
Graphical Composition of State-Dependent Use Case Behavioral Models

Jon Whittle
Information & Software Engineering

George Mason University
Fairfax, VA 22030
jwhittle@gmu.edu

João Araújo

Department of Informatics, FCT
Universidade Nova de Lisboa
2829-516 Caparica, Portugal

ja@di.fct.unl.pt

Ana Moreira
Department of Informatics, FCT

Universidade Nova de Lisboa
2829-516 Caparica, Portugal

amm@di.fct.unl.pt

Rasheed Rabbi
Information & Software Engineering

George Mason University
Fairfax, VA 22030
rrabbi@gmu.edu

Abstract

Maintaining a clear separation of concerns

throughout the software lifecycle has long been a goal
of the software community. Concerns that are
separated, however, must be composed at some point.
This paper presents a technique for keeping state-
dependent use cases separate throughout the software
modeling process and a method for composing state-
dependent use cases. The composition method is based
on the graph transformations formalism. This provides
a rich yet user-friendly way of composing state
dependent use cases that is built on solid foundations.
To evaluate our approach, it has been applied to seven
student design solutions. Each solution was originally
developed using a use case-driven methodology and
was reengineered to evaluate whether our technique
could have been applied. The findings are that it is
possible to maintain the separation of state-dependent
use cases during software design and, furthermore,
that expressive model composition methods are
necessary to do this in practice.

1. Introduction

In software engineering, a concern is anything that
is of interest to one or more stakeholders, such as a
feature, a component or a non-functional requirement.
Separation of concerns is the process of isolating key
elements in a software system so that these elements
can be developed and reasoned about independently.
Separating concerns has been recognized as a way of
tackling complexity in requirements engineering (e.g.,
viewpoints [1], aspect-oriented requirements

engineering [2]), software architecture (e.g.,
architecture defined by a set of views [3]), software
design (e.g., multi-dimensional separation of concerns
MDSOC [4]) and coding (e.g., AspectJ [5], Hyper/J
[6]). Recent approaches to separating concerns, such as
multi-dimensional separation of concerns and aspect-
oriented software development, arose because existing
formalisms for developing software artifacts led to a
dominant decomposition based on a single concern.
This made it difficult to incorporate other concerns.

The result is concern scattering (each concern is
implemented in multiple objects) and concern tangling
(a single object implements multiple concerns). These
problems, of course, are not limited to code but can be
found at all stages of software development. A large
body of recent work (generally referred to as Aspect
Oriented Software Development) has addressed how to
support separation of concerns during requirements
[2], architecture [7], design [8] and testing. A key
problem to be solved by such approaches is: How to
compose a set of separated concerns? Concern
composition (called weaving in aspect-oriented
programming) is necessary so that the entire set of
concerns can be inspected, analyzed, validated or
executed as a whole.

This paper focuses on concern composition during
software design. In this paper, we suggest the use of
graph transformations [9] to define design
compositions. We focus on state-dependent designs
given as UML state diagrams. The paper presents a
composition language for UML state diagrams based
on graph transformations and shows how it can be used
to support aspect oriented software development.
Although the focus here is on state diagrams, the
technique applies to the entire UML. To evaluate our

approach, we apply it to seven student design
solutions. These solutions are UML designs that were
created as part of a graduate course on software design.
They were produced following a traditional use case-
based methodology. We re-engineered the solutions to
keep separate the state diagrams derived from different
use cases and applied our composition technique to
compose the state diagrams. This exercise provided
evidence that an expressive composition language is
necessary for practical UML designs and that our
composition language is sufficiently expressive.

The remainder of this paper is structured as follows.
Section 2 introduces motivation for our work. Section
3 presents our solution using graph transformations.
Section 4 looks at existing design solutions to validate
the approach. Section 5 compares related work and is
followed by suggestions for future work in Section 6.

2. Motivation

In a recent book [10], Jacobson and Ng argue that
use cases are an ideal dimension along which to
decompose not only software requirements but also
designs and code. In traditional object-oriented design,
requirements are decomposed into use cases but
implementations are decomposed into objects. This
decomposition mismatch is overcome by transforming
use cases into objects. Indeed, this transformation is
one of the major activities in object-oriented software
development. According to Jacobson and Ng, use case
decomposition can be maintained throughout design
and coding by modeling each use case separately (or
more generally, sets of use cases) as a set of objects
that form a use case slice. These use case slices are
then composed at the code level using aspect-oriented
programming (AOP) techniques. The result is that the
requirements and implementation match more closely
and so it is easier to reuse requirements, modify
requirements, and maintain traceability links between
requirements and code. This idea is, in essence, an
application of the more general philosophy called
multi-dimensional separation of concerns (MDSOC)
[4,11].

 Although Jacobson and Ng present a methodology
for developing use case slices, they do not fully
address how to compose behavior in use case slices
during design. In fact, their focus is on how to design
and compose UML class diagrams and behavioral
modeling is, for the most part, ignored. Composition
during design is necessary for inspection, analysis and
validation of the complete design model.

In this paper, we address how to compose the
behavioral parts of use case slices given as UML state
diagrams. The problem to be addressed, therefore, is:
Given two (or more) state diagrams, each representing
the behavior in one use case slice, what is the best way
to specify and apply the composition of those designs?

We define the following requirements for a model
composition language.
1. Expressiveness. A given pair of models can be

composed in many different ways and the choice
depends on the application. Hence, a composition
language must be able to express all possible
compositions in as natural a way as possible.

2. Scalability. A composition language should scale
to large industrial models.

3. Usability. A composition language should be as
non-invasive as possible, in the sense that
practicing software designers should not have to
learn a new complex language. A composition
language should resemble the design language as
closely as possible. Since UML is graphical, this
means that its composition language should also be
graphical.

4. Formality. Although UML does not have a formal
semantics, formality is nevertheless a desirable
feature. Therefore, a UML composition language
should have a formal basis – but one that does not
act as a barrier in practice.

A search of the literature on design composition
languages reveals that there have generally been two
approaches for composing software models. The first is
based on aspect-oriented programming. In particular,
researchers have taken the syntax of composition
mechanisms in AspectJ (pointcuts, joinpoints and
advices) and have applied them at the design level
[12]. The second is based on Tarr et al’s work on
multi-dimensional separation of concerns [11]. In this
approach, tools provide a default merge algorithm
which is predefined and matches elements in the two
models. Matching is typically based on the names of
the model elements and the default merge algorithm
can be modified by textual composition overrides.

Neither of these composition approaches satisfies
the four requirements of a model composition language
given above. AspectJ-like mechanisms are not very
expressive because there is a predetermined set of
possible advices that can be used in composition –
namely, before, after and around. These mechanisms
do not scale to large models because a large model
must be broken down before composition if different
parts of the model are to be merged using different
advices. AspectJ-like mechanisms do tend to be usable,
even though they are not graphical, because specifying
that a design should be inserted before or after another

is somewhat natural. AspectJ-like mechanisms are
typically not formally defined.

On the other hand, MDSOC approaches using a
generic merge algorithm are not expressive, scalable or
usable. Since a default merge algorithm is used, not all
compositions can be expressed easily. It is usually
possible to override the default composition but
approaches to do this are very low-level and not
graphical, leading to problems in scalability and
usability.

Our approach is instead based on graph
transformations. A graph transformation [9] is a
graphical rule that defines modifications on a given
graph. Since they have a formal underpinning, they
satisfy requirement (4) above. Graph transformations
can be used to specify any composition and hence also
satisfy (1). Since they are graphical, they at least in
part satisfy (3). To address (2) and to further address
(1) and (3), the paper presents an analysis of seven
student design solutions to see if graph transformations
could have been used to specify compositions in
practice. We have not yet applied the approach to
industrial designs and leave this as future work.

3. A Model Composition Language Based
on Graph Transformations

In this section, we present our approach for
specifying model composition. We focus in this paper
on the behavior of use case slices represented as UML
state machines. We present a language for defining
compositions that is graphical and formal and closely
resembles UML. Although we apply this language to
UML state diagrams in this paper, the approach can be
adapted to other UML diagrams. We first give an
example of a model composition. We then present
background on graph transformations. After this, we
show how to adapt graph transformations to define a
UML state diagram composition language. Finally, we
illustrate the expressiveness of our language and
compare it to existing composition approaches.

3.1. Example State Diagram Composition

Figure 1 shows two use case slices for a distributed

application. The left-hand-side is a use case slice for
calling a remote service and consists of a state
dependent class ServiceController and a state diagram
that defines its behavior. Similarly, the right-hand-side
is a use case slice for Handle Network Failure
containing the same class ServiceController but with a
different set of attributes and a different state diagram.
This use case slice describes a limited number of

attempts to retry a service after a network failure. Each
slice contains the static and dynamic models relevant
to a single use case. (A use case slice can, in general,
contain more than one use case.) Note, in particular,
that each use case slice contains only behavior
necessary for that slice. The complete design (in this
illustration, comprising only two use cases) is the
composition of the two use case slices.

Call Remote
Service

ServiceController

S1

S3
entry: logReturnValue(..)

entry: updateGUI(..)
entry: enableGUI()

serviceRequest/
disableGUI()

ServiceController

retries : int;
MAX : int;

T1

T2

[retries>MAX]remoteException/

[retries<=MAX]
remoteException/
callRemoteService(…);retries++

/retries:=0

Handle
Network
Failure

S2
entry:callRemoteService(…)

ack(..)/

Figure 1: State-Dependent Use Case Slices

During a traditional design process, the two state

diagrams for ServiceController would be merged
manually and the link between requirement and
behavioral design would henceforth be lost.
Traceability information could be maintained to keep
the link between the states and their use case but this is
rarely done in practice because of the complexity of
maintaining traceability links as the design is modified.

We propose, instead, that, as in [10], the use case
slices be kept as separate concerns throughout
development. This makes it easier to modify one use
case slice without affecting the other. To inspect or
analyze the complete design behavior, the two state
diagrams must be composed, preferably automatically.
Hence, the use case slices must be accompanied by a
composition specification written in an appropriate
composition language.

 Figure 2 shows the composed state diagram for the
two use case slices. This example is deliberately
chosen because the composition is non-trivial. The two
state diagrams are interleaved in a way to satisfy the
overall requirements. It is not the case, for example,
that the state diagram for Handle Network Failure can
simply be inserted before or after a single state in the
diagram for Call Remote Service. In fact, neither the
AspectJ-like or MDSOC approach to composition
works very well in this case (see section 4). A more
expressive model composition language is necessary.

S1

S2
entry:callRemoteService(…)

serviceRequest/
disableGUI()

ServiceController

retries : int;
MAX : int;

entry: enableGUI()

[retries>MAX]
remoteException/

[retries<=MAX]
remoteException/
callRemoteService(…);retries++

/retries:=0

ack(..)/logReturnValue(…);
updateGUI()

Figure 2: Desired Composition of Use Case Slices

3.2. Graph Transformations

A graph consists of a set of nodes and a set of
edges. A graph transformation [9] is a graph rule r: L
→ R from a left-hand-side (LHS) graph L to a right-
hand-side (RHS) graph R. The process of applying r to
a graph G involves finding a graph monomorphism, h,
from L to G and replacing h(L) in G with h(R). To
avoid “dangling edges” – i.e., edges with a missing
source or target node – h(R) must be pasted into G in
such a way that all edges connected to a removed node
in h(L) are reconnected to a replacement node in h(R).
An alternative is just to remove all dangling edges.

Graph transformations may also be defined over
attributed typed graphs. A typed graph is a graph in
which each node and edge belongs to a type. Types are
defined in a type graph. An attributed graph is a graph
in which each node and edge may be labeled with
attributes where each label is a (value, type) pair giving
the value of the attribute and its type. In a graph rule,
variables may be used to capture a set of possible
values and/or a set of possible types.

Graph rules have previously been used for
transforming UML models (e.g., UML refactorings
[13]). This work requires that UML models be
represented as graphs. The approach is to define node
types as the metaclasses in the UML metamodel. For
example, a UML class diagram has metaclasses Class,
Association, Operation, etc., which become node
types. Hence, in this approach, the following are
required to define a graph transformation on a UML
diagram: a metamodel defining the UML diagram, and
a graph rule describing how instances of metaclasses
are manipulated.

As an example, Figure 3 shows a fragment of the
UML state machine metamodel. Each transition has a
source and target state. A state may contain 0 or more
regions. A state is composite if it contains 1 or more
regions. If it contains 2 or more regions, then the
regions in this state are orthogonal. The State
metaclass has an attribute isComposite indicating
whether or not the state is composite. Finally, states

and transition triggers have names (as represented by a
generalization relationship to the abstract class
namedElement).

Figure 4 is a graph transformation which moves all
outgoing transitions from a composite state to its
substates. The notation used to define this graph
transformation is that of [13]. (We defer to [13] for the
subtleties of this notation.) Nodes in the graph are
given as rectangles. Nodes are attributed and typed so
UML class diagram notation can be used to represent
them. There are two additional notations. First, a set of
nodes of a certain type is shown by a stacked rectangle.
For example, regions is a set of Regions associated
with a composite state. Secondly, the cross in the
figure is a negative application condition and says that
any match against the LHS graph cannot have a
substate with a transition trigger called triggerName.
The LHS in Figure 4 matches any graph with at least
one composite state with an outgoing transition.
Furthermore, there should not be a transition on any of
the substates with the same trigger. The RHS redirects
the matched transition to all substates (by creating
copies of it) thus moving the transition down in the
state hierarchy. Figure 5 shows an example.

State

isComposite :
Boolean

Region

Transition

0..1

*

1
*

1

1

* *

source
target

*

0..1

substates

subregions Trigger

0..1

1

namedElement

name : String

Figure 3: UML State Machine Metamodel

where ts is a set of copies of t

s1 : State
isComposite
= true

regions:
Region

subs: State

t : Transition

source

s2 : State
target

source

: Transition : Trigger
name =
triggerName

tr : Trigger
name =
triggerName

s1 : State
isComposite =
true

regions:
Region

subs: State

source

ts: Transitions

s2 : State
target

tr : Trigger
name =
triggerName

subregions

subregions

substates

substates

Figure 4: Graph Rule to Move Down Transitions

e/

f/

e/

f/
e/

Figure 5: Application of Graph Rule from Figure 4

3.3. A Model Composition Language based on
Graph Transformations

The composition of use case slice models can be
viewed as an example of a graph transformation if the
models can be given as graphs. This can be done by
mapping models to instances of their defining
metamodel. For example, if Figure 5 is represented as
an object diagram showing instances of the State,
Transition and Trigger metaclasses, then this object
diagram is just a graph. Composition rules for merging
use case slice models could be expressed using the
notation of Figure 4. In this case, the rules are written
over the abstract syntax (i.e., over the metaclasses) of
the model rather than the concrete graphical syntax.

For use case slice composition, however, model
developers must write the composition rules. Hence, a
composition language based on UML metaclasses is
impractical because model developers are not generally
familiar with the UML metamodel. Furthermore, graph
transformations defined over large metamodels are
difficult to read and understand [14]. For this reason,
we propose state diagram patterns as a way to capture
the LHS and RHS of a composition rule. State diagram
patterns resemble the concrete syntax of UML state
diagrams very closely. The concrete syntax is familiar
to developers and is therefore more accessible.

For 2 use case slice models, 1u and 2u , their
merge can be defined by a graph rule

1221: uuuc →∪ , where 1u , 2u , 12u are state

diagram patterns and 12u represents the merge of

1u and 2u . Henceforth, c will be referred to as a
composition rule. A state diagram pattern is an
abstract representation of a family of state diagrams
and is defined below. Intuitively, a composition rule
should capture the two use case slices in as abstract a
way as possible. In other words, only model elements
relevant to the composition should be included. This
keeps the rule general and means that modifications of
the use case slices do not usually require modifications
of the composition rule.

A state diagram pattern is a state diagram
containing pattern variables. Pattern variables are
typed over the state machine metaclasses and are
marked with multiplicities. Pattern variables are
prefixed with a vertical bar ‘|’. A pattern variable |X
has a multiplicity of one. A pattern variable |X+ has a
multiplicity of one or more. A state diagram pattern
matches a state diagram if all the pattern variables can
be instantiated to elements of the state diagram in a
way that preserves the variable’s metaclass and
multiplicity. Figure 6 gives some examples of state
diagram patterns.

a |X b
Matches any state diagram with
states a,b separated by a single
state

a |X+ b
Matches any state diagram with
states a,b separated by any number
of states and transitions (i.e. another
state machine)

|X

|Y

Matches any composite state
with exactly 2 orthogonal regions

|X

|Y+

Matches any composite state
with at least 2 orthogonal regions

entry: |X+
e/|Y+

Matches any state with an
unbounded number of entry
actions and an outgoing transition
with event e and any number of
actions

|X+

Matches any composite state, i.e.,
any state that contains an unbounded
number of states and transitions

(a)

(f)(e)

(d)
(c)

(b)

Figure 6: State Diagram Patterns

Patterns based on the notation in Figure 6 are used

to describe the LHS of composition rules and also
appear on the RHS to show modifications of model
elements introduced by the transformation. Figure 6(a),
for example, matches any sequence of states starting
with a state named a and ending with a state named b.
The variable |X in 6(a) matches any state in between
those states. In contrast, the variable |X+ in Figure 6(b)
matches any state diagram in between a and b. In a
similar way, Figures 6(c) and (d) show how to match
against a specific number of regions and an unknown
number of regions, respectively. Figure 6(e) is self-
explanatory. Figure 6(f) matches a state which contains
a pattern |X+ - i.e., there must be at least one substate.

State diagram patterns re-use the concrete syntax of
UML state diagrams wherever possible. New notation
is introduced only to represent pattern variables and to
represent composite states (see Figure 6(f)). The latter
is necessary because composite states are given by a
meta-attribute in the UML state machine metamodel
(isBoolean in Figure 4) so it is not possible to
distinguish a simple or composite state based purely on
the concrete syntax of state. Note also that state
diagram patterns need not be valid state diagrams –
Figure 6(e), for example, has no target state. State
diagrams must be well-typed. The abstract syntax of
state diagram patterns is defined by an extension of the

metamodel in Figure 3 and their semantics is given by
mapping them to the notation used in Figure 4. Neither
is shown here due to lack of space.

More generally, we would like to extend the pattern
approach to any modeling language defined by a
metamodel. This would involve defining a generic
process for starting with a metamodel and producing a
pattern language that is close to the concrete syntax. In
general, this is difficult because composition rules
often need to refer to meta-level concepts that cannot
be represented using concrete syntax. Furthermore,
metadata cannot be represented in concrete syntax so a
composition rule based on concrete syntax would, in
some cases, be unable to distinguish between two
metaclasses.

S2
entry:

callRemoteService(…)

/retries:=0

T1

/retries:=0

[retries>MAX]
|D+

|A |B+

entry:|C+

entry: enableGUI(..)

|A

|B+

ack/

S2
entry:

callRemoteService(…)

entry: enableGUI(..)
ack/|C+

[retries>MAX]
|D+

Figure 7: Composition of Use Case Slices

3.3. Model Composition Language Example

This section gives an example composition
definition using the model composition language in the
previous sections. Recall the two behavioral use case
slices in Figure 1. Figure 7 is the model composition
definition that will merge these two slices and produce
the composed model as given in Figure 2.

The LHS of the graph rule (top half of Figure 7)
defines two patterns to match when applying the rule.
The first pattern captures a successful service request
that starts with callRemoteService, is acknowledged,
and ends with enabling the GUI. The composition does
not depend on any other event/actions that may be
present so these are abstracted by pattern variables.
The second state diagram pattern defines any situation
in which a counter is initialized and a threshold is
placed on this counter. Again, any extraneous
messages that may occur in a particular application are
not included in the pattern. In this way, the pattern is
kept as general as possible.

The RHS of the graph rule (bottom half of Figure 7)
defines how the two LHS patterns should be merged,

again in general terms. When matching the LHS
against the state diagrams in Figure 1, the following
variable instantiations would occur:
• |A matches state S1
• |B+ matches serviceRequest/disableGUI()
• |C+ matches logReturnValue(..) and updateGUI(..)
• |D+ matches remoteException
The composition in Figure 7 is non-trivial for two

reasons. First, the Handle Network Failure state
diagram is split into two parts – one for initializing the
retry counter and one for handling exceptions. Each of
these parts is inserted into the Call Remote Service
state diagram in different places. Secondly, note that
the GUI is disabled before the remote service is
requested. The GUI is re-enabled (enableGUI(..)) both
in the case of success and if the maximum number of
retries is exceeded. Because of this, state S3 in Figure
1 needs to be split. logReturnValue() and updateGUI()
only occur in the case of a successful remote service
call. Hence, in Figure 7, they are placed on their own
transition and the entry action enableGUI(..) is given
its own state.

The next subsection shows that this composition
would not have been possible using existing
approaches to model composition.

Since our composition language is based on graph
transformations, an execution engine for composition
can be built using well-known graph transformation
execution semantics. We are in the process of building
an execution engine for Eclipse EMF models. This will
provide the capability to automate compositions of use
case slice models.

3.4. Comparison to Existing Approaches

3.4.1. Applying AspectJ at the design level

A number of works have addressed the problem of

aspect model composition by applying AspectJ-like
advices at the model level (see, for example, [12]). In
AspectJ [5], crosscutting behavior can be inserted at
well-defined points in the execution of a base Java
program. These well-defined points are called join
points and the nature of the insertion may be before,
after or around a join point. Applying these concepts to
UML state machines, one can define either static or
dynamic join points. Static join points are syntactic
elements of a state machine; dynamic join points are
points in the “execution” of a state machine. Since
UML state machines have a relatively well understood
operational semantics (see, for example, [15]),
dynamic join points can be defined easily, e.g., [16].
However, since models are most commonly used for

communication and documentation, and are not
necessarily executed, static join points are perhaps
more useful in current modeling practices. Static join
points for UML state machines include the basic
concepts that form state machine abstract syntax, e.g.,
states, transitions, actions, events. Hence, one may
define an AspectJ-like composition of two state
machines by defining that one state machine is inserted
at a static join point and is placed before, after or
around this join point.

Consider how to define such a composition for the
two state machines in Figure 1 in order to produce the
state machine in Figure 2. Assuming that the base state
machine is on the left in Figure 1, one could try to
insert the state machine for Handle Network Failure
into the state machine for Call Remote Service.
Unfortunately, there is no single join point at which the
insertion can be done. A first attempt might insert
Handle Network Failure after entry:
callRemoteService(…) in state S2. This does not work,
however, because Figure 2 has the retries transition
before state S1. More importantly, this type of
insertion means that if callRemoteService(…) results in
too many exceptions (i.e., the state machine transitions
to state T2), the GUI will not be re-enabled. However,
the GUI needs to be enabled (see Figure 2) whether the
remote service call ultimately succeeds or not. Using
AspectJ’s around advice does not work either. Around
is used to control the execution of a join point and
typically replaces base behavior. In this case, one
might wish to control the entry: callRemoteService join
point so that if the maximum number of tries is
exceeded, the actions logReturnValue(…) and
updateGUI(…) are not invoked. But this is not possible
unless logReturnValue(…) and updateGUI(…) are
encapsulated inside callRemoteService as sub-actions.
In other words, a refactoring of the model would be
needed first. We conclude therefore that AspectJ-like
composition mechanisms can only be used if the state
machine models are refactored first. In this example,
they could be made to work by first splitting the state
machine for Handle Network Failure into two state
machines – one involving only the retries transition,
and one including everything else – and inserting the
retries transition before S1 and the rest of the state
machine around entry: callRemoteService(…). In
addition, the state machine for Call Remote Service
would have to be refactored as described above.

3.4.2. Applying Generic Merge Algorithms

The other major approach to merging models is to

apply a generic merge algorithm that may be
customized to a particular application. The usual

approach is to specify a mapping between the model
elements of the models to be merged. If the result of
the merge is not the one desired, then the modeler has
to modify the result either manually or using a
composition directive language that tunes the merge
algorithm. In the example of Figure 1, it is hard to
imagine how such an approach could be practical. If
the merge algorithm is based on matching state names,
one could attempt to merge with the mapping T1=S2.
However, the merge result would then have the
transition retries in the wrong position and, as in the
previous subsection, enableGUI(..) will not be
executed when retries>MAX. Hence, manual
modifications would have to be made to the merge
result to achieve the desired state machine in Figure 2.
Although these manual modifications could be
specified in a composition directive language so that
they could be applied as part of the merge algorithm,
composition directive languages such as those in
[17,11] are not graphical and do not resemble the UML
state machine language. Furthermore, they provide a
very low level way of specifying such details and
hence, the approach does not scale easily.

4. Evaluation

The previous section showed that a graph

transformation approach is more expressive than
composition based on either AspectJ or MDSOC.
However, the question remains whether the additional
expressiveness is actually required in practice. Could it
be, for instance, that the example presented in this
paper is merely contrived to show the advantages of
graph transformations? To answer this question, we
undertook an investigation of existing design solutions
to see which compositions occur in practice.

Our experiments attempted to answer the following
question. In practical examples, are model composition
mechanisms based on AspectJ-like or MDSOC-like
approaches expressive enough? Moreover, is our
approach based on graph transformations expressive
enough? Hence, we attempted to address the first
requirement of model composition identified in Section
2. The methodology was to examine existing UML
designs, to refactor those designs to reflect the use case
slice technique of Jacobson and Ng, and then to
investigate the level of expressiveness required to
compose state diagrams from different use case slices.
Because of availability of the models, we chose to
study solutions to a term project conducted as graded
assignments for a graduate course in software design.
This study was conducted in the semester following the
class and so did not affect the grading in any way.

We studied seven team project designs, each
expressed in UML consisting of use cases, class
diagrams, interaction diagrams and state diagrams.
Only the use cases and state diagrams were relevant to
the study. Projects were conducted by teams of three to
four students. Each of the seven projects tackled the
same problem statement using the same set of use
cases. The resulting designs, however, were quite
different because teams worked independently.

The scale of the student solutions is clearly not
industrial in size and the results offered here are meant
to be just the first step. To give a sense of the size,
there were 10 use case slices and an average of 12 state
diagrams for each solution.

Based on an analysis of the compositions of state-
dependent use case slices, we identified four categories
of composition. The next subsections describe these
and give examples in each case.

A B C D

B/C A/D

A=D
B=C

e/a f/b

f/b

e/a(a) (b)

(c) (d)

A B C D

B

A=C=D

e/a f/b

e/aC D
f/b

A

A B C D
e/a f/b

E

A B
e/a

C
f/b

D

E

g/c

g/c

f/b

A B C D
e/a f/b

A B
e/a

C D
[IN(A)]f/b

[not IN(A)]f/wait

Figure 8: Composition Categories

4.1. One-to-one state matching

The first category contains model compositions that
can be expressed using simple matching of states. In
other words, for two state diagrams, S1 and S2, with
state sets Σ1 and Σ2, the composed state diagram S1•
S2, can be obtained by defining a one-to-one mapping
θ: Σ1 → Σ2. Figure 8(a) gives an example. In the
student solutions, this case occurred typically when
two state diagrams defined sequences that were joined
together into a loop.

4.2. Many-to-many state matching

This category is an extension of the previous one
whereby states in the two LHS state diagrams have a
many-to-many relationship, i.e., θ(σ) is a set for any
state σ. This allows a much richer form of composition.
In particular, it allows for the creation of composite
states (see Figure 8(b)). This type of composition is not

typically employed by MDSOC but has been
investigated in previous work by authors of this paper
[18]. Figure 8(b) gives an example.

4.3. State diagram refactoring

In this category, one or more of the LHS state
diagrams must be refactored to enable composition to
take place. In other words, one state diagram cannot be
inserted in its entirety into the other. Rather, it must be
broken up before being inserted in multiple places.
This type of composition cannot be handled by state
matching because state matching cannot refactor a state
diagram. Figure 8(c) illustrates.

4.4. State diagram refinement

In this type of composition, additional behavior

(i.e., states and transitions) must be added when
composition takes place. Clearly, state matching does
not apply because state matching cannot refine
behavior. This type of composition is necessary in
cases where two use case slices have been developed
independently but where there are dependencies
between the slices that must be resolved when the
slices are composed. A typical example concerns
access to data. If a use case slice only reads from a data
object, then no data access synchronization is required.
However, if another use case slice writes to this data
object, when the two use case slices are composed, an
access synchronization mechanism such as mutual
exclusion must be added. Figure 8(d) gives an
example.

4.5. Discussion

Based on the student design solutions, we found

that all four categories of composition were common.
The breakdown for the four categories was as follows:
13%, 39%, 46%, 2%. Only the graph transformation
approach is expressive enough to support all four
categories. The MDSOC approach supports only
category 4.1 although it can be easily extended to
support 4.2 (as was done in [18]). The AspectJ-
approach does not support either category 4.1 or 4.2
because both categories allow complex interleavings
that cannot be expressed using just before/after
advices. Some compositions in 4.3 could be supported
by AspectJ if the state diagram to be decomposed is
first refactored into multiple state diagrams. Each state
diagram fragment can then be inserted at a different
place. However, we view this as a non-optimal
approach to composition because it involves

representing fragments of a state diagram separately
which leads to problems in reusability and readability.

Graph transformations support all categories
because the entire state machine diagram syntax is
available. For example, two use case slices can be
merged in parallel using UML orthogonal regions.

5. Related Work

The most common approaches to merging
behavioral aspects have already been discussed in
Section 3.4. Another approach is that of composition
filters [24]. Composition filters are an approach to
defining crosscutting concerns on top of OO programs.
Filters intercept messages directed towards or away
from objects and may manipulate those messages
before dispatching or redirecting them. The
composition filters approach could also be applied to
UML models. Composition filters deliberately keep the
crosscutting code and the base code separate – they are
not explicitly composed. Explicit composition appears
to be desirable for modeling because models are
communication tools and concern separation
approaches that do not show the composed models are
likely to reduce readability. Our composition language
applies explicit composition but the trade-off is that the
compositions may be harder to express. Further
investigation is required to examine these trade-offs.

A number of works have proposed mechanisms for
aspect-oriented modeling in UML. The UMLAUT
framework [22] is a tool to compose UML models
where the compositions are defined over an abstract
syntax tree. UMLAUT uses a textual transformation
language over metaclasses that is not easily accessible
for software modelers. Some approaches [8,11] use
UML templates to represent aspect models. These have
mainly focused on UML class diagrams, however.
Stein et al [25] have introduced joinpoint designation
diagrams, a graphical way of identifying joinpoints for
models. This approach is somewhat more complicated
than ours and it is not clear if these diagrams are
understandable by model developers. Furthermore,
Stein does not consider how to compose models based
on these joinpoint specifications. [26] composes state
machines by using orthogonal regions. However, this
makes it difficult to visualize the complete behavior
and so may not support model inspection. The C-SAW
tool [27] is a model transformation engine in which
aspects can be defined using a textual language.

Graph transformations have a noble history in
software engineering. Their use has been suggested for
viewpoint integration [19] in requirements engineering,
software refactoring [13], and generative programming

programming [20]. Graph transformations influenced
the MOF 2.0 Query/Views/Transformations (QVT)
effort [21]. However, to the authors’ knowledge, there
has been no in-depth research on composing aspects
using graph transformations. In our approach, the
graph compositions are defined over UML models and
resemble the equivalent UML models very closely.
This is in contrast to existing approaches that map
models based on the metamodel.

There has been much work on defining composition
operators for formal specification languages in a way
that preserves semantics. Recent work in this direction,
for example, is presented in [28]. Our aim is somewhat
different. We aim to provide composition languages
that are accessible to working software modelers.

6. Conclusion and Further Work

This paper serves two purposes. First, it presents a
novel way of adapting graph transformations to define
model composition for aspect-oriented software
development (AOSD). Secondly, it acts as one of the
first experimental validations of the ideas put forth by
Jacobson and Ng [10] of keeping use cases
independent throughout the development lifecycle.

The use of graph transformations in model
composition is beneficial in the following ways. As
shown by the study in this paper, graph
transformations are more expressive than existing
model composition techniques in the AOSD field.
Furthermore, this richer expressiveness is required in
practice – even relatively small design solutions would
require it, for example.

There is a question of the scalability of model
composition in general, and the graph transformation
approach in particular. We found that even for student
design solutions, a graph transformation definition can
sometimes become complex and it is unlikely that a
working software engineer not trained in formal
methods would be able to specify the transformations.
On the other hand, MDSOC and AspectJ-like
approaches are sometimes (but not always) more
intuitive. We feel that, ultimately, a combination of the
three approaches would be ideal so that the simpler
approaches could be used when the additional
expressiveness is not necessary. The categorization of
composition types provided in Section 4 can be used as
guidelines towards identifying which composition
approach is more suitable for a given composition.
Note also that we expect there to be more user-friendly
ways of defining graph transformations than were
given in this paper. Having graph transformations as an
underlying formalism is useful for formal analysis, but,

but, in the future, we will investigate how to define
these transformations in a more intuitive way.

Currently, no execution engine exists for the model
composition language defined in this paper. We are in
the process of building such an engine as an Eclipse
plug-in. Existing graph transformation tools such as
AGG [23] will be used where appropriate. Once our
tool is built, users will be able to define EMF UML2.0
compliant use case slices and execute compositions
based on definitions in our model composition
language. Furthermore, we plan to investigate whether
graph transformations can offer any solutions to the
aspect interaction problem – whereby application of
multiple compositions may have unexpected effects.
We plan to use existing graph transformation analysis
techniques (such as critical pair analysis) to help in
identifying conflicts.

The composition language in this paper is syntax-
based. This can make the technique brittle in the
presence of minor syntactic changes. Future work will
investigate if semantic knowledge of models can be
exploited in composition.

7. References

[1] B. Nuseibeh, J. Kramer, A. Finkelstein, “ViewPoints:
meaningful relationships are difficult!” ICSE 2003, 676-683.
[2] A. Moreira, A. Rashid, J. Araújo, “A. Multi-Dimensional
Separation of Concerns in Requirements Engineering,” The
13th International Conference on Requirements Engineering
(RE'05), IEEE Computer Society, France, 2005.
[3] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers,
R. Little, R. Nord, J. Stafford, “Documenting Software
Architectures: Views and Beyond,” Addison Wesley, 2002.
[4] P.L. Tarr, H. Ossher, W.H. Harrison, S.M. Sutton Jr., “N
Degrees of Separation: Multi-Dimensional Separation of
Concerns.” ICSE 1999: pps 107-119.
[5] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm
and W.G. Griswold, “An overview of AspectJ.” ECOOP
Budapest, Hungary, June 2001, pp. 327–353.
[6] H. Ossher, P.L. Tarr, “Hyper/J: multi-dimensional
separation of concerns for Java.” ICSE 2000, pps. 734-737.
[7] B. Tekinerdogan, “ASAAM: Aspectual Software
Architecture Analysis Method,” Working IEEE/IFIP
Conference on Software Architecture, Oslo, June, 2004.
[8] R. France, I. Ray, G. Georg and S. Ghosh, "An Aspect-
Oriented Approach to Design Modeling", IEE Proceedings
Software, Vol 151(4), pp. 174-186, August 2004.
[9] G. Rozenberg, editor. “Handbook of Graph Grammars
and Computing by Graph Transformation, Volume 1:
Foundations.” World Scientific, 1997.
[10] I. Jacobson and P-W. Ng, “Aspect Oriented Software
Development with Use Cases,” Addison Wesley, 2004.
[11] S. Clarke and E. Baniassad, “Aspect-Oriented Analysis
and Design: The Theme Approach,” Addison Wesley, 2005.
[12] D. Stein, S. Hanenberg and R. Unland, “A UML-based
Aspect-oriented Design Notation for AspectJ.” 1st

International Conference on Aspect-oriented Software
Development, pages 106–112. ACM Press, 2002.
[13] S. Markovic and T. Baar, "Refactoring OCL annotated
UML class diagrams", In Model Driven Engineering
Languages and Systems, 8th International Conference,
MoDELS 2005, Montego Bay, Jamaica, 2005, 280-294.
[14] Baar, T. and Whittle, J., “On the Usage of Concrete
Syntax in Model Transformation Rules,” Sixth International
Andrei Ershov Memorial Conference PERSPECTIVES OF
SYSTEM INFORMATICS, 2006, Springer LNCS.
[15] M. von der Beeck. “A structured operational semantics
for UML-statecharts.” Software and System Modeling,
1(2):130.141, 2002.
[16] S. Nakajima and T. Tamai, “Aspect-Oriented Software
Design with a Variant of UML/STD.” 2006 Workshop on
Scenarios and State Machines, at ICSE 2006.
[17] G. Georg and R. France. “UML Aspect Specification
using Role Models.”Proceedings of 8th International
Conference on Object Oriented Information Systems,
Springer, LNCS Vol. 2425, 186-191, 2002.
[18] J.Araújo, J. Whittle and D-Kim, “Modeling and
Composing Scenario-Based Requirements with Aspects”,
12th IEEE International Requirements Engineering
Conference (RE), Japan, IEEE CS Press, September 2004.
[19] M. Goedicke, B. Enders, T. Meyer, G. Taentzer,
“ViewPoint-Oriented Software Development: Tool Support
for Integrating Multiple Perspectives by Distributed Graph
Transformation.” TACAS 2000: 43-47
[20] S. Sendall, “Combining Generative and Graph
Transformation Techniques for Model Transformation: An
Effective Alliance?” OOPSLA ’03 Workshop “Generative
techniques in the context of MDA”, 2003.
[21] OMG. “Meta Object facility (MOF) 2.0 Query/
View/Transformation Specification.” OMG Document
ptc/05-11-01, Nov 2005.
[22] UMLAUT: Unified Modeling Language All pUrpose
Transformer, http://www.irisa.fr/UMLAUT/
[23] J. de Lara, G. Taentzer, “Automated Model
Transformation and Its Validation Using AToM 3 and
AGG.” Diagrams 2004, pps 182-198.
[24] L. Bergmans, M. Aksit, “Composing crosscutting
concerns using composition filters.” Commun. ACM 44(10):
51-57 (2001)
[25] D. Stein, S. Hanenberg, R.Unland, “Join Point
Designation Diagrams: A Graphical Representation of Join
Point Selections,” International Journal of Software
Engineering and Knowledge Engineering, Vol. 16(3), 2006.
[26] M. Mahoney, A. Bader, T. Elrad, O. Aldawud, “Using
Aspects to Abstract and Modularize Statecharts,” The 5th
Aspect-Oriented Modeling Workshop in Conjunction with
UML 2004 Lisbon, Portugal, October 2004
[27] J. Zhang, Y. Lin, and J. Gray, “Generic and Domain-
Specific Model Refactoring using a Model Transformation
Engine,” in Model-driven Software Development, Springer,
2005, Chapter 9, pps. 199-218.
[28] G. Brunet, M. Chechik, S. Uchitel, “Properties of
Behavioural Model Merging.” FM 2006, 98-114.

