
Blind Custodians: A Database Service Architecture
that Supports Privacy without Encryption

Amihai Motro
ISE Department

George Mason University
ami@gmu.edu

Francesco Parisi-Presicce
ISE Department

George Mason University
fparisip@gmu.edu

Abstract

We describe an architecture for a database service that does not assume that the
service provider can be trusted. Unlike other architectures that address this problem,
this architecture, which we call blind custodians, does not rely on encryption. Instead,
it offers confidentiality by means of information dissociation: The server only stores
“fragments” of information that are considered safe (i.e., each fragment does not vio-
late privacy), while the client stores the associations between the fragments that are
necessary to reconstruct the information. We argue that this architecture allows satis-
factory confidentiality, while offering two important advantages: (1) It does not restrict
the types of queries that can be submitted by clients (as encryption-based methods in-
variably do), and (2) it requires only light processing at the client, assigning the bulk
of the processing to the server (as befits a true service). Moreover, the architecture
permits flexible control over the level of confidentiality that should be maintained (at
the cost of additional overhead).

1 Introduction

With the improvement of network availability, reliability, and speed, more and more infor-
mation management tasks that traditionally have been performed on the computer of the
data owner, are now being offered as services: the information is stored in the computer
of the service provider, and can be managed remotely over the network. Primary examples
include web hosting, the management of electronic mail, appointment calendars, address
books, investment portfolios, and, more recently, general database management services.
Such information management services provide clients with performance and features at a
level often not available at their own enterprises. These include continuous availability, ac-
cessibility from virtually anywhere in the world, reliable data backup and prompt recovery,
and protection from unauthorized or malicious access. In many cases, a remote information
management service can prove to be more cost-effective than traditional, local processing.

1

The downside of such information management services is that privacy may have to be
sacrificed. The operators of the service, the custodians of the information, may promise com-
plete confidentiality, but they themselves may not be entirely trustworthy. From the client’s
point of view, custodians should be blind; that is, they should perform the functionalities
promised, but without being able to observe the data themselves. We shall refer to such
information services as blind custodians. In a way, a bank that offers safe deposit boxes to
its clients is serving as a blind custodian: It safekeeps the contents without knowing what it
is. The complication in being the blind custodian of information is that you are also required
to manipulate the information without knowing what it is.

There have been several recent works that addressed this or similar issues [9, 8, 5, 6].
Invariably, these works describe architectures that protect the information by means of en-
cryption. By encrypting the information, the client is guaranteed that it alone can observe
the data. The problem, of course, is how to perform functions such as selective retrieval on
encrypted information. Simply put, if the records of an employee file are stored encrypted,
how does the client request to retrieve only the records of the engineers? This issue has led
to solutions that are only partially successful. In a typical solution [8], the file is partitioned
into “buckets”, and each retrieval request is mapped (at the client’s end) to a specification
of buckets. Such an architecture has several weaknesses. It requires the predetermination
of all columns for which selection is to be enabled (each column requires its own partition-
ing), it normally retrieves more records than requested, and it limits severely the selection
comparisons that are feasible (for example, processing range queries is problematic).

In this paper we take a more general approach that regards information as an associa-
tion among values. For instance, the information comprising the employee record (Andrei,
Engineer, $75,000) is the three constituent values, as well as their mutual association. Conse-
quently, hiding information is done both by hiding the values (e.g., by means of encryption)
and by concealing the association. In our approach, the custodian might be able to ob-
serve data values (unless they are hidden by encryption), but would be denied knowledge of
their association. In duality with encryption keys, the cipher for associating the disparate
fragments would be available only to the client. Hence the objective of blind custodians is
achieved by information dissociation.

The proposed architecture is described in Section 4 and preliminary discussion and as-
sessment of this architecture are offered in Section 5. Section 6 concludes the paper with a
brief summary and discussion of the considerable work that still remains to be done. We
begin with a formal definition of the problem (Section 2), followed by a brief survey of related
work (Section 3).

2

2 Formal Definition of the Problem

The general problem of a database service with privacy is formalized here abstractly. This
abstraction allows us to position the works discussed in Section 3 in a unified framework.

Assume a database D and a query Q, and let A = Q(D) denote the answer to the query
Q in the database D. In a database service architecture, D is stored on the server, the client
sends Q to the server, the server evaluates A = Q(D) and returns A to the client.

Assume now that certain information in D must be kept confidential (it could be all or
just part of D). A transformation T is the required, as follows:

1. T transforms the database to D∗ = T (D), and the query to Q∗ = T (Q).

2. Let A∗ = Q∗(D∗) denote the answer to Q∗ in the transformed database D∗.

3. When the inverse transformation T−1 is applied to A∗ it yields T−1(A∗) = A.

In the database service architecture, the transformed database D∗ is stored on the server.
When the client needs to evaluate a query Q, it sends the server its transformed version Q∗.
The server evaluates Q∗ on D∗ and sends back the answer A∗. The client then transforms
A∗ to A. The transformation T should hide the confidential information in D, and should
be such that knowledge of A∗ would not be sufficient to determine the answer A. This
discussion is illustrated in the following diagram:

-

??

�

D D∗

A A∗

Q Q∗

T

T−1

This simple formulation may be overly “tidy” to be sufficiently general, and we consider
here several more elaborate variations.

First, we may allow a transformation T that does not satisfy T−1(A∗) = A, as long as
there exists another query that can extract the answer A from T−1(A∗). That is, there exists
a query Q′ such that Q′(T−1(A∗)) = A. Second, we may divide the transformed database
D∗ into two parts, one to be stored at the server, the other at the client. The query Q∗

is performed on the server’s part only, yielding A∗. The client receives A∗ and applies T−1

3

and Q′ to both A∗ and its part of the transformed database. Third, the computations done
at the server and at the client may be interleaved, thus producing the final answer after a
process of data exchange.

There are two trivial and impractical “solutions” to this problem:

• Confidentiality without service. In this solution, the transformation T is an en-
cryption of the entire database, and the inverse transformation T−1 is simply decryp-
tion. Every query is translated to the trivial query Q∗ that, when submitted to D∗,
returns the entire database (i.e., A∗ = D∗). The transformation T−1 converts A∗ back
to D and the additional query Q′ is nothing more than the original query Q. In sum-
mary, the entire database is encrypted, and this encrypted database is retrieved in
response to every query. Following decryption at the client, the query is processed
locally. This “solution” obviously preserves the confidentiality of the information in
the database, but is otherwise impractical, because no query processing is done on
the server, and the client must have complete database management facilities. Indeed,
the “server” does not deliver most of the functionalities or benefits of a Web service.
Moreover, this solution requires the transmission of the entire database, an expensive,
time-consuming operation.

• Service without confidentiality. At the opposite end of the spectrum, T is the
identity transformation. Thus, D∗ = D, Q∗ = Q, A∗ = A (and Q′ is unnecessary). In
this case, all computations are performed at the server and only the exact answer A
is transmitted back to the client. Obviously, this approach provides no confidentiality
whatsoever.

These two extreme approaches demonstrate the tradeoffs involved: Complete confidentiality,
but no service (all work is done at the client), vs. complete service (all work is done at the
server) but no confidentiality. The works discussed in the following section are positioned
in-between these two extremes because they choose smaller granularities for their encrypted
transformation T . This allows some queries to be performed on the encrypted version D∗

which is on the server.

3 Related Work

Work on information management services is quite extensive, with focus on issues such as
availability, anywhere accessibility and reliability. More recently, efforts have concentrated
on the need for a particular form of confidentiality [9, 8, 5, 6, 1], intended to protect clients’
information from the service provider itself. These works discuss just two basic approaches
to achieving confidentiality, both relying exclusively on encryption (either at the tuple level
or at the field level).

The overall goal in [8] is to develop techniques for querying an encrypted database. The
approach is restricted to integer-valued attributes and encryption is at the field level. If the

4

encryption function is monotonic with respect to a predefined partial order on the plain-
text database D, then queries Q involving ranges, comparisons, maximal value, minimal
value, and so on, can be translated to queries Q∗ on D∗, for which the answer A∗ con-
tains all (and sometimes, as in the case of maximal value, only) the tuples sought. More
generally, encryption can be tailored to be a homomorphism with respect to a restricted
set S of allowable queries, so that the result of a query Q in the allowable set S on the
plaintext database D is obtained by decrypting the result of the encrypted query Q∗ on the
encrypted database D∗. An advantage of this approach is that for any query Q in S, only
a single encrypted query needs to be evaluated on the encrypted database and its output
needs no additional processing except for decryption. The problem, however, is to main-
tain the requirement that the encryption function be a homomorphism, while still allowing
a reasonably broad set of queries. For an encryption to be a homomorphism, restrictions
are placed on the possible closed-form (i.e., definable by an expression) or open-form (i.e.,
definable via an algorithm) encryption functions. Among them are order-preservation and
distance-preservation. Although effective and efficient in its restricted domain, the approach
is limited by the requested properties on the encryption functions.

A different approach is offered in [9], where encryption is at the tuple level, and an indexing
scheme is used. If A is an attribute of R on which the client may need to issue selection
queries, then the values of this attribute are partitioned, and every tuple of R is assigned
to a single partition based on its A value. This scheme amounts to an index on attribute
A. The mapping φA from the values of A to the partition identifiers is available only to the
client, whereas the association between the partition identifiers and the encrypted tuples is
known to the server. The latter association can be implemented as an extra attribute in the
encrypted relation R, in which the values of φA will be stored. Each query Q on attribute A
is converted to a query Q∗ on the new attribute φA, and evaluated on D∗. The result A∗ is
returned to the client and decrypted. The initial query Q is then evaluated on the decrypted
version of A∗. If Q selects the tuples of R for which the attribute A has value a, then Q∗

returns all the encrypted tuples with the index value φA(a). By the very nature of indexing,
a statistical query that is derived from the entire set of A values (e.g., the average value
or the most frequent value) requires that all the tuples of R be retrieved from the server.
Another drawback of this approach is that it requires a separate indexing scheme for each
attribute on which selection queries are to be enabled; moreover, the selection attributes
must be anticipated ahead of querying: A query on any attribute not indexed cannot be
properly evaluated and the client would need to retrieve the entire relation. As each index
requires an additional attribute on the server, indexing every attribute would double the size
of the relation.

This approach is adopted and extended in [5], where different possibilities for representing
indexing (partitioning) information are discussed. The authors propose to compute the
indexing information so that it relates to the data well enough to provide an effective query
execution mechanism, without releasing information about the relationship between indexes
and data. Their solution is to base the indexing on direct encryption and hashing. They
provide a detailed analysis on the inference exposure of the encrypted/indexed data. The
paper also describes an enhancement of the indexing information that supports range queries.

5

The authors of [6] too investigate the approach of [9], which they term aggregate-then-
encrypt. They propose a formalization to assess the security of privacy-preserving database
outsourcing schemes, and apply it to analyze the scheme in [9]. They identify weaknesses
and suggest a number of improvements to strengthen the approach. In addition, their paper
contains an interesting result on the impossibility of achieving complete security by means of
privacy homomorphisms (encryption functions that allow limited processing of the encrypted
data), which is essentially the technique used in [8]. A review of several solutions to the
problem of using the services of a provider without giving unnecessary access to sensitive
data is included in [3].

The work in [2] concerns outsourcing scientific computations, where the external agent
should not learn the actual data or the result of the computation. The client disguises the
problem and data with local preprocessing before sending it to the agent, and obtains the
true answer after further local post-processing of the result it receives. The major difference
between that problem and the one addressed in this paper is that in [2] the client does not
keep data permanently at the external agent. As in our approach, and unlike [10], the client’s
processing power is not limited to encryption and decryption.

The approach in [1] is to enforce privacy by replacing identifying information with values
obtained through an anonymization process. It allows a choice of three basic properties of the
anonymizing function: reversibility (by using encryption to allow the recovery of the original
data if the appropriate key is known), irreversibility (by using one-way hash functions to
prevent the recovery of the original information), and inversibility (pseudoanonymization,
in Common Criteria terms, allowing the recovery by means of exceptional procedures to be
applied by trusted parties only). The results of this anonymizing process are then used in
different databases in place of the private information. Regardless of the anonymization ob-
jectives listed above, the “link” between random (anonymous) identities and actual identities
is protected by encryption.

Two research areas that are somewhat related are privacy-preserving data mining [12]
and secure multi-party computation [7, Chapter 7]. The blind custodian approach differs
from these two areas in two important aspects: The secret data is not distributed among
several parties (it could be physically distributed, but it is still controlled by a single client)
and the client is expected to perform only minimal database work.

4 The Architecture

4.1 Information Dissociation

We have already observed that information is an association among values, and hence con-
fidentiality may be achieved by hiding the association. The technique for hiding the associ-
ation, which we term information dissociation, is discussed next.

6

Consider a database relation R = (A1, . . . , Am). Assume that it has been determined
that while the tuples in this relation are confidential and should not be disclosed, subtuples
with attributes A1, . . . , Ai and subtuples with attributes Ai+1, . . . , Am may be disclosed. For
example, consider a table of employees with fields that concern employment (e.g., employee
id, name, position and department), and fields that contain a home address (e.g., street,
number, city, state and zip code; but not employee id). It may be considered acceptable to
disclose each of these groups of fields separately, but not complete records (as they associate
employees with their addresses).

Two views of R are defined (e.g., by appropriate SQL queries), and each of the resulting
relations is augmented by an identifying field (an index) I1 or I2, thus obtaining new relations
F1 and F2. The blind custodian is then entrusted with F1 and F2, while the client maintains
the correspondence between I1 and I2 which is necessary to recover the complete tuples of
the original relation R. The latter information is referred to as the cipher of the dissociation.
In general, the number of fragment views may be arbitrary (i.e., not limited to two).

The database transformation D∗ = T (D) described in Section 2 is the decomposition of
each of the database relations to a set of fragment relations and a cipher. This decompo-
sition is somewhat reminiscent of other decompositions known from database theory, such
as lossless-join decompositions or dependency-preserving decompositions in normalization
theory [11, pages 392–412], or file fragmentation and replication in distributed database
design [4, pages 67–92]. To satisfy the requirement that T hide confidential information
this decomposition must be done judiciously. Presently, we observe two broad approaches
towards this problem, one qualitative and one quantitative.

The qualitative approach uses external (subjective) judgment to determine that infor-
mation, say, on an individual’s employment, should not be associated with this individual’s
address. A simple way to annotate these constraints is to identify maximal sets of attributes
that may be kept together (in the same fragment). Typically, several such safe fragments
would be identified. From these, a set of fragments should be chosen that is both consistent
and complete. Consistency guarantees that the set would not include two fragments that
overlap on an attribute that is a key for at least one of the fragments, as this would allow
the construction of a larger (unsafe) fragment. Completeness guarantees that the fragments
in the set are sufficient to reconstruct the original relation (using the cipher).

A second possible way to dissociate a relation is to use objective (quantitative) criteria.
The intuition here is that decomposing a relation into F1 and F2 is not very useful if R
contains most of the tuples of the Cartesian product of the two fragments. If the original
relation R has n tuples and is split into fragments F1 and F2 with n1 and n2 tuples, respec-
tively, with no attributes in common, then the probability that a random tuple from F1 and a
random tuple from F2 are related (form a tuple in the original relation R) is p = n/(n1 ∗n2).
When p is small (its lower bound is 0), then it is difficult to guess the associations among
the subtuples of F1 and F2 that are valid. When p is high (its upper bound is 1), then a
random tuple of F1 is more likely to be associated with a random tuple of F2. In the latter
case, the value of decomposing R into F1 and F2 is rather low. Hence, decompositions with
low p values should be preferred.

7

A combination of the two approaches would call for an initial dissociation based on
subjective criteria, followed by a quantitative approach to choose among the resulting alter-
natives.

4.2 Query Evaluation

We now turn to the issue of evaluating client queries in this architecture. For simplicity, we
assume that the database D consists of a single relation R, and that queries are selection-
projection expressions; the generalization to multi-relation databases and other types of
queries will be discussed later.

Assume that R has been decomposed to the fragments F1, . . . , Fk. Let Ii denote the
index field that was added to the fragment Fi (i = 1, . . . , k), and let C = (I1, . . . , Ik) denote
the new cipher relation. F1, . . . , Fk are stored at the server, and C is stored at the client. In
terms of the formal problem defined in Section 2, this decomposition is the transformation
T , and F1, . . . , Fk and C make up the new database D∗ = T (D).

Consider a query Q on R submitted at a client. First, Q is transformed to a query Q∗

on the server’s database F1, . . . , Fk. The evaluation of this query on the server’s database
is returned to the client (this result is denoted A∗). The client then transforms this result
to a new relation using its cipher C (this result is denoted T−1(A∗)). To this, the client
applies final processing (Q′) to obtain the answer A. We observe at least two possible
implementations of this process, each based on a well-known query optimization technique.

To illustrate the two techniques, we describe a simple example, in which information on
employees is dissociated, so as to separate employment-related information from personal
information:

F1 = (I1,Eid ,Ename, Salary ,YearHired)
F2 = (I2,Gender ,Nationality ,YearBorn)

Assume that the cardinality of R is 1,000, the cardinality of F1 is also 1,000, but the car-
dinality of F2 is only 750. Since the number of possible matchings among tuples of F1 and
F2 is 1, 000 · 750 = 75, 000, and since only 1,000 of these are valid tuples of R, it follows
that the probability that a random tuple from F1 and a random of F2 form a tuple of R is
1/750 = 0.00133. We may assume that this probability is low enough to provide confiden-
tiality (i.e., to thwart guessing).

Frugal Join. The relation R is substituted in Q by an expression that joins the cipher and
the relevant fragments, and the query’s selection and projection operations are “pushed” to
the individual fragments, as practicable. The evaluation of the transformed query proceeds
as follows. First, the server performs selections and projections on its fragments and sends
the results to the client. The client then joins the results using its cipher and applies the
final selection and projection (which could not be pushed to the fragments).

8

Consider now a query about the id’s of female employees who earn over $80,000 and have
been in employment more than half their lives:

Q :
select Eid
from Employee
where Salary > 80, 000 and Gender = ′female′

and (2005− Y earHired) > 0.5 ∗ (2005− Y earBorn)

The server performs this two-part query Q∗:

Q∗1 : Q∗2 :
select I1,Eid ,YearHired select I2,YearBorn
from F1 from F2

where Salary > 80, 000 where Gender = ′female′

It sends the results, denoted A∗1 and A∗2 respectively, to the client, who then concludes the
processing with a query that joins the answers through its cipher and then extracts the final
tuples that constitute the answer A:

Q′ :
select Eid
from A∗1, A

∗
2, C

where A∗1.I1 = C.I1 and A∗2.I2 = C.I2

and (2005− YearHired) > 0.5 ∗ (2005− YearBorn)

With respect to confidentiality, this process does not disclose to the server anything than
it does not already know. From the request to deliver the two sets A∗1 and A∗2, the server
may be able to guess the client’s query Q, but forming the two sets (something it could do
all along, anyhow) does not increase its ability to match F1 tuples with F2 tuples. In other
words, the probability of generating random R tuples through random guessing remains
unchanged at 0.00133.

With respect to transmission costs, assume further that of the 1,000 employees 500 are
females, 400 earn over $80,000, and of the latter only 100 are females. The server sends the
client 400 tuples of three fields each and 500 tuples of two fields each, for a total of 2,200
fields.

Semi-Join. Here, the joins among the fragments and the cipher are done in stages. Assume
that m fragments are involved in the query, and let αi denote the selection-projection query
on the i’th fragment. The server begins by sending the client the result of performing α1 on
the first fragment. The client matches the id’s of the tuples it received through its cipher,
and sends the server the corresponding tuple id’s for the second fragment. The server then
performs α2 on the second fragment after it has been pruned with the id’s it received, and
sends the result to the client. The client matches the id’s of the tuples it received through

9

its cipher, and sends the server the corresponding tuple id’s for the third fragment. The
process continues until the results from m’th fragment are sent to the client. The client then
constructs the required answer from the data it has received. This version is often superior
to the previous one because it reduces data transmission substantially (transmission can be
further optimized by scheduling the order of fragments effectively).

In our two-fragment example, consider the same query. The server begins with a query
on the first fragment

Q∗1 :
select I1,Eid ,YearHired
from F1

where Salary > 80, 000

and sends the result, denoted A∗1, to the client. The client matches this information through
its cipher

Q′1 :
select I2

from A∗1, C
where A∗1.I1 = C.I1

and sends the resulting tuple id’s, denoted A′1, back to the server. The server then performs

Q∗2 :
select I2,YearBorn
from F2, A

′
1

where F2.I2 = A′1.I2

and Gender = ′female′

and sends the result, denoted A∗2, to the client. The client concludes the processing with the
query

Q′2 :
select Eid
from A∗1, A

∗
2, C

where A∗1.I1 = C.I1 and A∗2.I2 = C.I2

and (2005− YearHired) > 0.5 ∗ (2005− YearBorn)

Assuming the cardinalities given above, transmission costs are reduced. The server sends
the client 400 tuples of 3 fields each, the client then sends the server about 300 tuples of one
field each,1 and the server sends the client only 100 tuples of two fields each, for a total of
only 1,700 fields.

However, with respect to confidentiality, this strategy discloses information to the server.
The server delivered a set of I1 values and received in return a matching set of I2 values.
In our example, the cardinality of these sets are 400 and 300, respectively. Hence, the
probability of reconstructing an employee tuple in this subset of high-salaried employees is

1Since 1,000 employees share 750 personal records, we may assume that 400 employees share 300 personal
records.

10

400/(400 · 300) = 0.00333. Confidentiality has thus been reduced by a factor of 2.5. This
reduction in confidentiality can be seen as a result of providing the server with information
that was cycled through the cipher. Care must be taken when using the semi-join strategy,
to assure that a desirable level of confidentiality is maintained.

5 Discussion

5.1 Measuring and Maintaining Protection Levels

How much protection does the blind custodian architecture provide? Essentially, the chal-
lenge for the server is to recover protected information by finding associations among the
fragments. Assume a relation R is dissociated into two fragments F1 and F2. Let n, n1

and n2 denote the cardinalities of R, F1 and F2, respectively. As already suggested in the
previous section, confidentiality is provided by having large enough cardinalities n1 and n2

and a relatively smaller cardinality n. Specifically, the number of possible associations be-
tween tuples of F1 and tuples of F2 is n1 · n2, of which only n are valid. Consequently, the
probability that a random matching of a tuple of F1 with a tuple of F2 will coincide with
an actual tuple of R is n/(n1 · n2). We adopt this probability of disclosure as a measure of
the protection afforded to the fragments F1 and F2 (or to R itself). It quantifies the abil-
ity to associate information from the two fragments, and thus gain knowledge of protected
information. Note that lower probabilities indicate better protection. So that higher values
indicate better protection, we define the protection level of F1 and F2 as 1− n/(n1 · n2).

Each pair of fragments has its own level of protection. Protection levels can also be defined
for sets of fragments larger than two. Assume R is dissociated into fragments F1, . . . , Fk.
The protection level of F1, . . . , Fk is 1 − n/(n1 · · ·nk). This number reflects the ability to
create complete tuples of R.2 Protection levels can also be defined for fragment subsets that
do not “cover” all of R. In such cases the numerator cardinality is the number of tuples in
the projection of R that corresponds to the attributes in the fragment subset. A definition
of protection level in the general case follows.

Assume a relation R is dissociated into fragments F1, . . . , Fk. Let Fi1 , . . . , Fip be a subset
of the fragments, and let nij be the cardinality of Fij (j = 1, . . . , p). The protection level of
Fi1 , . . . , Fip is defined to be 1− n′/(ni1 · · ·nip), where n′ is the cardinality of the projection
of R onto the attributes of Fi1 , . . . , Fip .

The protection level required for each subset of fragments may be defined by setting
threshold values during the dissociation process sketched in Section 4.1. Or one may simply
adopt a single threshold for all the possible combinations of fragments.

These thresholds must be upheld during both the initial design and in subsequent query
processing. During the initial design, it must be ensured that for every subset of fragments

2Note that it may be misleadingly high, as just associating a few of the fragments may be worrisome.

11

the protection level exceeds the threshold. During query processing, when the semi-join
strategy is used, care must be taken not to exchange subsets with small cardinalities, as this
may result in decreased protection levels (as was illustrated in the example).3

In both the initial design and subsequent query processing, whenever protection levels
fall below the threshold, cardinalities may be artificially increased by adding spurious tuples,
thus improving protection levels. (1) In the initial design, spurious tuples may be added to
fragments as necessary. The id’s of these “bogus” tuples must be kept on the client, to ensure
that this information is not included in final answers. (2) During query processing, when
the client receives a set of tuple id’s from one fragment and responds with a corresponding
set of tuple id’s of another fragment, the outgoing set may be enlarged with additional tuple
id’s from the second fragment. These may be either “real” or “bogus” tuples; however, the
client must log these additions, to ensure that they do not taint final answers. Clearly, the
use of spurious tuples increases the cost of query processing.

5.2 Multi-relation Databases and Join Queries

The architecture we described assumed that the database has only one relation. However, the
extension to several relations is relatively simple, and we sketch it here briefly. Each of the
database relations is dissociated into a set a fragments and a cipher, and the client stores all
the ciphers. However, extra care must be taken to protect key or foreign key relationships
among the different relations, as necessary. For example, assume two database relations
Employee = (Eid, Ename, Salary) and Assignment = (Eid, Project, Performance) with the
requirement that performance information be kept separate from salary. If the two relations
are considered individually, then it may appear that no dissociation is necessary; i.e., each
relation will require a single fragment containing all its attributes. Yet, when considered
together, the common attribute Eid allows performance and salary to be associated. A
simple solution is to remove Eid from the relation in which it is a foreign key. Thus, the
fragments would be F1 = (I1,Eid ,Ename, Salary), and F2 = (I2,Project ,Performance).
This solution depends on the fact that all employee id’s in Assignment appear in Employee.

Consider now database queries that involve joins among relations. The techniques de-
scribed in Section 4.2 are applicable without significant changes. A query that requires a
join R1 ./ R2 will be decomposed to a query that joins fragments of R1, fragments of R2,
and a fragment of R1 with a fragment of R2. The joins may be based on either the frugal or
the semi-join approaches.

5.3 Comparison

How does the blind custodians architecture compare with other methods? In Section 3 we
discussed the two main alternatives: field-level encryption that uses encryption functions

3The frugal join strategy has no affect on the protection level.

12

with exacting properties [8], and a combination of tuple-level encryption with index-like
structures [9]. Below, we briefly discuss the blind custodians architecture vis-a-vis these two
alternatives

We observe two important performance criteria for a non-trusting database service:
(1) the family of queries that can be processed should be as general as possible, and (2) the
service provider should do as much of the work as possible, and the amount of data trans-
mitted should be as low as possible.4

Clearly, a strong encryption function that is a homomorphism for general queries would
provide an ideal solution, as it would fully satisfy both requirements. Note that because
the encrypted answers sent to the client would be exact, all work (except for decryption)
would done at the server, and data transmission would be minimal. Unfortunately, such
ideal encryption functions are not available. Hence, the main disadvantage of the approach
advocated in [8] is that it severely limits the generality of queries that can be processed.
And if more general queries are attempted, then the burden of processing shifts drastically
to the client.

A similar disadvantage is also apparent in the index-based architecture [9]. To increase
query processing capabilities, indexing structures must be devised for most every attribute;
and even then some queries (e.g., certain statistical queries) may require the entire set
of tuples to be sent to the client. Consequently, clients must have substantial database
management capabilities to process the tuples they receive.

In contrast, the blind custodian architecture has a clear advantage in the first of the two
criteria, as it places no restrictions on the types of queries allowed. It is difficult to estimate
its relative performance with respect to the second criteria, as it depends strongly on the
profile of the queries submitted, and the implementation of the other architectures (i.e.,
the types of encryption functions adopted in the first approach, and the extent of indexing
performed in the second approach).

How much work is done at a blind custodian client? It can be described as a “light”
database management system. Among other tasks, it should be able to convert queries to
appropriate execution plans, join relations through their ciphers, and apply final extractions.
Except for the ciphers, data is only cached temporarily at the client, and only limited storage
capabilities are therefore necessary. Of course, the client system does not need to manage
functions such as backup, recovery, or transaction synchronization.

6 Conclusion

We outlined an architecture for a database service that provides confidentiality by means
of information dissociation. The essential paradigm of our architecture — decompose the

4Note that the relative amount of work done at the server and the volume of data transmission are
strongly related: More work accomplished at the server implies less data transmitted, and vice versa.

13

database to fragments and then transform queries on the original database to queries on
the fragments — is similar to that of distributed databases, with a notable difference: The
motivation for the decomposition is different. In distributed databases decomposition is
dictated by requirements such as (1) data must be stored only in the computers of their
owners, (2) data is preferably stored in computers that access them frequently, and (3) data
could be replicated to provide redundancy and to reduce transmission; whereas here, the
decomposition is motivated by the need to protect the data from the server, while letting
the server store as much information as possible.

The discussion in this paper is only preliminary and many issues still have to be addressed
in appropriate detail. Several of these research issues have already been given limited treat-
ment earlier, and we mention here three additional issues,

Queries. We considered at some detail queries that are join-selection-projection expres-
sions. Other important query operations include set operations (e.g., union or difference)
and statistical functions (e.g., count or average). We conjecture that these operations can
be accommodated in the architecture without requiring any modifications. Indeed, as the
architecture is analogous to a distributed database, every query should be feasible, the only
constraint being that its execution plan should maintain the requisite level of protection.

Protection. We analyzed protection levels under the naive assumption that no exter-
nal knowledge is used in attempts to gain hidden information, and our protection analysis
assumed uniform probability distribution functions. In various circumstances, external in-
formation available to the server may allow it to infer a non-uniform probability distribution
function that is much closer to the actual function. For example, there may be 40 different
values of YearBorn and 20 different values of YearHired, but of the 800 combinations, some
combinations may be known to have probabilities that are much higher than those of other
combinations. Such knowledge may lower substantially the protection level. Additionally,
the cardinalities of some domains may be misleadingly high. For example, there may be
3,000 different salary values in the database, yet for practical purposes one may consider
similar all salaries that round to the same $1,000, resulting in a much smaller number of
“significantly different” values. These and other issues require a more elaborate analysis of
protection levels.

Encryption. A basic feature of the blind custodians architecture is that it does not
involve encryption. The architecture attempts to protect relationships, while assuming that
there is no harm in disclosing the values in the database. Yet there may be circumstances
in which even the domain values should not be made public. This could be achieved by
substituting the domain values with identifiers and associating the identifiers with the actual
values by means of a new client relation. This solution is not attractive because it increases
the storage requirements on clients beyond the essential ciphers. Alternatively, we could use
field-level encryption to hide values when necessary.

14

References

[1] A. Abou El Kalam, Y. Deswarte, G. Trouessin, and E. Cordonnier. A generic ap-
proach for healthcare data anonymization. In Proceedings of WPES 04, the 2004 ACM
Workshop on Privacy in the Electronic Society, pp. 31–32, 2004.

[2] M. J. Atallah, K. N. Pantazopoulos, J. R. Rice, and E. H. Spafford. Secure Outsourcing
of Scientific Computations, Volume 54 in Advances in Computers, pp. 215–272. Elsevier,
2001.

[3] C. Boyens and O. Gunther. Trust is not enough: Privacy and security in ASP and
Web service environment. In Proceedings of ADBIS 02, Advances in Database and
Information Systems, LNCS No. 2435, pp. 8–22. Springer, 2002.

[4] S. Ceri and G. Pelagatti. Distributed Databases: Principles and Systems. McGraw-Hill,
1984.

[5] E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, and P. Samarati.
Balancing confidentiality and efficiency in untrusted relational DBMSs. In Proceedings
of the 10th ACM Conference on Computer and Communication Security, pp. 93–102,
2003.

[6] M. Fischmann and O. Gunther. Privacy tradeoffs in database service architectures.
In Proceedings of BIZSEC 03, the First ACM Workshop on Business Driven Security
Engineering, 2003.

[7] O. Goldreich. Foundations of Cryptography, Volume II: Basic Applications. Cambridge
University Press, 2004.

[8] G. Ozsoyoglu, D. A. Singer, and S. S. Chung. Anti-tamper databases: Querying en-
crypted databases. In Proceedings of the 17th Annual IFIP WG11.3 Working Conference
on Database and Application Security, 2003.

[9] H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted data in
the database-service-provider model. In Proceedings SIGMOD 02, International Con-
ference on Management of Data, pp. 216–227, 2002.

[10] R. L. Rivest, L. Adleman, and M. L. Dertouzos. On databanks and privacy homomor-
phisms. In R. D. DeMillo, editor, Foundations of Secure Computations, pp. 169–177.
Academic Press, 1978.

[11] J. D. Ullman. Database and Knowledge-Base Systems, Volume I. Computer Science
Press, 1988.

[12] Y. Lindell and B. Pinkas. Privacy preserving data mining. In Proceedings of
CRYPTO 00, 20th Annual International Cryptology Conference, LNCS No. 1880,
pp. 36–54. Springer, 2000.

15

