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ABSTRACT
Finding points that are outliers with respect to a set of other
points is an important task in data mining. Outlier detec-
tion can uncover important anomalies in fields like intrusion
detection and fraud analysis. In data streaming, the pres-
ence of a large number of outliers indicates that the underly-
ing process that is generating the data is undergoing signifi-
cant changes and the models that attempt to characterize it
need to be updated. Although there has been a significant
amount of work in outlier detection, most of the algorithms
in the literature resort to a particular definition of what an
outlier is (e.g., density-based), and use thresholds to detect
them. In this paper we present a novel technique to de-
tect outliers that does not impose any particular definition
for them. The test we propose aims to diagnose whether a
given point is an outlier with respect to an existing clustering
model (i.e., a set of points partitioned in groups). However,
the test can also be successfully utilize to recognize outliers
when the clustering information is not available. This test
is based on Transductive Confidence Machines, which have
been previously proposed as a mechanism to provide indi-
vidual confidence measures on classification decisions. The
test uses hypothesis testing to prove or disprove whether a
point is fit to be in each of the clusters of the model. We
demonstrate, experimentally, that the test is highly robust,
and produces very few misdiagnosed points, even when no
clustering information is available. We also show that the
test can be succesfully applied to identify outliers present
inside a data set for which no other information is available,
thereby provinding the user with a clean data set to iden-
tify future outliers. Our experiments also show that even if
the data set used to identify further outliers is contaminated
with some outliers, the test can perform succesfully.
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1. INTRODUCTION
Outlier detection is an important data mining task that

deals with the discovery of points that are exceptional when
compared with a set of observations that are considered
“normal.” Applications of outlier detection abound in fields
such as credit fraud, criminal investigation, spatio-temporal
analysis, and computer intrusions. Outlier detection can
reveal points that behave “anomalously” with respect to
other observations. Examining such points can reveal clues
to solve the problem at hand. In other cases, the sudden
appearance of a large number of outliers can point to a
change in the underlying process that is generating the data.
Hawkins [13] defines an outlier as “an observation that devi-
ates so much from other observations as to arouse suspicion
that it was generated by a different mechanism.” This sug-
gests the possibility of detecting outliers by knowing the
“mechanism” by which the normal observations were gen-
erated and testing points for “membership” to this mecha-
nism. Indeed, that is the path that early work in outlier
detection followed (in the statistical community; see [17,
13] for a comprehensive review): postulate a model for the
probability distribution of normal points (e.g., a Gaussian
model), and compute the likelihood of a point being gen-
erated by the postulated model. Unfortunately, coming up
with the right model is, at best, as difficult as the original
problem of finding outliers, so this approach does not always
work well in practice. This approach can be seen as inducing
a model over the normal data and using it to test points.

Recently, the field of statistical learning theory [27] has
developed alternatives to induction: instead of using all the
available points to induce a model, one can use the data
(usually a small subset of it) to estimate unknown proper-
ties of points that one wants to test (e.g., membership to a
class). This powerful idea leads to elegant algorithms that
use standard statistical tests to compute the confidence on
the estimation. Using transduction, researchers have built
Transductive Confidence Machines (see [8]) which are able to
estimate the unknown class of a point and attach confidence
to the estimate. The transductive reliability estimation pro-
cess has its theoretical foundations in the algorithmic theory
of randomness developed by Kolmogorov [18]. Unlike tradi-
tional methods in machine learning, transduction can offer
measures of reliability to individual examples, and uses very
broad assumptions (it only assumes that the data points are



independent and generated by the same stochastic mecha-



Let there be m training examples
For i = 1 to m do

Calculate Dy
i and D−y

i

Calculate α value for each example
Let there be c classes and u be the new example
(to be classified)
For j = 1 to c do

For every training example t, classified as j do

If Dj
tk > dist(t, u)

(if the largest distance to one of the k-neighbors
in class j for t is bigger than
the distance of t to the new example u)

Recalculate the α value for t (with u in j)
For every training example t, classified as non-j do

If D−j
tk > dist(t, u)

(if the largest distance to one of the k-neighbors
outside class j for t is bigger than

the distance of t to the new example u)
Recalculate the α value for t (with u in j)

Calculate α value for u
Compute the p-value of the point for class j

Predict the class with the largest p-value for u
Output as confidence one minus the 2nd p-value

Figure 1: The TCM-kNN algorithm

or more extreme (with respect to the direction indicated by
alternative hypothesis) than the observed outcome. So the
smaller the p-value is, the smaller is the chance that the test
statistic could have assumed a value as incompatible with
the null hypothesis if the null hypothesis is true. In our case,
the null hypothesis is “class y is a good fit for point i.” With
these two definitions, the algorithm for TCM-kNN can be
described as shown in Figure 1.

In short, the algorithm TCM-kNN (Figure 1) acts as fol-
lows. It attempts to place a new point in each class of the
problem. While doing that, it may force the updating of
some of the α values for the training examples (concretely,
this happens whenever the distance between the training
example and the new point is less than the largest of the
k distances that are used to compute the α). It then com-
putes one p-value for each of the attempts (i.e., for each
class placement). It then predicts that the point belongs to
the class with the largest p-value, with a confidence equal
to the complement of the second p-value.

3. OUR METHOD
Now we adapt the ideas of TCM-KNN for our purposes of

determining if a point is an outlier with respect to a cluster-
ing model. We can use the ideas of TCM, by computing the
strangeness of any point with respect to a cluster y - instead
of a class y- by simply considering points in y equivalently to
the training examples of a class y. Equally, Definition 2 will
allow us to compute the p-value of the decision of placing
the new point zn in cluster y.

However, we need to realize a fundamental difference be-
tween our problem and that solved by TCM. In TCM we are

Given a point u under consideration:
1. Compute the p-value of i with respect
to clusters 1, · · · , c.
2. Sort the p-value list in descending order.
3. Call pmax the highest p-value, and
pnext the next in the list.
4. If pmax ≤ τ , reject all
the null hypotheses Hy

0 , for y = 1, · · · , c,
and therefore declare i an outlier
with confidence 1 − τ .
5. else, reject all the alternative hypotheses,
(the point belongs to a cluster in the model)

Figure 2: Algorithm to compute the fitness of a
point i with respect to the existing clusters

always sure that the point we are examining belongs to one
of the classes. In our problem, we are trying to determine
if the point in question is an outlier, and hence does not
belong to any of the clusters that we have. This has conse-
quences in the outcome of the calculation of α, if we follow
the Equation we presented in Section 2. The α computed
for an outlier (a point that does not belong to any of the
clusters) will be the ratio between two large numbers (the
distances from the point in question to those in any of the
clusters are large). In some cases, this ratio will be small
enough to be comparable to the α values for points already
in the cluster, leading to false negatives. (This is indeed the
case in practice, as our experience has shown.) Instead, we
propose to use a modified definition of α, as follows:

Definition 3. Strangeness with respect to a cluster:
The strangeness αi of a point i with respect to a cluster y
is defined as:

αiy =

K∑

j=1

Dy
ij

This new definition of strangeness will make the strangeness
value of a point far away from the cluster considerably larger
than the one for points already inside the cluster.

Using the α values, we can compute a series of p-values
for the new point, one for each cluster y = 1, · · · , c (where
c



their entire set of null hypothesis rejected are considered
outliers.

The operation of changing the α values for some of the
examples in the clusters (whenever the new point is closer
to the example than at least one of the example’s k near-
est neighbors), is potentially a costly one. Instead of just
keeping the α values for all the points in the clusters, it
requires maintaining the information of the k-nearest neigh-
bors for each point, so when a new point is under consider-
ation, these lists can be examined and the distances to the
k-nearest neighbors compared to the distance to the new
point. However, since we are only interested in diagnos-
ing whether the new point is an outlier or not, we can do
away with all this information and drop that operation all
together, working instead with the original α values of the
clustered points. In doing so, we only risk working with
some value of α that is larger than it really ought to be.
To understand this, consider a point u to be tested. If u
is close to at least one point i in cluster y, in such a way
that there exist a point j in y, among the k-nearest neigh-
bors of i, such that d(i, j) > d(i, u). In that case, u will
replace j among the nearest neighbors of i when tested in
cluster y, making the αi smaller than the value previously
calculated (without the inclusion of u in the cluster). That
would then make i less strange than previously calculated.
So, if we do not modify this α value, the algorithm would
tend to consider i more strange than it really is, increas-
ing the p-value for u. In other words, we risk lowering the
chance of declaring that new point an outlier. However, this
only happens if the new point is close enough to examples in
the cluster (indeed, closer than some of the neighbors of the
example), and by definition, that point should not qualify
as an outlier (there are points already in the cluster that are
farther away than this one). So, we can sacrifice precision
in the calculation of the p-values to gain speed in the diag-
nose of the outliers. Experimental results have shown that
this change has no effect in the capacity of the algorithm of
detecting true outliers. It is important to remark that this
argument only holds if every new point is considered
in isolation. If the new point is incorporated in any of the
clusters, the α values of the other points already there may
need to be recomputed. We are only interested here in pro-
cessing every point in a new batch separately, and decide,
individually whether each point is an outlier under the cur-
rent clustering model or not. Once this decision is made for
the whole batch of points, one needs to undergo a process by
which the new batch of points is incorporated to the cluster-



Figure 3: Results of the synthetic data. Each bar indicates the percentage of True Positives or False Positives
detected by the corresponding test for the given number of nearest neighbors used (K). The two bars with
the label ”no cl.” indicate the True Positives and False Positives when no clustering information is used
(K = 5).

Figure 4: Results of using our technique on the bookstore data. Each bar indicates the percentage of True
Positives or False Positives detected by the corresponding test for the given number of nearest neighbors
used (k).



type of Iris plant. There are 50 records of each class in the
set. We chose this set, as one of the classes (Iris Setosa) is
highly separable from the other two. Taking away the class
attribute, we form two clusters with 45 records of each the
other two classes (Iris Virginica and Iris Versicolor) and use
the records of the Setosa class, plus the remaining records
of the other two classes (5 each) as tests for our outlier de-
tection algorithm. Since the Setosa records are sufficiently
separated from records of the other two classes, a good out-
lier detection technique should be able to recognize all of
them as outliers. Meanwhile, the records of the other two
classes should not be flagged as outliers. The Setosa records
were tested against those two clusters, using our algorithm,
resulting in all (100 %) of the records declared as outliers.
The other 10 records were not flagged as outliers. We have
computed for each Setosa point the distance to the closest
centroid (of the two clusters representing the Versicolor and
Virginica classes), and found out that these distances are
in a small range: 2.86 to 3.79, with a mean of 3.24, and a
small standard deviation: 0.20. The range for the “normal”
data (Versicolor and Virginica points) is 0.23 to 1.80, with
a mean of 0.73, and a standard deviation of 0.37. To main-
tain a confidence of 95% we have set the τ = 0.025, since
0.9752 ≈ 0.95.

These results hold even when we do not use the clustering
information (i.e., we put all the 90 records of Virginica and
Versicolor in one cluster). Without the clustering informa-
tion, we used τ = 0.05. Throughout the experiment (for
both, clustering and non-clustering cases, we used k = 5.

5.3 The on-line bookstore data
This data set was generated from an e-commerce workload

and has been used previously in [19]. The logs correspond
to a couple of weekdays in which a large number of HTTP
requests were processed. Entries corresponding to images,
errors, etc were deleted and the URLs of the remaining en-
tries in the log were mapped to one of 12 e-business functions
such as ”add item to cart,” and ”pay.” A session vector was
generated for each session. This vector indicates the num-
ber of times that each of the 12 different functions (e.g.,
Search, Browse, Add) was invoked during the session. So,
this data set is 12 dimensional. The ”ground truth” in this
experiment consists of the domain knowledge that robot ses-
sions are those with a total number of “clicks” bigger than
or equal to 50. Those records were separated from the data
set, along with some non-outliers used to test our algorithm.
The basic clustering model was found using K-means over a
set of records that do not contain any robot sessions, using
c = 3. The members of each cluster differ on the intensity
of the sessions: the first cluster contains records with low
activity (few clicks), the second cluster, records with mod-
erate activity, and the third one with high activity. The last
two clusters contain records of sessions in which the ”Add”
function was performed considerably more often than in the
sessions represented by the first cluster records. (Cluster 3
sessions correspond to ”heavy buyers” in the bookstore.)

We employed 101,808 records to form the original cluster.
Then we tested the technique with 65,536 records, of which
360 were known to be outliers (robot sessions) and the rest
(65,176) non-outliers. Figure 4 shows the results of running
our technique on this data set. We used τ = 0.017 to ob-
tain a total confidence level of 0.95 (0.9833 ≈ 0.95). A large
percentage of the outliers are detected by the test, while

the false positive rate is kept low. The results throughout
the range of K are stable. Figure 8 shows the histogram
of distances to the closest centroid for the non-outliers and
outliers in the test data. The distributions are very differ-
ent, with the bulk of the outliers concentrating at distances
bigger than 7, while most of the non-outliers have distances
smaller than 7.

We also conducted experiments varying the clustering model:
using K-Means and different seeds (we tried 3 different seeds),
we were able to obtain different clusterings for the baseline
data. We compared the diagnoses of our method for each
clustering, and found out that on the average 98% of the test
points received the same diagnoses in the presence of two
different clusterings of the same baseline data. This proves
that the method is very robust with respect to changes in
the clustering model.

In order to compare our technique with DB for this data
set, we performed Principal Component Analysis and rep-
resented the data using the first four principal components
(we do this, since the code we have for DB only handles 4 di-
mensions). Figure 5 shows the results for our technique and
DB. The results are comparable to those shown in Figure 4
(the fraction of true positives is less than 1 % smaller than
the one found in the case of the full data set; the fraction
of false positives is around 1 % larger than the one found in
the case of the full data set). For DB, we found that even
decreasing p it was only possible to find a fraction of the
true outliers (less than 7%). The technique however, does
not introduce any false positives for this data set.

Figure 6 shows the results of experiments that do not
use the clustering information. In the first one (labelled
’original’ in the figure), we conducted the test on the original
bookstore data without the cluster information. The True
Positive rate is almost as good as the one obtained using
the clusters (99.72%), while the False Positive rate is bigger
but still very manageable (4.97%). The second test uses
the 4-dimensional data obtained by PCA. The results are
comparable to the original data (TP=100%, FP=4.90%).
The last two tests were conducted by using a sample of the
original data (as the normal set). The sample sizes were 1%
and 10% respectively. The results show perfect recognition
of the outliers in both cases (TP=100%), with a very slight
increase of the False Positive rate (5.37% and 5.80%, for
the 1% and 10% sample respectively). These experiments
demonstrate that when the data set is large, it is possible to
use a sample of the normal data to capture outliers without
significant loss of accuracy.

5.4 Texture data
This is one of the real data sets of the Elena project,

which can be found in [5]. The data set was generated by
the Laboratory of Image Processing and Pattern Recogni-
tion (INPG-LTIRF) in Grenoble, France, using as the orig-
inal source the material in [4], and referenced in [9, 10].
The data set contains a large number of classes (11) and
a high dimensionality (40). The original aim was to dis-
tinguish between 11 different textures (Grass lawn, Pressed
calf leather, Handmade paper, Raffia looped to a high pile,
Cotton canvas, etc.), each pattern (pixel) being character-
ized by 40 attributes built by the estimation of fourth order
modified moments in four orientations: 0, 45, 90 and 135
degrees. Again, we discard the class attribute and look to
detect the points in one class as outliers with respect to the



Figure 5: Results of the bookstore data subjected to PCA, where the four principal components are used.
Each bar indicates the percentage of True Positives or False Positives detected by the corresponding test for
the given number of nearest neighbors used (k).

Figure 6: Results of using our technique on the bookstore data without clustering information. The first test is
done over the original data; the second over the data subjected to PCA, where the four principal components
are used; the last two tests were conducted using samples of the original data (1% and 10% respectively).
Each bar indicates the percentage of True Positives or False Positives detected by the corresponding test for
the corresponding value of p used.



points in other classes. In concrete, this experiment used all
the records of the texture data as the initial points, with the
exception of: a) those that belong to one of the classes (500),
b) A sample of five percent (223 in total) of records of other
classes (which were then included in the test set). Each of
the other classes was represented by a cluster, 10 clusters ,
4,250 records in total. With K = 5 and τ = 0.005 (to reach
a final confidence of 95%, as 0.99510 ≈ 0.95), we obtain a
true positive rate of 98.4%, with no false positives. When
the clustering information is ignored, the true positive rate
goes to 100% with 4.93% false positives. (See Figure 7.)

Figure 9 shows the histograms of distances to the closest
centroid for the points that are declared as outliers and those
that are not in the test set. It is easy to see that the two
distributions are radically different with little overlap on the
distances.

In order to compare our technique with DB for this data
set, we performed Principal Component Analysis and rep-
resented the data using the first four principal components.
Figure 10 shows the results for our technique and for DB. Al-
though the percentage of true positives (outliers) captured
is smaller than that obtained when using the entire data
set, the technique still captures a large fraction of the out-
liers, with no false positives to report. For DB, since the
500 points of class 13 are somewhat close to each other, it is
necessary to lower the value of p to capture them as outliers.
But by doing so, false positives are introduced.

5.5 National Hockey League data
We performed a test using NHL player’s statistics (they

can be obtained from Web sites such as nhlstatistics.hypermart.net)
for the 1994 season. The reason for this test is that we
wanted to compare the behavior of our technique with DB
and the NHL 1994 data set is one of the case studies they
investigated. We use a four-dimensional description for each
player with the following attributes: the plus-minus statistic
(indicates how many more event-strength goals were scored
by the team when the player was in the ice), the number
of penalty minutes, the percentage points, and goals scored.
After tuning the parameters for the distance-based outliers
code, we obtained seven outliers for the distance-based code.
We took these seven records and added 27 other players (se-
lected at random) to perform a test with our technique. The
rest of the players in the data set (834) were grouped into
3 clusters (using K-means). We used τ = 0.025 for a total
confidence of 95 %. Our technique found the seven outliers
and added 3 more to the list. (For a total of 10 outliers out
of the 34 records tested.) Figure 11 shows the histograms of
the distance of the points to the closest. centroid. The figure
shows that the outliers found by our technique are indeed
radically different than the points declared non-outliers, jus-
tifying the finding of the extra 3 outliers.

5.6 Cleaning data
In this section we show the results of experiments aimed

to clean a data set containing outliers, without relying on
the presence of an outlier-free sample. To do so, we used the
texture data, and ”contaminated” the normal data with a
number of outliers (from the class chosen to act as outliers).
Then, use this data both as the ”normal” and test sets. The
only difference is that, in order to be transductive, whenever
we test a data point we compute the α values of the training
set without including that point. The results , shown in

Figure 12, indicate that we can effectively determine almost
all the outliers present in the data set, especially when we
use a high value of K. As expected intuitively, the more
outliers we have in the set, the larger K needs to be. Of
course, we do not know how many outliers we have in the
data set in advance, so a ”rule of thumb” has to be used to
select K. (In nearest-neighbor classification, it is customary
to set K as high as 10% of the number of examples in the
data set.) The experiments show that a relatively low value
of K (100, or around 2.3%) is enough to catch a high volume
of the outliers (more than 95%) while maintaining a low false
positive rate (less than 4%).

5.7 Using a contaminated data set
In this section we show what happens if the ”normal” data

is contaminated with outliers and yet it is used to further
detect other outliers. We conducted these experiments using
the texture data and contaminating the ”normal” data with
outliers from the chosen class. We then used this data set
as the basis for diagnosing the test set, without the outliers
that were already used to contaminate the ”normal” data.
That is the test set contains the rest of the examples from
the chosen class (not in the ”normal” set) plus 223 examples
of non-outliers.

Figure 13 shows the results of these experiments. The
number of outliers used to contaminate the normal set is
shown below the row with the values of K. Again, we di-
agnose a high percentage of the outliers in the test data
(more than 95%) with a low false positive rate (less than
4%) when a value of K, commensurable with the number of
contaminants is used. As we do not know this value, a ”rule
of thumb” value for K must be used, but the experiments
show that a relative low value of K (100, or 2.3% of the nor-
mal data set examples) can effectively be used to diagnose
further outliers.

6. RELATED WORK
Early work in outlier detection was done in the field of

statistics (see [17, 13]). However, these methods largely
work with univariate data, and all of them assume knowl-
edge of the underlying distribution of the data, which in
practice is very restrictive. More recently a technique for
spatial outlier detection was proposed in [24]. The method
uses the difference between the attribute value at location
x and the average attribute value of x’s neighbors to de-
termine if x is an outlier. It works only for univariate data
(one attribute besides the spatial coordinates) , and assumes
a normal distribution for the non-spatial attribute value.

An exception to the univariate restriction in the statistics
techniques is the work of Rousseeuw et al (whose most re-
cent survey can be found in [22]). Their approach is to find a
robust fit model, i.e., one that is similar to the fit that would
have been found without the outliers, and use it to diagnose
which points do not fit the model well. Their choice is to
compute the Minimum Covariance Determinant estimator
or MCD, which can be briefly described as finding a subset
of the examples in the data whose covariance matrix has
the lowest possible determinant. Their algorithm, FAST-
MCD uses randomization to speed up the high-complexity
calculation. Outliers are detected by computing the Ma-
halanobis distance (using the covariance matrix computed
by MCD) and finding points that are ”too far away” from
the robust centroid. One can argue that estimating a mean



Figure 7: Results of our technique on the texture data with and without clusters.

Figure 8: Distance histogram for the bookstore data. Each bar shows the percentage of points within each
group (non-outliers, outliers) with distances to the closest centroid in the range indicated.



Figure 9: Histogram of distances to the closest centroid for the texture data. Each bar shows the percentage
of points in the group that have distances to the closest centroid in the range indicated.

and covariance matrix from the data (or rather in MCD, a
sub-sample of the data) corresponds to assuming a Gaussian
distribution of the data. Also, looking for points with large
Mahalanobis distance that is ”too large” calls for a thresh-
old, i.e., it is equivalent to consider as outliers those points
that are 3 or more standard deviations away from the cen-
troid, which is the common practice of univariate statistical
techniques. Moreover, in [12], which uses a technique based
on MCD to find multiple clusters and diagnose outliers, the
authors argue that not every data set will give rise to an ob-
vious separation of outliers and non-outliers by using robust
estimators.

A large body of work has been published in the area of
discovering outliers with respect to clustering models (see
[6, 20, 23, 25, 11]). However, most of these algorithms do
not aim at the discovery of outliers, but rather offer ways to
deal with them. And, in all the cases, the discovery of out-
liers is done by careful setting of the algorithm parameters.
Some outlier detection schemes that do not assume a clus-
tering model or a known distribution have been proposed.
They fall under two categories. The first is distance-based
techniques (see [1, 16]. The second is density-based tech-
niques (see [3, 15]). Again, in all these algorithms one must
threshold parameters to obtain the set of outliers.

The method of [16], which we use here to provide a com-
parison to ours, uses distance and density calculations to
discover the outliers in a data set. Succinctly, the method
aims to answer a nearest neighbor query with radius D for
each point in the data set and decide if there are enough
neighbors to the point in this D-neighborhood. This deci-
sion is controlled by a parameter p, which thresholds the
minimum fraction of records that must be found outside of
the D-neighborhood for the point to be an outlier. These

leaves two parameters to be adjusted (D and p). However,
the code of DB overwrites a badly chosen D by comput-
ing a reasonable one using sampling. So we concentrated in
varying the choice of p in our experiments.

7. CONCLUSIONS
We have presented here a novel technique to detect out-

liers based on statistical testing and the application of trans-
duction. The technique does not make assumptions about
the data distribution and only requires that the number of
neighbors (K) utilized in the distance calculation and the
confidence level be provided. We have shown using extensive
experimentation that the technique is robust with respect to
the choice of K and that it obtains extremely good results
for the standard choice of 95 % confidence level. We observe
that the definition of strangeness does depend in turn on the
distance metric used. In this work we have fixed the met-
ric to be the Euclidian distance to allow a fair comparison
with the DB technique. Additional distance measures will
be investigated in our future work.

We have shown that discarding the clustering information
has little effects on the results (generally a small increase on
false positives), so the method can be used also in cases when
the cluster information is not available. (And therefore we
can claim that the method is robust even if the clusters are
not.) We have compared the technique with the distance-
based algorithm (DB) presented in [16], and the results show
that our technique sometimes outperforms DB and is never
outperformed by it.

We have also shown that it is possible to use our method to
effectively clean a data set from outliers, thereby providing
a sample of data that is, at least in a large percentage, free



Figure 10: Results for the texture data subjected to PCA, where the four principal components are used.
Each bar indicates the percentage of True Positives or False Positives detected by the corresponding test for
the given number of nearest neighbors used (k).

Figure 11: Histogram of distances to the closest centroid for the NHL data. Each bar shows the percentage
of points in the group that have distances to the closest centroid in the range indicated.



Figure 12: Results of cleaning the texture data contaminated with a number of outliers of the chosen class.
The number of outliers in the data set, and its corresponding percentage of the entire set are shown below
the row that indicates the value of K used. Each bar indicates the percentage of True Positives or False
Positives detected by the corresponding test for the given number of nearest neighbors used (k).

Figure 13: Results of diagnosing the texture data by using a contaminated ”normal” set. The number of
outliers in the ”normal”data set, and its corresponding percentage of the entire set are shown below the row
that indicates the value of K used. Each bar indicates the percentage of True Positives or False Positives
detected by the corresponding test for the given number of nearest neighbors used (k).



of outliers. Moreover, we have demonstrated that even if
the ”normal” data set is contaminated by outliers, it can be
used to diagnose further outliers.

We have shown that, for large data sets, is possible to
drastically improve the performance of the algorithm by us-
ing sampling, while maintaining good results. We want to
experiment in future work with the idea of representing the
clusters of normal data (or the whole data) by means of care-
fully selected representatives (instead of uniformly sampling
the data). We expect that this technique will result in a
decrease in false positives with respect to the rates obtained
by sampling.
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