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Abstract 

 
Maintaining a clear separation of concerns 

throughout the software lifecycle has long been a goal 
of the software community. Concerns that are 
separated, however, must be composed at some point. 
This paper presents a technique for keeping state-
dependent use cases separate throughout the software 
modeling process and a method for composing state-
dependent use cases. The composition method is based 
on the graph transformations formalism. This provides 
a rich yet user-friendly way of composing state 
dependent use cases that is built on solid foundations. 
To evaluate our approach, it has been applied to seven 
student design solutions. Each solution was originally 
developed using a use case-driven methodology and 
was reengineered to evaluate whether our technique 
could have been applied. The findings are that it is 
possible to maintain the separation of state-dependent 
use cases during software design and, furthermore, 
that expressive model composition methods are 
necessary to do this in practice.  
 
1. Introduction 
 

In software engineering, a concern is anything that 
is of interest to one or more stakeholders, such as a 
feature, a component or a non-functional requirement. 
Separation of concerns is the process of isolating key 
elements in a software system so that these elements 
can be developed and reasoned about independently. 
Separating concerns has been recognized as a way of 
tackling complexity in requirements engineering (e.g., 
viewpoints [1], aspect-oriented requirements 

engineering [2]), software architecture (e.g., 
architecture defined by a set of views [3]), software 
design (e.g., multi-dimensional separation of concerns 
MDSOC [4]) and coding (e.g., AspectJ [5], Hyper/J 
[6]). Recent approaches to separating concerns, such as 
multi-dimensional separation of concerns and aspect-
oriented software development, arose because existing 
formalisms for developing software artifacts led to a 
dominant decomposition based on a single concern. 
This made it difficult to incorporate other concerns.  

The result is concern scattering (each concern is 
implemented in multiple objects) and concern tangling 
(a single object implements multiple concerns). These 
problems, of course, are not limited to code but can be 
found at all stages of software development. A large 
body of recent work (generally referred to as Aspect 
Oriented Software Development) has addressed how to 
support separation of concerns during requirements 
[2], architecture [7], design [8] and testing. A key 
problem to be solved by such approaches is: How to 
compose a set of separated concerns? Concern 
composition (called weaving in aspect-oriented 
programming) is necessary so that the entire set of 
concerns can be inspected, analyzed, validated or 
executed as a whole.  

This paper focuses on concern composition during 
software design. In this paper, we suggest the use of 
graph transformations [9] to define design 
compositions. We focus on state-dependent designs 
given as UML state diagrams. The paper presents a 
composition language for UML state diagrams based 
on graph transformations and shows how it can be used 
to support aspect oriented software development. 
Although the focus here is on state diagrams, the 
technique applies to the entire UML. To evaluate our 



approach, we apply it to seven student design 
solutions. These solutions are UML designs that were 
created as part of a graduate course on software design. 
They were produced following a traditional use case-
based methodology. We re-engineered the solutions to 
keep separate the state diagrams derived from different 
use cases and applied our composition technique to 
compose the state diagrams. This exercise provided 
evidence that an expressive composition language is 
necessary for practical UML designs and that our 
composition language is sufficiently expressive. 

The remainder of this paper is structured as follows. 
Section 2 introduces motivation for our work. Section 
3 presents our solution using graph transformations. 
Section 4 looks at existing design solutions to validate 
the approach. Section 5 compares related work and is 
followed by suggestions for future work in Section 6. 
 
2. Motivation 
 

In a recent book [10], Jacobson and Ng argue that 
use cases are an ideal dimension along which to 
decompose not only software requirements but also 
designs and code. In traditional object-oriented design, 
requirements are decomposed into use cases but 
implementations are decomposed into objects. This 
decomposition mismatch is overcome by transforming 
use cases into objects. Indeed, this transformation is 
one of the major activities in object-oriented software 
development. According to Jacobson and Ng, use case 
decomposition can be maintained throughout design 
and coding by modeling each use case separately (or 
more generally, sets of use cases) as a set of objects 
that form a use case slice. These use case slices are 
then composed at the code level using aspect-oriented 
programming (AOP) techniques. The result is that the 
requirements and implementation match more closely 
and so it is easier to reuse requirements, modify 
requirements, and maintain traceability links between 
requirements and code. This idea is, in essence, an 
application of the more general philosophy called 
multi-dimensional separation of concerns (MDSOC) 
[4,11]. 

 Although Jacobson and Ng present a methodology 
for developing use case slices, they do not fully 
address how to compose behavior in use case slices 
during design. In fact, their focus is on how to design 
and compose UML class diagrams and behavioral 
modeling is, for the most part, ignored. Composition 
during design is necessary for inspection, analysis and 
validation of the complete design model. 

In this paper, we address how to compose the 
behavioral parts of use case slices given as UML state 
diagrams. The problem to be addressed, therefore, is: 
Given two (or more) state diagrams, each representing 
the behavior in one use case slice, what is the best way 
to specify and apply the composition of those designs? 

We define the following requirements for a model 
composition language. 
1. Expressiveness. A given pair of models can be 

composed in many different ways and the choice 
depends on the application. Hence, a composition 
language must be able to express all possible 
compositions in as natural a way as possible. 

2. Scalability. A composition language should scale 
to large industrial models. 

3. Usability. A composition language should be as 
non-invasive as possible, in the sense that 
practicing software designers should not have to 
learn a new complex language. A composition 
language should resemble the design language as 
closely as possible. Since UML is graphical, this 
means that its composition language should also be 
graphical. 

4. Formality. Although UML does not have a formal 
semantics, formality is nevertheless a desirable 
feature. Therefore, a UML composition language 
should have a formal basis – but one that does not 
act as a barrier in practice. 

A search of the literature on design composition 
languages reveals that there have generally been two 
approaches for composing software models. The first is 
based on aspect-oriented programming. In particular, 
researchers have taken the syntax of composition 
mechanisms in AspectJ (pointcuts, joinpoints and 
advices) and have applied them at the design level 
[12]. The second is based on Tarr et al’s work on 
multi-dimensional separation of concerns [11]. In this 
approach, tools provide a default merge algorithm 
which is predefined and matches elements in the two 
models. Matching is typically based on the names of 
the model elements and the default merge algorithm 
can be modified by textual composition overrides. 

Neither of these composition approaches satisfies 
the four requirements of a model composition language 
given above. AspectJ-like mechanisms are not very 
expressive because there is a predetermined set of 
possible advices that can be used in composition – 
namely, before, after and around. These mechanisms 
do not scale to large models because a large model 
must be broken down before composition if different 
parts of the model are to be merged using different 
advices. AspectJ-like mechanisms do tend to be usable, 
even though they are not graphical, because specifying 
that a design should be inserted before or after another 



is somewhat natural. AspectJ-like mechanisms are 
typically not formally defined. 

On the other hand, MDSOC approaches using a 
generic merge algorithm are not expressive, scalable or 
usable. Since a default merge algorithm is used, not all 
compositions can be expressed easily. It is usually 
possible to override the default composition but 
approaches to do this are very low-level and not 
graphical, leading to problems in scalability and 
usability.  

Our approach is instead based on graph 
transformations. A graph transformation [9] is a 
graphical rule that defines modifications on a given 
graph. Since they have a formal underpinning, they 
satisfy requirement (4) above. Graph transformations 
can be used to specify any composition and hence also 
satisfy (1). Since they are graphical, they at least in 
part satisfy (3). To address (2) and to further address 
(1) and (3), the paper presents an analysis of seven 
student design solutions to see if graph transformations 
could have been used to specify compositions in 
practice. We have not yet applied the approach to 
industrial designs and leave this as future work. 

 
3. A Model Composition Language Based 
on Graph Transformations 
 

In this section, we present our approach for 
specifying model composition. We focus in this paper 
on the behavior of use case slices represented as UML 
state machines. We present a language for defining 
compositions that is graphical and formal and closely 
resembles UML. Although we apply this language to 
UML state diagrams in this paper, the approach can be 
adapted to other UML diagrams. We first give an 
example of a model composition. We then present 
background on graph transformations. After this, we 
show how to adapt graph transformations to define a 
UML state diagram composition language. Finally, we 
illustrate the expressiveness of our language and 
compare it to existing composition approaches.  
 
3.1. Example State Diagram Composition 

 
Figure 1 shows two use case slices for a distributed 

application. The left-hand-side is a use case slice for 
calling a remote service and consists of a state 
dependent class ServiceController and a state diagram 
that defines its behavior. Similarly, the right-hand-side 
is a use case slice for Handle Network Failure 
containing the same class ServiceController but with a 
different set of attributes and a different state diagram. 
This use case slice describes a limited number of 

attempts to retry a service after a network failure. Each 
slice contains the static and dynamic models relevant 
to a single use case. (A use case slice can, in general, 
contain more than one use case.) Note, in particular, 
that each use case slice contains only behavior 
necessary for that slice. The complete design (in this 
illustration, comprising only two use cases) is the 
composition of the two use case slices.  

 

Call Remote 
Service

ServiceController

S1

S3
entry: logReturnValue(..)

entry: updateGUI(..) 
entry: enableGUI()

serviceRequest/
disableGUI()

ServiceController

retries : int;
MAX : int;

T1

T2

[retries>MAX]remoteException/

[retries<=MAX]
remoteException/
callRemoteService(…);retries++

/retries:=0

Handle 
Network
Failure

S2
entry:callRemoteService(…)

ack(..)/

 
Figure 1: State-Dependent Use Case Slices 

 
During a traditional design process, the two state 

diagrams for ServiceController would be merged 
manually and the link between requirement and 
behavioral design would henceforth be lost. 
Traceability information could be maintained to keep 
the link between the states and their use case but this is 
rarely done in practice because of the complexity of 
maintaining traceability links as the design is modified.  

We propose, instead, that, as in [10], the use case 
slices be kept as separate concerns throughout 
development. This makes it easier to modify one use 
case slice without affecting the other. To inspect or 
analyze the complete design behavior, the two state 
diagrams must be composed, preferably automatically. 
Hence, the use case slices must be accompanied by a 
composition specification written in an appropriate 
composition language.  

 Figure 2 shows the composed state diagram for the 
two use case slices. This example is deliberately 
chosen because the composition is non-trivial. The two 
state diagrams are interleaved in a way to satisfy the 
overall requirements. It is not the case, for example, 
that the state diagram for Handle Network Failure can 
simply be inserted before or after a single state in the 
diagram for Call Remote Service. In fact, neither the 
AspectJ-like or MDSOC approach to composition 
works very well in this case (see section 4). A more 
expressive model composition language is necessary. 

 



S1

S2
entry:callRemoteService(…)

serviceRequest/
disableGUI()

ServiceController

retries : int;
MAX : int;

entry: enableGUI()

[retries>MAX]
remoteException/

[retries<=MAX]
remoteException/
callRemoteService(…);retries++

/retries:=0

ack(..)/logReturnValue(…);
updateGUI()

 
Figure 2: Desired Composition of Use Case Slices 
 

3.2. Graph Transformations 
 

A graph consists of a set of nodes and a set of 
edges. A graph transformation [9] is a graph rule r: L 
→ R from a left-hand-side (LHS) graph L to a right-
hand-side (RHS) graph R. The process of applying r to 
a graph G involves finding a graph monomorphism, h, 
from L to G and replacing h(L) in G with h(R). To 
avoid “dangling edges” – i.e., edges with a missing 
source or target node – h(R) must be pasted into G in 
such a way that all edges connected to a removed node 
in h(L) are reconnected to a replacement node in h(R). 
An alternative is just to remove all dangling edges. 

Graph transformations may also be defined over 
attributed typed graphs. A typed graph is a graph in 
which each node and edge belongs to a type. Types are 
defined in a type graph. An attributed graph is a graph 
in which each node and edge may be labeled with 
attributes where each label is a (value, type) pair giving 
the value of the attribute and its type. In a graph rule, 
variables may be used to capture a set of possible 
values and/or a set of possible types.  

Graph rules have previously been used for 
transforming UML models (e.g., UML refactorings 
[13]). This work requires that UML models be 
represented as graphs. The approach is to define node 
types as the metaclasses in the UML metamodel. For 
example, a UML class diagram has metaclasses Class, 
Association, Operation, etc., which become node 
types. Hence, in this approach, the following are 
required to define a graph transformation on a UML 
diagram: a metamodel defining the UML diagram, and 
a graph rule describing how instances of metaclasses 
are manipulated. 

As an example, Figure 3 shows a fragment of the 
UML state machine metamodel. Each transition has a 
source and target state. A state may contain 0 or more 
regions. A state is composite if it contains 1 or more 
regions. If it contains 2 or more regions, then the 
regions in this state are orthogonal. The State 
metaclass has an attribute isComposite indicating 
whether or not the state is composite. Finally, states 

and transition triggers have names (as represented by a 
generalization relationship to the abstract class 
namedElement).  

Figure 4 is a graph transformation which moves all 
outgoing transitions from a composite state to its 
substates. The notation used to define this graph 
transformation is that of [13]. (We defer to [13] for the 
subtleties of this notation.) Nodes in the graph are 
given as rectangles. Nodes are attributed and typed so 
UML class diagram notation can be used to represent 
them. There are two additional notations. First, a set of 
nodes of a certain type is shown by a stacked rectangle. 
For example, regions is a set of Regions associated 
with a composite state. Secondly, the cross in the 
figure is a negative application condition and says that 
any match against the LHS graph cannot have a 
substate with a transition trigger called triggerName. 
The LHS in Figure 4 matches any graph with at least 
one composite state with an outgoing transition. 
Furthermore, there should not be a transition on any of 
the substates with the same trigger. The RHS redirects 
the matched transition to all substates (by creating 
copies of it) thus moving the transition down in the 
state hierarchy. Figure 5 shows an example.  

State

isComposite : 
Boolean

Region

Transition

0..1

*

1
*

1

1

* *

source
target

*

0..1

substates

subregions Trigger

0..1

1

namedElement

name : String

Figure 3: UML State Machine Metamodel 
 

where ts is a set of copies of t

s1 : State
isComposite
= true

regions: 
Region

subs: State

t : Transition

source

s2 : State
target

source

: Transition : Trigger
name = 
triggerName

tr : Trigger
name = 
triggerName

s1 : State
isComposite = 
true

regions: 
Region

subs: State

source

ts: Transitions

s2 : State
target

tr : Trigger
name = 
triggerName

subregions

subregions

substates

substates

 
Figure 4: Graph Rule to Move Down Transitions 



e/

f/

e/

f/
e/

 
Figure 5: Application of Graph Rule from Figure 4 
 
3.3. A Model Composition Language based on 
Graph Transformations 
 

The composition of use case slice models can be 
viewed as an example of a graph transformation if the 
models can be given as graphs. This can be done by 
mapping models to instances of their defining 
metamodel. For example, if Figure 5 is represented as 
an object diagram showing instances of the State, 
Transition and Trigger metaclasses, then this object 
diagram is just a graph. Composition rules for merging 
use case slice models could be expressed using the 
notation of Figure 4. In this case, the rules are written 
over the abstract syntax (i.e., over the metaclasses) of 
the model rather than the concrete graphical syntax. 

For use case slice composition, however, model 
developers must write the composition rules. Hence, a 
composition language based on UML metaclasses is 
impractical because model developers are not generally 
familiar with the UML metamodel. Furthermore, graph 
transformations defined over large metamodels are 
difficult to read and understand [14]. For this reason, 
we propose state diagram patterns as a way to capture 
the LHS and RHS of a composition rule. State diagram 
patterns resemble the concrete syntax of UML state 
diagrams very closely. The concrete syntax is familiar 
to developers and is therefore more accessible.  

For 2 use case slice models, 1u  and 2u , their 
merge can be defined by a graph rule 

1221: uuuc →∪ , where 1u , 2u , 12u are state 

diagram patterns and 12u  represents the merge of 

1u and 2u . Henceforth, c will be referred to as a 
composition rule. A state diagram pattern is an 
abstract representation of a family of state diagrams 
and is defined below. Intuitively, a composition rule 
should capture the two use case slices in as abstract a 
way as possible. In other words, only model elements 
relevant to the composition should be included. This 
keeps the rule general and means that modifications of 
the use case slices do not usually require modifications 
of the composition rule.  

A state diagram pattern is a state diagram 
containing pattern variables. Pattern variables are 
typed over the state machine metaclasses and are 
marked with multiplicities. Pattern variables are 
prefixed with a vertical bar ‘|’. A pattern variable |X 
has a multiplicity of one. A pattern variable |X+ has a 
multiplicity of one or more. A state diagram pattern 
matches a state diagram if all the pattern variables can 
be instantiated to elements of the state diagram in a 
way that preserves the variable’s metaclass and 
multiplicity. Figure 6 gives some examples of state 
diagram patterns.  

a |X b
Matches any state diagram with
states a,b separated by a single 
state

a |X+ b
Matches any state diagram with
states a,b separated by any number 
of states and transitions (i.e. another
state machine)

|X

|Y

Matches any composite state
with exactly 2 orthogonal regions

|X

|Y+

Matches any composite state
with at least 2 orthogonal regions

entry: |X+
e/|Y+

Matches any state with an
unbounded number of entry
actions and an outgoing transition
with event e and any number of 
actions

|X+

Matches any composite state, i.e.,
any state that contains an unbounded
number of states and transitions

(a)

(f)(e)

(d)
(c)

(b)

 
Figure 6: State Diagram Patterns 

 
Patterns based on the notation in Figure 6 are used 

to describe the LHS of composition rules and also 
appear on the RHS to show modifications of model 
elements introduced by the transformation. Figure 6(a), 
for example, matches any sequence of states starting 
with a state named a and ending with a state named b. 
The variable |X in 6(a) matches any state in between 
those states. In contrast, the variable |X+ in Figure 6(b) 
matches any state diagram in between a and b. In a 
similar way, Figures 6(c) and (d) show how to match 
against a specific number of regions and an unknown 
number of regions, respectively. Figure 6(e) is self-
explanatory. Figure 6(f) matches a state which contains 
a pattern |X+ - i.e., there must be at least one substate. 

State diagram patterns re-use the concrete syntax of 
UML state diagrams wherever possible. New notation 
is introduced only to represent pattern variables and to 
represent composite states (see Figure 6(f)). The latter 
is necessary because composite states are given by a 
meta-attribute in the UML state machine metamodel 
(isBoolean in Figure 4) so it is not possible to 
distinguish a simple or composite state based purely on 
the concrete syntax of state. Note also that state 
diagram patterns need not be valid state diagrams – 
Figure 6(e), for example, has no target state. State 
diagrams must be well-typed. The abstract syntax of 
state diagram patterns is defined by an extension of the 



metamodel in Figure 3 and their semantics is given by 
mapping them to the notation used in Figure 4. Neither 
is shown here due to lack of space. 

More generally, we would like to extend the pattern 
approach to any modeling language defined by a 
metamodel. This would involve defining a generic 
process for starting with a metamodel and producing a 
pattern language that is close to the concrete syntax. In 
general, this is difficult because composition rules 
often need to refer to meta-level concepts that cannot 
be represented using concrete syntax. Furthermore, 
metadata cannot be represented in concrete syntax so a 
composition rule based on concrete syntax would, in 
some cases, be unable to distinguish between two 
metaclasses. 

S2
entry:

callRemoteService(…)

/retries:=0

T1

/retries:=0

[retries>MAX]
|D+

|A |B+

entry:|C+

entry: enableGUI(..)

|A

|B+

ack/

S2
entry:

callRemoteService(…)

entry: enableGUI(..)
ack/|C+

[retries>MAX]
|D+

 
Figure 7: Composition of Use Case Slices 

 
3.3. Model Composition Language Example 
 

This section gives an example composition 
definition using the model composition language in the 
previous sections. Recall the two behavioral use case 
slices in Figure 1. Figure 7 is the model composition 
definition that will merge these two slices and produce 
the composed model as given in Figure 2. 

The LHS of the graph rule (top half of Figure 7) 
defines two patterns to match when applying the rule. 
The first pattern captures a successful service request 
that starts with callRemoteService, is acknowledged, 
and ends with enabling the GUI. The composition does 
not depend on any other event/actions that may be 
present so these are abstracted by pattern variables. 
The second state diagram pattern defines any situation 
in which a counter is initialized and a threshold is 
placed on this counter. Again, any extraneous 
messages that may occur in a particular application are 
not included in the pattern. In this way, the pattern is 
kept as general as possible. 

The RHS of the graph rule (bottom half of Figure 7) 
defines how the two LHS patterns should be merged, 

again in general terms. When matching the LHS 
against the state diagrams in Figure 1, the following 
variable instantiations would occur: 
• |A matches state S1 
• |B+ matches serviceRequest/disableGUI() 
• |C+ matches logReturnValue(..) and updateGUI(..) 
• |D+ matches remoteException 
The composition in Figure 7 is non-trivial for two 

reasons. First, the Handle Network Failure state 
diagram is split into two parts – one for initializing the 
retry counter and one for handling exceptions. Each of 
these parts is inserted into the Call Remote Service 
state diagram in different places. Secondly, note that 
the GUI is disabled before the remote service is 
requested. The GUI is re-enabled (enableGUI(..)) both 
in the case of success and if the maximum number of 
retries is exceeded. Because of this, state S3 in Figure 
1 needs to be split. logReturnValue() and updateGUI() 
only occur in the case of a successful remote service 
call. Hence, in Figure 7, they are placed on their own 
transition and the entry action enableGUI(..) is given 
its own state.  

The next subsection shows that this composition 
would not have been possible using existing 
approaches to model composition. 

Since our composition language is based on graph 
transformations, an execution engine for composition 
can be built using well-known graph transformation 
execution semantics. We are in the process of building 
an execution engine for Eclipse EMF models. This will 
provide the capability to automate compositions of use 
case slice models.  

 
3.4. Comparison to Existing Approaches 

 
3.4.1. Applying AspectJ at the design level 

 
A number of works have addressed the problem of 

aspect model composition by applying AspectJ-like 
advices at the model level (see, for example, [12]). In 
AspectJ [5], crosscutting behavior can be inserted at 
well-defined points in the execution of a base Java 
program. These well-defined points are called join 
points and the nature of the insertion may be before, 
after or around a join point. Applying these concepts to 
UML state machines, one can define either static or 
dynamic join points. Static join points are syntactic 
elements of a state machine; dynamic join points are 
points in the “execution” of a state machine. Since 
UML state machines have a relatively well understood 
operational semantics (see, for example, [15]), 
dynamic join points can be defined easily, e.g., [16]. 
However, since models are most commonly used for 



communication and documentation, and are not 
necessarily executed, static join points are perhaps 
more useful in current modeling practices. Static join 
points for UML state machines include the basic 
concepts that form state machine abstract syntax, e.g., 
states, transitions, actions, events. Hence, one may 
define an AspectJ-like composition of two state 
machines by defining that one state machine is inserted 
at a static join point and is placed before, after or 
around this join point. 

Consider how to define such a composition for the 
two state machines in Figure 1 in order to produce the 
state machine in Figure 2. Assuming that the base state 
machine is on the left in Figure 1, one could try to 
insert the state machine for Handle Network Failure 
into the state machine for Call Remote Service. 
Unfortunately, there is no single join point at which the 
insertion can be done. A first attempt might insert 
Handle Network Failure after entry: 
callRemoteService(…) in state S2. This does not work, 
however, because Figure 2 has the retries transition 
before state S1. More importantly, this type of 
insertion means that if callRemoteService(…) results in 
too many exceptions (i.e., the state machine transitions 
to state T2), the GUI will not be re-enabled. However, 
the GUI needs to be enabled (see Figure 2) whether the 
remote service call ultimately succeeds or not. Using 
AspectJ’s around advice does not work either. Around 
is used to control the execution of a join point and 
typically replaces base behavior. In this case, one 
might wish to control the entry: callRemoteService join 
point so that if the maximum number of tries is 
exceeded, the actions logReturnValue(…) and 
updateGUI(…) are not invoked. But this is not possible 
unless logReturnValue(…) and updateGUI(…) are 
encapsulated inside callRemoteService as sub-actions. 
In other words, a refactoring of the model would be 
needed first. We conclude therefore that AspectJ-like 
composition mechanisms can only be used if the state 
machine models are refactored first. In this example, 
they could be made to work by first splitting the state 
machine for Handle Network Failure into two state 
machines – one involving only the retries transition, 
and one including everything else – and inserting the 
retries transition before S1 and the rest of the state 
machine around entry: callRemoteService(…). In 
addition, the state machine for Call Remote Service 
would have to be refactored as described above.  
 
3.4.2. Applying Generic Merge Algorithms 

 
The other major approach to merging models is to 

apply a generic merge algorithm that may be 
customized to a particular application. The usual 

approach is to specify a mapping between the model 
elements of the models to be merged. If the result of 
the merge is not the one desired, then the modeler has 
to modify the result either manually or using a 
composition directive language that tunes the merge 
algorithm. In the example of Figure 1, it is hard to 
imagine how such an approach could be practical. If 
the merge algorithm is based on matching state names, 
one could attempt to merge with the mapping T1=S2. 
However, the merge result would then have the 
transition retries in the wrong position and, as in the 
previous subsection, enableGUI(..) will not be 
executed when retries>MAX. Hence, manual 
modifications would have to be made to the merge 
result to achieve the desired state machine in Figure 2. 
Although these manual modifications could be 
specified in a composition directive language so that 
they could be applied as part of the merge algorithm, 
composition directive languages such as those in 
[17,11] are not graphical and do not resemble the UML 
state machine language. Furthermore, they provide a 
very low level way of specifying such details and 
hence, the approach does not scale easily. 
 
4. Evaluation 

 
The previous section showed that a graph 

transformation approach is more expressive than 
composition based on either AspectJ or MDSOC. 
However, the question remains whether the additional 
expressiveness is actually required in practice. Could it 
be, for instance, that the example presented in this 
paper is merely contrived to show the advantages of 
graph transformations? To answer this question, we 
undertook an investigation of existing design solutions 
to see which compositions occur in practice.  

Our experiments attempted to answer the following 
question. In practical examples, are model composition 
mechanisms based on AspectJ-like or MDSOC-like 
approaches expressive enough? Moreover, is our 
approach based on graph transformations expressive 
enough? Hence, we attempted to address the first 
requirement of model composition identified in Section 
2. The methodology was to examine existing UML 
designs, to refactor those designs to reflect the use case 
slice technique of Jacobson and Ng, and then to 
investigate the level of expressiveness required to 
compose state diagrams from different use case slices. 
Because of availability of the models, we chose to 
study solutions to a term project conducted as graded 
assignments for a graduate course in software design. 
This study was conducted in the semester following the 
class and so did not affect the grading in any way. 



We studied seven team project designs, each 
expressed in UML consisting of use cases, class 
diagrams, interaction diagrams and state diagrams. 
Only the use cases and state diagrams were relevant to 
the study. Projects were conducted by teams of three to 
four students. Each of the seven projects tackled the 
same problem statement using the same set of use 
cases. The resulting designs, however, were quite 
different because teams worked independently.  

The scale of the student solutions is clearly not 
industrial in size and the results offered here are meant 
to be just the first step. To give a sense of the size, 
there were 10 use case slices and an average of 12 state 
diagrams for each solution.  

Based on an analysis of the compositions of state-
dependent use case slices, we identified four categories 
of composition. The next subsections describe these 
and give examples in each case. 
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Figure 8: Composition Categories 

 
4.1. One-to-one state matching 
 

The first category contains model compositions that 
can be expressed using simple matching of states. In 
other words, for two state diagrams, S1 and S2, with 
state sets Σ1 and Σ2, the composed state diagram S1• 
S2, can be obtained by defining a one-to-one mapping 
θ: Σ1 → Σ2. Figure 8(a) gives an example. In the 
student solutions, this case occurred typically when 
two state diagrams defined sequences that were joined 
together into a loop.  

 
4.2. Many-to-many state matching 
 

This category is an extension of the previous one 
whereby states in the two LHS state diagrams have a 
many-to-many relationship, i.e., θ(σ) is a set for any 
state σ. This allows a much richer form of composition. 
In particular, it allows for the creation of composite 
states (see Figure 8(b)). This type of composition is not 

typically employed by MDSOC but has been 
investigated in previous work by authors of this paper 
[18]. Figure 8(b) gives an example. 

 
4.3. State diagram refactoring 
 

In this category, one or more of the LHS state 
diagrams must be refactored to enable composition to 
take place. In other words, one state diagram cannot be 
inserted in its entirety into the other. Rather, it must be 
broken up before being inserted in multiple places. 
This type of composition cannot be handled by state 
matching because state matching cannot refactor a state 
diagram. Figure 8(c) illustrates. 
 
4.4. State diagram refinement 

 
In this type of composition, additional behavior 

(i.e., states and transitions) must be added when 
composition takes place. Clearly, state matching does 
not apply because state matching cannot refine 
behavior. This type of composition is necessary in 
cases where two use case slices have been developed 
independently but where there are dependencies 
between the slices that must be resolved when the 
slices are composed. A typical example concerns 
access to data. If a use case slice only reads from a data 
object, then no data access synchronization is required. 
However, if another use case slice writes to this data 
object, when the two use case slices are composed, an 
access synchronization mechanism such as mutual 
exclusion must be added. Figure 8(d) gives an 
example. 
 
4.5. Discussion 

 
Based on the student design solutions, we found 

that all four categories of composition were common. 
The breakdown for the four categories was as follows: 
13%, 39%, 46%, 2%. Only the graph transformation 
approach is expressive enough to support all four 
categories. The MDSOC approach supports only 
category 4.1 although it can be easily extended to 
support 4.2 (as was done in [18]). The AspectJ-
approach does not support either category 4.1 or 4.2 
because both categories allow complex interleavings 
that cannot be expressed using just before/after 
advices. Some compositions in 4.3 could be supported 
by AspectJ if the state diagram to be decomposed is 
first refactored into multiple state diagrams. Each state 
diagram fragment can then be inserted at a different 
place. However, we view this as a non-optimal 
approach to composition because it involves 



representing fragments of a state diagram separately 
which leads to problems in reusability and readability.  

Graph transformations support all categories 
because the entire state machine diagram syntax is 
available. For example, two use case slices can be 
merged in parallel using UML orthogonal regions.  

 
5. Related Work 
 

The most common approaches to merging 
behavioral aspects have already been discussed in 
Section 3.4. Another approach is that of composition 
filters [24]. Composition filters are an approach to 
defining crosscutting concerns on top of OO programs. 
Filters intercept messages directed towards or away 
from objects and may manipulate those messages 
before dispatching or redirecting them. The 
composition filters approach could also be applied to 
UML models. Composition filters deliberately keep the 
crosscutting code and the base code separate – they are 
not explicitly composed. Explicit composition appears 
to be desirable for modeling because models are 
communication tools and concern separation 
approaches that do not show the composed models are 
likely to reduce readability. Our composition language 
applies explicit composition but the trade-off is that the 
compositions may be harder to express. Further 
investigation is required to examine these trade-offs. 

A number of works have proposed mechanisms for 
aspect-oriented modeling in UML. The UMLAUT 
framework [22] is a tool to compose UML models 
where the compositions are defined over an abstract 
syntax tree. UMLAUT uses a textual transformation 
language over metaclasses that is not easily accessible 
for software modelers. Some approaches [8,11] use 
UML templates to represent aspect models. These have 
mainly focused on UML class diagrams, however. 
Stein et al [25] have introduced joinpoint designation 
diagrams, a graphical way of identifying joinpoints for 
models. This approach is somewhat more complicated 
than ours and it is not clear if these diagrams are 
understandable by model developers. Furthermore, 
Stein does not consider how to compose models based 
on these joinpoint specifications. [26] composes state 
machines by using orthogonal regions. However, this 
makes it difficult to visualize the complete behavior 
and so may not support model inspection. The C-SAW 
tool [27] is a model transformation engine in which 
aspects can be defined using a textual language. 

Graph transformations have a noble history in 
software engineering. Their use has been suggested for 
viewpoint integration [19] in requirements engineering, 
software refactoring [13], and generative programming 

programming [20]. Graph transformations influenced 
the MOF 2.0 Query/Views/Transformations (QVT) 
effort [21]. However, to the authors’ knowledge, there 
has been no in-depth research on composing aspects 
using graph transformations. In our approach, the 
graph compositions are defined over UML models and 
resemble the equivalent UML models very closely. 
This is in contrast to existing approaches that map 
models based on the metamodel. 

There has been much work on defining composition 
operators for formal specification languages in a way 
that preserves semantics. Recent work in this direction, 
for example, is presented in [28]. Our aim is somewhat 
different. We aim to provide composition languages 
that are accessible to working software modelers. 
 
6. Conclusion and Further Work 
 

This paper serves two purposes. First, it presents a 
novel way of adapting graph transformations to define 
model composition for aspect-oriented software 
development (AOSD). Secondly, it acts as one of the 
first experimental validations of the ideas put forth by 
Jacobson and Ng [10] of keeping use cases 
independent throughout the development lifecycle. 

The use of graph transformations in model 
composition is beneficial in the following ways. As 
shown by the study in this paper, graph 
transformations are more expressive than existing 
model composition techniques in the AOSD field. 
Furthermore, this richer expressiveness is required in 
practice – even relatively small design solutions would 
require it, for example.  

There is a question of the scalability of model 
composition in general, and the graph transformation 
approach in particular. We found that even for student 
design solutions, a graph transformation definition can 
sometimes become complex and it is unlikely that a 
working software engineer not trained in formal 
methods would be able to specify the transformations. 
On the other hand, MDSOC and AspectJ-like 
approaches are sometimes (but not always) more 
intuitive. We feel that, ultimately, a combination of the 
three approaches would be ideal so that the simpler 
approaches could be used when the additional 
expressiveness is not necessary. The categorization of 
composition types provided in Section 4 can be used as 
guidelines towards identifying which composition 
approach is more suitable for a given composition. 
Note also that we expect there to be more user-friendly 
ways of defining graph transformations than were 
given in this paper. Having graph transformations as an 
underlying formalism is useful for formal analysis, but, 



but, in the future, we will investigate how to define 
these transformations in a more intuitive way. 

Currently, no execution engine exists for the model 
composition language defined in this paper. We are in 
the process of building such an engine as an Eclipse 
plug-in. Existing graph transformation tools such as 
AGG [23] will be used where appropriate. Once our 
tool is built, users will be able to define EMF UML2.0 
compliant use case slices and execute compositions 
based on definitions in our model composition 
language. Furthermore, we plan to investigate whether 
graph transformations can offer any solutions to the 
aspect interaction problem – whereby application of 
multiple compositions may have unexpected effects. 
We plan to use existing graph transformation analysis 
techniques (such as critical pair analysis) to help in 
identifying conflicts. 

The composition language in this paper is syntax-
based. This can make the technique brittle in the 
presence of minor syntactic changes. Future work will 
investigate if semantic knowledge of models can be 
exploited in composition. 
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