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ABSTRACT
In text mining we often have to handle large document col-
lections. The labeling of such large corpuses of documents
is too expensive and impractical. Thus, there is a need to
develop (unsupervised) clustering techniques for text data,
where the distributions of words can vary significantly from
one category to another.

The vector space model of documents easily leads to a
30000 or more dimensions. In such high dimensionality, the
effectiveness of any distance function that equally uses all
input features is severely compromised. Furthermore, it is
expected that different words may have different degrees of
relevance for a given category of documents, and a single
word may have a different importance across different cate-
gories.

In this paper we first propose a global unsupervised fea-
ture selection approach for text, based on frequent itemset
mining. As a result, each document is represented as a set of
words that co-occur frequently in the given corpus of doc-
uments. We then introduce a locally adaptive clustering
algorithm, designed to estimate (local) word relevance and,
simultaneously, to group the documents.

We present experimental results to demonstrate the fea-
sibility of our approach. Furthermore, the analysis of the
weights credited to terms provide evidence that the identi-
fied keywords can guide the process of label assignment to
clusters. We take into consideration both spam email filter-
ing and general classification datasets. Our analysis of the
distribution of weights in the two cases provides insights on
how the spam problem distinguishes from the general clas-
sification case.

Keywords: Feature selection, feature relevance and weight-
ing, subspace clustering, document categorization, spam emails.

1. INTRODUCTION
The clustering problem concerns the discovery of homoge-

neous groups of data according to a certain similarity mea-
sure. It has been studied extensively in statistics [3], ma-

.

chine learning [7, 21], and database communities [23, 12,
27].

Given a set of multivariate data, (partitional) clustering
finds a partition of the points into clusters such that the
points within a cluster are more similar to each other than
to points in different clusters. The popular K-means or
K-medoids methods compute one representative point per
cluster, and assign each object to the cluster with the clos-
est representative, so that the sum of the squared differences
between the objects and their representatives is minimized.
Finding a set of representative vectors for clouds of multi-
dimensional data is an important issue in data compression,
signal coding, pattern classification, and function approxi-
mation tasks.

Clustering suffers from the curse of dimensionality prob-
lem in high dimensional spaces. In high dimensional spaces,
it is highly likely that, for any given pair of points within the
same cluster, there exist at least a few dimensions on which
the points are far apart from each other. As a consequence,
distance functions that equally use all input features may
not be effective. Furthermore, several clusters may exist in
different subspaces, comprised of different combinations of
features. In many real world problems, in fact, some points
are correlated with respect to a given set of dimensions, and
others are correlated with respect to different dimensions.
Each dimension could be relevant to at least one of the clus-
ters.

In text mining we often have to handle large document
collections (e.g., World Wide Web documents). The labeling
of such large corpuses of documents is too expensive and
impractical. Thus, there is a need to develop (unsupervised)
clustering techniques for text data, where the distributions
of words can vary significantly from one category to another.

The most commonly used representation for documents is
the so called Vector Space Model (VSM), or Bag of Words
(BOWs). Such a word level representation of documents
easily leads to a 30000 or more dimensions. In this high di-
mensionality, the effectiveness of any distance function that
equally uses all input features is severely compromised. Fur-
thermore, one would expect that different words might have
different degrees of relevance for a given category of docu-
ments, and, at the same time, a single word might have a
different importance across different categories. For exam-
ple, the word result may be more important than the word
people to discriminate medical related documents. Similarly,
the word chip is likely to be more important for documents
on electronics than for documents related to medicine. Note
that each word in a selected dictionary might be relevant



for at least one of the categories. Thus, it may not always
be feasible to prune off too many dimensions without incur-
ring a loss of crucial information. A proper feature selection
procedure should operate locally in input space.

In this paper we first propose a global unsupervised fea-
ture selection approach for text, based on frequent itemset
mining. As a result, each document is represented as a bag
of frequent itemsets, that is a set of words that co-occur fre-
quently in the given corpus of documents. This step is ap-
plied initially to documents to reduce the number of features
to a feasible dimensionality for clustering and local weighting
of keywords. We then introduce a locally adaptive clustering
algorithm, designed to estimate (local) word relevance and,
simultaneously, to group the documents. Thus, this method
achieves not only a clustering of the documents, but also
the identification of cluster-dependent keywords. The anal-
ysis of such keywords allows to assign labels to clusters, and
therefore to use the groups as a model for prediction.

1.1 Our Contribution
A preliminary version of this paper appeared in [18]. Here

we present an extended derivation and motivation of our
algorithms, additional experiments, and a thorough analysis
of the results. In particular, the contributions of this paper
are as follows:

1. We introduce an unsupervised feature (word) selection
approach to handle multi-class classification of docu-
ments in absence of labels. The approach is based on
the mining of frequent itemsets.

2. We derive and apply a locally adaptive clustering al-
gorithm for documents. The output of our method is
twofold: it achieves not only a clustering of the docu-
ments, but also the identification of cluster-dependent
keywords via a continuous term-weighting mechanism.

3. The experimental results we present demonstrate the
feasibility of our approach in terms of achieved accu-
racy measured against the ground truth. Furthermore,
the analysis of the weights credited to terms provide
evidence that the identified keywords can guide the
process of label assignment to clusters. Thus, the re-
sulting groups can be used as a model for prediction.

4. We take into consideration both spam email filtering
and general classification datasets. Our analysis of the
distribution of weights in the two cases provides in-
sights and further understanding on the spam email
problem, and how it distinguishes from the general
classification case.

2. RELATED WORK
In [15] the authors discuss a hierarchical document clus-

tering approach using frequent set of words. Their objective
is to construct a hierarchy of documents for browsing at in-
creasing levels of specificity of topics. The algorithm starts
constructing, for each frequent itemset (i.e., set of words) in
the whole document set, an initial cluster of all the docu-
ments that contain this itemset. Then, it proceeds making
the clusters disjoint. To this extent a measure of goodness
of a cluster for a document is used: a cluster is “good” for a
document if there are many frequent items (with respect to

the whole document set) in the document that are also fre-
quent within the cluster. Hence, each document is removed
from all the initial clusters but the one that maximizes this
measure of goodness. This stage gives a disjoint set of clus-
ters, that is used to construct a tree of groups of documents.
The tree is built bottom-up by choosing for each cluster Ck

at a given level the unique parent (cluster) with the largest
similarity score. By merging all documents in Ck into a sin-
gle conceptual document, the similarity score between Ck

and its candidate parents is measured using a criterion sim-
ilar to the measure of goodness of a cluster for a document.

Local dimensionality reduction approaches for the pur-
pose of efficiently indexing high dimensional spaces have
been recently discussed in the database literature [19, 6,
25]. Applying global dimensionality reduction techniques
when data are not globally correlated can cause significant
loss of distance information, resulting in a large number of
false positives and hence a high query cost. The general ap-
proach adopted by the authors is to find local correlations
in the data, and perform dimensionality reduction on the
locally correlated clusters individually. For example, in [6],
the authors first construct spacial clusters in the original in-
put space using a simple tecnique that resembles K-means.
Principal component analysis is then performed on each spa-
tial cluster individually to obtain the principal components.

In general, the efficacy of these methods depends on how
the clustering problem is addressed in the first place in the
original feature space. A potential serious problem with such
techniques is the lack of data to locally perform PCA on each
cluster to derive the principal components. Moreover, for
clustering purposes, the new dimensions may be difficult to
interpret, making it hard to understand clusters in relation
to the original space.

The problem of finding different clusters in different sub-
spaces of the original input space has been addressed in
[2]. The authors use a density based approach to identify
clusters. The algorithm (CLIQUE) proceeds from lower to
higher dimensionality subspaces and discovers dense regions
in each subspace. To approximate the density of the points,
the input space is partitioned into cells by dividing each di-
mension into the same number ξ of equal length intervals.
For a given set of dimensions, the cross product of the cor-
responding intervals (one for each dimension in the set) is
called a unit in the respective subspace. A unit is dense if
the number of points it contains is above a given threshold
τ . Both ξ and τ are parameters defined by the user. The al-
gorithm finds all dense units in each k-dimensional subspace
by building from the dense units of (k−1)-dimensional sub-
spaces, and then connects them to describe the clusters as
union of maximal rectangles.

While the work in [2] successfully introduces a methodol-
ogy for looking at different subspaces for different clusters,
it does not compute a partitioning of the data into disjoint
groups. The reported dense regions largely overlap, since
for a given dense region all its projections on lower dimen-
sionality subspaces are also dense, and they all get reported.
On the other hand, for many applications such as customer
segmentation and trend analysis, a partition of the data is
desirable since it provides a clear interpretability of the re-
sults.

Recently [24], another density-based projective clustering
algorithm (DOC) has been proposed. This approach pur-
sues an optimality criterion defined in terms of density of



each cluster in its corresponding subspace. A Monte Carlo
procedure is then developed to approximate with high prob-
ability an optimal projective cluster.

The work in [11] also addresses the problem of feature
selection to find clusters hidden in high dimensional data.
The authors search through feature subset spaces, evaluat-
ing each subset by first clustering in the corresponding sub-
space, and then evaluating the resulting clusters and feature
subset using the chosen feature selection criterion. The two
feature selection criteria investigated are the scatter sepa-
rability used in discriminant analysis [14], and a maximum
likelihood criterion. A sequential forward greedy strategy
[14] is employed to search through possible feature subsets.
We observe that dimensionality reduction is performed glob-
ally in this case. Therefore, the technique in [11] is expected
to be effective when a data set contains some relevant fea-
tures and some irrelevant (noisy) ones, across all clusters.

The problem of finding different clusters in different sub-
spaces is also addressed in [1]. The proposed algorithm
(PROjected CLUStering) seeks subsets of dimensions such
that the points are closely clustered in the corresponding
spanned subspaces. Both the number of clusters and the
average number of dimensions per cluster are user-defined
parameters. PROCLUS starts with choosing a random set
of medoids, and then progressively improves the quality of
medoids by performing an iterative hill climbing procedure
that discards the ’bad’ medoids from the current set. In
order to find the set of dimensions that matter the most
for each cluster, the algorithm selects the dimensions along
which the points have the smallest average distance from the
current medoid. In contrast to the PROCLUS algorithm,
our method does not require to specify the average number
of dimensions to be kept per cluster. For each cluster, in
fact, all features are taken into consideration, but properly
weighted. The PROCLUS algorithm is more prone to loss
of information if the number of dimensions is not properly
chosen.

In [22] the authors address the problem of feature weight-
ing in K-means clustering. Each data point is represented as
a collection of vectors, with “homogeneous” features within
each measurement space. The objective is to determine one
(global) weight value for each feature space. The optimal-
ity criterion pursued is the minimization of the (Fisher) ra-
tio between the average within-cluster distorsion and the
average between-cluster distorsion. However, the proposed
method does not learn optimal weight values from the data.
Instead, different weight value combinations are ran through
a K-means-like algorithm, and the combination that results
in the lowest Fisher ratio is chosen. We also observe that
the weights are global, in contrast to ours which are local to
each cluster.

Generative approaches have also been developed for lo-
cal dimensionality reduction and clustering. The approach
in [16] makes use of maximum likelihood factor analysis
to model local correlations between features. The result-
ing generative model obeys the distribution of a mixture of
factor analyzers. An expectation-maximization algorithm is
presented for fitting the parameters of the mixture of fac-
tor analyzers. The choice of the number of factor analyzers,
and the number of factors in each analyzer (that drives the
dimensionality reduction) remain an important open issue
for the approach in [16].

The work in [26] extends the single PCA model to a mix-

ture of local linear sub-models to capture nonlinear struc-
ture in the data. A mixture of principal component analyz-
ers model is derived as a solution to a maximum-likelihood
problem. An EM algorithm is formulated to estimate the
parameters.

While the methods in [16, 26], as well as the standard
mixture of Gaussians technique, are generative and para-
metric, our approach can be seen as an attempt to directly
estimate from the data local correlations between features.
Furthermore, both mixture models in [16, 26] inherit the
soft clustering component of the EM update equations. On
the contrary, LAC computes a partitioning of the data into
disjoint groups. As previously mentioned, for many data
mining applications a partition of the data is desirable since
it provides a clear interpretability of the results. We finally
observe that, while mixture of Gaussians models, with ar-
bitrary covariance matrices, could in principle capture local
correlations along any directions, lack of data to locally es-
timate full covariance matrices in high dimensional spaces
is a serious problem in practice.

3. FEATURE SELECTION BASED ON FRE-
QUENT ITEMSETS MINING

In [4] we introduced a feature selection algorithm for text,
based on frequent itemsets mining. Our method (DocMine)
addresses the categorization of documents (without labels)
with an unknown number of classes, with the user inter-
ested in only one of them. This is a common scenario in
information retrieval, such as content-based image retrieval,
web-page classification, and document retrieval.

The method presented in [4] requires multiple sets of doc-
uments to be available (e.g., collections of documents re-
trieved by several search engines as result of a given query),
and makes the assumption that relevant documents are more
frequent in the majority of the sets. By computing the item-
sets (words) that are frequent in the majority of the collec-
tions, it identifies positive features. The documents that
contain the identified words are labeled as positive docu-
ments.

In this work we extend our unsupervised feature selec-
tion approach to handle multi-class classification problems
in absence of labels. We no longer require the existence of
multiple sets of documents.

Given a document, it is possible to associate with it a bag
of words [17, 10, 20]. Specifically, we represent a document
as a binary vector d ∈ <N , in which each entry records if a
particular word stem occurs in the text. The dimensionality
N of d is determined by the number of different terms in
the corpus of documents (size of the dictionary), and each
entry is indexed by a specific term.

Given a sample of unlabeled documents {di} of different
categories, we mine them to find the frequent itemsets that
satisfy a given support level. In principle, the support level is
driven by the target dimensionality of the data (to make the
subsequent clustering step suitable). Each resulting itemset
is a set of words that co-occur frequently in the given corpus
of documents. We consider the union of such frequent items,
and represent each document as a bag of frequent itemsets.
The actual value of the entry is the frequency of the corre-
sponding word in the document. This provides a suitable
representation since it is compact (the level of compactness
being driven by the support), and captures keywords that



co-occur frequently within each category. We observe that
additional spurious (non discriminant) features may be se-
lected by this process (e.g., words that are frequent in docu-
ments across classes). The subsequent locally adaptive clus-
tering algorithm is designed to estimate word relevance and,
simultaneously, to group the documents. Thus, it achieves
not only a clustering of the documents, but also the identifi-
cation of cluster-dependent keywords. The analysis of such
keywords can assist the assignment of labels to clusters, and
therefore the use of groups as a model for prediction.

4. LOCALLY ADAPTIVE CLUSTERING
Here we derive our locally adaptive clustering algorithm.

A preliminary version of this approach appeared in [9].
We define what we call weighted cluster. Consider a set of

points in some space of dimensionality n. A weighted cluster
C is a subset of data points, together with a vector of weights
w = (w1, . . . , wn), such that the points in C are closely
clustered according to the L2 norm distance weighted using
w. The component wj measures the degree of correlation of
points in C along feature j. The problem becomes now how
to estimate the weight vector w for each cluster in the data
set.

In this setting, the concept of cluster is not based only
on points, but also involves a weighted distance metric, i.e.,
clusters are discovered in spaces transformed by w. Each
cluster is associated with its own w, that reflects the cor-
relation of points in the cluster itself. The effect of w is
to transform distances so that the associated cluster is re-
shaped into a dense hypersphere of points separated from
other data.

In traditional clustering, the partition of a set of points
is induced by a set of representative vectors, also called
centroids or centers. The partition induced by discovering
weighted clusters is formally defined as follows.
Definition: Given a set S of D points x in the n-dimensional
Euclidean space, a set of k centers {c1, . . . , ck}, cj ∈ <n,
j = 1, . . . , k, coupled with a set of corresponding weight
vectors {w1, . . . ,wk}, wj ∈ <n, j = 1, . . . , k, partition S
into k sets {S1, . . . , Sk}:

Sj = {x|(
n∑

i=1

wji(xi−cji)
2)1/2 < (

n∑
i=1

wli(xi−cli)
2)1/2,∀l 6= j},

(1)
where wji and cji represent the ith components of vectors
wj and cj respectively (ties are broken randomly).

The set of centers and weights is optimal with respect to
the Euclidean norm, if they minimize the error measure:

E1(C, W ) =

k∑
j=1

n∑
i=1

(wji
1

|Sj |
∑
x∈Sj

(cji − xi)
2) (2)

subject to the constraints
∑

i wji = 1 ∀j. C and W are (n×
k) matrices whose column vectors are cj and wj respectively,
i.e. C = [c1 . . . ck] and W = [w1 . . .wk]. For short, we set

Xji =
1

|Sj |
∑
x∈Sj

(cji − xi)
2,

where |Sj | is the cardinality of set Sj . Xji represents the
average distance from the centroid cj of points in cluster j
along dimension i. The solution

(C∗, W ∗) = argmin(C,W )E1(C, W )

will discover one dimensional clusters: it will put maximal
(i.e., unit) weight on the feature with smallest dispersion
Xji within each cluster j, and zero weight on all other fea-
tures. Our objective, instead, is to finding weighted multi-
dimensional clusters, where the unit weight gets distributed
among all features according to the respective dispersion of
data within each cluster. One way to achieve this goal is
to add the regularization term

∑n
i=1 wjilogwji

1, which rep-
resents the negative entropy of the weight distribution for
each cluster [13]. It penalizes solutions with maximal (unit)
weight on the single feature with smallest dispersion within
each cluster. The resulting error function is

E2(C, W ) =

k∑
j=1

n∑
i=1

(wjiXji + hwjilogwji) (3)

subject to the same constraints
∑

i wji = 1 ∀j. The coef-
ficient h ≥ 0 is a parameter of the procedure; it controls
the strength of the incentive for clustering on more features.
Increasing (decreasing) its value will encourage clusters on
more (less) features. We can solve this constrained opti-
mization problem by introducing the Lagrange multipliers
λj (one for each constraint), and minimizing the resulting
(unconstrained now) error function

E(C, W ) =

k∑
j=1

n∑
i=1

(wjiXji+hwjilogwji)+

k∑
j=1

λj(1−
n∑

i=1

wji)

(4)
For a fixed partition P and fixed cji, we compute the optimal
w∗

ji by setting ∂E
∂wji

= 0 and ∂E
∂λj

= 0. We obtain:

∂E

∂wji
= Xji + hlogwji + h− λj = 0 (5)

∂E

∂λj
= 1−

n∑
i=1

wji = 0 (6)

Solving equation (5) with respect to wji we obtain hlogwji =
−Xji + λj − h. Thus:

wji = exp(−Xji/h + (λj/h)− 1)

= exp(−Xji/h)exp((λj/h)− 1)

=
exp(−Xji/h)

exp(1− λj/h)
.

Substituting this expression in equation (6):

∂E

∂λj
= 1−

n∑
i=1

exp(−Xji/h)

exp(1− λj/h)

= 1− 1

exp(−λj/h)

n∑
i=1

exp((−Xji/h)− 1) = 0.

Solving with respect to λj we obtain

λj = −hlog

n∑
i=1

exp((−Xji/h)− 1).

1Different regularization terms lead to different weighting
schemes.



Thus, the optimal w∗
ji is

w∗
ji =

exp(−Xji/h)

exp(1 + log(
∑n

i=1 exp((−Xji/h)− 1)))

=
exp(−Xji/h)∑n

i=1 exp(−Xji/h)
(7)

For a fixed partition P and fixed wji, we compute the opti-
mal c∗ji by setting ∂E

∂cji
= 0. We obtain:

∂E

∂cji
= wji

1

|Sj |
2

∑
x∈Sj

(cji−xi) =
2wji

|Sj |
(|Sj |cji−

∑
x∈Sj

xi) = 0.

Solving with respect to cji gives

c∗ji =
1

|Sj |
∑
x∈Sj

xi. (8)

Solution (7) puts increased weight on features along which
the dispersion Xji is smaller, within each cluster. The de-
gree of this increase is controlled by the value h. Setting
h = 0, places all weight on the feature i with smallest Xji,
whereas setting h = ∞ forces all features to be given equal
weight for each cluster j. By setting E0(C) = 1

n

∑k
j=1

∑n
i=1 Xji,

we can formulate this result as follows.
Proposition: When h = 0, the error function E2 (3) re-
duces to E1 (2); when h = ∞, the error function E2 reduces
to E0.

4.1 Locally Adaptive Clustering Algorithm
We need to provide a search strategy to find a partition P

that identifies the solution clusters. Our approach progres-
sively improves the quality of initial centroids and weights,
by investigating the space near the centers to estimate the
dimensions that matter the most. Specifically, we proceed
as follows.

We start with well-scattered points in S as the k centroids:
we choose the first centroid at random, and select the oth-
ers so that they are far from one another, and from the first
chosen center. We initially set all weights to 1/n. Given the
initial centroids cj , for j = 1, . . . , k, we compute the corre-
sponding sets Sj as given in the definition above. We then
compute the average distance Xji along each dimension from
the points in Sj to cj . The smaller Xji is, the larger is the
correlation of points along dimension i. We use the value
Xji in an exponential weighting scheme to credit weights
to features (and to clusters), as given in equation (7). The
exponential weighting is more sensitive to changes in local
feature relevance [5] and gives rise to better performance
improvement. Note that the technique is centroid-based be-
cause weightings depend on the centroid. The computed
weights are used to update the sets Sj , and therefore the
centroids’ coordinates as given in equation (8). The proce-
dure is iterated until convergence is reached. The resulting
algorithm, that we call LAC (Locally Adaptive Clustering),
is summarized in the following.

Input: D points x ∈ Rn, k, and h.

1. Start with k initial centroids c1, c2, . . . , ck;

2. Set wji = 1/n, for each centroid cj , j = 1, . . . , k and
each feature i = 1, . . . , n;

3. For each centroid cj , and for each point x:

• Set Sj = {x|j = arg minl Lw(cl,x)},
where Lw(cl,x) = (

∑n
i=1 wli(cli − xi)

2)1/2;

4. Compute new weights.
For each centroid cj , and for each feature i:

• Set Xji =
∑

x∈Sj
(cji − xi)

2/|Sj |;

Set wji =
exp(−Xji/h)∑n

l=1 exp(−Xjl/h)
;

5. For each centroid cj , and for each point x:

• Recompute Sj = {x|j = arg minl Lw(cl,x)};

6. Compute new centroids.

Set cj =

∑
x x1Sj

(x)∑
x 1Sj

(x)
, for each j = 1, . . . , k, where 1S(.)

is the indicator function of set S;

7. Iterate 3,4,5,6 until convergence.

The sequential structure of the LAC algorithm is analogous
to the mathematics of the EM algorithm [8]. The hidden
variables are the assignments of the points to the centroids.
Step 3 constitutes the E step: it finds the values of the
hidden variables Sj given the previous values of the param-
eters wji and cji. The following step (M step) consists in
finding new matrices of weights and centroids that minimize
the error function with respect to the current estimation of
hidden variables. It can be shown that the LAC algorithm
converges to a local minimum of the error function (4). The
running time of one iteration is O(kDn).

5. SUBSPACE CLUSTERING FOR TEXT
Our overall approach consists of the following steps:

1. Preprocess the documents by eliminating stop and rare
words, and by stemming words to their root source;

2. Apply our global unsupervised feature selection ap-
proach based on frequent itemset mining. As a result,
we obtain documents represented as bag of frequent
itemsets;

3. Apply our locally adaptive clustering algorithm to es-
timate local word relevance and, simultaneously, to
group documents. As a result, we obtain a cluster-
ing of the documents, and the identification of cluster-
dependent keywords.

6. EXPERIMENTAL RESULTS

6.1 Datasets and Preprocessing
In our experiments we used the following datasets.

Email-1431. This email dataset consists of 1431 emails,
falling into three categories. The categories are: conference
(370), jobs (272), and spam (789). This dataset is created
by Finn Aarup Nielsen. The original size of the dictionary is
38713. We run two different experiments with this dataset.
In one case we consider a 2-class classification problem by
merging the conference and jobs mails into one group (non-
spam). In the second case we keep the three categories sep-
arate.
Ling-Spam. This dataset is a mixture of spam messages
(453) and messages (561) sent via the linguist list, a moder-
ated (hence, spam-free) list about the profession and science
of linguistics. The original size of the dictionary is 24627.



Table 1: Results for Email-1431 (Spam (789) - Non
Spam (642))

S N n D Ave Err Min Err K-means
5% 9210 791 1431 2.0 ± 0.3 1.7 45.0
7% 9210 519 1431 2.0 ± 0.5 1.3 45.0
10% 9210 285 1431 2.0 ± 0.4 1.5 45.0

20 Newsgroups. This dataset is a collection of 20,000 mes-
sages collected from 20 different netnews newsgroups. One
thousand messages from each of the twenty newsgroups were
chosen at random and partitioned by newsgroup name. In
our experiments we consider the following categories: Med-
ical (990), Electronics (981), Autos (990), and Space (987).
We consider two 2-class classification problems: (1) electron-
ics and medical classes (the original size of the dictionary in
this case is 24546); (2) autos and space classes (the original
size of the dictionary in this case is 22820).
Classic3. This dataset is a collection of abstracts from
three categories: MEDLINE (1033 abstracts from medical
journals), CISI (1460 abstracts from IR papers); CRAN-
FIELD (1399 abstracts from aerodynamics papers). (We
used a preprocessed version of this dataset with N = 4836.)

The documents in each dataset were preprocessed by elim-
inating stop words (based on a stop words list), and stem-
ming words to their root source. In addition, rare words that
appeared in less than four documents were also removed. Af-
ter the initial global feature selection step, we use as feature
values for the vector space model the relative frequency of
the selected words (frequent itemsets) in the corresponding
document.

6.2 Results
Tables 1-6 report the results we obtained for the six prob-

lems under consideration. Each table includes: the support
values tested (S), the dimensionality of the data after the
preprocessing step (N), the dimensionality of the data after
feature selection based on frequent itemset mining (n), the
total number of documents (D) (as well as the number of
documents per class), the average error rate computed over
nine runs of LAC for 1/h = 1, . . . , 9 (along with the standard
deviations), the minimum error rate over such nine runs,
and (as baseline comparison) the error rate of K-means. Er-
ror rates are computed according to the confusion matrices
based on the ground truth labels.

For increasing support values, and therefore decreasing
number of selected features, we can observe an increasing
trend for the minimum error rates. Increasing support val-
ues do not always result in increasing average error rates,
due to the fluctuations of the error with respect to differ-
ent h values. Figures 1-6 show the error rates as a function
of the h parameter values given in input to the LAC algo-
rithm (for the different support values tested). In general,
lower error rates were achieved for larger h values, which
favor multi-dimensional clusters. As expected, the optimal
dimensionality depends on the dataset. Particularly low er-
ror rates are achieved for the three problems on spam emails,
and for a wide range of dimensionalities. K-means often fails
to detect any structure in the data, and provides error rates
close or above 45%. It performs better on the Newsgroups
and Classic3 datasets for lower dimensionalities.

6.3 Analysis of Weights

Table 2: Results for Email-1431 (Spam (789) - Con-
ference (370) - Job (272))

S N n D Ave Err Min Err K-means
5% 9210 791 1431 10.8 ± 7.8 4.0 44.9
7% 9210 519 1431 15.9 ± 6.4 7.0 44.9
10% 9210 285 1431 15.0 ± 5.8 8.8 44.9

Table 3: Results for Ling-Spam (Spam (453) - Non
Spam (561))

S N n D Ave Err Min Err K-means
5% 5456 553 1014 6.4 ± 1.5 4.6 44.6
6% 5456 439 1014 6.7 ± 1.2 4.6 44.6
7% 5456 350 1014 12.2 ± 12.1 5.2 44.6
8% 5456 287 1014 5.5 ± 0.9 4.0 44.6
9% 5456 227 1014 10.8 ± 12.7 5.5 44.5
10% 5456 185 1014 6.6 ± 0.6 5.3 44.5

Table 4: Results for NewsGroups (Electronic (981)
- Medical (990))

S N n D Ave Err Min Err K-means
1% 6217 1359 1971 11.5 ± 2.4 9.5 49.6
2% 6217 583 1971 18.1 ± 11.8 13.5 49.7
3% 6217 321 1971 21.0 ± 9.5 16.8 49.6
4% 6217 201 1971 21.8 ± 0.4 20.8 49.7
5% 6217 134 1971 29.1 ± 7.5 23.3 49.6

Table 5: Results for NewsGroups (Autos (990) -
Space (987))

S N n D Ave Err Min Err K-means
1% 6219 1349 1977 30.6 ± 11.3 14.2 48.4
2% 6219 631 1977 19.8 ± 2.9 14.6 21.2
3% 6219 366 1977 20.6 ± 3.2 15.9 12.0
4% 6219 248 1977 20.1 ± 1.0 18.2 32.7
5% 6219 166 1977 23.7 ± 2.9 18.4 17.7

Table 6: Results for Classic3 (Medline (1033) -
Cranfield (1399) - Cisi (1460))

S N n D Ave Err Min Err K-means
1% 4836 974 3892 20.6 ± 11.4 4.0 23.4
2% 4836 584 3892 11.8 ± 7.3 5.9 25.0
3% 4836 395 3892 25.1 ± 9.7 7.6 28.6
4% 4836 277 3892 23.7 ± 10.4 9.0 29.2
5% 4836 219 3892 21.2 ± 10.6 10.9 29.6



The analysis of the weights credited to words provides
some insights on the nature of the spam email filtering prob-
lem and the general classification case. As Figures 7-12
show, the selected keywords (and in particular those that
receive largest weight values) are representative of the un-
derlying categories, which provides evidence that our global
feature selection method successfully retains discriminant
words. In addition, our subspace clustering technique is
capable of further sifting the most relevant ones, while dis-
carding the additional spurious words.

Let us consider the distribution of weights obtained for
the Email-1431 dataset. Figure 7 shows the weight values
and corresponding keywords for the two class case (the non-
spam class corresponds to both conference and jobs emails).
Here we plot the top words that received highest weight for
each class. We observe that words reflecting the topic of
a category receive a larger weight in the other class. For
example, the words “free”, “money”, “sales”, “marketing”,
and “order” get a larger weight in the non-spam class (their
weights in the spam category are very close to zero, which
cause the corresponding bar not to show up in the plot).
Similarly, the words “conference”, “applications”, “papers”,
“science”, “committee”, “institute”, “neuroscience”, etc re-
ceive larger weights within the spam category. The weights
for these words in the non-spam class are very close to zero.
While surprising at first, this trend may be due to the na-
ture of the spam and non-spam email distributions. Each of
these two categories is actually a combination of subclasses.
The non-spam class in this case is the union of conference
and jobs emails (by construction). Likewise, the spam mes-
sages can be very different in nature, and therefore different
in their word content. As a consequence, the dispersion of
feature values for words reflecting the general topic of a cat-
egory is larger within the same category than in the other
one (e.g., the word money has a wider range of relative fre-
quency values within the class spam than within the class
non-spam). Since the weights computed by the LAC algo-
rithm are inversely proportional to a measure of such spread
of values (i.e., Xji), we obtain the trend shown in Figure 7.
This analysis can be interpreted as the fact that the ab-
sence of a certain term is a characteristic shared across the
emails of a given category; whereas the presence of certain
keywords shows a larger variability across emails of a given
category.

A similar behavior is observed for the same Email-1431
dataset when the three classes are kept separate. The re-
sults for this case are shown in Figure 8 (top plot). For ex-
ample, words (typical of the conference topic) such as “re-
search”, “conference”, “applications”, “papers”, “science”,
“invited”, “committee”, and “submit” receive larger weights
within the spam category (and the job category as well).
Similarly the words (typical of spams) “money”, “business”,
“sales”, “offer”, and “credit” receive larger weights in the
categories conference and job. The bottom plot of Figure 8
shows the (within-cluster) standard deviations for the fea-
tures displayed in the top plot. As expected, the spread of
values for “conference words” is smaller in spam messages,
which results in larger weights for the same words within the
spam cluster. Similarly, “spam words” such as “sales” and
“offer” manifest a much larger spread of values within the
spam cluster. We emphasize that, in general, the relative
distribution of feature values within the various clusters has
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Figure 1: Email-1431 dataset (two classes): Error
rate vs. h values. (s= support value.)

an inter-cluster effect, and thus the estimation of a given
cluster’s spread affects the estimation of others’ as well.

Results for the Ling-Spam dataset are shown in Figure 9.
In this case keywords receive largest weights within the rep-
resentative class (e.g., “linguistic”, “theory”, and “abstract”
for the non-spam class; “free”, “advertise”, and “win” for
the spam class). Thus, this dataset shows an opposite re-
lationship between keywords and categories with respect to
the Email-1431. Nevertheless, we observe that the Ling-
Spam data may not reflect the underlying category distri-
butions of real spam and non-spam messages. This is be-
cause, by construction, the non-spam class contains only
messages about the profession and science of linguistics. As
such, the keywords representative of the topic “linguistics”
may have a compact support (a small spread), and therefore
receive larger weights as expected for the general classifica-
tion case. A similar behavior is observed for the Newsgroups
dataset (electronics and medical categories) (see Figure 10).
The collections of terms receiving largest feature relevance
weights in each cluster reflect the topic of that category.
This is indeed expected in a typical categorization problem.

Results for the Newsgroups dataset (autos and space) are
shown in Figure 11. For these data, the large majority of se-
lected keywords belong to the “auto” domain (e.g., “engine”,
“dealer”, “auto”, “driver”, “wheel”, etc.). As a consequence,
the cluster of documents about “space” has a limited spread
along the corresponding feature axes. This is the reason
for having generally larger weight values credited to words
within the cluster “space”.

Figure 12 shows the results for the Classic3 dataset. As
for the Email-1431 dataset, words reflecting the topic of a
category receive a larger weight in the other classes (e.g., the
information retrieval stems “librari”, “retriev”, “document”,
“abstract” etc, receive larger weights in the cranefield and
medline categories than in the cisi; likewise, the stems “pres-
sur”, “experiment” and “lead“ receive larger weights in the
cisi class). This result is corroborated by the plot showing
the standard deviations (Figure 12, bottom plot). As for
the spam email dataset, we expect the three categories (col-
lections of medical journals, IR papers and aerodynamics
papers) to contain combination of subclasses.

As an example, we also report in Figure 13 the trend of
the weight values for the Email-1431 dataset. The weight
values show an exponential decreasing trend. Few features
account for the total (unit) weight value.
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Figure 2: Email-1431 dataset (three classes): Error
rate vs. h values. (s= support value.)
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Figure 3: Ling-spam dataset: Error rate vs. h val-
ues. (s= support value.)

7. CONCLUSIONS
We have introduced an unsupervised feature selection ap-

proach, based on frequent itemset mining, to handle multi-
class classification of documents in absence of labels. In
addition, we have derived a locally adaptive clustering al-
gorithm that provides a clustering of the documents and
the identification of cluster-dependent keywords via a con-
tinuous term-weighting mechanism. Our experimental re-
sults demonstrate the feasibility of our approach in terms of
achieved accuracy measured against the ground truth. We
have shown that the selected keywords are representative of
the underlying categories, which provides evidence that our
global feature selection method successfully retains discrim-
inant words. Moreover, our subspace clustering technique
is capable of further sifting the most relevant ones, while
discarding the additional spurious words.

The analysis of weights and spread of feature values can
be informative of the nature of the categorization problem.
When categories are combination of subclasses, words re-
flecting the topic of a category receive larger weights in other
classes. On the other hand, when documents of a given topic
are “sufficiently focused”, the keywords representative of the
topic receive larger weights. Relevant keywords, combined
with the associated weight values can be used to provide
short summaries for clusters and to automatically annotate
documents (e.g., for indexing purposes).

In our future work we plan to consider frequent itemsets
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Figure 4: Newsgroups dataset (electronics-medical):
Error rate vs. h values. (s= support value.)

0

0.1

0.2

0.3

0.4

0.5

0.6

1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1
h

er
ro

r 
ra

te

s=5%
s=4%
s=3%
s=2%
s=1%

Figure 5: Newsgroups dataset (autos-space): Error
rate vs. h values. (s= support value.)

as individual features. Thus, the LAC algorithm would esti-
mate the relevance associated to group of keywords. In this
context the corresponding weights would measure the cor-
relation between the itemsets and the clusters, which cor-
responds to the definition of lift of the itemset, a widely
accepted interestingness measure for association rules. We
plan to conduct experiments with this representation, and
compare the results with those presented in this paper.

As shown in our experiments, the clustering results achieved
by the LAC algorithm depend on the value of the input pa-
rameter value h. To generate robust and stable solutions,
new consensus subspace clustering methods are under inves-
tigation by the authors. The major difficulty is to find a con-
sensus partition from the output partitions of the contribut-
ing clusterings, so that an “improved” overall clustering of
the data is obtained. Since we are dealing with weighted
clusters, proper consensus functions that make use of the
weight vectors associated with the clusters will be investi-
gated.
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Figure 13: Email-1431 dataset: Trend of weight
values (Top) Two classes; (Bottom) Three classes.
(The x-axis indicates the number of features.)


