
Policy Transformations for Preventing Leakage of
Sensitive Information in Email Systems

Saket Kaushik1, William Winsborough2, Duminda Wijesekera1, and Paul Ammann1

1Department of Information & Software Engineering, George Mason University, Fairfax, VA 22030,
U.S.A, {skaushik|dwijesek|pammann}@gmu.edu

2Department of Computer Science, University of Texas at San Antonio, San Antonio, TX 78249-0667
USA, wwinsborough@acm.org

In this paper we identify an undesirable side-effect of combining different email-control mechanisms for protection
from unwanted messages, namely, leakage of recipients’ private information to message senders. This is because
some email-control mechanisms like bonds, graph-turing tests, etc., inherently leak information, and without
discontinuing their use, leakage channels cannot be closed. We formalize the capabilities of an attacker and show
how she can launch guessing attacks on recipient’s mail acceptance policy that utilizes leaky mechanism in its
defence against unwanted mail.

As opposed to the classical Dolev-Yao attacker and its extensions, attacker in our model guesses the contents of
a recipient’s private information. The use of leaky mechanisms allow the sender to verify her guess. We assume a
constraint logic programming based policy language for specification and evaluation of mail acceptance criteria
and present two different program transformations that can prevent guessing attacks while allowing recipients to
utilize any email-control mechanism in their policies.

Keywords: Application layer security, inference attacks, information leakage channels, secrecy, Dolev Yao

I. Introduction

Email, a widely popular communication medium, is plagued with several problems like delivery of unsolicited
commercial or fraudulent messages, lack of authentication of message senders, inability to ensure integrity and
secrecy of message content,etc. Several solutions have been proposed to counter these problems and many have
been incorporated into the delivery mechanisms. However, there exists a class of problems that has not received
much attention yet, which is the problem of protection of recipients’ sensitive information. It is surprisingly easy to
uncover information that recipients may consider sensitive, like recipient maintainedblacklist or whitelist. Not only
can this lead to security breaches, but also jeopardize the defenses against unwanted messages. In this paper, we
formalize this problem and a new attack technique on policy based evaluation, which is a counterpart to dictionary
attacks on cryptographic protocols [4]. As a solution we also provide a policy transformation technique to prevent
attacks on sensitive information.

Leakages can occur in many ways. For instance, simpleaddress harvestingattacks through the Simple Mail
Transfer Protocol (SMTP [21]), the default email delivery protocol, are easy to construct. In this attack, a malicious
sender attempts delivery to a preconstructed list of possible recipients, and recipient mail server replies help her
to identify which ones arebona fideaccount holders [18]. Contrary to the SMTP protocol recommendations, mail
servers can prohibit such feedback, thus implementing a blanket protection policy against harvesting attacks. More
fine-tuned, policy-based schemes for feedback control are also possible [9], [10].

Controlling SMTP feedback to senders is not enough to protect recipient’s private data. For instance, email-
control techniques like monetary bonds [14], graph-turing tests for human initiation [17],etc., provide feedback
to senders from outside the SMTP transmission channel. Clearly, signals through monetary transfer due to bond
seizure can’t be prevented by stopping SMTP feedback. This signal informs the sender that the sent message was
able to overcome recipient’s bayesian filters, if they are being used by the recipient, in addition to confirming
recipient’s email address. This knowledge can further help a malicious sender in propagating unwanted emails in
future. Apart from the efficacy of filter rules, a recipient or a domain may wish to protect a lot of other private
data, like their email behavior, the set of their email acquaintances,etc.

In this paper, we identify two types of email-control mechanisms,viz., leaky mechanismslike monetary bonds,
acknowledgement receipts,etc., and sensitive mechanismslike white-lists, i.e., the set of senders from whom a

1

recipient always accepts emails, blacklists,i.e., the set of senders from whom the recipient does not wish to receive
messages, filters,etc. A leaky mechanism is defined as an email-control mechanism that, by the virtue of its use,
informs the sender whether his or her message was accepted by the recipient or not. Whereas, a sensitive mechanism
is defined as an email control mechanism that uses recipient’s private information to decide whether to accept a
message or not, but does not disclose any information to the sender. However, if these two types of mechanisms
are used in combination, disclosure of recipient’s private information is possible and it is the security goal of this
paper to prevent such disclosures. Readers may be familiar with leakages due to well-crafted web addresses and
images embedded within a message that provide automatic acknowledgement receipts. In section II we describe
how leaky mechanisms provide message acceptance confirmations to the sender. Mechanisms like blacklists, filters,
etc., are sensitive because of the nature of the information they control and because their knowledge can help a
malicious sender to bypass the control they provide.

The abundance of email-control solutions and the need for automation of several aspects of user’s email agents
have led to the use of policies that allow flexible control over the behavior of local email systems. Such policies
are easily constructed through end user input (e.g., simple user feedback allows Gmail to display or not display
embedded images,etc.) and through explicit administrator level policies, leading to considerable automation of
repetitive tasks. However, because the email system is highly automated, there exists a potential for confidential
information to be leaked unintentionally. Even though it is not guaranteed that using a means to leak information will
reveal information, however, the probability of leakage of sensitive information, when using leaky and sensitive
mechanisms in combination, is non zero. In particular, schemes that allow sharing acceptance policies to stop
undesirable messages earlier in the transmission process (see [8], [9], [10]) compound the problem. Armed with the
knowledge of recipient policies, an attacker can simply send a large volume of messages and observe the behavior
of the feedback channel in order to discern relevant information.

Our modeling of an attacker assumes basic capabilities of computing unfold/fold transformations [22], computing
Clark completion of predicate definitions, and the ability to generate a large number of messages. Though, in the
worst case analysis, this attacker need not generate a large number of messages to learn parts of a recipient’s private
information. With this attacker in mind, and assuming that the private data is not explicitly disclosed to the attacker,
we suggest two program transformation techniques: thenecessary policy transformationand thesufficient policy
transformationthat can be used in tandem to prevent leakages, while leakage channels are still active. We show
that these policies are semantically closest to the original policy, while preventing leakages.

Protection against disclosure is a standard problem that has been previously studied in many areas, for example,
protection of sensitive information in database transactions (Pfleeger [19], Chapter 6). We analyze the problem in
the context of emails, which is very different from other application domains where this problem has been studied.
In the section VII we survey some of the disclosure solutions and argue why they are different from our domain.

A. Our Contribution

The main contributions of this paper include, to the best of our knowledge, the first formal analysis of well-
studied confidentiality problem in the context of emails, and a novel solution to protect sensitive information from
attacks. We summarize our contributions as follows:
• We develop a logical formalism for expressing and solving the problem of leakage of private information due

to the use of leaky mechanisms.
• We define a new attacker model with the attacker being capable of computingClark completionof programs and

applyingunfold/fold transformationsin addition to the ability of generating messages. With these capabilities,
and the usual assumptions about distributed email communications, this attacker can unravel message recipients’
protected information.

• We describe a new type of information leakage attack on email systems due to the combination of email-control
mechanisms.

• We develop two policy transformation schemes, namely, necessary and sufficient policies, that, when used in
tandem, can prevent the leakage of sensitive email information.

The rest of the paper is organized as follows. In section II we provide some motivating examples of information
leakage attacks. We follow this with an informal and intuitive description of how we plan to mitigate leakage
attacks in section III. This is followed by the formal model in section IV and the attacker model in section V. In
section VI we discuss the transformation algorithm and necessary and sufficient policy transformations that can

2

prevent leakage of information, followed by the related work (section VII) and the conclusion (section VIII).

II. Examples

A simple leakage scenario is one where specially crafted messages can lead to recipients divulging private
financial information to attackers. Such attack techniques are termed as ‘phishing’ and are beyond the scope of this
paper. We focus on automatic leakage of information through the email system. Several types of information may
be regarded as lucrative by different classes of message senders. For instance, knowledge of a large set of valid
email addresses is of prime importance to bulk emailers. As would be the efficacy of filtering rules of bayesian
filters, now omnipresent in every recipient email system. Senders may want to know if their messages were read
by the recipient, even if the recipient does not wish to release an acknowledgment receipt. We provide some basic
examples below how the system could be manipulated to yield such confirmations.

A. Direct disclosure

SMTP, the default email protocol, allows leakage of information, as discussed earlier. In table I we list some of
the reply codes that can be used for gaining confirmation of valid/invalid email addresses and is an example of
direct leakage. In addition to the SMTP protocol, email-control schemes and protocols layered on top of the SMTP
protocol can also result in leakage of information. For instance, graph-turing tests [17] is one such protocol that
can be employed by recipients for proof of human initiation. In this scheme, recipients generate a challenge for
incoming messages, and only on receiving a successful response is the message delivered to recipient’s mailbox.
However, issuing a challenge confirms that the recipient address is a valid email address, or it successfully dodged
bayesian filters employed by the recipient.

Reply
Code

Meaning Confirmation provided

251 User not local; will for-
ward to 〈address〉

Forwarding address

450 Mailbox unavailable Invalid address
452 Insufficient system storage Valid address
550 Mailbox unavailable Invalid address
551 User not local; try〈addr〉 Forwarding address
553 Mailbox name not allowed Invalid address

TABLE I: Leakage through SMTP reply codes

As these disclosures are made through feedback provided in the protocol, they can be prevented by modifying
the behavior of SMTP state machine. In the rest of the paper, we assume that these disclosures can be prevented
using policy-based control schemes for feedback control [9], [10] and don’t investigate them further.

B. Disclosure through leaky mechanisms

Well-crafted URLs or images in a message are a prime example of how malicious senders generate acknowl-
edgement receipts without requiring any recipient action. Such a message when viewed or the URL visited by the
recipient can cause HTTP requests to a web server that confirms that the recipient read the message. Prevention
of automatic acknowledgements is possible through policy based control over which or what type of messages
can contain HTTP content. Though URLs and images don’t qualify as a leaky mechanism (since they are not
email-control mechanisms), similar leakages are possible through other mechanisms. For instance, bonds inherently
leak information irrespective of whether feedback is provided by the email system itself or not. This is because
seizure of bond causes monetary flow and therefore informs the person posting that bond that the recipient read the
message. This can help a sender infer certain information about the recipient email system as well as recipient’s
private information. We characterize these leakages as follows:

• Confirmation of email address: Bulk senders may simply wish to know if a recipient address is valid or not
and can use leaky mechanisms, SMTP feedback or well-crafted messages for this purpose. Leaky and sensitive
mechanisms need not be combined for this leakage to occur.

• Leakage of sensitive information:In this case, the sender knows that the recipient address is valid and wishes
to know additional information about a recipient, using the fact that the recipient employs leaky and sensitive
mechanisms in combination.

As an example of the second case, we consider a simple example next to illustrate the basics of an attack.

3

Example 1 (Leakage through monetary bonds).Consider a simple recipient policy that states that messages
from blacklisted email domains (or senders) will be accepted if a minimum bond of value$ b is present; for all
other messages a bond of minimum value$ a (a < b) is required. Such a scenario is easily foreseen as monetary
signalling techniques ([11], [14], [16], [23], etc.) have recently been applied (in various capacities) in real email
networks. We represent this policy simply as (a formal definition of syntax follows later):

accept message −if− sender is not blacklisted and message is bonded with value a

accept message −if− sender is blacklisted and message is bonded with value b > a

Suppose a sender knows that the recipient is using a policy based on bond values and blacklists. Further, since
bond seizure provides confirmation if a message was read or not, the sender can guess values of a, b and whether
a sender is on the recipient’s blacklist, and verify these guesses by sending a large number of messages while
observing the feedback channel. With the values of a and b known, the sender can easily verify if an email address
is in the recipient’s blacklist or not. The situation is further simplified, if the sender is given these values as a part
of policy sharing. Such an attack can be accomplished with as little as only two email messages: the sender sends
two identical messages with only bond values different: one bonded with value$ c, c∈ (a,b) and other bonded with
value$ d, d > b. Also, we assume that the targeted recipient seizes bonds for all commercial messages delivered
to his mailbox. If both the bonds are seized, the sender knows that he or she is not on the blacklist, otherwise if
only the second bond is seized will prove that the sender is on the blacklist.

III. Overview of our approach

Controlling unwanted messages through the use of various control techniques simultaneously and at various
stages of email delivery has been studied and proposed recently ([2], [12], [13] among others). Policy based control
has also been proposed recently that allows flexible control of email delivery mechanism, while allowing the basic
protocol to treat each email-control technique uniformly. Thus, turing tests, and other human initiation checks [17]
can be integrated within the SMTP framework, through policy feedback or policy sharing. However, this opens
up the possibility of any (and all) email control requirements to be communicated upstream. This capability gives
policies an important role in email delivery, with the potential of drastically altering the way unwanted messages
are handled,i.e., unwanted messages may not allowed to originate at the sender domain if they don’t satisfy
downstream policies. However, enforcement of this scheme requires explicit policy sharing with upstream agents.
This readily enables attackers to launch and verify guessing attacks. Even without explicit sharing, guesses can be
verified through leaky mechanisms, though the complexity of such attacks is more than the policy sharing case.

Even though communication or enforcement of policies that combine leaky and sensitive mechanisms is vulnerable
to attacks, and therefore, requires policies to be ‘strong enough’ to withstand leakage analysis, the responsibility
of enforcing ‘strong’ policies cannot be entrusted to the end users. At best, the end users are expected to answer
simple questions that help the system to construct a message acceptance policy on their behalf. The only option
that remains is to automatically strengthen or sanitize a policy that can leak sensitive information. This is not a
trivial problem and in the sections to follow, we show how to solve it. However, before we outline our solution, it
is worth noting that ‘strengthening’ action may not be required in every SMTP session. Based on mutual trust, and
history of previous interactions, email domains may distinguish between different transmitting domains and decide
on whether to use policy sanitization actions or not. (For additional information on such ‘service level’ decisions
the reader is referred to [8], [10].)

Our first step in policy sanitization is to distinguish leaky mechanisms and sensitive information from the rest of
the recipient policy. This is required as we need to focus on the protected resource and the means through which
leakage occurs. The distinction is made in the syntax of policies and details are presented in section IV. Next,
we transform the original recipient policy into a zero information leakage policy against a correlation attack. For
example, consider again the policy in example 1. Assuming the policy only evaluates the sender’s membership
in blacklist and monetary value of the bond, clearly, a message must at least have a bond value of $a to be
accepted and will always be accepted if the bond value is at least $b. We encode this information in two new
policies: thenecessary policythat states that a message must have a bond value of $a and thesufficient policy
that states that message need only have a bond value of $b to be acceptable. Note that in both the policies all
references to sensitive mechanism,i.e., blacklist, have been removed. Evaluating the sufficient policy for every

4

message, clearly, does not yield information regarding the contents of recipient’s blacklist. To establish minimum
threshold, the necessary policy can be sent across the network without the risk of leakage analysis, while message
evaluations being performed with sufficient policy in the worst case. Policy transformations are detailed in§ VI
and we prove that transformations achieve required security goals, while being semantically ‘closest’ to original
policy, in § VI-C,VI-D.

IV. Formal Model

A formal model for a policy based decision on email acceptance was presented earlier [8], [10], [9]. Here we
do not go into the details of the earlier models, but discuss a more general constraint logic programming (CLP)
based syntax where sensitive and leaky mechanisms are modeled byprivate andsensitivepredicates, respectively.
In particular, we assume that each message is evaluated by a single acceptance policy instead of multiple policies
authored by different principals in an email pipeline [10]. As our syntax is more general, it can be specialized to
represent any of the policies suggested earlier, or their composition.

A. Syntax

Definition 1 (Constraint domain). We use finite integer domain as the constraint domain, represented byR, that
supports standard interpretation of the symbols =,6=, ≤ and≥.

Definition 2 (Terms). Terms consist of only variables and constants. Constants are from the setR. Tuples of terms
t1, . . ., tN may be represented by

−→
t .

Definition 3 (Primitive constraint). A primitive constraint is of the form q(t1, t2) where q is a symbol from the set
{=, 6=, ≤, ≥} and t1, t2 are terms such that t1 is a variable and t2 is a constant. We use infix notation to represent
primitive constraints.

Definition 4 (Constraint). A constraint is conjunction (∧) of primitive constraints.

Definition 5 (Predicates). Predicate symbols are partitioned into three sets:RD, which are the predefined
predicates,RU , which are the system defined predicates, andRA is the set of predicates that are guesses for
predicates inRD. In particular, we assume that three top level predicate symbolsaccept, allow and disallow∈ RD.

Definition 6 (Private and Sensitive Predicates).Subsets ofRD predicates, represented byP andL, form the set
of private and sensitive predicates, respectively.

Definition 7 (System-defined PredicatesRU). RU predicates are further partitioned into following sets:
Mch For each predicatepi ∈ P, two predicate symbols, matchPi and matchNotPi of same arity aspi, are

reserved to be defined by the program. In addition for every predicate Qj 6∈ P, the program reserves
predicate symbols QjMatchPi and QjMatchNotPi

Pes For every predicate Q, such that Q6∈ P, the program reserves a predicate symbol ‘pesQ’, Q’s pessimistic
version (defined in section VI).

Opt For every predicate Q, such that Q6∈ P, the program reserves a predicate symbol ‘optQ’, Q’s optimistic
version (defined in section VI).

Definition 8 (Atom and Literal). An atom is of the form q(t1, . . . , tn) where q is a symbol fromRD ∪RU∪ {=,
6=, ≤, ≥} and t1, . . . , tn are terms. A literal is an atom (called a positive literal) or its negation (called a negative
literal).

Definition 9 (Clause, Fact and Rule).A clause is of the form H← B where H is an atom, and B is a list of
literals. A fact is a clause in which B is an empty list or a list of literals with predicate symbols from the set{=,
6=, ≤, ≥}. A clause is called a rule otherwise.

Definition 10 (CLP Program). A CLP Program (simply a program) is a set of clauses. For a program P and a
predicate Q, Q∝ P if for any rule H← B1,. . .,Bn in P, Q = Hθ or Q = Biθ (i ∈ [1,n]) for someθ.

Definition 11 (Message).A message is a set of facts

We treat a message as a set of facts that constrain email message headers and content to sender supplied values.
For instance,Mail From: abc@xyz is encoded asatrbFrom(abc@xyz.com) where atrbFrom is an RD predicate.

5

We also assume that non-numeric constants can be encoded in finite integer domain.

Definition 12 (Mail Acceptance Policy). A mail acceptance policy, or simply, a policy is a pairΠ = 〈ΠR, ΠD〉
whereΠR is a set of rules (ruleset) andΠD is a set of facts. The programΠR is required to be stratified and
contain definitions of top level predicate accept and at least one of the predicates: allow, disallow. The predicate
symbol accept is always defined as

accept(−−→msg) ← allow(−−→msg),¬disallow(−−→msg)

B. Semantics

We reuse the three-valued semantics (with constructive negation) used in [10], which is Fages’ fully abstract
semantics (TP (I)= 〈T+

P (I), T−P (I)〉) where symbols are as defined in [7], P =Π∪ M where M is a message and
I = 〈I+, I−〉 in which I+ andI− are disjoint sets of constrained atoms, defined next.

Definition 13 (Constrained atom). A constrained atom is a pair c|A in which c is a solvable constraint, A is an
atom and free variables occurring in c also occur as free in A. The set of all constrained atoms is denoted byB
Definition 14. Immediate consequence function
T+

P (I) ={c|p(X)∈B | there exist a p(X)← d|A1, . . .,Am,¬Am+1,. . .,¬An ∈ P with local variables Y, ci|Ai ∈ I+

for i∈[1,m] and cj |Aj ∈ I− for j∈[m+1,n] such that c=∃Y(d∧∧n
i=ici) is satisfiable}

T−P (I) ={c|p(X)∈B | p(X)← dk|Ak,1,. . .,Ak,mk
, ¬Ak,mk+1,. . .,¬Ak,nk

for every clause with head p∈ P and local
variables Yk, there exist ek,1|Ak,1,. . ., ek,mk

|Ak,mk
∈ I− and ek,mk+1|Ak,mk+1,. . .,ek,nk

|Ak,nk
∈ I+, such that c=∧

k∀Yk(¬ dk ∨
∨nk

i=iek,i) is satisfiable}
Definition 15. Ordinal powers ofTP

TP ↑ 0 = ∅; TP ↑ β = TP (TP ↑ β − 1), β is a successor ordinal;TP ↑ α =
⊔

β<α TP ↑ β, in which α is a limit
ordinal and

⊔
β<α TP ↑ β = 〈⋃β<α(TP ↑ β)+,

⋃
β<α(TP ↑ β)−〉.

A message is accepted if c| accept(−−→msg) ∈ T+
P ↑ ω where−−→msg is a tuple of headers and content supplied in

the message. The authors show that the decision procedure using the presented semantics is complete [10]. Finally
we define the extension and Clark completion of a predicate as follows

Definition 16 (Extension of a predicate).Extension of a predicate p is the set ext(p)⊂ T+
P (I) such that each

constrained atom in ext(p) is of the form c| p(−→x)

Definition 17 (Clark completion). Given a rulesetΠ, each predicate p, p∝ Π such that for some ruleπ ∈ Π
p(−→x) = head(π), is associated with a logical formula as follows. If there are n rules inΠ:

p(−→x) ← B1

...

p(−→x) ← Bn

then the formula associated with p is

∀−→x p(−→x) ↔ ∃−→y1 B1

∨ ∃−→y2 B2

...

∨ ∃−→yn Bn

whereyi is the set of variables inBi except for variables in−→xi . If p 6= head(π) for any π ∈ Π, then the formula
associated is

∀−→x ¬p(−→x)

The collection of all such formulas is called the Clark completion ofΠ. We represent the Clark completion of a
predicate p by p∗

6

V. Attacker Model

Next we define the attacker’s capabilities and model leakage of private information. An attacker is constrained
to legal runs of SMTP protocol. However, the attacker is not restricted to gaining information from the SMTP
protocol plays alone. There is no restriction on the number of email messages an attacker can generate, and these
messages can be targeted to any recipient. For worst case analysis we make following assumptions:

1) Attacker may know the form of policies being used at a particular email domain,i.e., use of blacklists,
whitelists, filters,etc.This is possible through explicit communication of portions of policies or through other
means (like attacker knows about the victim’s policy by the virtue of being served by the same email service
provider, say Hotmail, Gmailetc.). In particularΠR (rule set) may be known but notΠD (set of facts) where
contains definitions of private predicates.

2) From protocol runs an attacker cannot discern if a message reached the intended recipient’s mailbox,i.e.,
recipient domain may indicate that the message was delivered, without actually delivering the message.
Confirmation of message acceptance can be obtained from leaky mechanisms alone.

3) Each message that reaches a recipient’s mailbox is read by the recipient and actions like bond seizure,
reporting to reputation services,etc., are taken.

A. Capabilities

Given a set of rulesΠ = {π1, . . . , πn}, and the set Q ={q | q ∝ Π}, an attacker has following capabilities:

1) Capability of computing Clark completion: For allq ∈ Q, the attacker can computeq∗, q’s Clark completion
with respect toP.

2) Capability of unfold transformation [22]: Given a ruleπk: H ← A, B, C where A, C⊂ Q and B∈ Q
such that for some ruleπi and someθ such that B = head(πi)θ, the attacker can transformπk to H ← A,
body(πi)θ, C (herehead and body functions map a rule to the atom in its head and literals in its body,
respectively).

3) Capability of fold transformation [22]: Given a ruleπk: H ← A, B, C where A, B, C⊂ Q such that for
some ruleπi and someθ such that B = body(πi)θ, the attacker can transformπk to H ← A, head(πi)θ, C

4) Capability of message generation:An attacker can generate any number of messages (Mi, . . . , Mn) of her
choice.

(For additional information on unfold/fold transformation of logic programs the reader is referred to [22].) For
modeling attacks on cryptographic protocols, the classical Dolev-Yao (DY) attacker [6] was used. DY attacker
was able to evaluate the secrecy of data during transmission. As opposed to this attacker, the email policy
attacker is capable of uncovering subset of extension of private predicate(s). The security goal of this paper is to
prevent an attacker from gaining this knowledge. Computing Clark completion of program definitions, unfold/fold
transformations and sending messages are the assumed capabilitiesvis-a-visDY attacker capabilities like encryption,
decryption, term concatenation, term splitting,etc.

An attack on extension of private predicate involves the sender sending messages (sets of facts like the sender
address, recipient address, time of transmission, bond value,etc.) that contain specific values for arguments of a
leaky predicate. These values are generated from an analysis of the recipient’s policy. The attacker is made known
of the fact that c|accept(−→m) belongs toT+

P (I) or T−P (I) through the signals received from leaky mechanism. With
these information, the attacker can construct ext(p′) ⊂ ext(p), where p is a private predicate and p′ ∈ RA. A precise
logical definition of this attack is being worked on.

B. Scripting an attack

An attacker can generate requisite messages using her capabilities in the following way. Given a set of rulesΠ
such that accept∝ Π, the attacker computesΠω, the fully unfolded form ofΠ (the head p of each fully unfolded
rule is referred to as pω). This operation yields acceptω, the fully unfolded form of accept with respect toP. In the
next step the attacker constructs the Clark completion of acceptω to yield acceptω∗. Using acceptω∗, the attacker
can then generate guesses by analyzing the values of leaky mechanism that can generate messages to verify her
guess. The unfold/fold transformation belongs to NP complexity class [3], as does the Clark completion operation.
Overall, the complexity of policy attack is NP.

Example 2. We encode a simple attack as discussed in section II. Here, blacklist is the private predicate, whose definition

7

(or extension) is hidden from the attacker and bond is the leaky predicate. SupposeΠR is

allow(−→m) ← ¬blacklist(Y), bond(X), X ≥ 5

allow(−→m) ← blacklist(Y), bond(X), X ≥ 10

Using the unfolding capability, accept predicate definitions can be transformed to:

accept(−→m) ← ¬blacklist(Y), bond(X), X ≥ 5

accept(−→m) ← blacklist(Y), bond(X), X ≥ 10

Next the attacker can compute Clark completion of accept definition:

∀−→m accept(−→m)∗ ↔ ∃Y1, X1 ¬blacklist(Y1), bond(X1), X1 ≥ 5

∨
∃Y2, X2 blacklist(Y2), bond(X2), X2 ≥ 10

An attacker is now in a position to guess parts of the extension of blacklist using following rule:

blacklist′(Yg) ← ¬accept(−→m1), accept(−→m2), bond(X1),

bond(X2), X1 ∈ [5, 10], X2 > 10

Here blacklist′ ∈ RA, is defined by the attacker. The attacker can send two messages with all facts same except the bond
values. The first message (m1) is bonded with a value v∈ (5,10) and second one (m2) bonded with a value greater than 10.
It is easy to see that ifYg ∈ ext(blacklist), then the sender will get one negative and one positive verification – c|accept(−→m1)
∈ T−P (I) and c|accept(−→m2) ∈ T+

P (I); otherwise both verifiers are positive.

VI. Policy transformations for privacy

To prevent an attacker from deducing subsets of recipient maintained set(s) of private information, we propose to
transform the evaluation policy such that leakage signals are rendered useless. There are two flavors of transformation
that we propose:the sufficient policyandthe necessary policytransformation. The intuition behind sufficient policy
is that it should accept a message just in case the message is accepted by the original policy underall possible
definitions of the private predicates. On the other hand, the necessary policy accepts a message forsomedefinition
of the private predicates in the original policy, hence ensuring that only messages satisfying the necessary policy
can satisfy the original policy. These policies are designed to be used in tandem,i.e., single evaluation of original
policy is replaced by the evaluation of necessary and sufficient policies.

A. Transformation algorithm

Transformation algorithm is discussed next. Since only those rules that use private literals in their bodies can leak
private information, the algorithm applies to such rules and leaves others unchanged. The transformation algorithm
is shown in figure 1 and consists of two transformations for each rule containing sensitive predicates and is described
in detail next.

Figure 1 begins with a general Horn clause representation of rules inΠR with meta-variables Qu, Qv and pk
and−−→msg is the tuple of all variables used inΠR. Qu(−→y) represents a non-sensitive literal at theuth position in a
rule, and can also appear in the head of the rule. The rule is shown to havev non-sensitive predicates in its body
and some sensitive predicatespk, for k ∈ [1, t

′
], each used positivelymk times and negativelynk times. In other

words, recursive calls and multiple calls to the same predicate may be made in a rule,i.e., Qu may be in [Q1, Qv]
or Qu1 = Qu2 for u1, u2 ∈ [1, v], u1 6= u2. However,Qu cannot make recursive calls to itself through negation or
include calls such that the program dependency graph includes negative cycles, the stratification restriction. Also,
eachpk literal need not appear in the body of everyQu clause,i.e., both mk andnk can be equal to zero.

As shown in the figure, eachQu definition is transformed to two related predicates,viz., pesQu and optQu,
where pesQu is the ‘pessimistic’ version ofQu, independent of the definition of any private predicate used in
the definition ofQu, andoptQu is the ‘optimistic’ version ofQu predicate, which holds for ‘some’ definition of
private predicates. More precisely,optQu will hold if there existssomedefinition of private predicates used in the
definition of Qu, such thatQu can be shown to hold inΠ, whereaspesQu will only hold if for all definitions of
private predicates,Qu can be shown to hold true inΠ.

8

Qu(
−→
Yu): − Q1(

−→
Y1), . . . ,¬Qv(

−→
Yv), p1(

−−→
X1,1), . . . , p1(

−−−→
Xm1,1),¬p1(

−−−−−→
Xm1+1,1), . . . ,¬p1(

−−−−−−→
Xm1+n1,1), . . . ,

pt′(
−−→
Xt′,1), . . . ,¬pt′(

−−−−−−−→
Xmt′+nt′ ,t′), c.

For each clause inΠR as shown above, add create following clauses, for each k and u, if not already
present:

pesQu(
−→
Yu): −QumatchP1(

−→
X1,

−−→msg), QumatchNotP1(
−→
X1,

−−→msg).
...

pesQu(
−→
Yu): −QumatchPt′(

−→
Xt′ ,

−−→msg), QumatchNotPt′(
−→
Xt′ ,

−−→msg).

QumatchPk(
−−−−→
Xmk+j ,

−−→msg): −pesQ1(
−→
Y1), . . . ,¬optQv(

−→
Yv), QumatchP1(

−−→
X1,1,

−−→msg), . . . , QumatchP1(
−−−→
Xm1,1,

−−→msg),

. . . , QumatchPk(
−−→
X1,k,−−→msg), . . . , QumatchPk(

−−−−→
Xmk,k,−−→msg), QumatchNotPk(

−−−−−→
Xmk+1,k,−−→msg), . . . ,

QumatchNotPk(
−−−−−−−−→
Xmk+(j−1),k,−−→msg), QumatchNotPk(

−−−−−−−−→
Xmk+(j+1),k,−−→msg), . . . , QumatchNotPk(

−−−−−−→
Xmk+nk,k,−−→msg),

. . . , QumatchPt′(
−−→
X1,t′ ,

−−→msg), . . . , QumatchNotPt′(
−−−−−−−→
Xmt′+nt′ ,t′ ,

−−→msg),
−−−→
Xi,k′ 6=

−−−−−−→
Xm

k
′+j,k′ , i ∈ [1,mk′], j ∈ [1, nk′], k

′ ∈ [1, t′], c.

QumatchNotPk(
−→
Xi,

−−→msg): −pesQ1(
−→
Y1), . . . ,¬optQv(

−→
Yv), QumatchP1(

−−→
X1,1,

−−→msg), . . . , QumatchP1(
−−−→
Xma,1,

−−→msg),

. . . , QumatchPk(
−−→
X1,k,−−→msg), . . . , QumatchPk(

−−−−→
Xi−1,k,−−→msg), QumatchPk(

−−−−→
Xi+1,k,−−→msg), . . . ,

QumatchPk(
−−−−→
Xmk,k,−−→msg), QumatchNotPk(

−−−−−→
Xmk+1,k,−−→msg), . . . , QumatchNotPk(

−−−−−−→
Xmk+nk,k,−−→msg), . . . ,

QumatchPt′(
−−→
X1,t′ ,

−−→msg), . . . , QumatchNotPt′(
−−−−−−−→
Xmt′+nt′ ,t′ ,

−−→msg),
−−−→
Xi,k′ 6=

−−−−−−→
Xm

k
′+j,k′ , i ∈ [1,mk′], j ∈ [1, nk′], k

′ ∈ [1, t′], c.

optQu(
−→
Yu): −optQ1(

−→
Y1), . . . ,¬pesQv(

−→
Yv),

−−−→
Xi,k′ 6=

−−−−−−→
Xm

k
′+j,k′ , i ∈ [1,mk′], j ∈ [1, nk′], k

′ ∈ [1, t′], c.

Fig. 1: Transformation algorithm

It must be noted that the algorithm, as presented, does not include the details of how transformed and non
transformed rules are linked. Suppose there is a predicateQ(−→x) in the body of a transformed clause that does
not use any sensitive literals. The transformation still renames it aspesQ(−→x) whenever it is used positively, and
optQ(−→x) when it is used negatively. However, the transformed versions of the definition ofQ(−→x) are not created
since it does not use any sensitive predicates in the body. Hence we add two rules for each such predicate, which are,
pesQ(−→x) ← Q(−→x) andoptQ(−→x) ← Q(−→x). In example 3 we present a concrete example of this transformation.

Example 3. Pessimistic and optimistic transformations.
Consider theΠR definition of predicate trusted(x,. . .,z) that uses non sensitive predicates professor(Profile), student(Profile)
and bonded(B, minValue) and private predicate blacklist(XFrom) defined inΠD:

trusted(−→x) ← professor(XFrom)

trusted(−→x) ← student(XFrom),¬blacklist(XFrom)

trusted(−→x) ← blacklist(XFrom), bonded(XX-Bnd, 5)

The optimistic and pessimistic forms of the predicate trusted inΠsuf are as follows. For simplicity we retain the names of
other predicates (i.e., student, professor, bonded are unchanged), however, in reality, their pessimistic and optimistic versions
coincide. Also, we use trustedMB symbol for trustedMatchBlacklist and trustedMNB for trustedMatchNotBlacklist predicate

9

due to space constraints:

pesTrusted(−→x) ← professor(XFrom)

pesTrusted(−→x) ← trustedMB(−→y1),

trustedMNB(−→y2)

trustedMB(−→y1) ← student(XFrom)

trustedMNB(−→y2) ← bonded(XX-Bnd, 5)

optTrusted(−→x) ← student(XFrom)

optTrusted(−→x) ← bonded(XX-Bnd, 5)

1) Necessary Policy

Intuitively, the necessary policy,Πnec, strips away sensitive predicates from the original policy. The basic idea
is to generate a policy where satisfaction requirements are in terms of non-sensitive literals, while assuming the
best possible scenario with respect to the definition of sensitive predicates. This aim is achieved by the following
definition of top-level accept predicate (acceptnec(−−→msg) for clarity) and while example 4 illustrates the basic idea:

acceptnec(−→m) ← optAllow(−→m),¬pesDisallow(−→m)

Example 4. [Illustration of necessary policy] Consider a rulesetΠR where B1 and B2 are a list of positive literals with no
literal belonging toP. Hence their ‘opt’ and ‘pes’ versions coincide. Also, p∈ P

allow(−−→msg) ← B1, p(X) (1)

allow(−−→msg) ← B2,¬p(X) (2)

Applying the necessary transformation we get:

acceptnec(−→m) ← optAllow(−→m),¬pesDisallow(−→m)

optAllow(−→m) ← B1

optAllow(−→m) ← B2

By unfolding and completing the definition of acceptnec we get (−→y1 and−→y2 are free variables in B1 and B2 respectively)

∀−→m acceptω∗nec(
−→m) ↔ ∃−→y1 B1 ∨ ∃−→y2 B2

This policy accepts messages depending upon the clauses of the original policy, with the change that sensitive predicate is
dropped from rules 1,2

2) Sufficient Policy

The basic idea behind this transformation is to syntactically match the uses of sensitive literals in the body of
rules withallow head,e.g., usepesAllow(−→m) in place of allow(−→m). In other words, we wish toresolve awaythe
uses of sensitive literals, akin to the predicate elimination strategy proposed by Reiter [20]. The following top-level
predicate accept (acceptsuf for clarity) achieves this aim:

acceptsuf (−→m) ← pesAllow(−→m),¬optDisallow(−→m)

Example 5 (Illustration of sufficient policy). Consider the ruleset given by rules 1 and 2. The sufficient transformation of
rules yields the following ruleset

acceptsuf (−→m) ← pesAllow(−→m),¬optDisallow(−→m)

pesAllow(−→m) ← matchP (X),matchNotP (X)

matchP (X,−→m) ← B1

matchNotP (X,−→m) ← B2

By unfolding and completing the definition of acceptsuf we get

∀−→m acceptω∗suf (−→m) ↔ ∃−→y1,
−→y2 B1, B2

This policy accepts messages that simultaneously satisfy the bodies of clauses 1 and 2, with private predicate stripped off from
the rules.

10

B. Syntactic Properties

The syntactic properties of necessary and sufficient policies essentially state that the predicates identified as
private in the original policy do not occur in transformed policies. These follow in a straightforward manner from
the transformation algorithm.

Lemma VI.1. Given P⊆ P such that ifpi ∈ P and pi ∝ ΠR then pi 6∝ Πnec (resp. Πsuf) whereΠnec (resp.
Πsuf) is necessary (resp. sufficient) transformation ofΠR. ¤

Corollary VI.2. Given P⊆ P such that ifpi ∈ P and pi ∝ ΠR thenpω∗ or p do not occur inΠω∗
nec (resp.Π∗suf).

¤

C. Semantic Properties

To prove how evaluation ofΠnec and Πsuf instead ofΠR prevents sensitive leakages, we need to show some
semantic properties of the transformed rulesets. The program corresponding to the original policy is represented
by P, where P =ΠR ∪ΠD ∪M , in which M is a set of message facts,ΠD is the set of private facts andΠR is a
ruleset. We are interested in two forms of P for the purposes of the proof below. The first form is one where we are
interested in satisfaction of clauses inΠR for all definitions of private predicates (Πsuf). The second form is one
where we are interested in satisfaction of the clauses inΠR for some definition of the private predicates (Πnec).
AssumingΠD contains only facts constructed from private predicates, we denote the program corresponding to
Πsuf by PS , wherePS = Πsuf ∪M and the program corresponding toΠnec by PN , wherePN = Πnec ∪M . Both
these programs are independent of the definitions of the sensitive predicates. We give a general relation between
‘optimistic’ and ‘pessimistic’ versions of a literal and the literal in theorem VI.3. Next we proceed to define the
relation between the programmed policyΠR ∪ΠD and the generated policiesΠsuf andΠnec.

a) ‘pesQ’, ‘optQ’ vs. ‘Q’

We begin by relating the satisfaction of ‘pessimistic’ and ‘optimistic’ versions to the satisfaction of the original
predicate. Intuitively, this means that whenever the pessimistic version of a predicate is true, then the original
predicate is also true, irrespective of the truth values of the sensitive predicates. Similarly, ‘optimistic’ version
being satisfied implies that there is a possible definition of private predicates (in the set of program facts,ΠD),
such that the original predicate is satisfied.

Theorem VI.3. Given a program P =ΠR∪ΠD∪M , in whichΠR∪ΠD is a policy that includes sensitive predicates
p1 to pt defined inΠD and M is a set of facts, any literalpesQu(−→y) in the programPS = Πsuf ∪M or PN =
Πnec ∪M , apart from theaccept(−−→msg) atom, is satisfied if and only if for all definitions ofp1, . . . , pt Qu(−→y) is
satisfied in P, andoptQu(−→y) is satisfied if and only if there exists some definition ofp1, . . . , pt such thatQu(−→y)
is satisfied.

Proof sketch: See appendix

b) Relationship betweenΠR, Πsuf and Πnec

We relate the satisfaction of sufficient policy and necessary policy to the satisfaction of original policy. In other
words, we wish to show that the transformation algorithm generates ‘correct’ necessary and sufficient policies.
Informally, just as the result above, the next results essentially state that whenever sufficient policy is satisfied,
the original policy is also satisfied, irrespective of how the facts inΠD are constructed. Similarly, satisfaction of
necessary policy means that there is one such way to define the facts inΠD such that the original policy will be
satisfied. Hence, the relation between theΠsuf andΠR andΠnec andΠR follows from the above theorem.

In each programP , PS andPN , a message is accepted ifc |accept(−−→msg) ∈ T+
P ↑ω, c |acceptsuf (−−→msg) ∈ T+

PS
↑ω

andc |acceptnec(−−→msg) ∈ T+
PN
↑ω respectively. Hence the following corollaries hold.

Corollary VI.4. Given a message M, a policy rulesetΠR, and a set of factsΠD defining private predicates (pk,
k ∈ [1, t]) that occur in ΠR, c |accept(−→m) ∈ T+

P ↑ ω if c |acceptsuf (−→m) ∈ T+
PS
↑ ω.

Proof sketch: The acceptsuf () clause inΠsuf is defined as

acceptsuf (−→m) ← pesAllow(−→m),¬optDisallow(−→m)

11

It follows from theorem VI.3 thatc |pesAllow(−→m) ∈ T+
PS
↑ ω if c | allow(−→m) ∈ T+

P ↑ω for all definitions of private
predicates. Also,c | optDisallow(−→m) ∈ T−PS

↑ ω if and only if c | disAllow(−→m) ∈ T−P ↑ω for some definition,
therefore,c |accept(−→m) ∈ T+

P ↑ω if c |acceptsuf (−→m) ∈ T+
PS
↑ ω ¤

Corollary VI.5. Given a message M, a policy rulesetΠR, and a set of factsΠD defining private predicates (pk,
k ∈ [1, t]) that occur in ΠR, c |acceptsuf (−→m) ∈ T+

PS
↑ ω if c |accept(−→m) ∈ T+

P ↑ ω for all possible definitions of
predicatespk, k ∈ [1, t].

Proof sketch: Follows from theorem VI.3 and the definition of the predicate acceptsuf ¤
Corollary VI.6. Given a message M, a policy rulesetΠR, and a set of factsΠD defining private predicates (pk,
k ∈ [1, t]) that occur in ΠR, c |acceptnec(−→m) ∈ T+

PN
↑ ω if c |accept(−→m) ∈ T+

P ↑ ω.

Proof sketch: The acceptnec() clause inΠnec is defined as

acceptnec(−→m) ← optAllow(−→m),¬pesDisallow(−→m)

It follows from theorem VI.3 thatc | optAllow(−→m) ∈ T+
PN

↑ ω if and only if c | allow(−→m) ∈ T+
P ↑ ω for some

definition of private predicates. Also,c |pesDisallow(−→m) ∈ T−PN
↑ ω if and only if c | allow(−→m) ∈ T−P ↑ ω for

all definitions of private predicates, therefore,c | acceptnec(−→m) ∈ T+
PN
↑ ω if c | accept(−→m) ∈ T+

P ↑ω ¤
c) Semantic proximity of Πsuf and Πnec to the original policy

In this section we wish to show that the transformed policies are semantically closest to the original policy. This
is important because while it may always be possible to generate a ‘safe’ policy which is completely unrelated to
a user’s policy, our transformation algorithm generates ‘safe’ policies that are semantically closest to the original
policy. Informally, we prove below that there is no policy that is safe and semantically closer to the original policy
than our transformed policies.

To achieve the result explained above, we first define a dominance relation for policies with respect to acceptance
of messages by a policy. While keeping a message fixed, the result of different policy applications on that message
gives the following dominance relation:

Definition 18 (Email Policy Dominance Relation).Relation>Π on DΠ × DΠ is said to be the email policy
dominance relation, whereDΠ is the domain of all policies, such that an ordered pair〈ΠX, ΠY 〉 ∈ >Π if and only
if for all messages, M, c|acceptX(−→m) ∈ T+

PX
↑ ω whenever c|acceptY (−→m) ∈ T+

PY
↑ ω, in which PX = ΠX ∪M

and PY = ΠY ∪M . We represent the fact〈ΠX ,ΠY 〉 ∈ >Π by ΠX >Π ΠY .

We say that a policy A entails a policy B whenever A>Π B.

Proposition 1. Policy Dominance Relation onDΠ is a partial order.

Proof: For all policies x, y and z, each of the following hold, and therefore the proof follows:
• x >Π x
• x >Π y ∧ y >Π x → x = y
• x >Π y ∧ y >Π z → x >Π z ¤

Proposition 2. Πsuf >Π ΠR ∪ΠD whereΠsuf is the sufficient transformation ofΠR

Proof: Follows from Corollary VI.5 ¤
Proposition 3. ΠR ∪ΠD >Π Πnec whereΠnec is the necessary transformation ofΠR

Proof: Follows from Corollary VI.6 ¤
Theorem VI.7. Given a policy rulesetΠR and a set of facts,ΠD defining private predicatespk, k ∈ [1, t] that
occur in ΠR and any message M,Πsuf , the sufficient transformation ofΠR, is the least upper bound, under the
policy dominance relation>Π, that entailsΠR ∪ΠD, for all possible definitions of pk, k ∈ [1, t].

Proof sketch: From proposition 2Πsuf >Π ΠR ∪ΠD and from corollary VI.5 if c|acceptsuf (−→m) ∈ T+
PS
↑ ω then

c|accept(−→m) ∈ T+
P ↑ ω for all possible definitions of pk, k ∈ [1, t]. To show thatΠsuf is the least such policy, we

assume otherwise and give the proof by contradiction. Assume there is a policyΠX such thatΠsuf >Π ΠX >Π

12

ΠR ∪ΠD and c|acceptX(−→m) ∈ T+
PX

↑ ω, where PX is the programPX ∪M , entails c|accept(−→m) ∈ T+
P ↑ ω for all

possible definitions of private predicates (where P =ΠR ∪ΠD ∪M).
Consider a message M such that c|acceptX(−→m) ∈ T+

PX
↑ ω, and c|acceptsuf (−→m) 6∈ T+

PS
↑ ω. Due to the

entailment assumption above c|accept(−→m) ∈ T+
P ↑ ω for all possible definitions of the private predicates. But from

corollary VI.5 if c|accept(−→m) ∈ T+
P ↑ ω for all possible definitions of private predicates then c|acceptsuf (−→m) ∈

T+
PS
↑ ω, which contradicts the assumption. ¤

Theorem VI.8. Given a policy rulesetΠR and a set of facts,ΠD defining private predicatespk, k ∈ [1, t] that
occur in ΠR and any message M,Πnec, the necessary transformation ofΠR, is the greatest lower bound, under
the policy dominance relation>Π, that is entailed byΠR ∪ΠD, for some definition of predicates pk, k ∈ [1, t].
Proof sketch:The proof follows from theorem VI.3 and corollary VI.6 following similar arguments as in
theorem VI.7 ¤
D. Protection achieved from transformed policies

Now that we have defined the relation of our transformed policies to the original policy, we are ready to describe
how these transformed policies achieve the security goal that is addressed in this paper. In other words, we wish to
show that the transformed policies are ‘safe’ and they provide the necessary protection against the given attacker
model.

To describe the protection achieved from evaluating transformed policies instead of the original policy, we
compare following three cases of attacker knowledge.

1) Default: The attacker knows or can computeΠω∗
R and generate verifiers,i.e., if the constrained atoms

c|accept(−→m) ∈ T+
P ↑ ω or T−P ↑ ω for different m.

2) Knowledge of transformations: The attacker is only allowed to know the transformed policy completions
Πω∗

nec andΠω∗
suf and can generate the verifiers – c|acceptnec(

−→m) and c|acceptsuf (−→m) for different m.
3) Original ruleset with Πnec, Πsuf verifiers: Attacker can computeΠω∗

R but only generate the verifiers –
c|acceptsuf (−→m), c|acceptnec(

−→m) for different m.
In each case, the attacker may know either the original ruleset or the transformed rules (Πnec and Πsuf).

Depending upon which policies are used to evaluate message acceptance, the corresponding verifiers are generated.
Hence, in the default case original policy is used to evaluate messages, whereas in the other two cases the transformed
policies are evaluated. We give informal proofs for the following theorems.

Theorem VI.9. It is possible to verify a guess through guessing attacks if the attacker knowsΠR that includes
leaky predicates and messages Mi, i > 0 are accepted by the programΠR ∪ΠD ∪Mi

Proof Sketch: Because evaluations are carried out usingΠR ∪ ΠD ∪ Mi, leaky predicates will make available
verifiers c|accept(−→m) to the attacker. Since the attacker can computeΠω∗

R , she can generate a sequence of messages
to verify her guess. ¤
Theorem VI.10. If the attacker knowsΠω∗

suf (resp.Πω∗
nec) and acceptance of messages is decided by evaluation of

Πsuf ∪ΠD ∪Mi (resp.Πnec ∪ΠD ∪Mi), then it is not possible to verify that g∈ ext(p), where p∈ P and ext(p)
is its extension

Proof Sketch: Since private predicates defined inΠD do not occur in rulesetsΠnec andΠsuf , therefore, they don’t
occur inΠω∗

suf andΠω∗
nec. Therefore, with the setsΠω∗

suf andΠω∗
nec, the attacker doesn’t have enough information to

construct the definition of predicates inRA from policy rulesets, and acceptance verifiers. ¤
Theorem VI.11. If the attacker knowsΠR and acceptance of messages is decided by evaluation ofΠsuf ∪ΠD∪Mi

(resp.Πnec ∪ΠD ∪Mi), then it is not possible to verify that g∈ ext(p), where p∈ P and ext(p) is its extension

Proof Sketch: With ΠR the attacker can construct rules that define a predicate p′ (∈ RA) such that ext(p′) ⊆ ext(p).
However, these rules require verifiers generated from evaluation of theΠR ∪ΠD ∪M . Since p6∝ Πsuf ∪M (and
p 6∝ Πnec ∪M), therefore, verifiers generated from the evaluation of this program is exactly the same for both the
cases:

1) g ∈ ext(p)
2) g 6∈ ext(p)

Hence, the attacker does not get back the required verifiers to verify her guess. ¤

13

VII. Related Work

Cryptanalysis of private-key cryptosystems through statistical attacks, like correlation attacks [15], aim to
determine the statistical relationship between outputs and inputs of cryptographic transformations. Zhang, Tavares
et al. [25] describe a zero information leakage between the change of output(s) and prescribed change patterns in
the inputs for protecting against correlation attacks. Our approach resembles this information theoretic model of
protection against information leakage, however, we describe how correlation-like attacks can be mounted against
sets of Horn clauses and present a transformation that can prevent against such attacks.

Our transformation procedure resembles the predicate elimination strategy, a complete resolution proof strategy
for multi-predicate formulas, proposed by Reiter [20]. Essentially, this strategy involves rewriting the theory with a
predicate P ‘resolved away’. Subsequently, a set of unsatisfiable P-independent clauses can be derived if the original
set of clauses were unsatisfiable. In our approach, we propose a strategy for ‘resolving away’ the private predicates
in a given set of rules. However, our aim here is not to detect unsatisfiability. Instead, we construct new clauses
that do not leak any discernible information to guessing attacks.

The third closely related work is of Delaune and Jacquemard [4], who give a theory of dictionary attacks against
cryptographic protocols. In their work, they claim that if the set of possible values of the input is finite (and small),
then a dictionary attack (guessing attack) is only PTIME complex. They go on to give a theory of dictionary attack
by extending the classic Dolev-Yao intruder model for statistical inferences. In our work, we adopt their attack
model, and even though we require the attacker to be able to handle a greater degree of computational complexity,
the basis of launching attacks remains the same.

Relational databases have mature techniques for both access control and inference control. Access control protects
direct access to sensitive information. In our case, we assume that this is possible by policy specification and
enforcement. Inference control has been extensively studied in statistical databases and census data [5], [24], [1].
These approaches can be classified intorestriction-based, or restricting queries, orperturbation-based, i.e., addition
of random noises to source data. Our approach is closer to the restriction based techniques.

In restriction based inference control schemes, one of the concerns is of an attacker deriving protected information
through aggregation of separate queries. In other words, the protected information cannot be queried directly, but
deducible from the results of other queries. In the email domain, a query can be replaced by a message, and the
result of a query by a yes or no decision (i.e., accept or a reject). Even with a boolean response, attackers can
deduce relevant information. This is the reason why we claim that inference attacks are easier to construct. Similar
to their response, we transform the evaluation policies, and thus reduce attacker’s capabilities to run some queries.

In summary, we have applied a well-studied problem to the context of email messages and showed that important
information can be lost due to the current email delivery protocols and deployed mechanisms. Solutions applied
to other domains are not directly applicable to our domain, and therefore we provide a custom solution based on
program transformations, using ideas developed by researchers who have studied similar problems in other domains.

VIII. Conclusion and Future Work

In this paper we have identified an undesirable side effect of combining different email-control mechanisms,
namely, the leakage of sensitive information. Even though confidentiality of sensitive information has been widely
studied as a research problem, it assumes a different form in the email context, because of the ease with which
sensitive information is leaked. We provide example scenarios where leakage is made possible in two ways –
using the message delivery protocol itself and using leakage channels beyond the mail delivery protocol. Based
on how these leakages may be used by an attacker, we categorize them into two classes – automatic generation
of acknowledgement receipts for validating an email address and automatic generation of acknowledgments for
inferring private information about the recipient. As leakage channels beyond the control of the delivery protocol
can’t be closed by modifying email delivery protocol alone, preventing leakages is hard to achieve. In particular,
we investigate in detail the second class of attacks where a victim’s sensitive information is leaked.

As opposed to the classical Dolev-Yao attacker, we define a new attacker model and an attack technique. In the
worst case scenario, we assume that the attacker knows recipient’s mail acceptance criteria, but not the sensitive
information maintained by the recipient. With the abilities of computing Clark completion of normal Horn clauses,
unfold/fold transformations and generating messages, the attacker can mount attacks such that sensitive information
is leaked. As a solution, we provide an algorithmic transformation which can sanitize the combination of email-
control mechanisms, so that the leakage is plugged. We also show that the transformed policies that we generate

14

are ‘closest’ semantically to the original policy.
Here, we are not so concerned with feedback obtained from out of band channels, like recipient informing the

sender through a telephone conversation. There is little we can hope to do about such signals, and their bandwidth
is typically low. What we do aim to provide is a guarantee that the system itself will not signal whether message
acceptance depended upon private information maintained at the recipient’s end. It is possible to construct a hierarchy
of mechanisms to control email delivery [8], where our transformation can be supported through message evaluation
at different levels. For example, if all recipients in an email domain use the same sensitive predicate, then that
predicate can be pushed upstream, making it a global acceptance criteria, thereby reducing it’s sensitivity. In our
ongoing work, we are studying such techniques to enhance our methodology.

References

[1] N. R. Adam and J. C. Worthmann. Security-control methods for statistical databases: a comparative study.ACM Computing Surveys,
21(4):515–556, 1989.

[2] R. Clayton. Stopping spam by extrusion detection. InCEAS 2004: First Conference on Email and Anti-Spam, Oakland, July 2004.
[3] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive power of logic programming.ACM Computing Surveys,

33(3):374–425, 2001.
[4] S. Delaune and F. Jacquemard. A theory of dictionary attacks and its complexity. InProceedings of the 17th IEEE Computer Security

Foundations Workshop (CSFW’04), pages 2–15, 2004.
[5] D. E. Denning and J. Schlrer. Inference control for statistical databases.IEEE Computer, 16(7):69–82, 1983.
[6] D. Dolev and A. Yao. On the security of public-key protocols.IEEE Transaction on Information Theory, 29:198–208, 1983.
[7] F. Fages. Constructive negation by pruning.Journal of Logic Programming, 32/2, 1997.
[8] S. Kaushik, P. Ammann, D. Wijesekera, W. Winsborough, and R. Ritchey. A policy driven approach to email services. InIEEE 5th

International Workshop on Policies for Distributed Systems and Networks, New York, June 2004.
[9] S. Kaushik, D. Wijesekera, W. Winsborough, and P. Ammann. Distributed CLP clusters as a security policy framework for email. In

1st international workshop on Applications of constraint satisfaction and programming to computer security (CPSec), pages 31–45,
Barcelona, Spain, October 2005.

[10] S. Kaushik, W. Winsborough, D. Wijesekera, and P. Ammann. Email feedback: A policy-based approach to overcoming false positives.
In 3rd ACM Workshop on Formal Methods in Security Engineering: From Specifications to Code (FMSE 2005), pages 73–82, Fairfax,
VA, November 2005.

[11] R. E. Kraut, S. Sunder, J. Morris, R. Telang, D. Filer, and M. Cronin. Markets for attention: Will postage for email help? InCSCW’03:
Computer Supported Cooperative Work, pages 2006–215, New York, 2003. ACM Press.

[12] B. Leiba and N. Borenstein. A multifaceted approach to spam reduction. InCEAS 2004: First Conference on Email and Anti-Spam,
Oakland, July 2004.

[13] K. Li, C. Pu, and M. Ahamad. Resisting spam delivery by tcp damping. InCEAS 2004: First Conference on Email and Anti-Spam,
Oakland, July 2004.

[14] T. Loder, M. V. Alstyne, and R. Wash. An economic solution to the spam problem. InACM E-Commerce, 2004.
[15] W. Meier and O. Staffelbach. Fast correlation attacks on certain stream ciphers.Journal of Cryptology, 1(3):159–176, 1989.
[16] Microsoft’s Penny Black Project. http://research.microsoft.com/research/sv/PennyBlack/.
[17] M. Naor. Verification of a human in the loop or identification via the turing test. http://www.wisdom.weizmann.ac.il/ñaor/

PAPERS/humanabs.html, 1996.
[18] S. Petry. Port 25: The gaping hole in the firewall. InProceedings of ACSAC’02 Annual Computer Security Applications Conference,

Dec 2002.
[19] C. Pfleeger and S. Pfleeger.Security in Computing. Prentice Hall, third edition, 2003.
[20] R. Reiter. The predicate elimination strategy in theorem proving. InProceedings of the second annual ACM symposium on Theory of

computing, pages 180–183, Northampton, Massachusetts, 1970.
[21] Simple Mail Transfer Protocol. RFC 2821, Apr 2001.
[22] H. Tamaki and T. Sato. Unfold/fold transformation of logic programs. In S.-A. Tarnlund, editor,Proceedings of the Second International

Conference on Logic Programming, pages 127–138, Uppsala, 1984.
[23] B. Templeton. E-Stamps. http://www.templetons.com/brad/spam/ estamps.html.
[24] L. Willenborg and T. de Waal.Statistical disclosure control in practice. Springer Verlag, New York, 1996.
[25] M. Zhang, S. Tavares, and L. Campbell. Information leakage of boolean functions and its relationship to other cryptographic criteria.

In Proceedings of the 2nd ACM Conference on Computer and Communications Security (CCS’94), pages 156–165, Fairfax, 1994.

Appendix

Proof Sketch of theorem VI.3:

In all the three programs, a literalQ(−→y) can be proven ifc |Q(−→y) ∈ T+
P ↑ω. Since bothPS andPN have exactly

similar definitions of all the literals except theaccept(−−→msg) atom, hence, in the rest of the proof, we only show
the result forPS , and the same result forPN is implied.

(⇒) We show thepesQu(−→y) part of the proof by induction on the steps ofTPS
construction. The induction

hypothesis has four parts. First part states that givenc | pk(−→x) ∈ T−P ↑ α, c | Qu matchPk(−→x ,−−→msg) ∈ T+
PS
↑ α

15

entails c | Qu(−→x) ∈ T+
P ↑β for some β. Similarly, it states that givenc | pk(−→x) ∈ T+

P ↑ α, c | Qu

matchNotPk(−→x ,−−→msg) ∈ T+
PS

↑ α entails c | Qu(−→x) ∈ T+
P ↑ β for some β. The third part states that

c | optQu(−→x) ∈ T−PS
↑ α entails c | Qu(−→x) ∈↑ β for someβ and the fourth part states thatc | pesQu(−→x)

in T+
PS
↑ α entailsc | Qu(−→x) ∈ T+

P ↑ β.
For the base case,T+

PS
↑ 0 = ∅, and the hypothesis trivially holds. For the successor ordinals, we

assume that the hypothesis holds, hence the atoms added in the stepα, i.e., c | QumatchPk(−→x ,−−→msg), c |
QumatchNotPk(−→x ,−−→msg), c | pesQu(−→x) and c | optQu(−→x) ∈ T+

PS
↑ α. Next considerT+

PS
↑ α+1. We

wish to show that the induction hypothesis holds for this step as well. First consider the general form of a
QumatchPk(−→x ,−−→msg)θ atom that is added in this step:QumatchPk(

−−−−→
xk

mk+j ,
−−→msg) ← pesQ1(−→y1), . . .,

pesQo(−→yo), ¬optQo+1(−−→yo+1), . . ., ¬optQo+s(−−→yo+s),
QumatchP1(−−→x1,1,

−−→msg), . . .,
QumatchPk(−−−→xmk,k,−−→msg),
QumatchNotPk(−−−−−→xmk+1,k,−−→msg), . . .,
QumatchNotPk(−−−−−−−−→xmk+(j−1),k,−−→msg),
QumatchNotPk(−−−−−−−−→xmk+(j+1),k,−−→msg), . . .,
QumatchNotPt(−−−−−→xmt+nt,t,

−−→msg), −−→xi,k′ 6= −−−−−→xm
′
k+j,k′ ,

i ∈ [1, m
′
k], j ∈ [1,n

′
k], k

′ ∈[1,t], c.

The above clause is derived from the following clause inΠ: Qu(−→x) ← Q1(−→y1),. . ., Qo(−→yo), ¬Qo+1(−−→yo+1),. . .,
¬Qo+s(−−→yo+s), p1(−−→x1,1),. . ., p1(−−−→xm1,1), ¬p1(−−−−−→xm1+1,1),
. . .,¬p1(−−−−−−→xm1+n1,1), . . ., pk(−−→x1,k),. . .,pk(−−−→xmk,k),
¬pk(−−−−−→xmk+1,k),. . .,¬pk(−−−−−−→xmk+nk,k),. . ., pt(−−→x1,t),
. . .,pt(−−−→xmt,t),¬pt(−−−−→xmt+1,t),. . .,¬pt(−−−−−→xmt+nt,t), c.

We wish to show that this clause generatesc | Qu(−→x) ∈ T+
P ↑ β for someβ. Since eachpesQ constrained atom

corresponding to the literal in the body ofQumatchPk(−→x ,−−→msg) must be inT+
PS
↑ α and eachoptQ constrained

atom inT−PS
↑ α, by induction hypothesis each c.atom (constrained atom) of positiveQ literal in the body ofQu

clause is inT+
P ↑ γ and each c.atom of negative literal is inT−P ↑ γ (since membership of entails membership of

TP). There are three cases to consider based onΠD. In the first case, if allpk literals in the body ofQu(−→x) evaluate
to true, thenc | Qu(−→x) ∈ T+

P ↑ γ +1 since the rest of the literals allow such a deduction, as shown in the bottom-
up semantics presented earlier. In the second case, ifsomec |pk(−→xi,k) ∈ T−P ↑γ, i.e., if some sensitive literal used
positively inQu(−→x) definition is inT−P , then the corresponding constrained atomc |QumatchPk(−→xi,k,

−−→msg), which
must be inT+

PS
↑α, entailsc |Qu(−→x) ∈ T+

P ↑γ + 1 due to the induction hypothesis. Similarly, in the third case, if
somenegatively used literalsc |pk(−−−−−→xmk+j,k) ∈ T+

P ↑γ+1, then the correspondingc |QumatchNotPk(−−−−−→xmk+j,k,
−−→msg)

constrained atom inT+
PS
↑γ entailsc |Qu(−→x) ∈ T+

P ↑β. Therefore, in every case it can be shown thatc |Qu(−→x) ∈
T+

P ↑β.
It is straightforward to see that the second part of the induction hypothesis can be shown for

c |QumatchNotPk(−→x ,−−→msg) constrained atom added inT+
PS

under the assumption thatc |pk(−→x) ∈ T+
P ↑γ based

on the proof of the first part. We show the fourth part of the induction hypothesis next. As everypesQ literal is
defined aspesQu(−→x) ← QumatchPk(−→x ,−−→msg), QumatchNotPk(−→x ,−−→msg) therefore,c |pesQu(−→x) in TPS

↑α+1
implies c |Qu(−→x) in T+

P ↑γ.
Lastly, we need to show the third part of the induction hypothesis,i.e., c |optQu(−→x) ∈ T−PS

↑α + 1 entails
c |Qu(−→x) ∈ ↑γ. Sincec |optQu(−→x) is in T−PS

↑α + 1, in all its definitions, constrained form of some literal in its
body, by the virtue of its membership ofT−PS

↑α, always prohibitsc |optQu(−→x) literal’s addition toT+
PS
↑α + 1. By

the induction hypothesis, it can be easily shown that either for somek ∈ [1, o], c |Qk(−→xk) ∈ ↑γ or for somek ∈
[o, s], c |Qk(−→xk) ∈ T+

P ↑γ for every clause definingQu(−→x).
For the limit ordinal casec |matchPk(−→x ,−−→msg) ∈ T+

PS
↑α (resp.c |matchNotPk(−→x ,−−→msg), c |pesQu(−→x)) entails

that the c.atomc | matchPk(−→x ,−−→msg) ∈ T+
PS
↑ β (resp.c | matchNotPk(−→x ,−−→msg), c | pesQu(−→x)) for someβ

< α, by construction. Also,c | optQu(−→x) ∈ T−PS
↑ α entails c | optQu(−→x) ∈ T−PS

↑ β for someβ < α, by
construction. The induction hypothesis now applies, giving the desired result.

(⇐) Here we show that ifc |Qu(−→x) ∈ T+
P ↑ω, it entails c |pesQu(−→x) ∈ T+

PS
↑ ω. If there is ac |Qu(−→x) ∈

T+
P ↑ ω that does not contain any private literals in the body, the desired result follows immediately, so we assume

otherwise. Consider any minimal collection ofQu(−→x) clauses inΠ that together can be used to showc |Qu(−→x) ∈

16

T+
P ↑ω. Consider an instancepa(−→x1) of a pk atom occurring in some definition ofQu(−→x) literal in this collection,

say A, such thatc |A ∈ T+
P ↑ω. We claim there must be a clause, say B, in the collection which contains¬pa(−→x1)

such thatc |B ∈ T+
P ↑ω. To see this, we assume otherwise and show that A can be removed from the collection

without interfering with the collection’s ability to prove thatc |Qu(−→x) ∈ T+
P ↑ω. This contradicts the assumption

of minimality. The key observation in this argument is that if in a set of clauses that do not contain the clause with
pa(−→x1) there is no occurrence of the literal¬pa(−→x1), then those clauses showc |Qu(−→x) ∈ T+

PS
↑ ω for all definition

of private predicates such that they makepa(−→x1) false without depending on the truthfulness ofpa(−→x1), and therefore
we get the result for all possibleΠR, i.e., c |Qu(−→x) ∈ T+

P ↑ω. The argument can be easily generalized for a set
of private literalspk occurring inQu(−→x) clause’s body. SincepesQu(−→x) rule in Πsuf is constructed by pairing
correspondingmatchP and matchNotP predicates (i.e., matchPk(−→xk,

−−→msg) and matchNotPk(−→xk,
−−→msg)), it is

straightforward to see that givenc |Qu(−→x) ∈ T+
P ↑ω, it entailsc |pesQu(−→x) ∈ T+

PS
↑ ω. When there are additional

uses ofpk, the argument can be repeated and the recursive definition ofmatch atoms used to show that additional
clauses are incorporated into the derivation inΠsuf .

(⇒) For theoptQu(−→x) part of the proof, we want to show thatc |optQu(−→x) ∈ T+
PS
↑ ω entailsc |Qu(−→y) ∈

↑ω. We again use induction on the steps ofTPS
construction. The induction hypothesis states thatc |optQu(−→x)

∈ T+
PS
↑α entails c |Qu(−→x) ∈ ↑β for someβ. For the base case,TPS

↑0 = ∅, hence the hypothesis is trivially
satisfied. For the successor ordinals, we assume that the hypothesis holds for any atoms added in the stepα, i.e.,
c |optQu(−→x) ∈ T+

PS
↑α entailsc |Qu(−→x) ∈ ↑β, for someβ. Next consider theα + 1 step and anc |optQu(−→x)

added in the this step:
optQu(−→x) ← optQ1(−→y1), . . ., ¬pesQo+s(−−→yo+s), −−→yi,k′ 6=−−−−−−→ym

k
′+j,k′ , i ∈ [1,mk′], j ∈ [1, nk′], k

′ ∈ [1, t′], c.

This clause is derived from the following general clause inΠ: Qu(−→x) ← Q1(−→y1),. . ., Qo(−→yo), ¬Qo+1(−−→yo+1),. . .,
¬Qo+s(−−→yo+s), p1(−−→x1,1),. . ., p1(−−−→xm1,1), ¬p1(−−−−−→xm1+1,1),
. . .,¬p1(−−−−−−→xm1+n1,1), . . ., pk(−−→x1,k),. . .,pk(−−−→xmk,k),
¬pk(−−−−−→xmk+1,k),. . .,¬pk(−−−−−−→xmk+nk,k),. . ., pt(−−→x1,t),
. . .,pt(−−−→xmt,t),¬pt(−−−−→xmt+1,t),. . .,¬pt(−−−−−→xmt+nt,t), c.

As evident from above, all literals used positively (firsto literals) are translated tooptQ in the body ofoptQu(−→x)
and the rests, i.e., those used negatively, are translated to¬pesQ in this clause’s body. Since eachoptQ literal
in the body ofoptQu(−→x) must belong toT+

PS
↑α for it to belong toT+

PS
↑α + 1, using the induction hypothesis, it

can be shown thatc |Q1(−→y1) to c |Qo(−→yo) ∈ ↑γ for someγ. Similarly, the fact thatc |optQu(−→x) ∈ T+
PS
↑α + 1, it

entails that constrained atoms corresponding to eachpesQ literal in its body belong toT−PS
↑α. Consider any one

such atom, sayc |pesQo+j(−→x) ∈ T−PS
↑α. As already shown, this entails thatc |Qo+j(−→x) 6∈ T+

P ↑γ. Hence, for
some definition of private predicates,c |Qo+j(−→x) ∈ ↑γ. Finally, since−−→yi,k′ 6= −−−−−→ym

k
′+j,k′ , i ∈ [1,mk′], j ∈ [1, nk′],

k
′ ∈ [1, t′], for some definition of private predicatespk′(−−→yi,k′)θ ∈ ↑γ andpk′(−−−−−→ym

k
′+j,k′)θ ∈ ↑γ. Hence, aΠD can

be constructed such thatQu(−→x)θ ∈ ↑γ + 1. Similarly, the limit ordinal case can be shown in a straightforward
manner.

(⇐) We show thatc |Qu(−→x) ∈ ↑ω entailsc |optQu(−→x) ∈ T+
PS
↑ ω by reversing the arguments given above.

We again use induction on the steps of construction. The induction hypothesis states thatc |Qu(−→x) ∈ ↑α entails
c |optQu(−→x) ∈ T+

PS
↑β for someβ.

For the base case↑0 = ∅, hence the hypothesis trivially holds. For successor ordinals, we assume that the
hypothesis holds for all atoms added to in the stepα. Next consider the stepα + 1 and ac |Qu(−→x) literal added
in this step, whose general form is as shown above. Sincec |Qu(−→x) ∈ ↑α + 1, each literal used positively in its
body, i.e., the firsto literals c |optQ1(−→y1) to c |optQo(−→yo) can be shown to belong toT+

PS
↑γ, using the induction

hypothesis. Similarly, since the negatively used literals inQu(−→x) must belong to↑α, they cannot be members of
T+

P ↑α and hencec |pesQo+j(−−→yo+j) ∈ T−PS
↑γ for j ∈ [1, s]. Finally, all the sensitive literals used positively,i.e.,

c |pk(−−−→xmk,k) must belong to↑α and each sensitive literal used negatively,i.e., c |pk(−−−−−→xmk+j,k) must belong to↑α
for c |Qu(−→x) ∈ ↑α + 1. Therefore,Xmk+j,k 6= Xmk,k can be easily shown. It is now straightforward to see that
this entailsc |optQu(−→x) ∈ T+

PS
↑γ + 1. Similarly, the limit ordinal case can be shown in a straightforward manner.

¤

