
BPEL Orchestration of Secure WebMail

Saket Kaushik, Duminda Wijesekera and Paul Ammann
Department of Information and Software Engineering,

George Mason University,
Fairfax, VA 22030 USA

{skaushik|dwijesek|pammann}@gmu.edu

Abstract

Web Services offer an excellent opportunity to redesign and replace
old and insecure applications with more flexible and robust ones.
WSEmail is one such application that replaces conventional message
delivery systems with a family of Web Services that achieve the same
goal. In this paper we analyze the existing WSEmail specification
against the standard set of use cases (and misuse cases) supported
(resp. prevented) by SMTP implementations – the current default
message delivery infrastructure – and augment it with several missing
pieces. In addition, we show how the WSEmail family of Web
Services, specified in WSDL, can be orchestrated using BPEL.
Finally, we provide a synchronization analysis of our WSEmail
orchestration and show its correctness.

1. Introduction

Increasing misuse of conventional email systems by
`spammers', bulk email senders and fraudsters has raised
concerns about the security and trustworthiness of the
existing message delivery infrastructure. Many have
suggested replacing the existing system with a more
secure system. WSEmail [17] is one such proposal that
promotes the use of Web Services for the purpose of
email delivery, while claiming to prevent several misuse
cases. Additionally, for backward compatibility among
the user community, any replacement system must
support the standard use cases of the conventional
distributed software systems that implement SMTP [14]
protocol for email delivery, while ensuring secure
operations. Therefore, an implicit requirement is that the
replacement system must provide specific security
guarantees for the supported use cases that their
conventional counterparts do not. However, to the best of
our knowledge, such a study has not yet been provided.
This missing piece is provided by this paper.

Supporting standard use cases for email delivery implies
that in addition to supporting message routing,
middleware functionality for achieving persistent
asynchronous message transmission[19] must be
provided. Since message transmission consists of several
sub processes running in parallel or sequence, the
WSEmail family of web services for email delivery are
best expressed in a process specification and integration
framework, like BPEL[2], the approach taken here. In our

approach, we specify common Web Services required for
email delivery, and analyze their composition for the
satisfaction of security goals.

Incidentally WSEmail [17] focuses on providing a flexible
means of communication, such as, being expected to
dynamically discover and negotiate a communication
protocols, as evidenced by using extensions such as Instant
Messaging (IM), etc. However, the authors don’t provide
the details of the negotiation language, or the process by
which dynamic configurations are made possible. In
addition, it is not clear whether and how standard set of use
cases for email delivery are supported. Finally, designing
new sets of protocol for each use case may be prohibitively
expensive (for instance, authors report existence of 68
interfaces and 343 classes organized in 30 projects). We
take an alternate approach of supporting standard, but
configurable, protocols for message delivery and provide
theoretical analyses for security verification of processes
that is missing in earlier proposals.

AMPol [1] extends WSEmail by separating policies from
delivery mechanisms. However, this system suffers from
lack of adequate specification and a formal methodology for
interoperation. In other words, policy rules are not given a
formal meaning, and consequently they can be interpreted
differently by the WSEmail partners. This causes well
known problems like ambiguity over satisfaction of
contracts, or establishing failure, etc. In contrast, email
feedback approach[12] for conventional SMTP
implementations does not suffer from this problem. Here,
we apply this solution to WSEmail, and leverage on the
results shown earlier for security properties. In addition, we
provide synchronization and verification analyses, which are
missing from both approaches cited above.

2. Use cases and misuse cases

We enumerate use cases supported by the existing email
delivery system built around the SMTP protocol and misuse
cases that have been raised during the recent past against the
system. In addition, we cover various mechanisms that help
prevent these misuse cases. This clearly demarcates the
difference between the WSEmail/AMPol and this work

 1

(since they don’t consider all conventional use cases
and misuses). Standard SMTP use cases are as follows:

Use Case 1: Best effort transmission of a text message
from a sender (the principal actor) to a recipient (the
secondary actor) through intermediate mail servers.

A message transmission is considered complete
only if the message is routed to the recipient’s
machine or mail account (mailbox). Transmission
is broken down into three logical steps:
Transmission from senders to their email service
providers (SESP); transmission from sending email
service provider (SESP) to recipient email service
provider (RESP); and finally from RESP to the
message recipient. However, in practice multiple
mail servers may be involved and are subsumed
under the logical entities – SESP and RESP.

Use Case 2: Error reporting on transmission failure.

Message transmission is a transaction that is
initiated by a sender and completes when the
message reaches its destination. This transaction
can fail due to a variety of reasons. The standard
error reporting convention is to generate report on
failure. Error messages are generated on the point
of failure and the infrastructure tries to deliver
them to the senders. Together, the two use cases
are said to provide reliable transmission.

Specialization of use cases: Above two use cases can
be specialized for a variety of message types and
properties of transmission channels. Standard use cases
supported by SMTP implementations are:

1. Reliable transmission of a text message.
2. Reliable transmission of a multipart MIME

message [5].
3. Reliable transmission of an authenticated

text/MIME message.
4. Reliable transmission of a message over an

encrypted channel.
5. Reliable transmission of message receipts.

Specializations, described above, involve reliable
asynchronous transfer of messages across hosts on the
internet. Since message transmission is asynchronous –
a recipient process may not be active when the sender
process sends the message – hence, transmission
infrastructure provides only best effort delivery. If
transmission fails at any stage of the message proc-
essing pipeline, an error message is constructed at that
stage and delivered (with best effort delivery) to the
source. In addition, SMTP extensions [18, 9] includes
commands and replies for source authentication and
negotiations for establishing a secure channel for
synchronous transmission. Finally, SMTP allows

message delivery receipts. i.e., a mail message that
acknowledges receipt of message sent back to the sender
from the recipient. To support this use case, sending and
receiving mail servers reverse their roles or the recipient
initiates a new SMTP session for transmitting a standard
reply in response to the original message.

Email delivery is subject to many misuse cases. These
include lack of authentication, loss of privacy and integrity
of content, vulnerability to unsolicited commercial email
(spam), email bombs [4], etc. We describe these cases next.

1. Integrity and privacy of data: in spite of availability
of STARTTLS command, most email messages are
sent in cleartext over the wire. Messages may be
stored in cleartext at a mail server though message
transmission may be encrypted. This misuse case can
be prevented through additional caution.

2. Absence of sender authentication: SMTP AUTH
command is insufficient for end-to-end sender
authentication, since it requires prior exchange of
secret data between senders and recipients. As a
result, sender address spoofing is possible, due to
which, non-repudiation of message initiation cannot
be guaranteed.

3. Vulnerability to email bombs: This is a variation of
DoS attack on email networks. Mail servers are
vulnerable to being overwhelmed by a large number
of incoming messages, leading to denial of email
service.

4. Vulnerability to unsolicited commercial email
(spam): Because of recipient’s lack of control over
which messages are delivered to their mailbox, they
become vulnerable receiving unsolicited commercial
or fraudulent mail.

Of the above, vulnerability to spam has seriously dented the
utility of email service. To counter this problem, automated
recipient controls are added during the transmission process
to control delivery of messages. Several such control
mechanisms are in use, and we cover important ones here.
Because of these controls, we add an additional use case to
the standard list of SMTP enabled use cases, which is,
provision of feedback about rejected messages due to failure
of acceptance criteria [12]. A drawback of delivery controls
is the introduction leakage channels through which sensitive
information can be lost [13]. We also add this misuse case
to the list of standard misuse cases and cover it in section 7.

2.1 Our contribution

Our main contribution is a specification, design and
verification of WSMail, an end-to-end, web-based mail
service using WSDL and BPEL that supports all stated use
cases and prevents all stated misuse cases.

 2

While authors consider transmission of MIME mess-
ages in [17] in parts, a new requirement, they don’t
provide details of standard use cases considered here. In
addition, misuse cases discussed here are alluded to (in
[1]) but the authors don’t provide sufficient evidence
that their solution will prevent the cases discussed here.
We fill these gaps, as shown later.

The rest of the paper is organized as follows. In section
3, we give a brief overview of conventional email
transmission and transmission using Web Services.
Next, we present WSDL specifications of the family of
WSEmail Web Services. Process integration in BPEL is
presented in section 5, while section 6 addresses
coverage of use case and prevention of misuse cases.
We tackle process integrity in section 7. In section 8
we discuss a new misuse case and how we prevent it.

3. Overview of message delivery

As shown in figure 1, a conventional email message
begins its journey at the (the principal actor) sender’s
machine and is initially routed to the sender’s email
service provider (ESP). Email service provider then
transmits the message on behalf of the sender to the
recipient’s service provider. From here the recipient picks
up the delivered message [15]. Email service providers
help scale email messaging to the level of internet users in
addition to providing several important services. First,
ESPs dispense with the need for senders and recipients to
be online for communicating with each other, i.e., they
enable persistent asynchronous communications. Also,
they are well placed to provide value added services for
their subscribers. For example, commercial unsolicited
messages filtration, removal of malicious code commonly
bundled with messages, etc., can be undertaken by the
ESP. In addition to these four principals, several other
actors may be involved with message transmission. These
include third party information sources, like, reputation
services (DCC [11], Cloudmark [10]) or escrow services
(for attention bonds [16]), etc. Other principles consult
third parties during transmission to ascertain properties of

messages – like, authenticity of bonds or whether a message is
a `bulk’ email message or not. These interactions are
represented by dotted double arrows in figure 1.

In a Web Services based message transmission, we replace
each actor by one or more Web Services. Together these Web
Services form a family referred to as the WSEmail family.
Here we show different orchestrations of these Web Services
providing many flavors of email transmissions. We also show
that earlier solutions engineered for conventional systems can
be readily adapted for the Web Services environment and
possibly improved upon.

4. Web Services for message transmission

In this section we begin with the basic technical details of our
model. Three basic components are considered for our
specifications. First, we describe the types and parts of
messages that are exchanged between Web Services. Then, we
specify various Web Services that constitute the WSEmail
family. Finally, we specify various orchestrations of the
WSEmail family using BPEL process specifications.

4.1 Message types

Message types define the protocol used for communication,
i.e., service interfaces are understood in terms of their input
and output message. Here, we limit the types of transported
objects, however, our list is extensible and it is possible to
include the complete set of MIME[8] objects. Basic types are
described in Table 1, and complex (i.e. structural) types are
described in table 2. We give these type definitions for
completion. We don’t intend to leverage on their type
structure for the purposes of this paper. Our code (shown later)
can be modified to be used with other typed structures as well.
For instance, several techniques use custom structures for
`time’ or `credential’, etc., so we simply refer to them using an
XML namespace element. Please note that we use the
characters `*’, `?’, and `+’ in the same sense of use as in BPEL
manual [2], i.e., .`*’ means zero or more repetitions, `?’
meaning zero or one occurrence and `+’ means one or more
repetitions.

Type Name Primitive Type Example
MIME ASCII string Application/PDF
PKISignature ASCII String 463hfd$&47654
Message ID Long Int 239809832092
MType Character string Urgent, Personal, …
WantAck Boolean Yes/No
Number Positive Int 100
Nonce Positive Int 10000
Email Address ASCII string abc@xyz.com
Password ASCII string ******
Answer ASCII string Xy3

Table 1: Basic types of message elements

Message flow

S
E
S
P

R
E
S
P

Third party services

S
E
N
D
E
R
S

R
E
C
I
P
I
E
N
T
S

Figure 1: Email Delivery Pipeline

 3

Type Name Type Structure Example
Time XmlNS=URI#Time 10:00 A.M EST
Key Pair IntXInt (53,97)
Credential XmlNS=URI#Cred Credential struct
Image XmlNS=URI#Jpeg JPEG struct
AObject Application/Type PDF file
Credential Chain Credential* Cred1, …, CredN
Currency Enum: {$, ₤} $, ₤
Bond XmlNS=URI#Bond $3.5 Cred 1
Turing test Image 10101..01,
Turing test reply ImageXAnswer (10101..01, xy3)
Content String?, AObject* “Example”, Image

Table 2: Complex types of message elements

1 <types>
2 <schema targetNS="uri1" xmlns="schema1">
3 <element name="Content” type=“String”>
4 </element>
5 .
6 .
7 .
8 <element name="Turing Test">
9 <complexType>
10 <all>
11 <element name="Image"
12 type="Application/JPEG"/>
13 <element name="Answer"
type="String"/>
14 </all>
15 </complexType>
16 </element>
17 </schema>
18 </types>

Listing 1: Basic types in WSDL

Elements described in table 1 are expressed in Web
Services Description Language (WSDL) [7] in the
syntax shown in listing 1 (we omit all the details here).

4.2 Messages

Next, we describe message types that are transmitted
between Web Services. First, we detail the structure of
a mail message; that is, a message that is initiated by
the message sender and is delivered to the intended
recipient. This message consists of routing information,
objects to be transmitted and additional attributes that
aid the delivery of the message. Additional attributes
are added by senders to signal the utility of a message
to the recipient. They are used by downstream
processes to make routing decisions [12]. Mail message
is described in WSDL format in listing 2.

1 <message name="MailMessage">
2 <part name="From"
3 element="Email Address"/>+
4 <part name="To" element="Email Address"/>+
5 <part name="Date" element="Time"/>+
6 <part name="ID" element="Message ID"/>+
7 <part name="Surety" element="Bond"/>?

8 <part name="Pass" element="Password"/>*
9 <part name="Ack" element="WantAck"/>*
10 <part name="Sign"
11 element="PKISignature"/>*
12 <part name="RTT reply" element="Turing
13 Test Reply"/>*
14 <part name="MType" element="String"/>?
15 <part name="Subject" element="String"/>?
16 <part name="Body" element="Content"/>?
17 </message>

Listing 2: WSDL Mail Message

In addition to mail messages, clients and servers transmit
several other types of message enable underlying comm-
unication protocols by informing the status of the comm-
unication, properties of the transmission (QoS,) etc. (listed in
table 3). Their WSDL syntax is shown in listings 3 and 4.

Message Type Utility
Mail Message Message to be delivered
Receipt notice Notice of receipt and acceptance for

delivery of a mail message
FailNotice Notice of delivery failure
RejectNotice Notice of delivery rejection
RefinementMessage Changes desired in a mail message
RefinementFailure Desired changes not possible
InformationMessage Third party message evaluations
MailIntent Indication of transmission intent
Service Level Accord QoS for invocations
AcceptancePolicy Acceptance rules advertisement
PKICertificate Proof of identity and data secrecy

Table 3: Types of messages

1 <message name="ReceiptNotice">
2 <part name="Date" element="Time"/>+
3 <part name="ID" element="Message ID"/>+
4 <part name="Sign" element="PKISignature"/>*
5 </message>
6
7 <message name="FailNotice">
8 <part name="Date" element="Time"/>+
9 <part name="ID" element="Message ID"/>+
10 <part name="Error" element="String"/>+
11 <part name="Sign" element="PKISignature"/>*
12 </message>
13
14 <message name="RejectNotice">
15 <part name="Date" element="Time"/>+
16 <part name="ID" element="Message ID"/>+
17 <part name="Eval Policy" element="Policy"/>+
18 <part name="Sign" element="PKISignature"/>*
19 </message>
20
21 <message name="RefinementMessage">
22 <part name="Date" element="Time"/>+
23 <part name="ID" element="Message ID"/>+
24 <part name="Sign" element="PKISignature"/>*
25 <part name="Surety" element="Bond"/>*
26 <part name="MType" element="String"/>?
27 <part name="RTT" element="Turing Test"/>*
28 <part name="Body" element="Content"/>*
29 </message>
30
31 <message name="RefinementFailure">

 4

32 <part name="ID" element="Message ID"/>+
33 <part name="RError" element="String"/>+
34 </message>
35
36 <message name="InformationMessage">
37 <part name="Date" element="Time"/>+
38 <part name="ID" element="Message ID"/>+
39 <part name="Information" element="String"/>+
40 <part name="Sign" element="PKISignature"/>* 7. SESPVirusExaminationPT
41 </message>

Listing 3: WSDL Application Data

Message definitions in listing 3 determine the
application data or the payload for the message
communications. Listing 4 defines protocol data
exchanged for effectively completing the task at hand.
In particular, Mail Intent, message expresses the intent
to send messages, Service Level Agreement, message is
a response to mail intent message indicating number of
messages allowed; while Mail Acceptance Rule
message states acceptable message attributes.

1 <message name="MailIntent">
2 <part name="Date" element="Time"/>+
3 <part name="NoOfMsgs" element="Number"/>+
4 <part name="Sign" element="PKISignature"/>*

6. RESPControlPT 5 </message>
6
7 <message name="ServiceLevelAgreement ">
8 <part name="Date" element="Time"/>+
9 <part name="AllowedNo" element="Number"/>+
10 <part name="Sign" element="PKISignature"/>* 10. RESPImprovementPT
11 </message>
12
13 <message name="AcceptancePolicy">
14 <part name="Date" element="Time"/>*
15 <part name="Surety" element="Bond"/>*
16 <part name="Sign"
 element="PKISignature"/>*
17 <part name="RTT reply"
18 element="Turing Test"/>*
19 <part name="MType" element="String"/>*
20 <part name="Body" element="Content"/>*
21 <part name="Sign" element="PKISignature"/>*

In addition to services provided by the SESP and RESP, third
party services may be invoked during message transmission to
check their desirability. Here we restrict to two Web Services,
though this list could easily be extended.

22 </message>
23
24 <message name="PKICertificate ">
25 <part name="Key" element="Credential"/>+
26 <part name="Session" element="Nonce"/>*
27 </message>

Listing 4: WSDL Control Data

4.3 WSEmail family of Web Services

Next, we design a family of Web Services that perform
various tasks to aid delivery of email messages. We list
the set of externally callable methods for each principal
involved in message delivery.

Sender’s ESP (SESP): Sender’s email service provider is

designed to receive messages, route them to the
destination, examine and repair messages before
sending them, refine messages, etc.

1. SESPConnectPT
2. SESPReceiveMsgPT
3. SESPAuthPT
4. SESPDeliveryPT
5. SESPMsgCallbackPT
6. SESPImprovementPT

8. SESPVirusRemovalPT

Sender: Sender’s may need to expose a callback interface to

receive rejection notices or notices for improving
messages
1. SenderMsgCallbackPT
2. SenderMsgRefinementPT
3. SenderPasswdCallbackPT

Recipient’s ESP (RESP): Recipient’s ESP provides the

following set of services.
1. RESPHeloPT
2. RESP-TLSPT
3. RESPReceiveMsgPT
4. RESPVirusScanPT
5. RESPFilterPT

7. RESPSanitizationPT
8. RESPDeliveryPT
9. RESPStoragePT

Recipient: A recipient need not expose any service; however,

some recipients may allow their service providers to
“push” messages to the recipient’s host through the
following service:
1. RReceiveMsgPT

Third party services: RESP may invoke a distributed

checksum service to verify if a message is a bulk
message. Similarly, calls to escrow service to determine
the validity of attached bonds is also possible.
1. CheckSumPT
2. BondVerificationPT

WSDL definitions of the Web Services, described above, are
presented in listings 5, 6 and 7.

1 <portType name="SESPReceiveMsgPT">
2 <operation name="GetMessage">
3 <input message="Mail Message"/>
4 <output message="Receipt Notice"/>
5 <fault name="Fail" message="FailNotice"/>?
6 </operation>
7 </portType>
8

 5

9 <portType name="SESPConnectPT">
10 <operation name="GetSLA">
11 <input message="MailMessage"/>
12 <output message=" IntentMessage"/>
13 <fault name="Fail" message="SLAFail"/>?
14 </operation>
15 </portType>
16
17 <portType name="SESPAuthPT">
18 <operation name="AUTH">
19 <output message="PKICertificate"/>
20 </operation>
21 </portType>
22
23 <portType name="SESPDeliveryPT">
24 <operation name="SendMessage">
25 <input message="MailMessage"/>
26 <output message="ReceiptNotice"/>
27 <fault name="Fail"
 message="FailNotice"/>?
28 </operation>
29 </portType>
30 <portType name="SESPCallbackPT">
31 <operation name="MessageCallBack">
32 <input message="RefinementMessage"/>
33 </operation>
34 </portType>
35
36 <portType name="SESPImprovementPT">
37 <operation name="Refinement">
38 <input message="RefinementMessage"/>
39 <output message="MailMessage"/>
40 <fault name="Fail"
 message="FailNotice"/>?
41 </operation>
42 </portType>
43
44 <portType name="SESPExaminationPT">
45 <operation name="VirusScan">
46 <input message="Mail Message"/>
47 <output message="Information Message"/>
48 </operation>
49 </portType>
50
51 <portType name="SESPVirusRemovalPT">
52 <operation name="VirusRemoval">
53 <input message="Mail Message"/>
54 <output message="Mail Message"/>
55 </operation>
56 </portType>

Listing 5: WSDL portType specs for SESP services

1 <portType name="RESPHeloPT">
2 <operation name="SLAevaluation">
3 <input message=" MailIntent"/>
4 <output message="ServiceLevelAccord"/>
5 </operation>
6 </portType>
7
8 <portType name="RESP-TLSPT">
9 <operation name="STARTTLS">
10 <input message="PKICertificate"/>
11 <output message="PKICertificate"/>
12 </operation>
13 </portType>
14
15 <portType name="RESPReceiveMsgPT">
16 <operation name="GetMessage">
17 <input message="MailMessage"/>

18 <output message="ReceiptNotice"/>
19 <fault name="Fail”
20 message="FailNotice"/>?
21 <fault name="Reject" message="Reject
22 Notice"/>?
23 </operation>
24 </portType>
25
26 <portType name="RESPVirusScanPT">
27 <operation name="VirusScan">
28 <input message="MailMessage"/>
29 <output message="InformationMessage"/>
30 </operation>
31 </portType>
32
33 <portType name="RESPFilterPT">
34 <operation name="BayesianFiltering">
35 <input message="MailMessage"/>
36 <output message="InformationMessage"/>
37 </operation>
38 </portType>
39
40 <portType name="RESPControlPT">
41 <operation name="SenderRep">
42 <input message="Sender"/>
43 <output message="InformationMessage"/>
44 </operation>
45 </portType>
46
47 <portType name="RESPSanitizationPT">
48 <operation name="Sanitization">
49 <input message="Mail Message"/>
50 <output message="Mail Message"/>
51 </operation>
52 </portType>
53
54 <portType name="RESPDeliveryPT">
55 <operation name="SendMessage">
56 <input message="MailMessage"/>
57 <output message="ReceiptNotice"/>
58 <fault name="Fail"
59 message="FailNotice"/>?
60 </operation>
61 </portType>
62
63 <portType name="RESPStoragePT">
64 <operation name="StoreMessage">
65 <input message="MailMessage"/>
66 <fault name="Fail"
67 message="FailNotice"/>?
68 </operation>
69 </portType>
70
71 <portType name="RESPImprovementPT">
72 <operation name="RefineMsg">
73 <input message="MailMessage"/>
74 <output message="RefinementMsg"/>
75 <fault name="Fail"
76 message="FailNotice"/>?
77 <fault name="Reject" message="Reject
78 Notice"/>?
79 </operation>
80 </portType>

Listing 6: WSDL portType specs for RESP services

1 <portType name="CheckSumPT">
2 <operation name="DCC">
3 <input message="MailMessage"/>
4 <output message="InformationMessage"/>

 6

5 </operation>
6 </portType>
7
8 <portType name="bondVerificationPT">
9 <operation name="VerifyBond">
10 <input message="MailMessage"/>
11 <output message="InformationMessage"/>
12 </operation>
13 </portType>

Listing 7: WSDL portType specs for third party services

5. BPEL orchestration of WebMail

In this section, we begin with a basic set of
synchronized Web Service invocations for message
delivery. We present their interfaces – synchronous or
asynchronous – for communication with other distribut-
ed processes. We illustrate typical activities, in the not-
ation borrowed from BPEL specification manual by
Andrews, Curbera [1], et al. SESP is described in figure
2 and RESP in figure 3, followed by their process
descriptions (resp. listings 8 and 9). In the BPEL
process specifications (listings 8 and 9) of processes we
assume that <partnerLink> elements, identifying the
roles of involved services, are already specified.
Because of space limitations we omit namespace
elements, variable declarations, etc., and depend on the
context for clarity.

5.1 SESP process specification

Dotted lines in figure 2 (and 3) indicate sequential
executions and solid lines indicate control dependencies
for synchronizing concurrent activities. Note that the
diagram does not give details about exception handling.
These cases are showcased in code later; and are
ignored here for the sake of clarity.

In figure 2, SESP process waits for messages from senders.
Senders invoke SESP’s ReceiveMsgPT. Once the message
is received, two concurrent threads of execution begin, viz.,
scanning the received message’s body for viruses and a
UDDI query to locate the recipient’s email service provider
(RESP). If a message is found to be infected, the virus
removal process is run after the scan is completed. Next, the
SESP invokes the HeloPT service of the recipient to begin
message delivery. Assuming that the RESP allows SESP to
transmit messages through a service level agreement (SLA),
SESP invokes RESP’s message receiving operation
RecieveMsgPT.

1 <process name=“SESPProcess”>
2 <partnerLinks>
3 <partnerLink name=“transmission”
4 partnerLinkType=“…”
5 myRole=“ReceiveMsgSrv” />
6 .
7 .
8 .
9 </partnerLinks>
10
11 <faultHandlers>
12 .
13 .
14 .
15 </faultHandlers>
16
17 <sequence>
18 <flow>
19 <sequence> // New message from sender
20 <receive partnerLink=“transmission”
21 portType=“SESPReceiveMsgPT"
22 operation =“SendMessage”
23 variable =“M”>
24 </receive>
25 </sequence>
26 <sequence> // Refined message retransmission
27 <receive partnerLink=“self-transmit”
28 portType=“SESPReceiveMsgPT"
29 operation =“SendMessage”
30 variable =“M”>
31 </receive>
32 </sequence>
33 <sequence> // Call back service
34 <receive partnerLink=“RESP-SESP-CB”>
35 portType=“ SESPCallbackPT”>
36 operation=“MessageCallback”
37 Variable=“RefinementMsg”>
38 </receive>
39 <invoke partnerLink=“self”>
40 portType=“ SESPImprovementPT”>
41 operation=“MessageCallback”
42 inputVariable=“RefinementMsg”
43 outputVariable=“M”>
44 <throw “FailureFault”
45 faultVariable=“RefinementMsg”>
46 </invoke>
47 <reply partnerLink=“self-transmit”>
48 portType=“SESPReceiveMsgPT”
49 operation=“SendMessage”
50 variable=“M”>
51 </reply>
52 </sequence>
53 <flow> // message preparation
54 <links>
55 <link name=“fix-deliver”/>

Virus Scan

Virus Removal

UDDI Query

Get Service Level

Refinement

Figure 2: An SESP Orchestration

GetMessage

Complete Transmission

 7

56 <link name=“UDDI-resn”>
57 </links>
58 <sequence>
59 <invoke partnerLink=“scanner”
60 portType=“ SESPExaminationPT”
61 operation=“ VirusScan”
62 inputVariable=“M”
63 outputVariable=“result”>
64 </invoke>
65 <switch>
66 <case condition=“result=true”>
67 <invoke partnerLink=“scanner”
68 portType="SESPVirusRemovalPT"
69 operation=“VirusRemoval”
70 inputVariable=“M”
71 outputVariable=“M”>
72 <source linkName=“fix-deliver” />
73 </invoke>
74 </case>
75 <otherwise>
76 <empty />
77 </otherwise>
78 </switch>
79 </sequence>
80 <sequence> // where to send?
81 <invoke partnerLink=“nameReslv”
82 portType=“UDDIService”
83 operation=“GetAddress”
84 inputVariable=“From”
85 outputVariable=“IPAddress”>
86 <source linkName=“UDDI-resn” />
87 </invoke>
88 </sequence>
89 <sequence> // send message to RESP
90 <invoke partnerLink=“outbound”
91 portType=“SESPConnectPT”
92 operation name="GetSLA"
93 inputVariable=“M”
94 outputVariable=“SLA”>
95 <target linkName=“UDDI-resn” />
96 <target linkName=“fix-deliver” />
97 </invoke>
98 <while condition=“number < SLA”>
99 <flow>
100 <sequence>
101 <invoke partnerLink=“destination”
102 portType=“SESPDeliveryPT”
103 operation name="SendMessage"
104 inputVariable=“M”
105 outputVariable=“R”>
106 <catch “RejectionFault”
107 faultVariable=“RejectNotice”>
108 <reply partnerLink=“SenderCB”>
109 portType=“ SenderMsgCallbackPT”>
110 operation=“Rejection”
111 variable=“RejectNotice”>
112 </catch>
113 </invoke>
114 </sequence>
115 </while>
116 </sequence>
117 </flow>
118 </sequence>
119 </process>

Listing 8: Example SESP Process

Listing 8 shows a typical SESP process in BPEL
syntax. The code has four main blocks: headers and
type declarations (lines 1 – 15), message reception (line

19–52); message preparation (lines 53–88); and message
delivery (lines 89–116). The first part accepts messages
from a sender, to be delivered to some recipient. In addition,
the SESP process allows its message callback service to
retransmit an earlier rejected (but now revised) message. In
other words, messages rejected earlier, say for lack of
authentication or other attributes desired by RESP, are
repaired with the help of this feedback loop. Next, each
message enqueued for delivery is subject to checks (like
virus scan, etc.) to ensure good quality of each message.
Finally, the message is sent across to the RESP.

5.2 RESP process specification

Next, we define an RESP process that enforces a sample
service level agreement (SLA) and a reasonable message
acceptance policy (AP), given informally as:

Allow 10 messages per connection SLA Allow Feedback for rejected messages
Accept IF No virus/worm is attached
message AND Filter allows receipt
 OR
 Distributed checksum allows receipt
Accept IF No virus/worm is attached
message AND Message bonded with value > b

AP

 AND Bond is verified by an escrow service

Table 4: Sample Message Acceptance Policy

Upon invocation of RESP’s RecieveMsgPT (“Get-
Message” operation) the message is transmitted to RESP.
For each received message, the RESP applies a message
acceptance policy to accept or reject it. If the transmitted
mail fails to satisfy this policy, the RESP either throws a

Virus Scan

Virus Removal

Message Delivery Service

Figure 3: An RESP Orchestration

GetMessage

SLA Evaluation

Filter Scan Invoke DCC

Policy Evaluation

Refinement Options

 8

rejection notice or a refinement message. The
refinement message suggests changing some parts of
the message that may make it acceptable to the RESP.
As a result, refinement activity may begin at the SESP.
Note that based on its own policy, an SESP may decide
to ignore all advice, and consequently, the callback
service interface may not be exposed (the current
strategy used by existing SMTP implementations). On
the other extreme, if neither party stops the refinement
process, it may go on forever. Many such strategies
have been studied by researchers in other contexts (like
automated trust negotiation [20], etc.), and can be
supported here. In the code presented next, we take the
approach of refining a message up to a specified
number of times (5 here). This is because we haven’t
found the need yet for a more complex strategy.

1 <process name=“RESPProcess”>
2 <partnerLinks>
3 <partnerLink name=“ESPtransmission”
4 partnerLinkType=“…”
5 myRole=“ReceiveMsgSrv” />
6 .
7 .
8 .
9 </partnerLinks>
10
11 <faultHandlers>
12 .
13 .
14 .
15 </faultHandlers>
16 <sequence>
17 // logic for generating SLA
18 <switch> // Evaluate SLA
19 <case condition=“number < 11”>
20 <receive partnerLink=“RESPtransmission”
21 portType=“RESPReceiveMsgPT"
22 operation =“GetMessage”
23 variable =“M”>
24 </receive>
25 <flow> // Invoke concurrent processes
26 <links>
27 </links>
28 <sequence> // Virus scanning
29 <invoke partnerLink=“scanner”
30 portType=“RESPExaminationPT”
31 operation=“ VirusScan”
32 inputVariable=“M”
33 outputVariable=“result”>
34 </invoke>
35
36 <switch>
37 <case condition=“result=true”>
38 <invoke partnerLink=“scanner”
39 portType="RESPVirusRemovalPT"
40 operation=“VirusRemoval”
41 inputVariable=“M”
42 outputVariable=“M”>
43 <source linkName=“fixed” />
44 </invoke>
45 </case>
46 <otherwise>
47 <empty>
48 <source linkName=“empty” />
49 </empty>
50 </otherwise>

51 </switch>
52 </sequence>
53 <sequence> // Distributed checksum
54 <invoke partnerLink=“TPDCC””>
55 portType="CheckSumPT"
56 operation=“ DCC”
57 inputVariable=“M”
58 outputVariable=“checksumOK”>
59 <source linkName=“dcc-deliver” />
60 </invoke>
61 </sequence>
62
63 <sequence> // Verify bond
64 <invoke partnerLink=“TPEscrow””>
65 portType="bondVerificationPT"
66 operation=“VerifyBond”
67 inputVariable=“M”
68 outputVariable=“verified”>
69 <source linkName=“bond-verify” />
70 </invoke>
71 </sequence>
72 <sequence> // Bayesian filtering
73 <invoke partnerLink=“RESPFilter””>
74 portType="RESPFilterPT"
75 operation=“BayesianFiltering”
76 inputVariable=“M”
77 outputVariable=“filterOK”>
78 <source linkName=“filtering” />
79 </invoke>
80 </sequence>
81 </flow>
82 <!— enforcing acceptance policy -->
83 <sequence>
84 <switch>
85 <case condition=“(fixed OR empty)
86 AND (checksumOK OR filterOK))”>
87 <invoke partnerLink=“RESP-Recipient”>
88 portType=“RESPStoragePT"
89 operation="StoreMessage"
90 inputVariable="M"
91 <switch>
92 <case condition=“Ack = YES”>
93 outputVariable="delivered">
94 </case>
95 <case condition=“No space”>
96 <throw “FailFault”>
97 </case>
98 <otherwise> <empty />
99 </otherwise>
100 </invoke>
101 </case>
102
103 <case condition=“(fixed OR empty) AND
104 (verified AND bond > b)”>
105 <invoke partnerLink=“RESP-Recipient”>
106 portType=“RESPStoragePT"
107 operation="StoreMessage"
108 inputVariable="M"
109 <switch>
110 <case condition=“Ack = YES”>
111 outputVariable="delivered">
112 </case>
113 <case condition=“No space”>
114 <throw “FailFault”>
115 </case>
116 <otherwise> <empty />
117 </otherwise>
118 </invoke>
119 </case>
120 <case condition=“NOT fixed OR NOT
121 (checksumOK AND filterOK)>

 9

122 <throw “RejectionFault” faultVariable=
123 “RejectionNotice”>
124 </throw>
125 </case>
126 <otherwise>
127 <sequence>
128 <switch>
129 <case condition=“history > 5”>
130 // 5: maximum invocations of improvement service
131 <invoke partnerLink=“self”>
132 portType=“RESPImprovementPT”>
133 operation=“RefineMsg”
134 inputVariable=“M”
135 outputVariable=“RefinementMsg”>
136 // outputVariable stores M’s refinement history
137 </invoke>
138 <reply partnerLink=“RESP-SESP-CB”>
139 portType=“ SESPCallbackPT”>
140 operation=“MessageCallback”
141 Variable=“RefinementMsg”>
142 </reply>
143 </case>
144 <otherwise> <empty />
145 </otherwise>
146 </otherwise>
147 </switch>
148 </sequence>
149 </switch>
150 </sequence>
151 </process>

Listing 9: Example RESP Process

The RESP process is made up of five main parts, as
shown in listing 9, viz, headers, types and supported
faults (lines 1—15), message reception from SESP
(lines 19—24); invocation of helper services to gauge
message quality (lines 25—81); acceptance policy
evaluation based on message quality (lines 83—125)
and finally, computing feedback for rejected messages
(lines 128—143). The RESP waits for messages to
arrive, and if the service level agreement is satisfied,
messages are accepted (as shown in listing 9). Next, the
RESP makes concurrent calls to several `helper’
services, like Bayesian filtering service, bond veri-
fication service, distributed checksums, virus scans,
etc., to gauge the quality of incoming message. Once
these processes terminate with an output, the RESP
process starts evaluating the message based on its
acceptance policy. During this stage a message may be
accepted or rejected. Rejected messages may be
returned to the SESP with feedback on some hints
usable for resubmission, if the sender decides to do so
(using the message improvement service).

Example 1: Assume a mail message (M) that contains
the following appropriately initialized parts: From, To,
Date, ID, Subject and Body. We make the following
assumptions:
• M does not contain any attached virus/worm
• M is the only message in queue

• RESP’s SLA accepts 10 messages per connection, and
provides feedback for rejected messages.

• Acceptance policy requires that no virus be attached to
a message, and either the message has a bond
(“Surety”) or satisfies the Bayesian filter.

• Message content may contain prohibited words.

According to the generic BPEL processes described, with
the change that above policy instead of the one shown in
table 4 is evaluated, M will not be accepted for delivery at
the RESP (lines 83—125, listing 9). This is because it fails
to satisfy both conditions – it doesn’t include a valid bond
and it doesn’t satisfy the Bayesian filter on account of the
prohibited words in its body. As in listing 9 (lines 126—
142), the RESP process initiates a call to the message
improvement service (to allow the sender to revise the
message). The content of the refinement message would
include the following parts: Date, ID, Sign, Surety and Body
– the missing information that caused rejection. Essentially,
this response provides the sender acceptable values for the
parts Date, ID, Surety and Body. That is, the refinement
message identifies the deficiencies in M: no valid bond (or
surety) and presence of prohibited words. Once made aware,
the sender may choose to alter the rejected message, so that
it reaches its destination [12].

6. Coverage of use cases and misuse cases

We show next that the set of Web Service definitions,
identified above, satisfy all stated use cases and avoid all
mis-uses. We give our arguments in the form of
(abbreviated) BPEL specifications as a proof of this claim.

6.1 Coverage of standard use cases

Line 22 in listing 8 (and line 22 in listing 9) sender invokes
message delivery operation – “SendMessage” – for the
SESP process (resp. SESP invokes “GetMessage” operation
on RESP process). Clearly, the service invoked only accepts
messages of type “MailMessage”. That is, input messages of
type text or MIME messages (identified in the type
declarations in lines 1—15) are queued for delivery.
However, the SESP service interface (resp. RESP interface)
does not guarantee delivery of the queued message, but only
an assurance of best-effort delivery. As a result, if delivery
fails at this stage, an error is generated – lines 106 to 112 in
listing 8 (resp. lines 122 – 124 in listing 9). If all
prerequisites for delivery are satisfied, then both SESP and
RESP processes are guaranteed to attempt delivery. (Note,
that the listings include only one delivery attempt, but
multiple delivery attempts can be supported). Hence, the
SESP and the RESP processes satisfy both the requirements
of standard use cases – best effort transmission and error
report on delivery failure. Consequently, the services
defined here are sufficient for supporting standard use cases;
additional proof is provided next.

 10

Use Case: Authenticated message transmission
This use case is supported through invocations of the
SenderPasswdCallbackPT and SESPAuthPT services.
Due to space limitations, we follow the abbreviated
BPEL syntax borrowed from [6].

SESP process modification
Begin Sequence
 Receive Message M
 Invoke SenderPasswdCallbackPT
 Switch
 Case: Password is correct
 … // proceed to other delivery tasks
 Otherwise
 Throw <Failure Fault, message: incorrect password>
 End Switch
End Sequence

RESP Process modification
Begin Sequence
 Receive RESPHeloPT
 Receive Message M
 Invoke SESPAuthPT
 Switch
 Case: Credential verified
 … // proceed to other delivery tasks
 Otherwise
 Throw <Failure Fault, message: invalid credential>
 End Switch
End Sequence

Code example above illustrates a simple (and scalable)
way to support authenticated messages. Here, messages
are authenticated in two tiers, i.e., message senders are
authenticated by their SESPs; while SESP is authentic-
cated (using AuthPT service) by the RESP. It should
be noted that this strategy provides only partial
guarantees to sender authentication (since the sender is
never directly authenticated by the RESP). More
elaborate schemes, like, strong authentication based on
PKI or secret key schemes like Kerberos are also
possible, though we don’t specify them here.

Use Case: Secure message transmission
This use case is supported through successive
invocations of the RESP-TLSPT

RESP Process modification
Begin Sequence
 Receive RESPHeloPT
 Invoke RESP-TLSPT
 Switch
 Case: while SLA
 Receive Message M
 … // proceed to other delivery tasks
 Otherwise
 Throw <Failure Fault, message: not allowed>
 End Switch
End Sequence

At each successive hop of a message, the sending agent
can invoke transmission over TLS (or SSL) for privacy
and integrity of data over the wire. This use case

completes the set of standard use cases for email delivery

6.4 Preventing misuse cases

Here we show that the set of Web Services we define are
adequate for preventing stated misuse cases. Again, we
show coverage of all misuse cases with abbreviated BPEL
specifications. We use listings 8 and 9 to give informal
proof sketches of our claim. In addition, misuse cases like
integrity, privacy, non-repudiation of message initiation are
dependent upon more basic misuses like lack of sender
authentication and absence of secure transmission. So, here
we show how we prevent these basic misuses rather than the
ones dependent on them.

Misuse Case 1: Denial of email service (email bombs)
This misuse is prevented using service level agreement for
incoming mail connections. For instance, a service level
agreement (SLA) can restrict number of concurrent
connections from a particular domain and number of
messages transmitted per connection (for instance, in listing
9 – lines 17 through 19 – restrict an SESP to only 10
messages per connection).

Misuse Case 2: Transmission in cleartext with no sender
authentication
These misuses are prevented using acceptance policies for
incoming messages. For instance, an acceptance policy
requiring messages be authenticated and transmitted over a
secure channel is easily encoded in BPEL as:

RESP Process modification
…
 Switch
 Case: “Password=correct AND channel= encrypted”
 Rnotice= Invoke RESPStoragePT(Msg)
 Otherwise
 RMsg = Invoke RESPImprovmentPT(Msg)
 Reply SESPCallBack(RMsg)
 End switch

Consider lines 82 onwards in listing 9, where messages
attributes are evaluated by the acceptance policy for the
delivery session. The above policy that checks for password
based authentication and encrypted channel can be applied
in conjunction with other message acceptance requirements.
That is, prevention of this misuse is possible by enforcing
the correct acceptance policy.

Misuse Case 3: Controlling unwanted messages
Similar to the prevention of misuse case 2, this misuse is
prevented using acceptance policies. The difference with the
previous case is in the invocation of different Web Services
like (FilterPT, DCC, etc.) during acceptance policy
evaluation. For instance, a policy that requires the Bayesian
filter and checksum service to approve a message is coded
in BPEL as follows:

 11

RESP Process modification
…
 Switch
 Case: Filter = false && checksum = false
 Rnotice= Invoke RESPStoragePT(Msg)
 Otherwise
 RMsg = Invoke RESPImprovmentPT(Msg)
 Reply SESPCallBack(RMsg)
 End switch

As before, these conditions can be enforced in
conjunction with other conditions (or otherwise) in
listing 9 (lines 82 onwards).

7. Ensuring processes integrity

In this section we analyze SESP and RESP processes
and informally argue that they exhibit several desirable
properties. SESP and RESP processes include
synchronized and parallel invocations of Web Services.
For correctness of these calls, we show that the
processes possess.
Deadlock freedom [3]: This property states that

parallel invocations of Web Services are
independent of each other, i.e., they do not block
while waiting for the other to terminate or release a
lock on synchronized resources.

Interference freedom [3]: This property states that
execution of atomic steps of one component never
falsify the properties enabled because of another
component.

Distributed Termination [3]: This property states that
a process terminates or stops executing after a
finite amount of time.

Because of space limitations, we informally argue these
properties, and work on formal proofs is in progress. In
the following analysis, we categorize pairs (or sets) of
programs according to following terms:
Parallel but disjoint [3]: A pair of programs is

considered parallel but disjoint if one program
cannot change variables accessed by other
program.

Parallel with shared variables [3]: A pair of programs
is parallel with shared variables if any one program
can change variables accessed by the other.

Parallel with shared variables and synchronization
[3]: Parallel programs with shared variables are
also synchronized if they are able to suspend their
execution while waiting on another program
component to finish executing.

Before we begin arguing about the properties of our
implementation of SESP and RESP processes, we give
the abbreviated BPEL specification of the sender
process.

Sender Process
Declarations: process, variables, faults
 Flow
 Invoke SESPReceiveMsgPT(M)
 Receive SenderCallbackPT
 Sequence
 // improve message
 invoke SESPReceiveMsgPT(M)
 End Sequence
 End Flow

Next, we argue about the correctness of SESP and RESP
processes. Note that these processes fall in the third
category stated above (parallel, synchronized processes,
with shared variables). Also, we assume that individual Web
Service components that are disjoint and recursion free and
always satisfy their contracts. That is, assuming that their
preconditions are met, they always terminate satisfying all
their post conditions.

Proposition 1: Sender process exhibits deadlock freedom
and interference freedom.

Proof: Sender process is defined (above) to be not
synchronized with any other process. Therefore, there are no
potential deadlock situations. Also, concurrent invocations
(of call back interfaces) are disjoint and therefore they are
also interference free.

Proposition 2: Sender process terminates.

Proof: Sender process is defined (above) to be disjoint from
any other parallel process. Moreover, it is loop-free: that is,
there is no recursive or mutually recursive call in its
definition. Callback service does not invoke any additional
Web Services, nor is the callback service synchronized with
any additional process. Therefore it will terminate.

Proposition 3: SESP message transmission process is
interference free and terminates

Proof: Message transmission by the sender to the SESP is
disjoint from all other processes. Next, multiple concurrent
processes are invoked by SESP process, like, UDDI service,
virus scan, etc., (line 53—88 listing 8). Each of these sub
processes is defined to be disjoint, without mutual or self
recursion. Therefore, they are interference free and
terminate. The synchronization point is the termination of
all sub processes (line 89, listing 8). Consequently, SESP
execution is guaranteed to reach this synchronization point.

At this stage, the SESP process begins message trans-
mission to RESP by invoking its HeloPT service. RESP can
either refuse connection or allow transmission. In the first
case, SESP process terminates (lines 98 –115, listing 8) and
is, consequently, interference free. In the second case, the
process makes synchronized calls to RESP for message

 12

delivery. In the first case, the message is accepted and
therefore it terminates (lines 98 –115, listing 8). If the
message is rejected, the RESP may invoke SESP call
back interface for message improvement. This is done
sequentially, after the transmission of original message
is rejected. Thus mutual recursion is introduced, but
RESP terminates recursion after a maximum number of
invocations that are statically bound at compile time
(here, by 5 – lines 130 to 136 in listing 9). Therefore,
recursion terminates.

Proposition 4: The SESP process is deadlock free.

Proof: The SESP process invokes related Web Services
that evaluate message before delivery, and RESP Web
Services for message transmission. SESP Web Services
are defined to be disjoint, with no mutual or self
recursion; so, there are no potential deadlock situations.
Recursion can occur in SESP and RESP process when
messages are rejected. However, invocations of
processes are sequential as evident in the code (lines 98
–115, listing 8). Consequently, there are no potential
deadlock situations.

Proposition 5: The RESP process is deadlock free.

Proof: The RESP process, like the SESP process,
invokes various helper services to evaluate messages
during acceptance policy evaluation. Because all
concurrent invocations are mutually disjoint, no
potential deadlocks occur. RESP is deadlock free with
SESP due to proposition 4. Hence, RESP is deadlock
free.

Proposition 6: RESP message transmission process is
interference free and terminates

Proof: This proof is similar to that of proposition 3. On
receiving a request for mail delivery, the RESP process
chooses a service level agreement for the session (lines
16–17 listing 9). Next, while SLA conditions are true,
message transmission takes place. For each message
various email control mechanisms (like filterPT,
checksumPT, bondVerification, etc.) are called (lines
25—81 listing 9). Each of these sub-processes is
defined to be disjoint and recursion free, therefore,
running in parallel, they are interference free. Our
assumption of disjoint-ness implies that these processes
terminate. After termination of sub processes, accept-
ance policy is enforced. As all sub-processes terminate,
policy evaluation proceeds without blocking (lines 83—
150, listing 9). These lines include sequential
synchronized calls from SESP to RESP and possibly
from RESP to SESP. This mutual recursion was shown
to terminate in proposition 3. Therefore, RESP is
interference free and terminates.

8. Privacy leakages due to feedback

Example 1 shows that providing feedback not only reveals
to the sender the policy that is being evaluated at the RESP,
but also leaks several other types of information. For
instance, in example 1, the sender could determine the
expressions rejected by the RESP’s Bayesian filter. This
information can be misused by the sender to send undesira-
ble messages to the recipient by simply camouflaging the
`flagged’ expressions – using HTML tags, insertion of spaces
and other similar techniques. Other types of leakages [13]
that compromise recipient’s private information are also
possible with WSEmail.

Leakages are categorized into two classes [13], viz, those
due to feedback provided in-band with the transmission
channel, and those due to out of band feedback channels. In
the case of example 1, the leakage of information occurs due
to in band feedback channel. These can by simply prevented
in the SLA by prohibiting feedback. Consequently, the
message improvement service will not be invoked. How-
ever, leakage is still possible, as shown next. Consider a
scenario where an acceptance policy requires that a message
satisfy the Bayesian filter and include a valid bond. Because
of this policy whenever the bond is seized by a recipient,
causing out of band monetary flow, it reveals the strength of
the filter to the sender as the sender gets the confirmation
that the message satisfied the Bayesian filter. Clearly,
strength of the filter is sensitive information that must be
protected, as argued above.

Authors in [13] develop methods for preventing out of band
privacy leakages. These are directly applicable to the BPEL
processes described here. We translate their solution for
logic programs to our imperative programs. In addition, we
show how process synchronization can be used to enforce
their solution, a study missing in their work. First, we
illustrate the problem with an original (unsafe) policy and its
BPEL specification.

Policy 1 [Original (Unsafe) Policy]: Consider the following
acceptance policy for accepting messages:

Accept IF Sender is not blacklisted and bond ≥ a
message OR Sender blacklisted and bond ≥ b (b>a)

As shown earlier[13], this is an unsafe policy since it introduces an out of
band feedback channel. For instance, if a sender sends a message bonded
with value c ∈ (a,b) and the bond is seized, then money transfer indicates
to the sender that he or she is not blacklisted by the particular recipient. An
(abbreviated) BPEL specification of this policy enforcement is as follows:

Policy evaluation block in RESP process
Begin Sequence
 Switch
 Case: Sender ∉ blacklist AND bond > a
 Rnotice= Invoke RESPDeliveryPT(Msg)
 Case: Sender blacklist AND bond > b
 Rnotice= Invoke RESPDeliveryPT(Msg)

 13

 Otherwise
 RMsg = Invoke RESPImprovmentPT(Msg)
 Reply SESPCallBack(RMsg)
 End switch
End Sequence

8.1 Policy transformation

Out of band leakages described above are harder to
prevent without discontinuing the use of Web Services
that introduce the leakage channel. That is, protection
against privacy leakages requires that recipients and
RESPs disable the use of such Web Services. However,
this condition is too strict; an alternate solution exists
that achieves the same goal without requiring the
recipients to write truncated acceptance policies. This is
done be automatically generating two safe policies from
the original: the necessary and the sufficient policy.

Intuitively, the necessary policy is a weaker policy
(truncated form of original policy) that does not invoke
leaky Web Services. On the other hand, the sufficient
policy is a strictly stronger policy that does not invoke
leaky Web Services. With the ability to automatically
construct these policies, a policy author can still enforce
the original policy with a trusted client; and use the
necessary and sufficient policies in tandem with a
suspicious or an unknown client. Their construction and
use is detailed next.

For the transformation procedures below we assume
that a policy can be represented as a logical formula in
disjunctive normal form (DNF), i.e., it can be
represented as d1∨d2∨…∨dn where each di is a
conjunction of Boolean conditions.

Policy 2 [Necessary Policy]: Consider the original policy,
discussed in Policy 1.

Accept IF Sender is not blacklisted and bond ≥ a
message OR Sender blacklisted and bond ≥ b (b>a)

Applying the NecessaryTransform procedure to the original unsafe
policy yields the following necessary policy:

Accept message IF Bond ≥ a

In this particular example, the contents of a blacklist are considered
sensitive. Consider the evaluation of this policy at RESP:

Policy evaluation block in RESP process
Begin Sequence
 Switch
 Case: bond > a
 Rnotice= Invoke RESPDeliveryPT(Msg)
 Otherwise
 RMsg = Invoke RESPImprovmentPT(Msg)
 Reply SESPCallBack(RMsg)
 End switch
End Sequence

As is evident from the code above, this policy accepts messages with a
minimum bond value, and assuming recipient will seize bonds for all
unwanted messages, the only information that this policy leaks is that the
recipient requires a bond value of a for messages to be accepted. No
information about content of recipient’s blacklist can be deduced.

SufficientTransform procedure is presented next.

SufficientTransform(Policy, private):
Input: A set of policy rules
Input: A set of sensitive information attributes
Output: A set of policy rules that protect sensitive information
 if (Policy rules contains p ∈ private)
 Repeat till Policy does not contain any p ∈ private
1. choose a pair of rules ∈ Policy | rule1=∨i di and some di contain

p and rule2=∨j Dj and some Di contain NOT(p)
2. remove rule1 and rule2 and construct a new rule such that
 rule=(∨i di)∨(∨j Dj) except the disjuncts containing p
 else
 return

Policy 3 [Sufficient Policy]: Consider the original policy, discussed in
Policy 1. Applying the SufficientTransform procedure to the original unsafe
policy yields the following necessary policy:

Sufficient policy:

Accept message IF Bond ≥ b

Consider the evaluation of this policy at RESP: NecessaryTransform(Policy, private):

Input: A set of policy rules
Input: A set of sensitive information attributes
Output: A set of policy rules that protect sensitive information
 if (Policy rules contains p ∈ private)
 Repeat till Policy does not contain any p ∈ private
1. choose a rule ∈ Policy | rule=∨i di and some di contain p
2. modify each such di such that it does not contain p
 else
 return

Policy evaluation block in RESP process
Begin Sequence
 Switch
 Case: bond > b
 Rnotice= Invoke RESPDeliveryPT(Msg)
 Otherwise
 Throw RejectFault(Msg)
 End switch
End Sequence

As in the previous case, the sufficient policy enforcement can only reveal to
the sender that the message requires a minimum bond value of b. No
information about the contents of the blacklist is divulged.

9. Related work

Lux, May, et al in [17] introduce WSEmail, i.e., trans-
mission of email messages using Web Services. The ad-
vantage of using Web Services is that it lends additional
flexibility to the message transmission process, while

 14

avoiding standard pitfalls, like, lack of sender
authentication, susceptibility to spam, etc. However, the
authors restrict to previewing their prototype instead of
considering the standard SMTP use cases for message
delivery, or the orchestration of related Web Services.
Here we fill these gaps.

Next closely related work is by Afandi [1], where the
author discusses adaptive policies for messaging
systems (like WSEmail). The central idea is to separate
policies from the mechanism to allow flexibility in the
behavior of network components involved in message
transmission; however, this work emphasizes on design
and architecture of such a system. Here, we
complement AMPol by providing a simple
implementation using BPEL.

Kaushik, Winsborough et al in [12, 13] solve similar
problems in conventional systems, and provide several
alternative solutions. We consider the applicability of
their solutions, appropriately tailored, to the new dom-
ain. In addition, we show how process synchronization
is used to enforce their solution, the piece missing in all
earlier works. Finally, we give informal proofs of
correctness of our implementation that uses parallel
concurrent process for achieving message transmission.

Chafle, Chandra et al [6] present an analysis for
decentralized orchestration of Web Services using
BPEL. Though the problem we consider here is not
directly related, but our analysis takes a leaf out of their
synchronization analysis of BPEL orchestration.

10. Conclusion

In this paper we have analyzed an emerging Web
Services based application for internet messaging
known as WSEmail and compared it to the
conventional messaging systems. Since the existing
specifications for WSEmail don’t consider all the
standard use cases of existing message delivery
infrastructure or the set of misuse cases that must be
prevented, we augment their architecture with our
additions. We provide a formal specification of each
Web Service considered and show that standard use
cases are supported with the family of Services we have
identified; and all misuse cases can be prevented with
the same (extensible) set. We next show how to
orchestrate this family of services securely to achieve
the goal of secure transmission of email messages, with
no privacy leakages, a piece missing in most other
works, and reason as to why our specification is correct.

References

[1] R. N. Afandi, AMPOL: Adaptive Messaging Policy Based
System, Master's Thesis in Computer Science, University of
Illinois at Urbana-Champaigne, 2005.

[2] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F.
Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic
and S. Weerawarana, Business Process Execution Language
for Web Services, 2003.

[3] K. R. Apt and E. R. Olderog, Verification of Sequential and
Concurrent Programs, Springer-Verlag, 1997.

[4] T. Bass, A. Freyre and D. Gruber, E-Mail Bombs and
Countermeasures:Cyber Attacks on Availability and Brand
Integrity, IEEE Network, 12 (1998), pp. 10--17.

[5] N. Borenstein and N. Freed, RFC 1521 - MIME (Multipurpose
Internet Mail Extensions), 1993.

[6] G. Chafle, S. Chandra, V. Mann and M. G. Nanda,
Decentralized Orchestration of Composite Web Services,
Thirteenth international world wide web conference (WWW
2004), 2004.

[7] E. Christensen, F. Curbera, G. Meredith and S. Weerawarana,
Web Services Description Language (WSDL) 1.1, 2001.

[8] N. Freed and N. Borenstein, Multipurpose Internet Mail
Extensions, RFC 2045, 1996.

[9] P. Hoffman, SMTP Service Extension for Secure SMTP over
Transport Layer Security, RFC 3207, 2002.

[10] http://www.cloudmark.com/, Cloudmark.
[11] http://www.rhyolite.com/anti-spam/dcc/, Distributed

Checksum Clearinghouse.
[12] S. Kaushik, W. Winsborough, D. Wijesekera and P. Ammann,

Email Feedback: A Policy-Based Approach to Overcoming
False Positives, 3rd ACM Workshop on Formal Methods in
Security Engineering: From Specifications to Code (FMSE
2005), Fairfax, VA, 2005, pp. 73--82.

[13] S. Kaushik, W. Winsborough, D. Wijesekera and P. Ammann,
Policy Transformations for Preventing Leakage of Sensitive
Information in Email Systems, in E. Damiani and P. Liu, eds.,
20th Annual IFIP WG 11.3 Working Conference on Data and
Applications Security, Springer Berlin / Heidelberg, Sophia
Antipolis, France, 2006, pp. To appear.

[14] J. Klensin, Simple Mail Transfer Protocol, RFC 2821, 2001.
[15] J. F. Kurose and K. W. Ross, Computer Networking : A Top-

Down Approach Featuring the Internet, Addison Wesley,
2004.

[16] T. Loder, M. V. Alstyne and R. Walsh, An Economic Answer
to Unsolicited Communication 5th ACM conference on
Electronic Commerce, 2004, pp. 40-50.

[17] K. D. Lux, M. J. May, N. L. Bhattad and C. A. Gunter:,
WSEmail: Secure Internet Messaging Based on Web Services,
2005 IEEE International Conference on Web Services (ICWS
2005), Orlando, FL, 2005, pp. 75-82.

[18] J. Myers, SMTP Service Extension for Authentication, RFC
2554, 1999.

[19] A. S. Tanenbaum and M. v. Steen, Distributed Systems:
Principles and Paradigms, Prentice Hall, 2002.

[20] T. Yu, X. Ma and M. Winslett:, PRUNES: an efficient and
complete strategy for automated trust negotiation over the
Internet. , 7th ACM Conference on Computer and
Communications Security (CCS '00), Athens, Greece, 2000,
pp. 210-219.

 15

	BPEL Orchestration of Secure WebMail

