KeyOn==true ∧  0 ≤ S ≤ 110, {speed = S }) 
      t5 = (OFF, Sf, ~Engine(), true, { }) 
      t6 = (ON, ON, getSpeed(), true, {return speed }) 
      t7 = (ON, ON, setSpeed(S), 0 ≤ S ≤ 110, {speed = S}) 
      t8 = (ON, OFF, Stop(), true, {speed = 0}) 
      t9 = (ON, Sf, ~Engine(), true, { }) 
 

Engine() and ~Engine() are the class constructors and destructors.  setKeyOn() allows the key to be inserted into or removed 

from the ignition, and setSpeed() and getSpeed() control the speed of the engine.  Start() starts the engine running at a certain 

speed, and Stop() turns the engine off. The state transition diagram for Engine is shown in Figure 1, with each transition 

represented as a labeled arc between states. 
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Figure 1: Class State Transition Machine for Engine 

In the class Engine, the engine is turned on (transition t4) by method Start(S), and can only be turned on if the key is in the 

ignition and the initial speed is between 0 and 110 (the guard KeyOn==true ∧  0 ≤ S ≤ 110). If the guard is true, then the new 

speed is set to the parameter given to the Start() method (the action speed = S). The other transitions are similar to t4. 

 

2.2 Multi-class example - Automobile 
 

Inter-class integration testing addresses interactions among multiple components, so this example modifies the Engine class from 

Section 2.1 and integrates it with other components. Each received message is an event on the recipient object. Components can 

function as independent processes, possibly running at remote locations and possibly receiving concurrent messages from many 

sources, so the sending object may not be certain of the recipient object�s state when the event is processed.  

 

The Automobile system consists of seven core components: Acceleration, Brakes, Clutch, CruiseControl, Engine, 

InstrumentPanel, and SystemControl. This example tests how the CruiseControl component integrates with the remainder of the 

system.  The classes that make up the components are shown in Table 1. 

 

Component Classes 

Acceleration GasUser, Throttle 

Brakes BrakeUser, BrakeControl 

Clutch ClutchUser 

CruiseControl CruiseUser, CruiseUnit 

Engine Engine 

InstrumentPanel Gauges 

SystemControl AutoSystem 

Table 1: Classes in Cruise Control Components 

 

The GasUser, BrakeUser, ClutchUser, and CruiseUser classes have external interfaces that are accessible to a human driver. The 

Gauges are all read-only for external users, but these human observations are not part of the automobile specification. The 

CruiseUser class has an On/Off switch, as well as Cancel, Resume/Accel (RA) and Set/Decel (SD) buttons for Cruise Control. If 
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the user holds the RA or SD button down, the user mode is that button, and when the button is released the user mode returns to 

Neutral (NT). Environmental conditions such as wind and hills are simulated by an externally controlled Drag variable. The 

externally invokable methods are: 

  BrakeUser.IsActive (x)  x ∈  {true, false} 
  BrakeUser.PedalPressure (x) 0 ≤ x ≤ 99 
  ClutchUser.PedalPosition (x) 0 ≤ x ≤ 99 
  CruiseUser.Cancel ()  
  CruiseUser.Mode (x)  x ∈  {NT, SD, RA} 
  CruiseUser.Switch (x)  x ∈  {On, Off} 
  Engine.ExternalDrag (x)  -9 ≤ x ≤ 9 
  GasUser.PedalPosition (x)       0 ≤ x ≤ 99 
 

All other methods are internal methods that can only be invoked by internal actions. The CruiseUser class has a number of non-

feasible transitions; for example, the cruise control RA button cannot be pushed at the same time as the SD button because their 

physical placement prohibits them from being depressed simultaneously. Alternatively, the second button could just be ignored 

when the first is engaged.  

 

Definition 2.1 is extended to define a combined Class State Machine for multiple classes by adding a set of classes and 

parameters  that are inputs to mutator functions. The Automobile example is represented as a tuple (C, V, F, P, S, T) where C is a 

set of 10 classes, V is a set of 46 variables consisting of the union of all state variables from each class, F is a set of 97 rows 

consisting of the union of all member functions from each class, P is a set of 41 parameters representing inputs of mutator 

functions, S is a set of 76 states consisting of the union of all states from each class, and T is a set of 143 transitions consisting of 

the union of all transitions from each class. A database schema for representing these sets and the relationships among them is 

defined in Section 3 and a partial table that lists relevant transitions for the CruiseControl component of an expanded Class State 

Machine is in Appendix I. 

 

Figure 2 presents a directed graph that shows an abstraction of the relevant communication paths among the classes.  Since the 

Gauges class is passive, the arrows between CruiseUnit and Gauges indicate that methods in CruiseUnit can read from and write 

to state variables in Gauges.  The Throttle class, however, is active and can change the pedal position in GasUser as well as 

increase the gas supply to the Engine.  In order to simulate road conditions such as hills, the Engine class has an externally 

controlled drag variable that is used in the speed calculation. 

Clutch 
User 

Brake 
User 

Auto 
System 

Cruise 
User 

Gauges Engine 

Gas 
User Throttle Brake 

Control 

Cruise 
Unit 

 
Figure 2: Class-to-Class Data Flow 
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The automobile example uses some special syntax to distinguish a situation where an object sends an asynchronous message to 

itself with the intent that the message is put on a queue to be acted upon in a subsequent transition.  This is used in several 

classes in lieu of a system clock to keep processes from terminating. For example, in most of the cruise control transitions, the 

action of the transition will set parameters for gas flow and throttle, but before relinquishing control they will send an 

asynchronous message back to the underlying object to check all of the gauges to see if further action is required. This message 

will be put on a queue along with other explicit messages received from other components and will be executed when it moves to 

the head of the queue. The cruise control component could be in a different state when this message is finally handled. Different 

priorities for handling these messages are not addressed. 

 

2.3 Overview of Methodology 
 

The overall goal is to automate the process of developing integration tests from the behavioral specifications of the various 

components. To begin, a state/transition specification must exist for each class, with behavior specified by a Class State Machine 

as in Definition 2.1. The CSM could have been produced during design, perhaps as UML diagrams, or may be produced by the 

tester. The CSMs for each class are combined and represent the resulting sets according to the database schema defined in 

Section 3. Particular attention is paid to associations between the sets such as when a state or guard references a state variable 

from its own class or calls a get function to reference a state variable from some other class. Each action of a transition is also 

analyzed to identify all calls of actor or mutator functions from other classes and the passing of state variables as parameters of 

mutator functions.  

 

Once the software system is represented in the DB schema, the next step is to focus on individual components and how they 

integrate with other components. In the Automobile example, the focus is on the CruiseControl component and its relevant 

interactions with other classes in the Automobile system. Since CruiseControl activity is canceled whenever a brake or clutch is 

active, or whenever an emergency state is entered, this example safely ignores the complex BrakeControl behavior dealing with 

anti-lock brakes and all of the AutoSystem behavior dealing with such items as air bags. Section 4 defines relevant transitions 

for a given component, thereby focusing only on the transitions in the entire software system that are both feasible and relevant 

to the component being tested. 

 

The next step is to model all potential finite state transitions as a directed graph. Section 5 begins with the relevant transitions 

and treats those transitions, together with all of the states and guards associated with those transitions, as the nodes of a graph. 

All data and control flow is modeled as directed edges between these nodes. Following the example of Hong et al. [22], the 

process starts with directed edges from a source state node to the guard node or transition node of each transition, from all guard 

nodes to their corresponding transition node, and from all transition nodes to their target state nodes.  In addition, each call of an 

actor function results in directed edges from potential transitions of the called object to states, guards, or transitions of the calling 

object, and each call of a mutator function in the action of a transition results in edges from the calling transition to potential 

source states of the called object. If a mutator function returns a value, then there are edges from potential called transitions back 

to the calling transition. This results in a component flow graph (formally defined in Section 5). 
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The next step is to choose a testing criterion and to adapt it to the information stored in the DB schema and the component flow 

graph. The all-uses criterion is adapted by defining defs and uses in terms of references to class variables (formally defined in 

Section 6). Each def takes place at a transition node and each use takes place either at a transition node or at a state-to-guard or 

guard-to-transition edge. The procedure looks for candidate test paths through the component flow graph for each def-use pair. 

Much of the remaining effort in Section 6 is to construct candidate test paths that are potentially feasible and def-free. The goal is 

to find paths that result in executable test cases for each def-use pair, or to prove that such a path cannot exist. It is just as 

valuable to prove that a feasible path cannot exist as it is to find one. A prototype implementation has been developed that 

constructs a small collection of candidate test paths for each def-use pair or proves that the pair is def-bound so that no such path 

can exist. Much of the effort in Section 6 is to ensure that the collection of candidate tests paths for each pair is as small as 

possible. If none of the candidate test paths result in an executable test case, then the new information learned from that failure is 

added to the information base and the methodology is applied again to all untested pairs.  

 

This implementation is not a typical testing tool that consists of compiled programs. Instead, it consists primarily of the system 

information represented in a highly structured database schema, together with database queries and other database operations 

that implement each step in the process. The logical requirements of the algorithm for path generation are implemented as 

queries and updates in order to leverage the database system for powerful logical computation and I/O management. This allows 

the methodology to be applied to integration testing in software systems that might otherwise be too large for easy manipulation 

in main memory. We know of no other methodology that can leverage database capabilities in this manner or that can handle 

data flow testing with graphs this large. 

 

Section 7 demonstrates this methodology on the CruiseControl component of the Automobile example to analyze 3433 def-use 

pairs, constructing candidate test paths for 1933 pairs and proving that the remaining 1500 pairs are def-bound with no possible 

def-free path. There is no guarantee that the candidate test paths will yield test cases, but they serve to substantially reduce the 

search space, making it much more likely to find a test case. The processing time for this moderate example is reasonable, even 

though up to 200 MB of storage is required for some intermediate results. At the conclusion of the process, many of the shorter 

test paths are subsumed by longer paths, and many of the paths are connectable end-to-end to produce executable test cases that 

test multiple def-use pairs. We intend to pursue the development of efficient executable test case development from candidate 

test paths in subsequent research efforts, probably adapting algorithms that were previously developed for specification-based 

testing [35]. 

 

3 Representing Component Specifications 
 

A specification that defines the states and transitions for each class in a system must be available before test development can 

begin. This specification will include names of classes, methods, and variables. Some of these methods will be invoked from an 

external interface; they will be the names that are used in the test cases.  The eventual test cases will be expressed in terms of 

these names. These names may or may not be used by the programmers in the eventual implementation of the system, but for the 

context of this work, it is assumed that the names are the same.  If not, then additional work will need to be done to apply the 

resulting tests to the software; specifically, the test specifications will need to be translated to a form that can be used by the 

implementation.  The mapping for this translation will need to be supplied by the designers or programmers of the software. 
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Each class C is used to derive a Class State Machine as defined in Definition 2.1.  Using the relational database model [12, 13, 

32], classes and sets associated with classes are represented as relational tables. 

 

Figure 3 shows the UML class diagram [40] of a general schema definition for representing class state machines.  This schema 

allows representation of class state machines in a way that is convenient to store, access, and process the information.  Without 

loss of generality, it is assumed that all methods and procedures can be represented as functions.  Each of the six UML classes 

represents a table in the model and each row of the table identifies an instance of that class: (1) the Class table contains 

information about the classes that have been defined for the system, (2) the Variable table defines instance variables for each 

class, (3) the Function table identifies all of the methods that are associated with each class, (4) the Parameter table identifies 

the input and output parameters for each function, (5) the State table contains information about the states in the class state 

machine, and (6) the Transition table describes all transitions among the states.  

 

Since variable, function, and state names need be unique only within a class, and parameter names need be unique only within a 

function body, compound identifiers are used for each. For example, (c, v) is a unique identifier for a variable v that is defined in 

class c. Similarly (c, f) and (c, s) are compound identifiers for functions and states, and (c, f, n) is a unique identifier for the n-th 

parameter of a function. In each case, the ordered tuple becomes the primary key of the underlying table. In addition, c serves as 

a foreign key back to the class definition and fully represents the one-to-many associations identified in the diagram by 

ClassHasStateVariables, ClassHasMethods, FnHasParameters, and Defined States. The associations SourceState and 

TargetState from Transition to Class represent referential integrity constraints on the sourceState and targetState attributes of the 

Transition table. An additional constraint is that source and target states for a transition are always from the same class. The 

Method association from Transition to Function represents a referential integrity constraint on the method attribute of the 

Transition table. The remaining associations identify many-to-many relationships among Transitions, States, Variables, 

Functions, and Parameters derived from syntactic analysis of guard and state predicates and transition actions. They are 

explained further below. 

 

A unique ClassId identifies each class in the Class table, which is the primary key of the Class table. The className is a 

surrogate for ClassId and is used to reference the class in state and guard predicates, and in the actions of transitions. Similarly, 

variableName, funName, parmName, and stateName are surrogates for hidden identifiers for variables, functions, parameters, 

and states, respectively; each need be unique only within its class. Each class is owned by exactly one component, identified by 

componentName, but may be used by many components. In the syntax for predicates, guards, and actions, fully qualified names 

are used to disambiguate the references when necessary. 

 

In the Function table, the availability attribute defines functions to be private (PRI), protected (PRO), public (PUB), or external 

(EXT).  Public functions may be invoked from other classes in the system, whereas external functions are part of the external 

component interface and can be invoked by other systems.  External functions typically represent actions that are available to the 

human user or for black-box testing purposes.  The inputType values identify the number of input variables, as well as their data 

types, so className, funName, inputType, and returnType determine the complete signature of a function.  The effect attribute 

allows functions to be categorized as Get, Set, Constructor, Actor, Mutator, etc..  These are based on standard object-oriented 
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concepts: a Get function is read-only and is said to be an actor method on the object, a Set function can update state variables 

and is said to be a mutator method. The following pays particular attention to classifying all methods as actor, mutator, or 

mutator with return. In the Parameter table, both position and parmName uniquely identify a parameter, and one will determine 

the other. A parameter is used by name, but is set by position. Each parameter has a data type and a direction, i.e. In, Out, or 

InOut. 

 

In the State table, the defnPredicate is a Boolean predicate over the state variables.  It may reference an in-class variable by name 

only, and may reference a variable in another object by invoking the appropriate actor method, if it is available, to read the value 

of that external variable.  Only actor methods can be called from a state's definition predicate.  Mutator and constructor methods 

may only be called from an action that is part of a state transition. 

 

In the Variable table, the dataType attribute identifies the data type of the variable, the defaultValue identifies all automatic 

value assignments upon creation of a new class instance, and the constraint attribute identifies a post-assignment requirement on 

every variable definition. 

 

DefinedStates

ClassHasMethods

SourceState TargetState

ClassHasStateVariables

Method

ActionDefVar

0..*

0..*

ActionRefVar
0..*

0..*

StateRefVar

0..*

0..* StateRefActorFn

0..*

0..*

GuardRefActorFn

0..*

0..*

ActionRefActorFn0..*

0..*

ActionRefMutatorFn0..*

0..*

GuardRefVar
0..*

0..*

FnHasParameters

ActionRefParm0..*

0..*

ActionSetsParm

0..*

0..*

GuardRefParm0..*

0..*

Function
+
+
+
+
+
+

funName
inputType
returnType
availability
effect
description

: identifier
: signature
: typeName
: enumeration
: enumeration
: string

Class
+
+
+
+
+

className
descriptiveName
componentName
systemName
description

: identifier
: string
: identifier
: identifier
: string

State
+
+

stateName
defnPredicate

: identifier
: predicate

Transition
+
+
+
+
+
+

sourceState
guard
method
targetState
isFeasible
action

: State
: predicate
: Function
: State
: boolean
: programBlock

Variable
+
+
+
+
+

variableName
dataType
defaultValue
constraint
description

: identifier
: typeName
: literal
: predicate
: string

Parameter
+
+
+
+
+

position
parmName
type
direction
description

: integer
: identifier
: typeName
: enumeration
: string

 

 

For a class c and a transition t, the primary key of the Transition table is the pair (c, t), which determines all of the other 

properties of a transition.  Some transitions may be well defined in the model, but the implementation will not be able to execute 

Figure 3: DataBase Schema as a UML Class Diagram 
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them because of a rule or by physical or mechanical impossibility. Such transitions are identified by the isFeasible attribute. 

These types of transitions can be divided into three categories. 

1. Category one is an error handling transition. Consider an elevator example where a user is at floor 5. It is an error to 

push the button to go to floor 5. 

2. Category two transitions are prevented by hardware. For example, hardware interlocks prevent doors from opening 

when an elevator is between floors. 

3. Category three transitions represent logical and physical impossibilities. For example, it is not possible to transition 

from the �not pushing button� state to the �not pushing button� state. 

Transitions in category one will be tested as a natural result of the technique presented in this paper.  Transitions in category 

three do not need to be tested.  Whether to test transitions in category two depends on the goals of the testers.  Since the situation 

is controlled by hardware, not software, any testing that only involves the software (integration and subsystem testing) may be 

able to safely ignore these transitions.  At the system level, however, these transitions must be carefully tested. 

 

The predicates on guards and transitions may reference variables, and the actions of predicates may reference and assign values 

to variables.  Just as in traditional data flow analysis [15], predicates reference a set of objects (use) and actions define a set of 

values (def).  Of course, how to determine the defs and uses depends on the semantics of the language used to express the 

predicates and transitions of the class state machine.   The prototype implementation uses a general simple language to describe 

state machines, which allows the analysis to proceed in a fairly straightforward manner.  In subsequent work, we hope to expand 

this part of the prototype to include syntactic analysis of predicates and actions specified in UML [40], Java [24], and other 

commonly used class definition languages.  

 

Once this syntactic analysis is complete, the results can be captured in the UML diagram of Figure 3 as many-to-many 

associations among classes. In the database representation, each such association will be a new table.  Each of the new tables 

satisfies appropriate referential integrity constraints to the corresponding Transition, Variable, Function, Parameter, or State 

tables.  

 

Every state variable in a class definition is associated with two pre-defined methods, one to get its value and one to set its value. 

An additional association VarAssocFn is defined between Variable and Function to maintain the relationship between a state 

variable and the get function that reads its value. This association is not visible in Figure 3 but it is represented by a table of 

tuples (c, v, f) where (c, v) identifies the state variable and (c, f) identifies the function. 

 

The ActionSetsParm association defined above identifies all transitions that (1) call an external function and (2) set some 

parameter of that function to a non-constant value. It is particularly important if the setting of a parameter involves a state 

variable either from the same class as the calling transition or from some other class. Thus a new 3-way association among 

transitions, state variables, and parameters is defined. This is denoted by ActionSetsParmUsingVar as a table of tuples (ct, t, cf, f, 

n, cv, v) where (ct, t, cf, f, n) is a tuple in the ActionSetsParm association and (cv, v) identifies a state variable that is referenced in 

the setting of that parameter. If the state variable is from the same class as the transition, then ct=cv, and cf=cv if the state variable 

is from the same class as the called function, but in general (cv ,v) could identify a variable in any class that is called by the get 

function on that variable. Appendix I shows examples of the first and second alternatives, e.g. several transitions derived from 
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CheckState() in CruiseUnit call the Position variable from Throttle and pass it back to Throttle by setting Throttle�s Floor 

variable.  

 

It is sometimes necessary to consider the case where the action of a transition makes an asynchronous call to a method defined 

by the same class:  it does not wait for a reply before completing the transition, and the call does not return a value. Instead, the 

function call is put on an input queue for that class and considered later. An additional association ActionRefLocalAsyn is 

defined between Transition and Function to represent such calls. This association is not visible in Figure 2 but it is represented 

by a table of tuples (c, t, f) where (c, t) identifies the transition and (c, f) represents the asynchronously called function. In the 

Automobile example, many of the CruiseUnit transitions seen in Appendix I have final actions that put CheckState() on a queue 

to be executed by CruiseUnit when it�s not busy with other requests. 

 

Although this information is conveniently stored in database tables, it is helpful to consider the tables as sets for most of the 

development of this work.  A straightforward mapping does this.  Every table can be associated with a mathematical set, where 

the set is a set of sequences consisting only of the primary key values of the table.  In this sense, the sequence (c, f) is an element 

of the Function set if and only if there exists a row in the Function table with primary key values (c, f). If X is such a table-

derived set, if w is a non-key column of the corresponding table T, and if x ∈ X, then w(x) is defined to be the value in column w 

of the row of table T identified by x. For example, in the ActionRefVar association defined above, SeqNbr(c,v,t) identifies the 

value of the SeqNbr attribute of that instance.  This notational convenience is used freely in the following sections, with C, F, P, 

V, S, and T, as the sets derived from the tables Class, Function, Parameter, Variable, State, and Transition.  

 

4 Choosing Relevant State Machine Transitions 
 
Given even a moderately large system, the number of transitions available over all class state machines could be quite high. 

Developing tests over such a large scope would probably be prohibitively expensive, and would properly be considered system 

testing as well. Testing is divided into pieces by focusing on one component at a time, and generating tests based on that 

component�s integration interactions with other components.  

 

The test component M is the component whose interactions are being tested. The procedure first determines which transitions 

from the overall system specification are relevant to M. Relevant transitions fall into two types. In transitions represent actions 

or data that flow into M, that is, transitions from any class in the system that can modify the value of a state variable in any of 

M�s classes. Out transitions flow out from M to classes in other components, that is, transitions that can be invoked, directly or 

indirectly from actions on transitions in any of M�s classes. Transitions from classes in M are called Base transitions, since they 

are the starting points for a recursive process that finds the transitive closure of relevant transitions.   

 

This process begins by putting all feasible Base transitions from any class in M into the set R0. The iterative process starts with 

R0. At each step, assume that n steps of the process have been completed, resulting in a set Rn of relevant transitions, each of 

which is labeled as In, Out, or Base. A transition may appear in Rn as many as three times with different labels. To create the 

next set of relevant transitions, Rn+1, first initialize Rn+1 to be Rn, and then insert newly labeled transitions as indicated below. A 

mutator function that returns a usable value to the calling action results in both In and Out labels for each of its transitions. The 
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following rules control how and when transitions are handled. In some cases, decisions were made to try to balance performance 

with effectiveness. Further experimentation may cause some decisions to be refined. 

 

• Let t be a feasible transition and let f be an actor or mutator with return function that is the method associated with t. If the 

State, Guard, or Action of any transition in Rn calls f, then t is added to Rn+1 with an In label. 

• Let t be a feasible transition and let f be a mutator or constructor function that is the method associated with t. If the Action 

of any Base or Out labeled transition in Rn calls f, then t is added to Rn+1 with an Out label. 

• Let t be a feasible transition. Let t' be any transition in Rn labeled either as a Base transition or as an Out transition. Let f' be 

an actor function that is the method associated with t'. If the Action of t calls f', then t is added to Rn+1 with an Out label. 

• Let t be a feasible transition. Let t' be any transition in Rn and let f' be a mutator function that is the method associated with 

t'. If the Action of t calls f', then t is added to Rn+1 with an In label. 

• Let t be a feasible transition and let f be a function that is the method associated with t. Let t' be a transition in Rn, from the 

same class as t, labeled either as a Base transition or as an Out transition. If the Action of t' calls f asynchronously, then t is 

added to Rn+1 with an Out label. 

• Let t be a feasible transition whose Action defines a state variable v. Let t' be any transition in Rn, from the same class as t, 

labeled as an In transition. If the method associated with t' is the get method for the variable v, then t is added to Rn+1 with 

an In label. 

• Let t be a feasible transition. Let t' be any transition in Rn, from the same class as t, labeled as an Out transition. If the 

Action of t' defines a state variable v, and if the method associated with t is the get method for v, then t is added to Rn+1 with 

an Out label. 

 

Since there are only a finite number of transitions in the system, and since {Rn} is a monotonically increasing sequence of sets, 

the process must terminate at some iteration with no new additions. At that point, the transition labels are discarded and the 

remaining unlabeled transitions are defined to be the set of transitions in the system that are relevant to M. These are the 

transitions that will determine the component flow graph when integrating M with the system. 

 

Definition 4.1 (relevant transitions): Let M be any component of a software system S. R(M) is the set of all transitions from S 

that are determined to be relevant to M according to the preceding iterative process. 

 

The initial collection of transitions in the Automobile example includes several transitions in the BrakeControl class that deal 

with anti-lock brakes and many in the Gauges class that deal with gauges on the instrument panel but that are unrelated to cruise 

control. The above procedure focuses only on transitions relevant to CruiseControl and eliminates these unrelated transitions. 

Each relevant transition that has a non-trivial action is listed in Appendix I. 

 

5 A Data-flow Graph Model of State Transitions 
 
The traditional testing literature [15, 26, 33, 37, 39] defines a data flow graph to be a graphical representation of a program's 

control structure and the flow of data through that structure.  A data flow graph is composed of nodes, which represent 
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statements or basic blocks, and edges, which represent flows of data between basic blocks.  If a variable X is given a value, or 

defined in a node d, and that value can be used in another node u, then there is a data flow dependency from d to u.  The two 

nodes d and u form a def-use pair for the variable X. 

 

This research expands the traditional notion of data flows among statements in a program to be defined among states, guards, 

and transitions in finite state machines.  A component flow graph is defined to represent both the control and data flows for the 

state transitions of the classes of a component and its relevant transitions from other classes in the software system. The 

definitions in this paper extend those of Hong et al. [22] from the single-class case to the multiple-class case. 

 

In a component flow graph, nodes and edges are derived from the relevant transitions of that component. Each such transition 

has pre-determined associations with the states, guards, variables, and functions of other transitions, as defined in Section 3 and 

represented in Figure 3.  

 

Definition 5.1 (component flow graph):  Let M be any component of a software system  S, and let R (M) be the set of all 

transitions in S that are relevant to M.  Then the component flow graph G of M in S is a directed graph G = (N, E), where N is 

drawn from elements of the relevant transitions and E represents potential flows of data between nodes in N.   

 

Specifically, the nodes N in G are formed from the union of states, transitions, and guards that appear in the relevant transitions 

of M as follows: 

N = Ns ∪  Nt ∪  Ng       where 

• Ns is the set of all states in the finite state machine that are source states or target states of a relevant transition 

• Nt is the set of all relevant transitions 

• Ng is the set of all guards in the finite state machine that are non-trivial guards of a relevant transition 

 

The edges are derived from potential data flows among states, transitions, and guards in the relevant transitions.  Some of the 

edges represent actions in the action sequence of a transition that call methods from other classes. Each edge that results from a 

call to any external function is labeled with the sequence number of that call in the action sequence of the transition. However, it 

helps to distinguish these labels as being on out-going edges or on in-coming edges, so the sequence number label for an edge 

that represents an out-going call of a mutator function is defined to be the OutSeq number and the sequence number label for an 

edge that represents an in-coming data flow from an actor function, or from a mutator function that returns a value, is defined to 

be the InSeq number. All other edges will be left unlabeled. No edge carries more than one such label.  

 

Nine types of edges are defined.  Four of these types come from Hong et al.�s paper [22] and are termed �intra-class� edges 

because they are all defined within a single class.  These intra-class edges are also synchronous in the sense that in all messages 

that are sent, the caller waits for the callee to complete before proceeding.  To handle multiple classes, four new inter-class edge 

types and one new intra-class edge type are introduced.  The inter-class edges are potentially asynchronous because each 

component is assumed to be a separate executable process.  The new intra-class edge type that is introduced (Ects) is 

asynchronous, as explained below. The total set of edges E is defined as: 
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E = Est ∪  Esg ∪  Egt ∪  Ets ∪  Egtg ∪  Ests ∪  Exts ∪  Extt ∪  Ects 

 

Hong�s four original intra-class edge types are: 

 

• Est edges represent data flow from states to transitions. The the transition has no non-trivial guard (guard is true). 

• Esg edges represent data flow from states to guards. The state is the source state of the transition that specifies the non-

trivial guard. 

• Egt edges represent data flow from guards to transitions. The guard is non-trivial and is specified by the transition. 

• Ets edges represent data flow from transitions to states. The state is the target state of the transition. 

 

There are four inter-class, potentially asynchronous types of edges. These are more complicated than intra-class edges. They are 

constructed when guards, states, and transitions invoke methods in other classes.  The invoking guard (g), state (s) or transition 

(t) may be the source or the target of the edge, depending on whether the data flow is in or out of that node.  

 

• Egtg edges represent data flow triggered by a guard that flows from an external transition back to that guard. The predicate of 

the guard invokes an actor function from an external class and data flows from transitions in that class back to the guard. 

The GuardRefActorFn association determines these edges. The Automobile example has three instances of this type of 

edge. 

• Ests edges represent data flow triggered by a state that flows from an external transition back to that state. The predicate of 

the state invokes an actor function from an external class and data flows from transitions in that class back to the state. The 

StateRefActorFn association determines these edges and the Automobile example has 10 instances. 

• Exts edges represent data flow triggered by an external transition to a state in a different class. The action of the transition 

invokes a mutator function from a different class, and data flows from the transition to the source state of any transition in 

that class that has the mutator function as its method. The target of the flow is the source state rather than the other transition 

because it may be subject to the constraint of a guard and because the state the other object might be in when the request is 

received cannot be known. These out-going edges are labeled with an OutSeq number equal to the SeqNbr of the call of the 

mutator method in the action sequence of the calling transition. These edges are also labeled with the function name of the 

mutator function. Section 6 defines additional conditions on path segments from the transition node, to a source state node, 

to a guard node of a transition derived from the called mutator function. The ActionRefMutatorFn association determines 

these edges and the Automobile example has 161 instances. 

• Extt edges represent data flow from an external transition to a transition in a different class. The action of the target transition 

invokes a method from an external class and data flows from any transition in that class derived from that function back to 

the target transition. These in-coming edges are labeled with an InSeq number equal to the SeqNbr of the method call in the 

action sequence of the calling transition.  The ActionRefMutatorFn and ActionRefActorFn associations determine these 

edges and the Automobile example has 58 instances. 

 

There is one new intra-class asynchronous edge type: 
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• Ects edges represent intra-class data flow from transitions to states. The transition calls a mutator function, asynchronously, 

in its own class. Since the call is asynchronous, it is put on a queue and the class may be in some other state when the 

function is executed. These out-going edges are labeled with an OutSeq number equal to the SeqNbr of the method call in 

the action sequence of the transition. These edges are also labeled with the function name of the mutator function. The 

ActionRefLocalAsyn association determines these edges and the Automobile example produces 38 instances. 

 

Section 5 of an earlier technical report [18] provides a more formal specification of how these edges are derived from the 

referenced associations. 

 

Transition nodes whose method has External (EXT) availability determine the external interface to the system. Input values can 

only be provided through this interface in black box testing.  Such transitions are marked with a virtual edge from a virtual EXT 

User node. In the Automobile example, the 8 EXT methods listed in Section 2.2 produce 24 such virtual edges. Various 

combinations of these inputs will produce different paths through the component flow graph.  The goal is to find appropriate 

paths through the graph to ensure that all aspects of the specification are thoroughly covered, and then to choose input values for 

these EXT methods to execute those paths. The paths through the graph are called test specifications and the input values are 

called executable test cases.  

 

6 Generating Test Requirements 
 

A testing criterion is a rule or collection of rules that imposes requirements on a set of test cases. Test engineers measure the 

extent to which a criterion is satisfied in terms of coverage: A test set achieves 100% coverage if it completely satisfies the 

criterion.  Coverage is measured in terms of the requirements that are imposed; partial coverage is defined to be the percent of 

requirements that are satisfied.  Test requirements are specific things that must be satisfied or covered; for example, the 

requirements for statement coverage are individual statements that must be reached. 

 
A number of different coverage criteria can be defined on data flow graphs, including all-defs, all-uses, and all-paths. These 

have been discussed and compared extensively in the literature [15, 33].  Many researchers have concluded that the all-defs and 

all-uses criteria provide adequate coverage at acceptable cost for most testing purposes [10, 16, 17, 20, 23, 31, 34].   

 

The formal definitions for variable definitions and variable uses to the component flow graphs defined in the preceding section 

are in a previous technical report [18] and are presented informally here. First, the various types of uses (direct/indirect, 

predicate/computation) are defined, and then used to define def-use pairs and then DU-pairs. 

 

Defs and uses are defined in terms of the associations defined in the DB schema of Figure 3. Using the notation introduced in 

Section 3, let V be the set of all variables in the software system and let the variables be defined by the Greek nu, ν = (c, v) ∈  V, 

where c identifies the class that contains the variable, that is c ∈  C. 
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Definition 6.1 (definitions and uses):  Let M be any component of a software system S, let R(M) be the set of transitions in S 

that are relevant to M, and let G = (N, E) be the component flow graph of M in S.   

 

• ν is defined at a transition-node nt ∈ Nt if the variable and the transition are from the same class and if they satisfy the 

association (c, t, v) ∈  ActionDefVar. Each variable definition carries along the SeqNbr attribute of the ActionDefVar 

association. 

• ν is directly computation-used at a transition-node nt ∈ Nt if the variable and the transition are from the same class and if 

they satisfy the association (c, t, v) ∈  ActionRefVar. 

• ν is indirectly computation-used at a transition-node nt ∈ Nt if the variable is associated with the get method f in its class c 

and if the transition and the function satisfy the association (ct, t, c, f) ∈ ActionRefActorFn.  

• ν is directly predicate-used at any state-transition-edge  (ns, nt) ∈ Est if the state satisfies the association (c, s, v) 

∈ StateRefVar. 

• ν is indirectly predicate-used at any state-transition-edge  (ns, nt) ∈ Est if the variable is associated with the get method f in 

its class c and if the state and that function satisfy the association (cs, s, c, f) ∈ StateRefActorFn. 

• ν is directly predicate-used at any state-guard-edge (ns, ng) ∈ Esg if the state satisfies the association (c, s, v) ∈ StateRefVar. 

• ν is indirectly predicate-used at any state-guard-edge  (ns, ng) ∈ Esg if the variable is associated with the get method f in its 

class c and if the state and the method satisfy the association (cs, s, c, f) ∈ StateRefActorFn. 

• ν is directly predicate-used at a guard-transition-edge  (ng, nt) ∈ Egt if the transition satisfies the association (ct, t, c, v) 

∈ GuardRefVar. 

• ν is indirectly predicate-used at a guard-transition-edge (ng, nt) ∈ Egt if the variable is associated with the get method f in its 

class c and if the transition and f satisfy the association (ct, t, c, f) ∈ GuardRefActorFn. 

• ν is parameter computation-used at a transition-node nt ∈ Nt if the action of the transition associated with nt, called (ct, t), 

references the n-th parameter of the function associated with t by name, that is if (ct, t, n) ∈   ActionRefParm, and if the 

variable is used to set the n-th parameter of some function, that is if there exists a transition t1 whose action calls a function 

(cf, f) such that (ct1, t1, cf, f, n, c, v) ∈  ActionSetsParmUsingVar, and if that function is the function associated with t, that is 

if ct = cf and method(t) = f.  

• ν is parameter predicate-used at a guard-transition-edge (ng, nt) ∈ Egt if the guard of the transition associated with n, called 

(ct, t), references the n-th parameter of the function associated with t by name, that is if (ct, t, n) ∈   GuardRefParm, and if 

the variable is used to set the n-th parameter of some function, that is if there exists a transition t1 whose action calls a 

function (cf, f) such that (ct1, t1, cf, f, n, c, v) ∈  ActionSetsParmUsingVar, and if that function is the function associated with 

t, that is if ct = cf and method(t) = f.  

 

Each computation-used instance carries along the SeqNbr attribute of the association to identify the position of that use in the 

action sequence of the transition. Since guard and state predicates do not have sequence numbers, predicate-used instances do 

not have such a value. These identifications of defs and uses in a component flow graph are used to define def-use pairs in those 

graphs. The Automobile example produces instances for each of these def-use categories, as listed in Section 7. 
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Definition 6.2 (def-use pairs):  Let M be any component of a software system S, let R (M) be the set of transitions in S that are 

relevant to M, and let G = (N, E) be the component flow graph of M in S. The Greek mu (µ) represents an edge or a node that is 

a use. An ordered pair (nt, µ) is said to be a def-use pair for ν if ν is defined at the transition-node nt and if µ is either a node or 

an edge in G where ν is directly or indirectly used.1 

 

Not every variable produces a non-empty set of def-use pairs.  Some variables, for example class constants, may be defined 

when an object is created and never redefined in any relevant transition; others may be defined in a relevant transition as a non-

relevant side effect, but never used in any other relevant transition. All such variables are ignored in the following sections. 

 

Special attention is paid to transition nodes where a variable is both defined and used.  Here the order of execution is important, 

since a variable may be defined and then used in the same action.  If a variable is used first in an action before it is defined, or if 

it is defined later after it is used, then that node may continue to be relevant to other definitions or uses of the variable.  These 

cases are distinguished as follows: 

 

Definition 6.3 (internal def-use pairs):  Let ν be a variable that is both defined and used at one or more transition nodes nt∈ Nt. 

Denote by DFTU(ν) the set of such nodes where ν is defined first and then used, and denote by UFDL(ν) the set of all such 

nodes where ν is used first before it is defined or defined later after it is used. In each case, the content of the set is determined 

by a syntactic analysis of the action associated with the transition node nt. 

  

The sets DFTU(ν) and UFDL(ν) are not necessarily mutually exclusive.  A transition involving variable x with an action that 

consists of the sequence  �x := x+1; y := f(x)� would be in both sets. 

 

6.1 Data flow path coverage 
To complete the def-use approach to test specification creation, the algorithm looks for paths in the component flow graph that 

lead from the definition of a variable to a use.  Consider triples (ν, nt, µ) where ν is a variable, nt is a transition node that defines 

ν, and µ is a node or edge where ν is used.  nt and µ form a DU-pair if there exists a path in the component flow graph leading 

from nt to µ, if the path is free of loops, if there are no defs to ν by another transition node in the path, and if the path is 

potentially feasible for testing.  The definitions in this section clarify these criteria as applied to testing of object components, 

and lead to a rigorous definition of test specifications derived from a component flow graph. 

 

Definition 6.4 (path):  Let G = (N, E) be an directed graph.  A path p in G of length k≥1 is a sequence of nodes n1 .. nk such that 

(ni, ni+1) ∈ E for 1 ≤ i ≤ k-1.  If p is a path, then the head of p, denoted by H(p), is the first element of the sequence, the tail of p, 

denoted by T(p) is the last element of the sequence, and the length of p, denoted by L(p), is the number of nodes in the sequence. 

 If p and q are two paths such that (T(p), H(q)) ∈ E, then the concatenation of the two sequences, denoted by p:q, is a path with 

L(p:q) = L(p) + L(q).  If p is a path and n is a node in the sequence that determines p, then n is said to be an element of p, 

                                                           
1 Note that a def-use pair is distinct from a DU-pair in that the def-use pair does not require that there be a def-clear path from the def to the 

use. 
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denoted by n∈ p. If p is a path then InSeq(p) or OutSeq(p) denotes the label of its first or last edge. The context makes clear 

which is intended. 

  

Feasible paths through a component flow graph must be found, so special attention is paid to path segments in the graph that 

flow from a transition node nt1 to a state node ns and then from that state node to a guard node ng or another transition node nt2. If 

the edge from nt1 to ns is the result of a call of a mutator function f, that is if the edge has a function label that identifies f, then 

the edge from ns to ng, or from ns to nt2, must satisfy some additional feasibility restrictions. In particular, the edge from ns to ng 

or nt2 must be from a transition whose function is identical to f, and the guard predicate of any ng must not be incompatible with 

the exit conditions from node t1 or with the values of any parameters passed with f. The rules below address the function 

constraint. The guard constraint is more difficult to address because of exit conditions and dynamic values of passed parameters. 

To help address such guard constraints, a new association among these types of nodes is defined. A triple of nodes (nt, ns, ng) is a 

mutator Transition-State-Guard (TSG) path segment if the edge (nt, ns) has a function label. A mutator TSG path segment is 

potentially feasible if the edge (ns, ng) is known not to be incompatible with the call of the mutator function. Let MTSG denote 

the set of all node triples that are mutator TSG path segments and let FTSG be the subset of MTSG consisting of TSG path 

segments that are potentially feasible. The Automobile example produces 283 instances of MSTG, of which 169 are provably 

feasible and 53 are provably not feasible, leaving 61 where a simple analysis cannot determine feasibility or non-feasibility. 

Appendix I shows the easy situations where a parameter is set to a literal in an action of a transition, and the guards of some of 

the transitions associated with the called function test that literal directly. The set FTSG contains all but the provably non-

feasible triples (230 instances in the Automobile example). 

 

Definition 6.5 (DU-path and DU-pair): Let G = (N, E) be a component flow graph in a software system S. Let ν be any 

variable in S, let nt be a transition node that defines ν, and let µ be a node or an edge where ν is used. A path p in G is said to be 

a DU-path from nt to µ for ν if p = nt:q:µ, where q is a path in G such that no node of q is a definition node for ν and every 

mutator TSG path segment in p is potentially feasible . The pair (nt, µ) is said to be a DU-pair for ν if such a path p exists.  

 

Definition 6.6 (candidate test paths): Let G = (N, E) be a component flow graph in a software system. Let VDU be a set of 

tuples (ν, nt, µ) where (nt, µ) is a def-use pair for ν and let P be a set of tuples (ν, nt, µ, p) where (nt, µ) is a DU-pair for ν and p is 

a DU-path from nt to µ. The set of all such paths p are the candidate test paths in G. 

 

The all-uses testing criterion is satisfied by any path from a def to a use. The construction below looks for the shortest path 

because it is more convenient, thus saving computation expense. It is, however, possible that other paths could be �better� in 

some sense. A reasonable alternative would be to incorporate a searching procedure that uses some measurement function to 

choose from among a set of potential paths. One measurement might be to require that all mutator TSG path segments be known 

feasible instead of just known not infeasible, but that is a very difficult measurement to determine or represent. 

 

It is easy to construct the set VDU of Definition 6.6, but the set P may not have any elements. An iterative procedure is defined 

to construct the elements of P. It searches for candidate test paths using a breadth-first algorithm for finding paths from one node 

to another in a directed graph, a modification of Dijkstra�s shortest-path algorithm that starts at both beginning and end nodes, 

and meets in the middle. It works breadth-first from definition nodes and use nodes or edges, simultaneously forming two sets of 
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partial paths. The def-partial paths are paths whose head is the definition node for a state variable and whose tail is a candidate 

node for connecting to a use of that variable. The use-partial paths are paths whose tail is a transition node where a variable is 

computation-used, or whose last two tail nodes determine an edge where the variable is predicate-used, and whose head is a 

candidate node for connecting to a definition of that state variable. Each step of the algorithm looks for an edge that links the tail 

of a def-partial path for a state variable to the head of a use-partial path for that same variable. In addition, the algorithm ensures 

that all partial paths are def-free by requiring that the new candidate node added as the tail of a def-partial path or the head of a 

use-partial path does not define the variable. The algorithm enforces a rule that every mutator TSG path segment be potentially 

feasible. The algorithm also enforces a rule that private functions may only be called by methods within their own class and that 

protected functions may only be called by methods within their own component (that is, a Java package). Also, if the action of a 

transition calls a private function within its own class, and if the next transition in the candidate path is a transition derived from 

the private function, the algorithm requires that the target state of the calling transition is the source state of the derived 

transition. A typical example of an action calling a private function is the asynchronous call of CheckState() as the final action of 

many methods in CruiseUser. Finally, in order to help ensure the construction of DU-paths that result in feasible test cases the 

construction of both sets of partial paths is required to satisfy a set of rules involving SeqNbr, InSeq, and OutSeq labels to ensure 

that edges entering or leaving a transition node occur in a feasible order for the action sequence of that transition.  

 

The iterative process stops when the set P = ∪  Pi. This must happen for some value of i less than the number of edges in the 

graph since cycles were avoided by ensuring that no edge appears more than once in any of the partial paths. It is possible for 

some state nodes and some transition nodes to appear more than once in a partial path. Not all elements (ν, nt, µ) ∈ VDU will 

yield a DU-path. Some variables may be defined at a node nt and used at a use item µ, but either no path exists from nt to µ that 

satisfies the above constraints, or every such path contains a re-definition of ν. 

 

Definition 6.7 (def-bound): A variable ν is said to be def-bound at a definition node nt of a def-use pair (nt, µ) if there is no path 

from nt to µ (p = (ν, nt, µ, p)∈ P). 

 

The def-bound variables surface during the calculation of Bi+1 = Xi - Ai+1 in the iterative process of Definition 6.6. At that point 

Ci+1 ⊆   Ai+1 ⊆  Xi.  It follows that Bi+1 identifies the def-use pairs that were active during the calculation of Xi, did not find a path 

to join in Pi+1, yet are no longer active for Xi+1.  They dropped out because in the calculation of the previous Qi there did not exist 

a node n to form a new edge in the partial paths. Thus the sets Bi+1 identify new def-bound variables, if they exist, at each step of 

the process. 

 

6.2 Executable test cases 
 

If a variable ν is both defined and used, and is not def-bound for a specific def-use pair, then the path generation of the previous 

section produces one or more DU-paths linking a definition node nt to its corresponding use item µ.  These DU-paths are 

considered to be abstract test specifications because no attempt has yet been made to choose explicit parameter values for any of 

the function calls. There is no guarantee that an abstract test specification will be feasible because it may contain a TSG path 

segment that is not feasible. However, the process carries along all possible potentially feasible TSG path elements for each def-
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use pair, so there is a good chance that a feasible one will be in the collection P of candidate test paths constructed by the 

algorithm of Definition 6.6. If at the end of iteration i, all DU-paths for a DU-pair are discovered to be not feasible, then the def-

use pair is re-inserted into the set Xi of active pairs and the iterative algorithm continues. 

 

Even at the end of this process, there is no guarantee that a feasible abstract test specification will lead to an executable test case. 

One must still find externally invokable methods that will trigger each of the function calls in the abstract test specification 

without violating any of the constraints against re-definition of the state variable. The authors believe that the methodology 

presented in this paper can be used to help find such externally invokable methods. In particular, the algorithm of Definition 6.6 

can be used to find potentially feasible paths from the set of externally invokable methods to each of the function calls in an 

abstract test specification that is not the result of an internal call. Subsequent research will attempt to use this methodology to 

help generate executable test cases automatically from abstract test specifications.  

 

Each DU-pair is equally important because it tests a distinct def and use of some variable. Even if two different DU-pairs share 

essentially the same DU-path, an executable test case that follows that path is an effective test case for each DU-pair. Some 

paths are included as a subpath within other paths, or shorter paths may be connected end-to-end to produce longer paths, so a 

traversal of a longer path by an executable test case may test multiple abstract aspects of the state/transition specification at the 

same time. From a theoretical perspective, they should still be counted as separate tests.  In any statistical analysis of test case 

development, it may safely be assumed that the set of all DU-pairs is the sample space from which all executable test cases are 

drawn. Such statistical analysis is left as future work.  

 

7 Empirical Results on the Automobile System 
 

This section presents results from testing the Automobile example introduced in Section 2.2 and its CruiseControl component. 

Cruise has been used widely in the specification, specification-based testing, and modeling literature [1, 4, 19], but the version 

used in this paper includes significantly more components than other versions. The version used by Atlee and Abdurazik et al. 

[1, 4] had seven functions, 184 blocks, and 174 decisions. The external interface and the cruise control transitions used in this 

paper are modeled on the cruise control characteristics of a 1995 Acura Legend. Instead of the four states found in the other 

papers, the system used in this paper contains 10 classes, each of which has a number of states. Combined, these states have 21 

relevant variables that appear in more than 3433 def-use pairs. For cruise control testing purposes, only external functions such 

as clutch and gas pedal positions and the cruise controls are available to human users.  Other functions are encapsulated and 

hidden.  

 

Each process in Sections 3 through 6 are followed, using 16 iterations and resulting in the data shown in Table 2. The Process 

Time column is from the prototype implementation using an Access database on a Pentium 4 class PC at 1.5 Ghz and 256 MB 

RAM. Other columns are explained below. 

 

 New Paths 

Pi 

New DU-pair 

Ci 

Active Pairs

Xi 

New DefnBnd 

Bi 

Partial Paths 

Qi 

Process Time 

(m:ss) 
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1 18 18 3433 99  0:01 

2 0 0 3316 0 3316 0:01 

3 363 363 2948 5 4174 0:03 

4 69 69 2879 0 15,077 0:27 

5 291 287 2564 28 49,664 1:02 

6 526 355 2209 0 71,697 1:25 

7 209 85 2080 44 25,851 0:33 

8 330 153 1117 810 19,122 0:22 

9 130 109 938 70 18,752 0:17 

10 263 263 665 10 14,401 0:25 

11 231 214 445 6 46,509 0:59 

12 26 17 428 0 50,822 0:27 

13 0 0 428 0 10,206 0:23 

14 0 0 428 0 12,130 0:18 

15 0 0 420 8 0 0:05 

16 0 0 0 420 0 0:01 

Totals 2456 1933  1500  6:47 

 

Table 2: Cruise Control – Candidate Test Paths 

 

Table 2 shows that iteration 5 finds 291 new DU-paths, but only 287 of them identify new DU-pairs. In addition, 28 pairs were 

found to be def-bound (Bi). The number of active pairs (Xi) is thus reduced by 287 and 28. Many of the paths are similar to the 

above, either composed of successive application of feasible transitions within a class, going through the target state of one 

transition to the source state of the next, or involving interactions between classes via calls of mutator functions along MTSG 

edges. However, some of the paths introduce the first transition-to-transition edges. For example, Rpm of Engine is defined in 

transition t003, but can reach its parameter computation-use in Gauges either by going through the target state of t003 to Gauges 

via a call to Engine to read the value of ExternalDrag or by being passed as a parameter via a call of Gauges.Speed(x) to set the 

Speed variable in Gauges. A tester could choose either path to test the def-use of Rpm, but might be biased toward the transition-

to-transition path because it does not contain any potentially infeasible MTSG path segments. Similarly, the Speed variable of 

Gauges is defined in t017 then called by many CruiseUnit transitions for indirect computation-use. This iteration also discovers 

28 new def-bound pairs, primarily because ThrottlePosition is defined in all of the relevant Throttle transitions but its predicate 

use in many edges coming out of the Danger state can never be reached. 

 

All DU-path generation takes place in iterations 3 through 12. Iterations 13 through 16 follow potentially feasible paths until it is 

no longer possible to extend either the def-partial or use-partial paths without violating one of the path constraints (no new paths 

are added). At iteration 16, all 3433 def-use pairs are resolved, finding candidate test paths for 1933 pairs and proving that the 

remaining 1500 pairs are def-bound with no possible def-free test path. 
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7.1 Experimentation with test cases 
 

Once the candidate test paths are found, executable test cases are constructed by finding appropriate external calls to execute the 

methods on the candidate test paths and appropriate parameter values. Tools for automating this step are under construction. As 

an experimental evaluation, we have constructed the tests (145), seeded faults into the program (106), and evaluated the fault-

finding ability of the tests on the seeded faults. The subjects (full specification Engine specifications and tests) are shown in 

appendixes of this report; the results will appear in a forthcoming paper. Faults were constructed by modifying the transitions 

table in the specification database (Appendix VI). Each fault was created by copying the table and making one change, resulting 

in 106 copies of the table. These tables will be provided on request. 

 

8 Conclusions and Future Work 
 

This technical report presents theoretical concepts for constructing tests for component-based testing. This is a method for 

integration level, inter-class testing for object-oriented programs using data flow techniques.  The data flow and control flow 

graphs are stored in a relational database, which is used as a compute engine for deriving DU-pairs and DU-paths to satisfy data 

flow testing criteria.  Software components are modeled as finite state machines, and data flows are defined on the finite state 

machines, yielding DU-paths that are used as a basis for testing. 

 

The database representation provides a convenient way to go one step beyond traditional data flow systems and provide 

definition-clear DU-paths rather than just DU-pairs. Traditional code-level data flow systems provide DU-pairs (as statements), 

and use instrumentation to check whether separately supplied test inputs cause def-clear paths to be executed from the 

definitions to the uses. This is often a hit-or-miss process, with the tester throwing test inputs at the software, hoping that the 

data flow system eventually reports that the DU-pairs were covered. It is sometimes very difficult for a tester to find a test case 

that will cover a particular DU-pair, and attempts have been made to generate tests by generating and solving predicates [36]. 

Source code-level data flow analysis has always had problems with the predicates getting too large for memory, which is one 

reason why data flow testing is seldom if at all used in practice. The early papers on data flow discussed data flow paths, but 

none of the implementations dealt with construction of the paths, which meant that discussions of data flow paths were 

theoretical. 

 

Traditional code-level data systems do not provide complete paths for data flow testing, partially because the problems of 

finding a feasible path and determining whether the path is def-clear are generally undecidable. In cases where the problem can 

be solved, the complexity of the control flow, problems with aliasing and function calls, and the size of the data space make the 

cost of the exponential algorithms prohibitive. This work, however, avoids some of the problems associated with code-level data 

flow analysis. The �control flow� on average is much simpler than in code-level control-flow graphs, the data space is much 

smaller, and there is no aliasing.  The point of using the database is that it provides a powerful compute engine for solving 

predicates, which is one of the most difficult parts of a data flow analyzer to implement. 
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Although it is true that this work thus far has not assured scalability, the authors have experience both building and using source 

code-level data flow analysis software. We know of no source code-level data flow testing systems, either commercial or 

experimental, which can handle software specifications that have thousands of DU-pairs, as we have done for the Engine system.  

 

This paper does not explicitly handle class variables (Java static) or inheritance. However, class variables can be modeled by 

assuming that they are instance variables in a separate, virtual class, where only one instance of that class is available, and where 

the static methods that access the class variables are methods in the separate class. Inheritance of variables from a superclass is 

handled by replacing variable references in the subclass with a method invocation of the associated get and set methods of the 

superclass. Other aspects of inheritance do not directly impact this model. 

 

For clarity, the definitions and example in this paper only consider one object per class. However, aggregation and consideration 

of multiple class instances are essential for practical application.  In static environments with static type hierarchies and static 

type binding, aggregation and multiple instances are achieved by allowing state variables to be references to some other object. 

All such reference variables are collected together, creating a new table in the model with a primary key called RefId. Each row 

of the new table identifies an object whose state and behavior must be maintained throughout the testing process. Then the 

associations of Figure 3 are extended to be specified in terms of RefIds instead of just ClassIds. The remainder of the test 

specification for this situation follows as presented here. 

 

The situation is substantially more complex when class hierarchies with dynamic type binding and polymorphism are used. This 

is an issue for future work. 

 

One interesting question is when to employ the techniques presented in this, and three possibilities emerge. The most obvious is 

when software components are integrated. At that time, the FSMs can be generated and relevant transitions can be determined to 

be those transitions that are included as part of the components in the current integration step. It may also be possible to employ 

these techniques during maintenance. If a component is to be changed, the impact of that change can be estimated in terms of the 

relevant transitions, and regression testing can proceed on the relevant transitions. Finally, if a new component is to be added to 

a system, then relevant transitions (and the resulting tests) can be created in terms of the new component. We hope to explore 

this idea in future work. 

 

With the increasing popularity of object-oriented specification methods, e.g. UML [40], and especially state transition 

specification of classes, e.g. UML�s state machine package, it becomes possible to more closely align the specification and 

testing of object-oriented software, with executable test cases generated automatically from the specification.  With the addition 

of database tools, it becomes possible to apply finite state analysis and testing methods to moderate-sized software systems.  

Follow-on work will focus on further integration of the specification and testing aspects of software development and on the 

potential application of statistical methods. 
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Appendices 
 
The appendices to this report include the full specifications for the Engine system and executable test cases. The specifications 

are in several tables. Appendix I lists the thirteen classes of the system. Appendix II lists the external functions of all the classes. 

 Appendix III lists the parameters for each of the external function. Appendix IV lists the states for all objects in the Engine 

system. Appendix V lists the state variables for the classes in Engine. Appendix VI lists the mutator transitions for all the classes 

in the Engine. Appendix VII lists the executable test cases generated by our technique, in the form of sequences of calls to 

external functions. 

 
 
 

Appendix I: Classes for CruiseControl 
 

ClassI

d ClassAlias ClassName ComponentName SystemName 

c01 AutoSystem AutoSystem_ADT SystemControl Automobile 
c02 BrakeControl BrakeControl_ADT Brakes Automobile 
c03 BrakeUser BrakeUser_ADT Brakes Automobile 
c04 ClutchUser ClutchUser_ADT Clutch Automobile 
c05 CruiseUnit CruiseUnit_ADT CruiseControl Automobile 
c06 CruiseUser CruiseUser_ADT CruiseControl Automobile 
c07 Engine Engine_ADT Engine Automobile 
c08 GasUser GasPedalUser_AD

T 
Acceleration Automobile 

c09 Gauges Gauges_ADT InstrumentPanel Automobile 
c10 Throttle ThrottleUnit_ADT Acceleration Automobile 
c11 Ignition Ignition_ADT IgnitionControl Automobile 
c12 Transmissio

n 
Transmission_ADT TransmissionBox Automobile 

c13 Wheel Wheel_ADT WheelHousing Automobile 
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Appendix II: External Functions for CruiseControl 
 
ClassAlias Avail FunName InputType ReturnType Description 

AutoSystem PRO AutoSystem()  AutoSystem Creates a new instance of the AutoSystem ADT. 

AutoSystem PUB BrakeActive()  Boolean Read value. 

AutoSystem PUB BrakeActive(x) Boolean Boolean Set value, returns true if successful. 

AutoSystem PUB ClutchActive()  Boolean Read value. 

AutoSystem PUB ClutchActive(x) Boolean Boolean Set value, returns true if successful. 

AutoSystem PUB Danger()  Boolean Read value. 

AutoSystem PUB Danger(x) Boolean Boolean Set value, returns true if successful. 

AutoSystem EXT ThrottleFloor()  Boolean Read value of CONSTANT. 

AutoSystem EXT ThrottleGovernor()  Boolean ReadValue or CONSTANT. 

BrakeControl PRO BrakeControl()  BrakeControl Creates a new instance of the BrakeControl ADT. 

BrakeControl PRO IsActive()  Boolean Read value. 

BrakeControl PRO IsActive(x) Boolean Boolean Set value, returns true if successful. 

BrakeControl PRO WheelsTurning()  Number(2) Read value. 

BrakeControl PRI WheelsTurning(x) Number(2) Boolean Set value, returns true if successful. 

BrakeControl PRO LinePressure()  Number(2) Read value. 

BrakeControl PRI LinePressure(x) Number(2) Boolean Set value, returns true if successful. 

BrakeControl PRO PedalPressure()  Number(2) Read value. 

BrakeControl PRO PedalPressure(x) Number(2) Boolean Set value, returns true if successful. 

BrakeUser PRO BrakeUser()  BrakeUser Creates a new instance of the BrakeUser ADT. 

BrakeUser EXT IsActive()  Boolean Read value. 

BrakeUser EXT IsActive(x) Boolean Boolean Set value, returns true if successful. 

BrakeUser EXT PedalPressure()  Number(2) Read value. 

BrakeUser EXT PedalPressure(x) Number(2) Boolean Set value, returns true if successful. 

ClutchUser PRO ClutchUser()  ClutchUser Creates a new instance of the ClutchUser ADT. 

ClutchUser EXT PedalPosition()  Number(2) Read value. 

ClutchUser EXT PedalPosition(x) Number(2) Boolean Set value, returns true if successful. 

CruiseUnit PRO CruiseUnit()  CruiseUnit Creates a new instance of the CruiseUnit ADT. 

CruiseUnit PUB UserSwitch()  Enum(On,Off) Reads the Switch state. 

CruiseUnit PUB UserSwitch(x) Enum(On,Off) Boolean Sets the Switch state, returns true if successful. 

CruiseUnit PUB UserMode()  Enum(Null,NT,RA,SD) Reads the Mode state. 

CruiseUnit PUB UserMode(x) Enum(Null,NT,RA,SD) Boolean Sets the Mode state, returns true if successful. 

CruiseUnit PRI CurrentSpeed()  Number(4,1) Reads CurrentSpeed variable. 

CruiseUnit PRI CurrentSpeed(x) Number(4,1) Boolean Sets CruiseSpeed variable, returns true if successful

CruiseUnit PRI TargetSpeed()  Number(4,1) Reads TargetSpeed variable. 

CruiseUnit PRI TargetSpeed(x) Number(4,1) Boolean Sets TargetSpeed variable, returns true if successful.

CruiseUnit PRI TargetThrottle()  Number(2) Reads TargetThrottle variable. 

CruiseUnit PRI TargetThrottle(x) Number(2) Boolean Sets TargetThrottle variable, returns true if successful.
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ClassAlias Avail FunName InputType ReturnType Description 

CruiseUnit PUB Cancel()  Boolean An interrupt - halts any active state, puts system in 

Override state, returns true if successful. 

CruiseUnit PRI SetSpeed()  Boolean Sets CurrentSpeed from Gauges. 

CruiseUnit PRI CheckState()  Boolean Reads all gauges, checks all state variables, decides 

next action. 

CruiseUser PRO CruiseUser()  CruiseUser Creates a new instance of the CruiseUser ADT. 

CruiseUser EXT Switch()  Enum(On,Off) Reads the Switch state. 

CruiseUser EXT Switch(x) Enum(On,Off) Boolean Sets the Switch state, returns true if successful. 

CruiseUser EXT Mode()  Enum(NT,RA,SD) Reads the Mode state. 

CruiseUser EXT Mode(x) Enum(NT,RA,SD) Boolean Sets the Mode state, returns true if successful. 

CruiseUser EXT Cancel()  Boolean Sends Cancel message to the CruiseUnit ADT, returns 

true if message successfully sent. 

Engine PRO Engine()  Engine Creates a new instance of the Engine ADT. 

Engine PRI Rpm()  Number(4) Read value. 

Engine PRI Rpm(x) Number(4) Boolean Set value, returns true if successful. Continuous 

Update by private process. 

Engine PUB GasFlow()  Real Read value. 

Engine PUB GasFlow(x) Real Boolean Set value, returns true if successful. Controlled by 

external calls. 

Engine PRI Check()  Boolean Check all state variables to see if move to new state.

Engine PUB ExternalDrag()  Real Used to simulate hills and wind resistance 

Engine EXT ExternalDrag(x) Real Boolean Used to simulate hills and wind resistance (0,2) 1 is 

neutral. 

GasUser PRO GasUser()  GasUser Creates a new instance of the GasUser ADT. 

GasUser EXT PedalPosition()  Number(2) Read value. 

GasUser EXT PedalPosition(x) Number(2) Boolean Set value, returns true if successful. 

Gauges PRO Gauges()  Gauges Creates a new instance of the Gauges ADT. 

Gauges EXT Odometer()  Number(7,1) Read value. 

Gauges PUB Odometer(x) Number(7,1) Boolean Set value, returns true if successful. 

Gauges EXT TripMeter()  Number(5,1) Read value. 

Gauges PUB TripMeter(x) Number(5,1) Boolean Set value, returns true if successful. 

Gauges EXT Tach()  Number(4) Read value. 

Gauges PUB Tach(x) Number(4) Boolean Set value, returns true if successful. 

Gauges EXT Speed()  Number(3) Read value. 

Gauges PUB Speed(x) Number(3) Boolean Set value, returns true if successful. 

Gauges PUB OilPressure()  Number Read value. 

Gauges EXT OilPressure(x) Number Boolean Set value, returns true if successful. 

Gauges PUB WaterTemp()  Number Read value. 

Gauges EXT WaterTemp(x) Number Boolean Set value, returns true if successful. 

Gauges EXT Cruise()  Enum(On,Off) Read value. 
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ClassAlias Avail FunName InputType ReturnType Description 

Gauges PUB Cruise(x) Enum(On,Off) Boolean Set value, returns true if successful. 

Gauges EXT AbsLight()  Enum(On,Off) Read value. 

Gauges PUB AbsLight(x) Enum(On,Off) Boolean Set value, returns true if successful. 

Gauges EXT Battery()  Enum(On,Off) Read value. 

Gauges PUB Battery(x) Enum(On,Off) Boolean Set value, returns true if successful. 

Gauges EXT OilLight()  Enum(On,Off) Read value. 

Gauges PRI OilLight(x) Enum(On,Off) Boolean Set value, returns true if successful. 

Gauges EXT SeatBelt()  Enum(On,Off) Read value. 

Gauges EXT SeatBelt(x) Enum(On,Off) Boolean Set value, returns true if successful. 

Gauges EXT HandBrake()  Enum(On,Off) Read value. 

Gauges EXT HandBrake(x) Enum(On,Off) Boolean Set value, returns true if successful. 

Gauges EXT LowGas()  Enum(On,Off) Read value. 

Gauges EXT LowGas(x) Enum(On,Off) Boolean Set value, returns true if successful. 

Throttle PRO Throttle(x,y) (Number(2),Number(2)) Throttle Creates a new instance of the Throttle ADT with two 

constant values. 

Throttle PUB Position()  Number(2) Read value. 

Throttle PRI Position(x) Number(2) Boolean Set value, returns true if successful. 

Throttle PRI GasPedal()  Number(2) Read value. 

Throttle PUB GasPedal(x) Number(2) Boolean Set value, returns true if successful. 

Throttle PUB Floor()  Number(2) Read value. 

Throttle PUB Floor(x) Number(2) Boolean Set value, returns true if successful. 

Throttle PRI Convert(x) Number(2) Number(3,2) Converts Position to GasFlow. 

Ignition EXT Ignition()  Ignition Creates a new instance of the Ignition ADT 

Ignition EXT Key()  Enum(On,Off) Always reutrns On when object is active. 

Ignition EXT Key(x) Enum(On,Off) Boolean Can only turn Ignition Off - On creates the object 

Ignition EXT EngineOn()  Boolean Reports if engine has been started. 

Ignition PRI EngineOn(x) Boolean Boolean Sets value privately 

Ignition EXT StartEngine()  Boolean Returns true if successful. 

Transmission PRO Transmission()  Transmission Creates a new Transmission instance with several 

constants 

Transmission EXT Gear()  Enum(N,R,1,2,3,4,5)  

Transmission EXT Gear(x) Enum(N,R,1,2,3,4,5) Boolean Returns true if successful 

Transmission PUB DriveRatio()  Number Returns multiplier for Engine RPM to Wheel RPM 

Wheel PRO Wheel()  Wheel Creates a new instance of Wheel ADT 

Wheel PRI AxelRpm()  Number(4) Reads value 

Wheel PUB AxelRpm(x) Number(4) Boolean Return true if successful 

Wheel PRI WheelRpm()  Number(4) Reads value. 

Wheel PRI WheelRpm(x) Number(4) Boolean Private function never called externally. 

Wheel PRI WheelDiam() Number Boolean constant function never called externally. 
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ClassAlias Avail FunName InputType ReturnType Description 

Wheel PRI CheckState()  Boolean Checks all state variables, decides next action. 
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Appendix III: Parameters for CruiseControl Functions 
 

ClassAlias FunName Name Type Constraint Direction 

Throttle Throttle(x,y) x Number(2) (x>=0 & x<=99) IN 

Throttle Throttle(x,y) y Number(2) (y>=0 & y<=99) IN 

Gauges Odometer(x) x Number(7,1) (x>=0 & x<=99) IN 

Engine Rpm(x) x Number(4) (x>=0 & x<=99) IN 

AutoSystem BrakeActive(x) x Boolean (x=true OR x=false) IN 

CruiseUser Switch(x) x Enum(On,Off)  IN 

CruiseUnit UserSwitch(x) x Enum(On,Off)  IN 

BrakeUser IsActive(x) x Boolean (x=true OR x=false) IN 

BrakeControl IsActive(x) x Boolean (x=true OR x=false) IN 

ClutchUser PedalPosition(x) x Number(2) (x>=0 & x<=99) IN 

GasUser PedalPosition(x) x Number(2) (x>=0 & x<=99) IN 

Throttle Position(x) x Number(2) (x>=0 & x<=99) IN 

Ignition Key(x) x Enum(On,Off)  IN 

Transmission Gear(x) x Enum(N,R,1,2,3,4,5)  IN 

Wheel AxelRpm(x) x Number(4) (x>=0 & x<=9999) IN 

Gauges TripMeter(x) x Number(5,1) (x>=0 & x<=9999.9) IN 

AutoSystem ClutchActive(x) x Boolean (x=true OR x=false) IN 

CruiseUser Mode(x) x Enum(NT,RA,SD)  IN 

CruiseUnit UserMode(x) x Enum(NT,RA,SD)  IN 

BrakeUser PedalPressure(x) x Number(2) (x>=0 & x<=99) IN 

BrakeControl WheelsTurning(x) x Number(2) (x>=0 & x<=99) IN 

Ignition EngineOn(x) x Boolean (x=true OR x=false) IN 

Wheel WheelRpm(x) x Number(4) (x>=0 & x<=9999) IN 

Gauges Tach(x) x Number(4) (x>=0 & x<=9999) IN 

CruiseUnit CurrentSpeed(x) x Number(4,1) (x>=0 & x<=999.9) IN 

BrakeControl LinePressure(x) x Number(2) (x>=0 & x<=99) IN 

Throttle GasPedal(x) x Number(2) (x>=0 & x<=99) IN 

AutoSystem Danger(x) x Boolean (x=true OR x=false) IN 

Gauges Speed(x) x Number(3) (x>=0 & x<=999) IN 

CruiseUnit TargetSpeed(x) x Number(4,1) (x>=0 & x<=999.9) IN 

BrakeControl PedalPressure(x) x Number(2) (x>=0 & x<=99) IN 

Throttle Floor(x) x Number(2) (x>=0 & x<=99) IN 

Throttle Convert(x) x Number(2) (x>=0 & x<=99) IN 

Gauges OilPressure(x) x Number  IN 

CruiseUnit TargetThrottle(x) x Number(2) (x>=0 & x<=99) IN 

Gauges WaterTemp(x) x Number  IN 
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ClassAlias FunName Name Type Constraint Direction 

Engine GasFlow(x) x Number(3,2) (x>=0 & x<=9.99) IN 

Gauges Cruise(x) x Enum(On,Off)  IN 

Engine ExternalDrag(x) x Number(1) (x>=-9 & x<=9) IN 

Gauges AbsLight(x) x Enum(On,Off)  IN 

Gauges Battery(x) x Enum(On,Off)  IN 

Gauges OilLight(x) x Enum(On,Off)  IN 

Gauges SeatBelt(x) x Enum(On,Off)  IN 

Gauges HandBrake(x) x Enum(On,Off)  IN 

Gauges LowGas(x) x Enum(On,Off)  IN 
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Appendix IV: Object States for CruiseControl 

 

ClassAlias StateId StateNam

e DefnPredicate 

AutoSystem s00 Initial Undefined 
AutoSystem s01 Inactive BrakeActive=false & ClutchActive=false & Danger=false 
AutoSystem s02 Active BrakeActive=true OR ClutchActive=true OR Danger=true 
BrakeControl s00 Initial Undefined 
BrakeControl s01 Inactive IsActive=false 
BrakeControl s02 Braking IsActive=true & WheelsTurning=true 
BrakeControl s03 Locked IsActive=true & WheelsTurning=false 
BrakeUser s00 Initial Undefined 
BrakeUser s01 Inactive IsActive=false 
BrakeUser s02 Braking IsActive=true 
ClutchUser s00 Initial Undefined 
ClutchUser s01 Inactive PedalPosition=0 
ClutchUser s02 Transition PedalPosition>0 & PedalPosition<pconst 
ClutchUser s03 Engaged PedalPosition>=pconst 
CruiseUnit s00 Initial Undefined 
CruiseUnit s01 Off UserSwitch=Off 
CruiseUnit s02 Inactive UserSwitch=On & Gauges.Cruise()=Off & TargetSpeed=0 & UserMode=Null 
CruiseUnit s03 Cruise UserSwitch=On & UserMode=NT & Gauges.Cruise()=On & SlowCutoff<TargetSpeed<FastCutoff

CruiseUnit s04 Accel UserSwitch=On & UserMode=RA & Gauges.Cruise()=On 
CruiseUnit s05 Decel UserSwitch=On & UserMode=SD & Gauges.Cruise()=On 
CruiseUnit s06 Override UserSwitch=On & Gauges.Cruise()=Off & SlowCutoff<TargetSpeed<FastCutoff 
CruiseUser s00 Initial Undefined 
CruiseUser s01 Off Switch=Off 
CruiseUser s02 Neutral Switch=On & Mode=NT 
CruiseUser s03 Accel Switch=On & Mode=RA 
CruiseUser s04 Decel Switch=On & Mode=SD 
Engine s00 Initial Undefined 
Engine s02 Normal true 
GasUser s00 Initial Undefined 
GasUser s01 Active PedalPosition>=0 
Gauges s00 Initial Undefined 
Gauges s01 Normal Speed<180 & OilLight=Off & WaterTemp<100 
Gauges s02 Danger Speed>=180 OR OilLight=On OR WaterTemp>=100 
Throttle s00 Initial Undefined 
Throttle s01 Idle Position=fconst 
Throttle s02 Manual fconst<Position<=gconst & Position>Floor 
Throttle s03 Automatic fconst<Position<=gconst & Position=Floor 
Throttle s04 Danger GasPedal>gconst 
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ClassAlias StateId StateNam

e DefnPredicate 

Ignition s00 Initial Undefined 
Ignition s01 On Key=On 
Transmission s00 Initial Undefined 
Transmission s01 Neutral Gear=N 
Transmission s02 Reverse Gear=R 
Transmission s03 Forward Gear=1 OR Gear=2 OR Gear=3 OR Gear=4 OR Gear=5 
Wheel s00 Initial Undefined 
Wheel s01 DirectDrive AxelRpm=WheelRpm 
Wheel s02 Decel AxelRpm<WheelRpm 
Wheel s03 Accel WheelRpm<AxelRpm 
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Appendix V: State Variables for CruiseControl 

 
ClassAlias VariableName DataType Default Constraint Description 

AutoSystem BrakeActive Boolean null   

AutoSystem ClutchActive Boolean null   

AutoSystem Danger Boolean null   

AutoSystem ThrottleFloor Number(2) 12 CONSTANT Will determine fconst when Throttle object is 

created. 

AutoSystem ThrottleGovernor Number(2) 80 CONSTANT Will determine gconst when Throttle objects is 

created. 

BrakeControl IsActive Boolean null   

BrakeControl WheelsTurning Boolean null   

BrakeControl LinePressure Number(2) 0   

BrakeControl PedalPressure Number(2) 0   

BrakeUser IsActive Boolean null   

BrakeUser PedalPressure Number(2) 0 0<=PedalPressure<100  

BrakeUser pconst Number(2) 5 CONSTANT  

ClutchUser PedalPosition Number(2) 0 0<=PedalPosition<100  

ClutchUser pconst Number(2) 5 CONSTANT  

CruiseUnit UserSwitch Enum(On,Off) Off   

CruiseUnit UserMode Enum(Null,NT,RA,SD) NT   

CruiseUnit CurrentSpeed Number(4,1) 0 0<=CurrentSpeed<200  

CruiseUnit TargetSpeed Number(4,1) 0   

CruiseUnit TargetThrottle Number(2) 0 0<=TargetThrottle<99  

CruiseUnit SlowCutoff Number(4,1) 25 CONSTANT  

CruiseUnit FastCutoff Number(4,1) 95 CONSTANT  

CruiseUser Switch Enum(On,Off) Off   

CruiseUser Mode Enum(NT,RA,SD) NT   

Engine Rpm Number(4) 0 0<=Rpm<=8000  

Engine GasFlow Real 0 0<=GasFlow<10  

Engine ExternalDrag Real 1 0<ExternalDrag<2 Used to simulate hills and wind resistance 

Engine WaterTMin Number(3) 15 CONSTANT  

Engine OilPMin Number(2) 8 CONSTANT  

GasUser PedalPosition Number(2) 0 0<=PedalPosition<100  

Gauges Odometer Number(7,1) previous 

value 

Odometer>=0  

Gauges TripMeter Number(5,1) previous 

value 

TripMeter>=0  

Gauges Tach Number(4) 0 0<=Tach<=8000  

Gauges Speed Number(3) 0 0<=Speed<=220 Measured in km/hr 
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ClassAlias VariableName DataType Default Constraint Description 

Gauges OilPressure Number null   

Gauges WaterTemp Number null   

Gauges Cruise Enum(On,Off) Off   

Gauges AbsLight Enum(On,Off) Off   

Gauges Battery Enum(On,Off) Off   

Gauges OilLight Enum(On,Off) Off   

Gauges SeatBelt Enum(On,Off) Off   

Gauges HandBrake Enum(On,Off) null   

Gauges LowGas Enum(On,Off) Off   

Throttle Position Number(2) fconst 0<=Position<100  

Throttle Floor Number(2) fconst 0<=Floor<100  

Throttle GasPedal Number(2) fconst 0<=GasPedal<100  

Throttle fconst Number(2) null CONSTANT Default = AutoSystem.ThrottleFloor() 

Throttle gconst Number(2) null CONSTANT Default = AutoSystem.ThrottleGovernor() 

Ignition Key Enum(On,Off) On   

Ignition EngineOn Boolean false   

Transmission Gear Enum(N,R,1,2,3,4,5) N   

Transmission Ratio_R Number 1.846 CONSTANT  

Transmission Ratio_1 Number 2.563 CONSTANT  

Transmission Ratio_2 Number 1.552 CONSTANT  

Transmission Ratio_3 Number 1.022 CONSTANT  

Transmission Ratio_4 Number 0.653 CONSTANT  

Transmission Ratio_5 Number 0.471 CONSTANT  

Transmission Ratio_Diff Number 4.429 CONSTANT  

Wheel AxelRpm Number 0 0<=Rpm<=8000  

Wheel WheelRpm Number 0 0<=Rpm<=8000  

Wheel WheelDiam Number 0.00056 CONSTANT Measured in Kilometers (56cm) 
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Appendix VI: Mutator Transitions for CruiseControl 
 

ClassAlias Source 

State 
Targe 

tState 
Function 

Name Guard Action 

AutoSystem Initial Inactive AutoSystem() true ThrottleFloor:=12; ThrottleGovernor:=80; Global BrakeControl:=New BrakeControl(); 

BrakeActive:=false; Global ClutchUser:=New ClutchUser(); ClutchActive:=false;  

Global Gauges:=New Gauges(); Danger:=false; Global CruiseUnit:=New CruiseUnit(); 
AutoSystem Inactive Active BrakeActive(x) x=true BrakeActive:=true; Call CruiseUnit.Cancel(); 
AutoSystem Inactive Active Danger(x) x=true Danger:=true; Call CruiseUnit.Cancel(); 
AutoSystem Inactive Active ClutchActive(x

) 
x=true ClutchActive:=true; Call CruiseUnit.Cancel(); 

AutoSystem Active Active BrakeActive(x) x=true BrakeActive:=true; Call CruiseUnit.Cancel(); 
AutoSystem Active Active ClutchActive(x

) 
x=true ClutchActive:=true; Call CruiseUnit.Cancel(); 

AutoSystem Active Active Danger(x) x=true Danger:=true; Call CruiseUnit.Cancel(); 
AutoSystem Active Inactive BrakeActive(x) x=false & 

ClutchActive=false & 

Danger=false 

BrakeActive:=false;  

AutoSystem Active Inactive ClutchActive(x

) 
x=false & 

BrakeActive=false & 

Danger=false 

ClutchActive:=false; 

AutoSystem Active Inactive Danger(x) x=false & 

BrakeActive=false 
Danger:=false; 

AutoSystem Inactive Inactive ThrottleFloor() true Return ThrottleFloor; 
AutoSystem Inactive Inactive ThrottleGover

nor() 
true Return ThrottleGovernor; 

AutoSystem Active Active ThrottleFloor() true Return ThrottleFloor; 
AutoSystem Active Active ThrottleGover

nor() 
true Return ThrottleGovernor; 

AutoSystem Inactive Inactive Danger() true Return Danger; 
AutoSystem Active Active Danger() true Return Danger; 
AutoSystem Inactive Inactive BrakeActive() true Return BrakeActive; 
AutoSystem Active Active BrakeActive() true Return BrakeActive; 
AutoSystem Inactive Inactive ClutchActive() true Return ClutchActive; 
AutoSystem Active Active ClutchActive() true Return ClutchActive; 
BrakeControl Initial Inactive BrakeControl() true Global BrakeUser:=New BrakeUser(); IsActive:=false; PedalPressure:=0; 

LinePressure:=0; WheelsTurning:=false; 
BrakeControl Inactive Braking IsActive(x) x=true IsActive:=true; Call AutoSystem.BrakeActive(true); 
BrakeControl Braking Inactive IsActive(x) x=false IsActive:=false; Call AutoSystem.BrakeActive(false); 
BrakeControl Locked Inactive IsActive(x) x=false IsActive:=false; Call AutoSystem.BrakeActive(false); 
BrakeControl Braking Braking PedalPressure

(x) 
x>PedalPressure & 

WheelsTurning=true

PedalPressure:=x; LinePressure:=(1.1)*LinePressure; WheelsTurning:=Sensor.Turning(); 

BrakeControl Braking Braking PedalPressure

(x) 
x<PedalPressure & 

WheelsTurning=true

PedalPressure:=x; LinePressure:=(0.9)*LinePressure; WheelsTurning:=Sensor.Turning(); 
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ClassAlias Source 

State 
Targe 

tState 
Function 

Name Guard Action 

BrakeControl Braking Locked PedalPressure

(x) 
WheelsTurning=false PedalPressure:=x; LinePressure:=(0.9)*LinePressure; WheelsTurning:=Sensor.Turning(); 

BrakeControl Locked Locked PedalPressure

(x) 
WheelsTurning=false 

OR x>PedalPressure

LinePressure:=(0.9)*LinePressure; WheelsTurning:=Sensor.Turning(); 

BrakeControl Locked Braking PedalPressure

(x) 
WheelsTurning=true& 

x<PedalPressure 
LinePressure:=(0.9)*LinePressure; WheelsTurning:=Sensor.Turning(); 

BrakeUser Initial Inactive BrakeUser() true IsActive:=false; PedalPressure:=0; pconst:=5; 
BrakeUser Inactive Braking IsActive(x) x=true IsActive:=true; Call AutoSystem.BrakeActive(true); Call BrakeControl.IsActive(true); 
BrakeUser Braking Inactive IsActive(x) x=false IsActive:=false; Call AutoSystem.BrakeActive(false); Call BrakeControl.IsActive(false); 
BrakeUser Braking Braking PedalPressure

(x) 
x<pconst PedalPressure:=x; 

BrakeUser Braking Braking PedalPressure

(x) 
x>=pconst & 

x<>PedalPressure 
PedalPressure:=x; Call BrakeControl.PedalPressure(PedalPressure); 

ClutchUser Initial Inactive ClutchUser() true pconst:=5; PedalPosition:=pconst; 
ClutchUser Inactive Transition PedalPosition(

x) 
x>0 PedalPosition:=x; Call AutoSystem.ClutchActive(true); 

ClutchUser Transition Inactive PedalPosition(

x) 
x=0 PedalPosition:=x; Call AutoSystem.ClutchActive(false); 

ClutchUser Transition Engaged PedalPosition(

x) 
x>pconst PedalPosition:=x; Call ClutchUnit.PedalDown(true); 

ClutchUser Engaged Transition PedalPosition(

x) 
x<=pconst PedalPosition:=x; CallClutchUnit.PedalDown(false); 

CruiseUnit Initial Off CruiseUnit() true Global CruiseUser:=New CruiseUser(); UserSwitch:=Off; SlowCutoff:=25; FastCutoff:=95;  

UserMode:=Null; CurrentSpeed:=0; TargetSpeed:=0; TargetThrottle:=0; 
CruiseUnit Off Off Cancel() true 

 

CruiseUnit Off Off CheckState() true 
 

CruiseUnit Off Off SetSpeed() true CurrentSpeed:=Gauges.Speed(); 
CruiseUnit Off Off UserMode() true Return UserMode; 
CruiseUnit Off Off UserMode(x) true 

 

CruiseUnit Off Off UserSwitch() true Return UserSwitch; 
CruiseUnit Off Off UserSwitch(x) x=Off 

 

CruiseUnit Off Inactive UserSwitch(x) x=On UserSwitch:=On; 
CruiseUnit Inactive Inactive Cancel() true 

 

CruiseUnit Inactive Inactive CheckState() true 
 

CruiseUnit Inactive Inactive SetSpeed() true CurrentSpeed:=Gauges.Speed(); 
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ClassAlias Source 

State 
Targe 

tState 
Function 

Name Guard Action 

CruiseUnit Inactive Inactive UserMode() true Return UserMode; 
CruiseUnit Inactive Inactive UserMode(x) x=NT & 

UserMode=SD & 

(Gauges.Speed()<=Sl

owCutoff OR 

Gauges.Speed()>=Fa

stCutoff) 

UserMode:=NT; 

CruiseUnit Inactive Inactive UserMode(x) x=NT & 

UserMode<>SD  

CruiseUnit Inactive Cruise UserMode(x) x=NT & 

UserMode=SD & 

(SlowCutoff<Gauges.

Speed()<FastCutoff) 

& 

AutoSystem.BrakeActi

ve()=false & 

AutoSystem.ClutchAct

ive()=false 

UserMode:=NT; CurrentSpeed:=Gauges.Speed();  

TargetSpeed:=CurrentSpeed; TargetThrottle:=Throttle.Position();  

Call Gauges.Cruise(On); Call Throttle.Floor(TargetThrottle); Put CheckState() on Call Queue; 

CruiseUnit Inactive Inactive UserMode(x) x<>NT UserMode:=x; 
CruiseUnit Inactive Inactive UserSwitch() true Return UserSwitch; 
CruiseUnit Inactive Off UserSwitch(x) x=Off UserSwitch:=Off; 
CruiseUnit Inactive Inactive UserSwitch(x) x=On UserSwitch:=On; 
CruiseUnit Cruise Override Cancel() true Call Gauges.Cruise(Off); Call Throttle.Floor(0); 
CruiseUnit Cruise Cruise CheckState() UserMode<>NT 

 

CruiseUnit Cruise Cruise CheckState() ABS(TargetSpeed-

CurrentSpeed)<0.5 
Pause; CurrentSpeed:=Gauges.Speed(); Put CheckState() on Call Queue; 

CruiseUnit Cruise Cruise CheckState() 0.5<=ABS(TargetSpe

ed-

CurrentSpeed)<1.0 

CurrentSpeed:=Gauges.Speed(); Put CheckState() on Call Queue; 

CruiseUnit Cruise Cruise CheckState() ABS(TargetSpeed-

CurrentSpeed)>=1.0 

& 

Throttle.Position()>Th

rottle.Floor() 

CurrentSpeed:=Gauges.Speed(); Put CheckState() on Call Queue; 

CruiseUnit Cruise Cruise CheckState() CurrentSpeed-

TargetSpeed>=1.0 & 

Throttle.Position()=Th

rottle.Floor() 

Call Throttle.Floor(Throttle.Floor()-0.5); Pause; CurrentSpeed:=Gauges.Speed();  

Put CheckState() on Call Queue; 

CruiseUnit Cruise Cruise CheckState() TargetSpeed-

CurrentSpeed>=1.0 & 

Throttle.Position()=Th

rottle.Floor() 

Call Throttle.Floor(Throttle.Floor()+0.5); Pause; CurrentSpeed:=Gauges.Speed();  

Put CheckState() on Call Queue; 

CruiseUnit Cruise Cruise SetSpeed() true CurrentSpeed:=Gauges.Speed(); 
CruiseUnit Cruise Cruise UserMode() true Return UserMode; 
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ClassAlias Source 

State 
Targe 

tState 
Function 

Name Guard Action 

CruiseUnit Cruise Decel UserMode(x) x=SD TargetSpeed:=TargetSpeed-1; UserMode:=SD; Put CheckState() on Call Queue; 
CruiseUnit Cruise Accel UserMode(x) x=RA TargetSpeed:=TargetSpeed+1; UserMode:=RA; Put CheckState() on Call Queue; 
CruiseUnit Cruise Cruise UserSwitch() true Return UserSwitch; 
CruiseUnit Cruise Cruise UserSwitch(x) x=On 

 

CruiseUnit Cruise Off UserSwitch(x) x=Off Call Gauges.Cruise(Off); UserSwitch:=Off; UserMode:=Null; Call Throttle.Floor(0); 
CruiseUnit Decel Override Cancel() true Call Gauges.Cruise(Off); UserMode:=Null; Call Throttle.Floor(0); 
CruiseUnit Decel Override Cancel() UserMode<>SD 

 

CruiseUnit Decel Decel CheckState() UserMode<>SD 
 

CruiseUnit Decel Decel CheckState() CurrentSpeed>SlowC

utoff 
Call Throttle.Floor(Throttle.Position()-0.5); Pause; CurrentSpeed:=Gauges.Speed();  

Put CheckState() on Call Queue; 
CruiseUnit Decel Override CheckState() CurrentSpeed<=Slow

Cutoff 
Call Gauges.Cruise(Off); UserMode:=Null; Call Throttle.Floor(0); 

CruiseUnit Decel Decel SetSpeed() true CurrentSpeed:=Gauges.Speed(); 
CruiseUnit Decel Decel UserMode() true Return UserMode; 
CruiseUnit Decel Override UserMode(x) x=RA Call Gauges.Cruise(Off); UserMode:=Null; Call Throttle.Floor(0); 
CruiseUnit Decel Cruise UserMode(x) x=NT UserMode:=NT; TargetSpeed:=Gauges.Speed();  

TargetThrottle:=Throttle.Position(); CurrentSpeed:=TargetSpeed;  

Put CheckState() on Call Queue; 
CruiseUnit Decel Decel UserSwitch() true Return UserSwitch; 
CruiseUnit Decel Off UserSwitch(x) x=Off Call Gauges.Cruise(Off); UserSwitch:=Off; UserMode:=Null; Call Throttle.Floor(0); 
CruiseUnit Decel Decel UserSwitch(x) x=On 

 

CruiseUnit Accel Override Cancel() true Call Gauges.Cruise(Off); UserMode:=Null; Call Throttle.Floor(0); 
CruiseUnit Accel Override Cancel() UserMode<>RA 

 

CruiseUnit Accel Accel CheckState() UserMode<>RA 
 

CruiseUnit Accel Accel CheckState() CurrentSpeed<FastC

utoff 
Call Throttle.Floor(Throttle.Position()+0.5); Pause; CurrentSpeed:=Gauges.Speed(); 

 Put CheckState() on Call Queue; 
CruiseUnit Accel Override CheckState() CurrentSpeed>=Fast

Cutoff 
Call Gauges.Cruise(Off); UserMode:=Null; Call Throttle.Floor(0); 

CruiseUnit Accel Accel SetSpeed() true CurrentSpeed:=Gauges.Speed(); 
CruiseUnit Accel Accel UserMode() true Return UserMode; 
CruiseUnit Accel Override UserMode(x) x=SD Call Gauges.Cruise(Off); UserMode:=Null; Call Throttle.Floor(0); 
CruiseUnit Accel Cruise UserMode(x) x=NT UserMode:=NT; TargetSpeed:=Gauges.Speed();  

TargetThrottle:=Throttle.Position(); CurrentSpeed:=TargetSpeed;  

Put CheckState() on Call Queue; 
CruiseUnit Accel Accel UserSwitch() true Return UserSwitch; 
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State 
Targe 

tState 
Function 

Name Guard Action 

CruiseUnit Accel Off UserSwitch(x) x=Off Call Gauges.Cruise(Off); UserSwitch:=Off; UserMode:=Null; Call Throttle.Floor(0); 
CruiseUnit Accel Accel UserSwitch(x) x=On 

 

CruiseUnit Override Override Cancel() true 
 

CruiseUnit Override Override CheckState() true 
 

CruiseUnit Override Override SetSpeed() true CurrentSpeed:=Gauges.Speed(); 
CruiseUnit Override Override UserMode() true Return UserMode; 
CruiseUnit Override Override UserMode(x) x<>NT OR 

Gauges.Speed()<=Sl

owCutoff OR 

Gauges.Speed()>=Fa

stCutoff 

UserMode:=x; 

CruiseUnit Override Cruise UserMode(x) x=NT & 

UserMode=SD & 

(SlowCutoff<Gauges.

Speed()<FastCutoff) 

& 

AutoSystem.BrakeActi

ve()=false & 

AutoSystem.ClutchAct

ive()=false 

CurrentSpeed:=Gauges.Speed(); TargetSpeed:=CurrentSpeed;  

TargetThrottle:=Throttle.Position(); Call Gauges.Cruise(On);  

Call Throttle.Floor(TargetThrottle); UserMode:=NT; Put CheckState() on Call Queue; 

CruiseUnit Override Cruise UserMode(x) x=NT & 

UserMode=RA & 

(SlowCutoff<Gauges.

Speed()<FastCutoff) 

& 

AutoSystem.BrakeActi

ve()=false & 

AutoSystem.ClutchAct

ive()=false 

Call Throttle.Floor(TargetThrottle); Call Gauges.Cruise(On);  

UserMode:=NT; Pause; CurrentSpeed:=Gauges.Speed();  

Put CheckState() on Call Queue; 

CruiseUnit Override Override UserMode(x) x=NT & 

UserMode=Null 
UserMode:=NT; 

CruiseUnit Override Override UserMode(x) x=NT & 

UserMode=NT 
UserMode:=NT; 

CruiseUnit Override Override UserSwitch() true Return UserSwitch; 
CruiseUnit Override Off UserSwitch(x) x=Off UserSwitch:=Off; UserMode:=Null; 
CruiseUnit Override Override UserSwitch(x) x=On 

 

CruiseUser Initial Off CruiseUser() true Switch:=Off; Mode:=NT; 
CruiseUser Off Neutral Switch(x) x=On Switch:=On; Call CruiseUnit.UserSwitch(On); 
CruiseUser Neutral Off Switch(x) x=Off Switch:=Off; Call CruiseUnit.UserSwitch(Off); 
CruiseUser Neutral Accel Mode(x) x=RA Mode:=RA; Call CruiseUnit.UserMode(RA); 
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State 
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tState 
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CruiseUser Accel Neutral Mode(x) x=NT Mode:=NT; Call CruiseUnit.UserMode(NT); 
CruiseUser Decel Neutral Mode(x) x=NT Mode:=NT; Call CruiseUnit.UserMode(NT); 
CruiseUser Neutral Decel Mode(x) x=SD Mode:=SD; Call CruiseUnit.UserMode(SD); 
CruiseUser Accel Off Switch(x) x=Off Switch:=Off; Mode:=NT; Call CruiseUnit.UserSwitch(Off); 
CruiseUser Decel Off Switch(x) x=Off Switch:=Off; Mode:=NT; Call CruiseUnit.UserSwitch(Off); 
CruiseUser Neutral Neutral Cancel() true Call CruiseUnit.Cancel(); 
CruiseUser Off Off Cancel() true 

 

CruiseUser Off Off Switch(x) x=Off 
 

CruiseUser Off Off Mode(x) true 
 

CruiseUser Neutral Neutral Mode(x) x=NT Call CruiseUnit.UserMode(NT); 
CruiseUser Neutral Neutral Switch(x) x=On 

 

CruiseUser Accel Accel Cancel() true Call CruiseUnit.Cancel(); 
CruiseUser Accel Accel Switch(x) x=On 

 

CruiseUser Accel Accel Mode(x) x<>NT 
 

CruiseUser Decel Decel Cancel() true Call CruiseUnit.Cancel(); 
CruiseUser Decel Decel Switch(x) x=On 

 

CruiseUser Decel Decel Mode(x) x<>NT 
 

Engine Initial Normal Engine() true Rpm:=0; GasFlow:=0; ExternalDrag:=1; WaterTMin:=0; OilPMin:=0; 
Engine Normal Normal GasFlow() true Return GasFlow; 
Engine Normal Normal GasFlow(x) true GasFlow:=x; Rpm:=(2-ExternalDrag)*GasFlow*630;  

Call Gauges.Tach(Rpm); Call Wheel.AxelRpm(Rpm*Transmission.DriveRatio()); 
Engine Normal Normal ExternalDrag() true Return ExternalDrag; 
Engine Normal Normal ExternalDrag(

x) 
true ExternalDrag:=x; Rpm:=(2-ExternalDrag)*GasFlow*630;  

Call Gauges.Tach(Rpm); Call Wheel.AxelRpm(Rpm*Transmission.DriveRatio()); 
GasUser Initial Active GasUser() true PedalPosition:=0; 
GasUser Active Active PedalPosition(

x) 
x>0 & 

x<>PedalPosition 
PedalPosition:=x; Call Throttle.GasPedal(PedalPosition); 

GasUser Active Active PedalPosition(

) 
true Return PedalPosition; 

Gauges Initial Normal Gauges() true Speed:=0; Cruise:=Off; Tach:=0; OilPressure:=0; OilLight:=Off; Odometer:=Null;  

TripMeter:=Null; WaterTemp:=0; AbsLight:=Off; Battery:=Off; SeatBelt:=Off; 

 HandBrake:=Null; LowGas:=Off; 
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State 
Targe 

tState 
Function 

Name Guard Action 

Gauges Normal Normal Odometer() true Return Odometer; 
Gauges Normal Normal Odometer(x) true Odometer:=x; 
Gauges Normal Normal TripMeter() true Return TripMeter; 
Gauges Normal Normal TripMeter(x) true TripMeter:=x; 
Gauges Normal Normal Tach() true Return Tach; 
Gauges Normal Normal Tach(x) true Tach:=x; 
Gauges Normal Normal Speed() true Return Speed; 
Gauges Normal Normal Speed(x) x<180 Speed:=x; 
Gauges Normal Danger Speed(x) x>=180 Speed:=Min(x,250); Call AutoSystem.Danger(true); 
Gauges Normal Normal OilPressure() true Return OilPressure; 
Gauges Normal Danger OilPressure(x) x>=57; OilPressure:=x; OilLight:=On; Call AutoSystem.Danger(true); 
Gauges Normal Normal OilPressure(x) x<57 OilPressure:=x; 
Gauges Normal Normal WaterTemp() true Return WaterTemp; 
Gauges Normal Danger WaterTemp(x) x>=100 WaterTemp:=x; Call AutoSystem.Danger(true); 
Gauges Normal Normal WaterTemp(x) x<100 WaterTemp:=x; 
Gauges Normal Normal Cruise() true Return Cruise; 
Gauges Normal Normal Cruise(x) true Cruise:=x; 
Gauges Normal Normal AbsLight() true Return AbsLight; 
Gauges Normal Normal AbsLight(x) true AbsLight:=x; 
Gauges Normal Normal Battery() true Return Battery; 
Gauges Normal Normal Battery(x) true Battery:=x; 
Gauges Normal Normal OilLight() true Return OilLight; 
Gauges Normal Normal OilLight(x) true Private method! 
Gauges Normal Normal SeatBelt() true Return SeatBelt; 
Gauges Normal Normal SeatBelt(x) true SeatBelt:=x; 
Gauges Normal Normal HandBrake() true Return HandBrake; 
Gauges Normal Normal HandBrake(x) true HandBrake:=x; 
Gauges Normal Normal LowGas() true Return LowGas; 
Gauges Normal Normal LowGas(x) true LowGas:=x; 
Gauges Danger Danger Odometer(x) true Odometer:=x; 
Gauges Danger Danger TripMeter(x) true TripMeter:=x; 
Gauges Danger Danger Tach(x) true Tach:=x; 
Gauges Danger Danger Speed(x) x>=180 Speed:=Min(x,250); 
Gauges Danger Normal Speed(x) x<180 & OilLight=Off 

& WaterTemp<100 
Speed:=x; Call AutoSystem.Danger(false); 

Gauges Danger Danger OilPressure(x) x>=57 OilPressure:=x; 
Gauges Danger Normal OilPressure(x) x<57 & Speed<180 & 

WaterTemp<100 
OilPressure:=x; OilLight:=Off; Call AutoSystem.Danger(false); 

Gauges Danger Danger WaterTemp(x) x>=100 WaterTemp:=x; 
Gauges Danger Danger WaterTemp(x) x<100 & OilLight=Off WaterTemp:=x; Call AutoSystem.Danger(false); 
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& Speed<180 
Gauges Danger Danger Cruise(x) true Cruise:=x; 
Gauges Danger Danger AbsLight(x) true AbsLight:=x; 
Gauges Danger Danger Battery(x) true Battery:=x; 
Gauges Danger Danger SeatBelt(x) true SeatBelt:=x; 
Gauges Danger Danger HandBrake(x) true HandBrake:=x; 
Gauges Danger Danger LowGas(x) true LowGas:=x; 
Gauges Danger Danger Cruise() true Return Cruise; 
Gauges Danger Danger AbsLight() true Return AbsLight; 
Gauges Danger Danger Tach() true Return Tach; 
Gauges Danger Danger Speed() true Return Speed; 
Gauges Danger Danger WaterTemp() true Return WaterTemp; 
Gauges Danger Danger OilPressure() true Return OilPressure; 
Throttle Initial Idle Throttle(x,y) x=0 OR x>=y OR 

y=100 
Configuration Error! Do not consider. 

Throttle Initial Idle Throttle(x,y) 0<x & x<y & y<100 fconst:=x; gconst:=y; Position:=fconst; Call Engine.GasFlow(Convert(Position));  

Floor:=fconst; Call GasUser.PedalPosition(fconst); 
Throttle Idle Manual GasPedal(x) x>fconst GasPedal:=x; Position:=Min(GasPedal,gconst); Call Engine.GasFlow(Convert(Position)); 
Throttle Manual Idle GasPedal(x) x<=fconst GasPedal:=x; Position:=fconst; Call Engine.GasFlow(Convert(fconst));  

Call GasUser.PedalPosition(fconst); 
Throttle Idle Automatic Floor(x) x>fconst Floor:=Min(x,gconst); Position:=Floor; Call Engine.GasFlow(Convert(Position)); Call 

GasUser.PedalPosition(Position); 
Throttle Automati

c 
Idle Floor(x) x<=fconst Floor:=fconst; Position:=fconst; Call Engine.GasFlow(Convert(Position)); Call 

GasUser.PedalPosition(fconst); 
Throttle Manual Automatic GasPedal(x) x>fconst & x<=Floor GasPedal:=x; Position:=Floor; Call Engine.GasFlow(Convert(Position));  

Call GasUser.PedalPosition(Floor); 
Throttle Manual Automatic Floor(x) x>=Position Floor:=Min(x,gconst); Position:=Floor;  

Call Engine.GasFlow(Convert(Position)); Call GasUser.PedalPosition(Floor); 
Throttle Automati

c 
Manual GasPedal(x) x>fconst & x>Floor & 

x<=gconst 
GasPedal:=x; Position:=x; Call Engine.GasFlow(Convert(Position)); 

Throttle Automati

c 
Automatic Floor(x) x>fconst Floor:=Min(x,gconst); Position:=Floor;  

Call Engine.GasFlow(Convert(Position)); Call GasUser.PedalPosition(Position); 
Throttle Manual Danger Position(x) true Position is Private!! 
Throttle Automati

c 
Danger Position(x) true Position is Private!! 

Throttle Idle Idle Convert(x) 0<=x<100 Return x/10; 
Throttle Initial Initial Convert(x) 0<=x<100 Return x/10; 
Throttle Manual Manual Convert(x) 0<=x<100 Return x/10; 
Throttle Automati

c 
Automatic Convert(x) 0<=x<100 Return x/10; 

Throttle Idle Idle Position() true Return Position; 
Throttle Manual Manual Position() true Return Position; 
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Throttle Automati

c 
Automatic Position() true Return Position; 

Throttle Danger Danger Position() true Return Position; 
Throttle Idle Idle Floor() true Return Floor; 
Throttle Manual Manual Floor() true Return Floor; 
Throttle Automati

c 
Automatic Floor() true Return Floor; 

Throttle Danger Danger Floor() true Return Floor; 
Throttle Idle Idle GasPedal(x) x<=fconst GasPedal:=x; 
Throttle Idle Idle Floor(x) x<=fconst Floor:=fconst; 
Throttle Manual Manual GasPedal(x) x>fconst & x<=gconst 

& x>Floor 
GasPedal:=x; Position:=x; Call Engine.GasFlow(Convert(Position)); 

Throttle Manual Danger GasPedal(x) x>gconst GasPedal:=x; Position:=gconst; Call Engine.GasFlow(Convert(Position)); Call 

GasUser.PedalPosition(gconst); 
Throttle Manual Manual Floor(x) x<Position Floor:=Max(fconst,x); 
Throttle Automati

c 
Danger GasPedal(x) x>gconst GasPedal:=x; Position:=gconst; Call Engine.GasFlow(Convert(Position)); Call 

GasUser.PedalPosition(gconst); 
Throttle Automati

c 
Automatic GasPedal(x) x>fconst & x<=Floor GasPedal:=x; 

Throttle Danger Automatic GasPedal(x) x<Floor GasPedal:=x; Position:=Floor; Call Engine.GasFlow(Convert(Position)); Call 

GasUser.PedalPosition(Position); 
Throttle Danger Danger GasPedal(x) x>gconst GasPedal:=x; 
Throttle Danger Manual GasPedal(x) x>=Floor & x<=gconst GasPedal:=x; Position:=x; Call Engine.GasFlow(Convert(Position));  

Call GasUser.PedalPosition(Position); 
Throttle Danger Danger Floor(x) true Floor:=Max(fconst,Min(x,gconst)); 
Throttle Automati

c 
Manual Floor(x) x>fconst & x<Floor Left over from some earlier analysis? NOT exclusive with c10t009! 

Throttle Idle Danger GasPedal(x) x>gconst Not Feasible because GasPedal cannot "jump" this far! 
Throttle Danger Idle Position(x) true Position is Private!! 
Ignition Initial On Ignition() true Key:=On; EngineOn:=false; Global AutoSystem:=New AutoSystem(); 
Ignition On Initial Key(x) x=Off Key:=Off; EngineOn:=false; Destroy Throttle; Destroy Engine; Destroy AutoSystem; 

 Destroy Self; 
Ignition On ?? Key(x) x=On Can not turn Key On when already On! 
Ignition On On StartEngine() EngineOn=false Global Transmission:=New Transmission(); Global Engine:=New Engine();  

Global GasUser:=New GasUser();  

Global Throttle:=New Throttle(AutoSystem.ThrottleFloor(),AutoSystem.ThrottleGovernor()); 

 EngineOn:=true; 
Ignition On On StartEngine() EngineOn=true GrindingNoise; 
Ignition On On EngineOn(x) true Private method -- variable can only be set internally to object. 
Ignition On On EngineOn() true Private method -- variable can only be read internally by object. 
Ignition On On Key() true Return Key; 
Transmission Initial Neutral Transmission() true Gear:=N; Ratio_R:=1.846; Ratio_1:=2.563; Ratio_2:=1.552; Ratio_3:=1.022;  

Ratio_4:=0.653; Ratio_5:=0.471; Ratio_Diff:=4.429; Global Wheel:=New Wheel(); 
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Transmission Neutral Neutral Gear() true Return N; 
Transmission Neutral Reverse Gear(x) x=R Gear:=R; 
Transmission Neutral Neutral Gear(x) x=N 

 

Transmission Neutral Forward Gear(x) x=1 OR x=2 OR x=3 

OR x=4 OR x=5 
Gear:=x; Call Wheel.AxelRpm(Gauges.Tach()*DriveRatio()); 

Transmission Reverse Neutral Gear(x) x=N Gear:=N; 
Transmission Forward Neutral Gear(x) x=N Gear:=N; Call Wheel.AxelRpm(0); 
Transmission Forward Forward Gear(x) x=1 OR x=2 OR x=3 

OR x=4 OR x=5 
Gear:=x; Call Wheel.AxelRpm(Gauges.Tach()*DriveRatio()); 

Transmission Neutral Neutral DriveRatio() true Return 0; 
Transmission Reverse Reverse DriveRatio() true Return -1/(Ratio_R * Ratio_Diff); 
Transmission Forward Forward DriveRatio() Gear=2 Return 1/(Ratio_2 * Ratio_Diff); 
Transmission Forward Forward DriveRatio() Gear=3 Return 1/(Ratio_3 * Ratio_Diff); 
Transmission Forward Forward DriveRatio() Gear=5 Return 1/(Ratio_5 * Ratio_Diff); 
Transmission Forward Forward DriveRatio() Gear=4 Return 1/(Ratio_4 * Ratio_Diff); 
Transmission Forward Forward DriveRatio() Gear=1 Return 1/(Ratio_1 * Ratio_Diff); 
Transmission Reverse Reverse Gear() true Return R; 
Transmission Forward Forward Gear() true Return Gear; 
Wheel Initial DirectDrive Wheel() true AxelRpm:=0; WheelRpm:=0; WheelDiam:=0.00056; 
Wheel DirectDriv

e 
DirectDrive AxelRpm(x) ABS(x-

WheelRpm)<=2 
AxelRpm:=x; WheelRpm:=x; Call Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam); 

Wheel DirectDriv

e 
Decel AxelRpm(x) x+2<WheelRpm AxelRpm:=x; WheelRpm:=WheelRpm-1; 

 Call Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam); 

 Put CheckState() on Call queue; 
Wheel DirectDriv

e 
Accel AxelRpm(x) x-2>WheelRpm AxelRpm:=x; WheelRpm:=WheelRpm+1;  

Call Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);  

Put CheckState() on Call queue; 
Wheel Decel Decel AxelRpm(x) x+2<WheelRpm AxelRpm:=x; WheelRpm:=WheelRpm-1; 

 Call Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);  

Put CheckState() on Call queue; 
Wheel Decel Accel AxelRpm(x) x-2>WheelRpm AxelRpm:=x; WheelRpm:=WheelRpm+1;  

Call Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam); 

 Put CheckState() on Call queue; 
Wheel Decel DirectDrive AxelRpm(x) ABS(x-

WheelRpm)<=2 
AxelRpm:=x; WheelRpm:=x; Call Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam); 

Wheel Accel Decel AxelRpm(x) x+2<WheelRpm AxelRpm:=x; WheelRpm:=WheelRpm-1;  

Call Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam); Put CheckState() on Call queue; 
Wheel Accel DirectDrive AxelRpm(x) ABS(x-

WheelRpm)<=2 
AxelRpm:=x; WheelRpm:=x; Call Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam); 

Wheel Accel Accel AxelRpm(x) x-2>WheelRpm AxelRpm:=x; WheelRpm:=WheelRpm+1;  

Call Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam); 

 Put CheckState() on Call queue; 
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Wheel DirectDriv

e 
DirectDrive CheckState() true 

 

Wheel Decel Decel CheckState() AxelRpm+2<WheelRp

m 
WheelRpm:=WheelRpm-1; Call Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam);  

Put CheckState() on Call queue; 
Wheel Decel DirectDrive CheckState() AxelRpm+2>=WheelR

pm 
WheelRpm:=AxelRpm; Call Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam); 

Wheel Accel Accel CheckState() AxelRpm-

2>WheelRpm 
WheelRpm:=WheelRpm+1; Call Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam); 

 Put CheckState() on Call queue; 
Wheel Accel DirectDrive CheckState() AxelRpm-

2<=WheelRpm 
WheelRpm:=AxelRpm; Call Gauges.Speed(WheelRpm*(3.14159)*60*WheelDiam); 
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Appendix VII: Executable Test Cases 

 

SeqNbr VDUs ExecutableCall WaitFunction Comments 
1 0 Ignition.Ignition() Pause(5) Starts application and initializes several classes 
2 4 AutoSystem.ThrottleFloor() Pause(5) read only - no effect 
3 4 AutoSystem.ThrottleGovernor() Pause(5) read only - no effect 
4 4 Gauges.Tach() Pause(5) read only - no effect 
5 4 Gauges.Speed() Pause(5) read only - no effect 
6 4 Gauges.Cruise() Pause(5) read only - no effect 
7 7 Ignition.StartEngine() Pause(8) Initializes several other classes 
8 1 Transmission.Gear() Pause(5) read only - no effect 
9 40 Transmission.Gear(1) Pause(5) Puts car in gear at Idle speed 

10 1 Gauges.Tach() Pause(5) read only - no effect 
11 1 Gauges.Speed() Pause(5) read only - no effect 
12 1 Gauges.Cruise() Pause(5) read only - no effect 
13 45 GasUser.PedalPosition(15) Pause(10) Higher manual speed in first gear - approx 8 
14 1 Gauges.Tach() Pause(5) read only - no effect 
15 2 Transmission.Gear(2) Pause(5) Higher gear - higher speed < 25 - approx 14 
16 2 CruiseUser.Switch(On) Pause(5) Prepare Cruise for action - no other effect 
17 3 CruiseUser.Mode(RA) Pause(5) No effect because speed < 25 
18 4 CruiseUser.Mode(NT) Pause(5) No effect because speed < 25 
19 0 CruiseUser.Mode(SD) Pause(5) No effect because speed < 25 
20 8 CruiseUser.Mode(NT) Pause(5) No effect because speed < 25 
21 4 CruiseUser.Cancel() Pause(5) No effect because speed < 25 
22 4 GasUser.PedalPosition(20) Pause(10) increases speed - approx 19 
23 0 Transmission.Gear(3) Pause(10) Higher gear - higher speed - approx 25 
24 0 GasUser.PedalPosition(25) Pause(10) increases speed - approx 35 
25 0 Transmission.Gear(4) Pause(15) Higher gear - higher speed - approx 55 
26 0 GasUser.PedalPosition(30) Pause(10) Car at Hwy speed - 4th gear - approx 66 
27 0 CruiseUser.Cancel() Pause(5) No effect on Cruise in this state 
28 1 CruiseUser.Mode(RA) Pause(5) No effect on Cruise in this state 
29 2 CruiseUser.Mode(NT) Pause(5) No effect on Cruise in this state 
30 0 CruiseUser.Mode(SD) Pause(5) No effect on Cruise in this state - but prepares for "Set" 
31 67 CruiseUser.Mode(NT) Pause(5) Sets Cruise at Hwy speed - approx 66 
32 1 Gauges.Cruise() Pause(5) read only - no effect 
33 2 Engine.ExternalDrag(0.9) Pause(10) speed increases - downhill or tailwind - Cruise maintains @ 66 
34 72 Engine.ExternalDrag(1.1) Pause(10) speed decreases - uphill or headwind - Cruise maintains @ 66 
35 37 GasUser.PedalPosition(50) Pause(40) Manual throttle to pass a car or something - Max speed 105 > FastCutoff 
36 24 Engine.ExternalDrag(0.8) Pause(30) speed increases - Throttle still manual - approx 162 
37 2 Engine.ExternalDrag(1.6) Pause(80) speed decreases until reaches Targetspeed - May fail here and get oscillation!! 

Intermitant! 
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SeqNbr VDUs ExecutableCall WaitFunction Comments 
38 9 GasUser.PedalPosition(20) Pause(45) To ensure that Cruise and Throttle return to Automatic state - speed approx 66 
39 3 Engine.ExternalDrag(1.0) Pause(30) speed increases - downhill or tailwind - Cruise maintains @ 66 
40 0 Engine.ExternalDrag(1.1) Pause(5) speed decreases - uphill or headwind - Cruise maintains @ 66 
66 21 CruiseUser.Mode(SD) Pause(6)  

67 14 CruiseUser.Mode(NT) Pause(10) Car in new slower cruise speed - approx 57 

68 17 CruiseUser.Mode(RA) Pause(6)  

69 13 CruiseUser.Mode(NT) Pause(10) Car in new faster cruise speed - approx 66 

70 8 CruiseUser.Cancel() Pause(5) Cruise in Override state - speed starts to fall 

71 4 CruiseUser.Mode(RA) Pause(2) no effect - prepare to Resume 

72 45 CruiseUser.Mode(NT) Pause(40) Return to Cruise state - speed increases to that of #69 - approx 66 

73 8 Engine.ExternalDrag(1.04) Pause(10) drag decreases - speed increases - Cruise maintains @ 66 

74 5 Engine.ExternalDrag(1.3) Pause(30) drag increases - speed decreases - Cruise maintains @ 66 

75 4 GasUser.PedalPosition(50) Pause(15) Manual override to pass car or something - speed approx 80 

76 0 Engine.ExternalDrag(0.8) Pause(60) drag decreases - speed increases even more - approx 137 

77 0 Engine.ExternalDrag(1.0) Pause(20) drag increases - speed decreases - approx 117 

78 0 GasUser.PedalPosition(20) Pause(15) To ensure that Cruise and Throttle return to Automatic state @ ?? 

81 0 Engine.ExternalDrag(1.0) Pause(10)  

82 0 Engine.ExternalDrag(0.9) Pause(10)  

83 0 Engine.ExternalDrag(0.8) Pause(10)  

84 0 Engine.ExternalDrag(0.7) Pause(10) The VDUs identified in tests 33 - 37 above are really 

85 0 Engine.ExternalDrag(0.6) Pause(10) spread out over these External Drag actions and those 

86 0 Engine.ExternalDrag(0.5) Pause(10) identified in 121 - 135 below. 

87 0 Engine.ExternalDrag(0.67) Pause(10)  

88 0 Engine.ExternalDrag(0.77) Pause(10)  

89 0 Engine.ExternalDrag(0.87) Pause(10) Testing for gradual changes in external drag 

90 0 Engine.ExternalDrag(0.97) Pause(10) at smooth increments down-up-down 

91 0 Engine.ExternalDrag(1.07) Pause(10)  

92 0 Engine.ExternalDrag(1.17) Pause(10)  

93 0 Engine.ExternalDrag(1.27) Pause(10)  

94 0 Engine.ExternalDrag(1.37) Pause(10)  

95 0 Engine.ExternalDrag(1.47) Pause(10)  

96 0 Engine.ExternalDrag(1.57) Pause(10)  

97 0 Engine.ExternalDrag(1.67) Pause(10)  

98 0 Engine.ExternalDrag(1.53) Pause(10)  

99 0 Engine.ExternalDrag(1.43) Pause(10)  

100 0 Engine.ExternalDrag(1.33) Pause(10)  

101 0 Engine.ExternalDrag(1.23) Pause(10)  

102 0 Engine.ExternalDrag(1.13) Pause(10)  
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103 0 Engine.ExternalDrag(1.03) Pause(10)  

104 0 Engine.ExternalDrag(1.0) Pause(10)  

106 7 CruiseUser.Mode(RA) Pause(5)  

107 0 CruiseUser.Mode(NT) Pause(20) Car in new faster cruise speed - approx 77 

108 7 CruiseUser.Mode(SD) Pause(5)  

109 0 CruiseUser.Mode(NT) Pause(20) Car in new slower cruise speed - approx 71 

110 1 CruiseUser.Cancel() Pause(5) Speed falls - catch before < 30 

111 0 CruiseUser.Mode(SD) Pause(0)  

112 22 CruiseUser.Mode(NT) Pause(30) Car in new slower cruise speed - approx 55 
113 36 CruiseUser.Mode(RA) Pause(3) Speed increases - stop before 70 
114 4 CruiseUser.Mode(NT) Pause(15) Car in new faster cruise speed - approx 64 
115 0 CruiseUser.Mode(RA) Pause(3) Speed increases - stop before 80 
116 0 CruiseUser.Mode(NT) Pause(15) Car in new faster cruise speed - approx 71 
117 4 CruiseUser.Mode(SD) Pause(6) Speed decreases - stop before 65 
118 1 CruiseUser.Mode(NT) Pause(15) Car in new slower cruise speed - approx 62 
119 0 CruiseUser.Mode(SD) Pause(3) Speed decreases - stop before 55 
120 0 CruiseUser.Mode(NT) Pause(15) Car in new slower cruise speed - approx 55 
121 3 Engine.ExternalDrag(1.2) Pause(1)  

122 0 Engine.ExternalDrag(0.82) Pause(1)  

123 0 Engine.ExternalDrag(0.62) Pause(1)  

124 0 Engine.ExternalDrag(0.52) Pause(1)  

125 0 Engine.ExternalDrag(0.56) Pause(1)  

126 0 Engine.ExternalDrag(0.78) Pause(1)  

127 0 Engine.ExternalDrag(0.98) Pause(1) Testing for rapid changes in external drag 
128 0 Engine.ExternalDrag(1.18) Pause(1) at both smaller and larger increments 
129 0 Engine.ExternalDrag(1.20) Pause(1) encompassing down-up-down 
130 0 Engine.ExternalDrag(1.48) Pause(1)  

131 0 Engine.ExternalDrag(1.58) Pause(1)  

132 0 Engine.ExternalDrag(1.54) Pause(1)  

133 0 Engine.ExternalDrag(1.34) Pause(1)  

134 0 Engine.ExternalDrag(1.14) Pause(1)  

135 0 Engine.ExternalDrag(1.0) Pause(1)  

148 0 CruiseUser.Mode(SD) Pause(2) Speed decreasing - stop before 45 
149 27 CruiseUser.Cancel() Pause(1) Hit cancel while holding SD down - Special override (Usermode null) 
150 5 CruiseUser.Mode(NT) Pause(2) No effect because Usermode is null. Speed falling - keep > 35 
151 0 CruiseUser.Mode(SD) Pause(0)  

152 27 CruiseUser.Mode(NT) Pause(5) New Cruise speed set > 35 
153 7 CruiseUser.Cancel() Pause(1) Speed falls again - keep > 25 
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154 0 CruiseUser.Mode(SD) Pause(0)  

155 0 CruiseUser.Mode(NT) Pause(5) New Cruise speed set > 25 - approx 29 
156 0 CruiseUser.Mode(RA) Pause(6) Speed starts increasing - keep < 70 
157 2 CruiseUser.Cancel() Pause(2) Hit Cancel while holding RA down - Special override (Usemode null) 
158 1 CruiseUser.Mode(NT) Pause(3) No effect because Usermode is null. Speed falling 
159 0 CruiseUser.Mode(RA) Pause(0) To resume previous speed set at #155 - approx 30 
160 14 CruiseUser.Mode(NT) Pause(5) Speed identical to #155 speed - approx 30 
161 2 CruiseUser.Mode(SD) Pause(4) Hold SD down until speed < SlowCutoff 
162 0 CruiseUser.Mode(NT) Pause(5) No effect - Cruise in Override state 
163 48 GasUser.PedalPosition(26) Pause(5) Throttle in Manual state - speed approx 60 
164 0 CruiseUser.Mode(SD) Pause(1)  

165 9 CruiseUser.Mode(NT) Pause(5) New Cruise Hwy speed - approx 60 
166 65 CruiseUser.Cancel() Pause(4) speed falls - keep > 25 
167 0 CruiseUser.Mode(RA) Pause(0)  

168 28 CruiseUser.Mode(NT) Pause(5) Resume cruise speed of #165 - approx 60 
169 37 GasUser.PedalPosition(30) Pause(5) Pass a car with Throttle in Manual state 
170 7 GasUser.PedalPosition(20) Pause(5) Cruise keeps speed approx 60 and resets Pedal to approx 26 
171 16 CruiseUser.Mode(RA) Pause(3) Speed increases - keep < 70 
172 4 CruiseUser.Mode(NT) Pause(5) New higher Cruise speed - approx 70 
173 2 CruiseUser.Mode(RA) Pause(6) Hold until speed > HighCutoff Speed begins to fall 
174 0 CruiseUser.Mode(NT) Pause(3) No effect - Cruise in special Override state - speed falling 
175 0 CruiseUser.Mode(RA) Pause(3) Hold until speed approx 45 
176 4 CruiseUser.Mode(NT) Pause(20) Resume cruise speed of #172 - approx 70 
177 11 CruiseUser.Switch(Off) Pause(5) Speed begins to fall 
178 1 CruiseUser.Cancel() Pause(5) No effect - speed continues to fall - Test may be INFEASIBLE since CruiseUser is 

OFF 
179 1 CruiseUser.Mode(SD) Pause(5) No effect - speed continues to fall - Test may be INFEASIBLE since CruiseUser is 

OFF 
180 0 GasUser.PedalPosition(25) Pause(5) Puts speed at slow hwy speed like #24 - approx 35-40 
181 57 CruiseUser.Switch(On) Pause(5) Prepare for new Cruise actions - no other effect 
182 0 CruiseUser.Mode(SD) Pause(1)  

183 15 CruiseUser.Mode(NT) Pause(5) Sets Cruise at slow hwy speed equal to #180 - approx 35-40 
184 26 CruiseUser.Cancel() Pause(5) Cruise in Override state - speed begins to fall 
185 2 CruiseUser.Switch(Off) Pause(5) Cruise in Off state - speed continues to fall - ends at Idle state 

 


