
Generating Test Data From Requirements/Speci�cations:
Phase II Final Report

Prepared For: Rockwell Collins, Inc,

Contract Monitor: Dave Statezni

Principal Investigator: A. Je�erson O�utt

George Mason University

August 29, 1998

EXECUTIVE SUMMARY

This report presents results for the Rockwell Collins Inc. sponsored project on generating test

data from requirements/speci�cations, which started January 1, 1998. The purpose of this project

is to improve our ability to test software that needs to be highly reliable by developing formal

techniques for generating test cases from formal speci�cational descriptions of the software. Formal

speci�cations represent a signi�cant opportunity for testing because they precisely describe what

functions the software is supposed to provide in a form that can be easily manipulated by automated

means.

This Phase II, 1998 report presents results and strategies for practically applying test cases

generated according to the criteria presented in the Phase I, 1997 report [O�98]. This report

presents a small empirical evaluation of the test criteria, and algorithms for solving various problems

that arise when applying test cases developed from requirements/speci�cations. One signi�cant

problem in speci�cation-based test data generation is that of reaching the proper program state

necessary to execute a particular test case. Given a test case that must start in a particular state S,

the test case pre�x is a sequence of inputs that will put the software into state S. We have addressed

this problem in two ways. First is to combine various test cases to be run in test sequences that

are ordered in such a way that each test case leaves the software in the state necessary to run

the subsequent test case. An algorithm is presented that attempts to �nd test case sequences

that are optimal in the sense that the fewest possible number of test cases are used. To handle

situations where it is desired to run each test case independently, an algorithm for directly deriving

test sequences is presented. This report also presents procedures for removing redundant test case

values, and develops the idea of \sequence-pair" testing, which was presented in the 1997 Phase I

report, into a more general idea of \interaction-pair" testing.

1 INTRODUCTION

Software system level tests have traditionally been created based on informal, ad-hoc analyses of
the software requirements. This leads to inconsistent results, problems in understanding the goals
and results of testing, and an overall lack of e�ectiveness in testing. This research project is at-
tempting to establish formal criteria and processes for generating system-level tests from functional
requirements/speci�cations.

The purpose of this project is to improve our ability to test software that needs to be highly
reliable. Formal speci�cations represent a signi�cant opportunity for testing because they precisely
describe what functions the software is supposed to provide in a form that can be automatically
manipulated.

Thus far, this work has resulted in a general model for developing test inputs from state-based
speci�cations. This model includes several related criteria for generating test data from formal
speci�cations. These criteria provide a formal process, a method for measuring tests, and a basis
for full automation of test data generation.

The principal results in this report are algorithms to solve problems in practically applying
speci�cation-based tests. Also presented are empirical results from a small case study evaluation of
the test criteria. The report summarizes the results from Phase I (during 1997) [O�98], presents the
current year goals, presents and describes various algorithms, and demonstrates their use through
examples.

This report uses the following de�nitions. Test requirements are speci�c things that must be
satis�ed or covered during testing; e.g., reaching statements are the requirements for statement
coverage. Test speci�cations are speci�c descriptions of test cases, often associated with test re-
quirements or criteria. For statement coverage, test speci�cations are the conditions necessary to
reach a statement. A testing criterion is a rule or collection of rules that impose test requirements
on a set of test cases. A testing technique guides the tester through the testing process by including
a testing criterion and a process for creating test case values.

A test or test case is a general software artifact that includes test case input values, expected
outputs for the test case, and any inputs that are necessary to put the software system into the
state that is appropriate for the test input values. A test speci�cation language (TSL) is a language
that can be used to describe all components of a test case. The components that we consider are
test case values, pre�x values, verify values, exit commands, and expected outputs. Test case values
directly satisfy the test requirements, and the other components supply supporting values. A test
case value is the essential part of a test case, the values that come from the test requirements. It
may be a command, user inputs, or software function and values for its parameters. In state-based
software, test case values are usually derived directly from triggering events and preconditions for
transitions. A test case pre�x value includes all inputs necessary to reach the pre-state and to give
the triggering event variables their before-values. Any inputs that are necessary to show the results
are verify values, and exit commands depend on the system being tested. Expected outputs are
created from the after-values of the triggering events and any postconditions that are associated
with the transition.

2

2 SUMMARY OF PHASE I

Phase I of this project was carried out during summer 1997, and established the long term goal
of improving our ability to test software that needs to be highly reliable by developing formal
techniques for generating test cases from formal speci�cational descriptions of the software [O�98].
This research addressed the problem of developing formalizable, measurable criteria for generating
test cases from speci�cations.

During Phase I a general model for developing test inputs from state-based speci�cations was
developed. This model includes several criteria criteria for generating tests, a derivation process
for obtaining the test cases, an example for a small system, and test cases from speci�cations
of an industrial system. The test data generation model includes techniques for generating tests
at several levels of abstraction for speci�cations, including the complete transition sequence level,
the transition-pair level, and the detailed transition level. These techniques are novel in that they
provide coverage criteria that are based on the speci�cations. It is thought that these are the
�rst formal coverage criteria for functional speci�cations. The tests are made up of several parts,
including test pre�xes that contain inputs necessary to put the software into the appropriate state
for the test values. A test generation process was also developed, which includes several steps for
transforming speci�cations to tests.

Results from applying the model and process to a small example were presented in the �nal
report. This case study was evaluated using Atac [HL92] to measure decision coverage, and the
technique was found to achieve a high level of coverage. This result indicates that this technique
can bene�t software developers who construct formal speci�cations during development.

As an additional validation, tests were generated for speci�cations of an industrial software sys-
tem supplied by Rockwell Collins, the Flight Guidance System. Construction of these tests resulted
in several modi�cations to this technique, and found at least one problem with the speci�cation.

2.1 Summary of Phase II Goals

The current year research is building on this basis in several ways. The �rst results presented
are from a small case study that applied the test criteria of transition coverage and full predicate
coverage to the well known cruise control example.

The �rst algorithm is for test case ordering. Test cases are created for particular states or
transitions in the system. Each test has some pre-state associated with it; the state the system
must be in for the test to be executed. Tests can be ordered so as reduce the amount of execution,
by ordering test cases such that the post-state of some test case ti yields the correct pre-state for
test case ti+1. This report presents an algorithm that attempts to �nd optimal ordering of test
cases.

Another focus is on test case pre�xes. A speci�cation-based test for state-based software is a
collection of inputs to the software. The test may or may not start at the initial state; if it does
not, the complete test case must include additional inputs that will start at the initial state and
put the software into the state where the test should begin. Given a test case that must start in a
particular state S, the pre�x is a sequence of inputs that will put the software into state S. This
report presents an algorithm that determines test case pre�xes for an arbitrary state.

When a number of tests are created automatically, it is natural for some to be redundant.
Di�erent test requirements and speci�cations will lead to similar or the same tests. As part of this
work, analysis techniques have been developed to remove redundant tests so as to minimize the
ordering and pre�x generation that is required.

A sequence-pair is a pair of states that can be entered in sequence. In Phase I, the concept
of testing sequence-pairs was introduced, based on the observation that some pairs of states have
interactions that should be carefully tested. In Phase II, the notion of sequence-pair testing is
expanded to interaction-pair testing, where an interaction-pair is a pair of states that have some

3

data or control interaction.
One observation from the case study in Phase I and the industrial example was that applying

the technique takes a lot of very detailed hand analysis. Both to save costs and improve accuracy,
a long term goal is to develop automated tool support to transform formal functional speci�cations
into e�ective test cases. An eventual goal is to build an automatic test data generation tool for
this technique.

4

3 CASE STUDY

An empirical study has been undertaken to demonstrate the feasibility of the criteria from Phase
I. The goal was to demonstrate that the speci�cation-based criteria can be e�ectively used; it is
hoped to evaluate them more fully in the future. The methodology and empirical subjects are
described �rst, then the processes used to generate tests for each criterion are described in detail.
Then the implementation used, and the faults that were generated are described, and �nally results
and analysis are given.

3.1 Methodology

Two measurements of the criteria have been carried out. Tests were created and then measured on
the basis of the structural coverage criterion of decision testing, and then the tests were measured in
terms of their fault-detection abilities. One moderate size program was used, representative faults
were seeded, and test cases were generated by hand.

Cruise control is a common example in the literature [Atl94, Jin96], and speci�cations are
readily available. The speci�cations for a version of the system (note that it does not model the
throttle) has four states: OFF (the initial state), INACTIVE, CRUISE, and OVERRIDE. The
system's environmental conditions indicate whether the automobile's ignition is on (Ignited), the
engine is running (Running), the automobile is going too fast to be controlled (Toofast), the brake
pedal is being pressed (Brake), and whether the cruise control level is set to Activate, Deactivate,
or Resume.

Previous Mode Ignited Running Toofast Brake Activate Deactivate Resume New Mode

O� @T - - - - - - Inactive

Inactive @F - - - - - - O�

t t - f @T - - Cruise

Cruise @F - - - - - - O�

t @F - - - - - Inactive

t - @T - - - -

t t f @T - - - Override

t t f - - @T -

Override @F - - - - - - O�

t @F - - - - - Inactive

t t - f @T - - Cruise

t t - f - - @T

Table 1: SCR Speci�cations for the Cruise Control System

Each row in the table speci�es a conditioned event that activates a transition from the mode on
the left to the mode on the right. A table entry of @T or @F under a column header C represents
a triggering event @T(C) or @F(C). This means that the value of C must change for the transition
to be taken, that is, \@T(C)" means C must change from false to true, and \@F(C)" means C
must change from true to false. A table entry of t or f represents a WHEN condition. WHEN[C]
means the transition can only be taken if C is true, and WHEN[:C] means it can only be taken
if C is false. If the value of a condition C does not a�ect a conditioned event, the table entry is
marked with a hyphen \-" (don't care condition).

Table 2 shows the transitions of the speci�cation with the trigger events expanded in predicate
form (as described in the phase I report), numbered P1 through P12. Figure 1 shows the speci�cation
graph, with the edges labeled with the predicate numbers.

5

P1 OFF :Ignited ^ Ignited
0

INACTIVE

P2 INACTIVE Ignited ^ :Ignited
0

OFF

P3 INACTIVE :Activate ^ Ignited ^Running ^ :Brake ^Activate
0

CRUISE

P4 CRUISE Ignited ^ :Ignited
0

OFF

P5 CRUISE Running ^ Ignited ^ :Running
0

INACTIVE

P6 CRUISE :Toofast ^ Ignited ^ Toofast
0

INACTIVE

P7 CRUISE :Brake ^ Ignited ^Running ^ :Toofast ^Brake
0

OVERRIDE

P8 CRUISE :Deactivate ^ Ignited ^Running ^ :Toofast ^Deactivate
0

OVERRIDE

P9 OVERRIDE Ignited ^ :Ignited
0

OFF

P10 OVERRIDE Running ^ Ignited ^ :Running
0

INACTIVE

P11 OVERRIDE :Activate ^ Ignited ^Running ^ :Brake ^Activate
0

CRUISE

P12 OVERRIDE :Resume ^ Ignited ^Running ^ :Brake ^Resume
0

CRUISE

Table 2: Expanded Cruise Control Speci�cation Predicates

INACTIVE

OVERRIDE

CRUISEOFF

9P

1P

2P

4P

3P

10P

5 6P P

1211P P

7 8P P

Figure 1: Speci�cation Graph for Cruise Control

6

3.2 Test Generation

To avoid bias, tests were created independently from the faults, by di�erent people. The tests were
created manually before any execution. Each test case was executed against each buggy version
of Cruise. After each execution, failures (if any) were identi�ed. The number of faults detected
was recorded and used in the analysis. The rest of this subsection discusses in detail how tests
were generated. This serves both to elaborate on the empirical methodology, as well as to illustrate
the criteria de�ned previously. Although much of this discussion repeats what was provided in the
Phase I, 1997 report [O�98], our experience has led to some minor changes, thus the repetition is
justi�ed. Because the transition coverage criterion is subsumed by full predicate coverage, it is not
described separately. Transition coverage test cases can be taken from the \valid" speci�cations in
the full predicate tests, which are listed �rst for each transition.

3.2.1 Full predicate coverage criterion

There are nine transitions in the cruise control speci�cations, and twelve disjunctive predicates.
For convenience, the technique is applied by considering each predicate speci�cation separately.
Both the before-values and after-values of the triggering event should be separately tested. For
SCR, this is handled by treating @ as an operator and expanding it algebraically. If X represents
a before-value and X' an after-value, the relevant expansions are:

� @T (X) � :X ^X 0

� @T (X ^ Y) � :(X ^ Y) ^ (X 0 ^ Y 0) � (:X _ :Y) ^X 0 ^ Y 0

� @T (X _ Y) � :(X _ Y) ^ (X 0 _ Y 0) � :X ^ :Y ^X 0 ^ Y 0

There are 54 separate test case requirements for the full predicate coverage level, which were
given in the Phase I report [O�98]. The third transition, P3, is used to illustrate the test case
requirement derivation. The variable values are taken from the predicates, and are shown as T,
F, t, f, and -. A T or F means the clause is triggering, and the table contains a before-value and
after-value. The values for the test case are the new value for the triggering clause (T or F), and
the t and f values from the WHEN conditions. The expected output for the test speci�cation is
derived from the triggering event, the post-state, and any terms or variables that are de�ned as a
result of the transition. P3 has four clauses:

@TActivate ^ Ignited ^Running ^ :Brake
and its expanded version is:

:Activate ^ Ignited ^Running ^ :Brake ^ Activate0

Its six test case requirements are:

Pre Post

State Activate Ignited Running Brake Activate0 State

1. INACTIVE F t t f T CRUISE

2. INACTIVE F f t f T INACTIVE

3. INACTIVE F t f f T INACTIVE

4. INACTIVE F t t t T INACTIVE

5. INACTIVE T t t f T INACTIVE

6. INACTIVE F t t f F INACTIVE

7

The �rst row is the predicate as it appears in the speci�cation; every clause is True. This corre-
sponds to a valid test input (and is also the transition coverage test case for this transition). The
subsequent rows make each clause False in turn, corresponding to invalid inputs. Because there
are no OR operators, the full predicate coverage criterion is satis�ed by holding all other clauses
True. The post-states are the expected values. Five of them represent invalid transitions, and it is
assumed that the software will remain in the same state.

Test speci�cations
The actual test speci�cations and test scripts are mechanically derived from the test require-

ments. The predicate P3 is chosen as an illustrative example. P3 has six full predicate level tests.
For the �rst test case for P3, the test case must reach the INACTIVE state; this forms the Prefix.
The Test case values set the before-value for the triggering event, and the WHEN condition
variables of Inactive, Running, and Brake, and then sets Activate to be True as the triggering
event. The Verify and Exit parts of the speci�cations are not shown, as they depend on the
software. The software can safely be assumed to automatically print the current state, and to not
require an exit.

1. Test speci�cation P3-1:

Pre�x: Ignited = True { Reach INACTIVE state

Test case value: Activate = False { Trigger before-value

Running = True { Condition variable

Brake = False { Condition variable

Activate = True { Triggering event

Expected outputs: CRUISE

2. Test speci�cation P3-2:

Pre�x: Ignited = True { Reach INACTIVE state

Test case value: Activate = True { Trigger before-value

Running = True { Condition variable

Brake = False { Condition variable

Activate = True { Triggering event

Expected outputs: INACTIVE

3. Test speci�cation P3-3:

Pre�x: Ignited = True { Reach INACTIVE state

Test case value: Activate = False { Trigger before-value

Ignited = False { Condition variable

Running = True { Condition variable

Brake = False { Condition variable

Activate = True { Triggering event

Expected outputs: INACTIVE

4. Test speci�cation P3-4:

Pre�x: Ignited = True { Reach INACTIVE state

Test case value: Activate = False { Trigger before-value

8

Running = False { Condition variable

Brake = False { Condition variable

Activate = True { Triggering event

Expected outputs: INACTIVE

5. Test speci�cation P3-5:

Pre�x: Ignited = True { Reach INACTIVE state

Test case value: Activate = False { Trigger before-value

Running = True { Condition variable

Brake = True { Condition variable

Activate = True { Triggering event

Expected outputs: INACTIVE

6. Test speci�cation P3-6:

Pre�x: Ignited = True { Reach INACTIVE state

Test case value: Activate = False { Trigger before-value

Running = True { Condition variable

Brake = False { Condition variable

Activate = False { Triggering event

Expected outputs: INACTIVE

There are several interesting points to note about these test speci�cations. First, it should be
clear that there is some redundancy; some of the condition variables will not need to be explicitly
set, as they will already have the appropriate values. While this is true, the analysis necessary
to decide what values do and do not need to be set may outweighs the small savings that could
result from eliminating a few variable assignments. It is probable, however, that this could be done
automatically. Jin [Jin96] provided algorithms for deriving invariants on modes; these could be
used to directly eliminate unneeded variable assignments. This method used a static analysis. A
dynamic analysis that uses the information in the test speci�cation could be used to potentially
eliminate more variable assignments. This issue is explored in Section 6. Another interesting point
is the derivation of the pre�x part of the test speci�cation. Reaching the pre-state is essentially a
reachability problem. Given a control ow graph of a program, it is an undecidable problem to �nd
a test case that reaches a particular statement. Although no theoretical analysis has been done as
yet, most state-based systems are �nite and deterministic. Thus, it seems likely that this problem
is solvable for speci�cation graphs derived from state-based systems.

Test scripts are simple rewrites of test speci�cations with modi�cations made for the input
requirements of the program being tested. The test script for the �rst test speci�cation above is:

Ignited = True

Activate = False

Running = True

Brake = False

Activate = True

3.2.2 Transition-pair coverage criterion

At the transition-pair level, each state is considered separately. Each input transition into the
state is matched with each transition out of the state, and the combination is used to create test

9

requirements, which are ordered pairs of predicates. The ordered pairs are turned into ordered
pairs of inputs to form test speci�cations.

Following are the test requirements for the four states.

OFF CRUISE

1. P2 : P1 1. P3 : P4

2. P4 : P1 2. P3 : (P5 OR P6)

3. P9 : P1 3. P3 : (P7 OR P8)

INACTIVE 4. (P11 OR P12) : P4

1. P1 : P2 5. (P11 OR P12) : (P5 OR P6)

2. P1 : P3 6. (P11 OR P12) : (P7 OR P8)

3. P10 : P2 OVERRIDE

4. P10 : P3 1. (P7 OR P8) : P9

5. (P5 OR P6) : P2 2. (P7 OR P8) : P10

6. (P5 OR P6) : P3 3. (P7 OR P8) : (P11 OR P12)

These ordered pairs are transformed into predicates from Table 2. The \OR" entries result from
the transitions that have two conditions; either condition could be satis�ed to take that transition.

Test speci�cations
The actual test speci�cations and test scripts are mechanically derived from the above test

requirements, and are too numerous to list. The requirements for the OFF state are chosen as an
illustrative example. OFF has three transition-pair coverage level tests. For the �rst test case for
OFF, the test case must reach the INACTIVE state; this forms the Prefix. Then the test case
must pass through transitions P1 and P2.

1. Test speci�cation OFF-1:

Pre�x: Ignited = True { Reach INACTIVE state

Test case values: Ignited = False { P2 Triggering event

Ignited = True { P1 Triggering event

Expected outputs: INACTIVE

2. Test speci�cation OFF-2:

Pre�x: Ignited = True { Reach INACTIVE state

Ignited = True { P3 Condition variable

Running = True { P3 Condition variable

Brake = False { P3 Condition variable

Activate = True { Reach CRUISE state

Test case values: Ignited = False { P4 Triggering event

Ignited = True { P1 Triggering event

Expected outputs: INACTIVE

3. Test speci�cation OFF-3:

10

Pre�x: Ignited = True { Reach INACTIVE state

Ignited = True { P3 Condition variable

Running = True { P3 Condition variable

Brake = False { P3 Condition variable

Activate = True { Reach CRUISE state

Ignited = True { P7 Condition variable

Running = True { P7 Condition variable

Toofast = False { P7 Condition variable

Brake = True { Reach OVERRIDE state

Test case values: Ignited = False { P9 Triggering event

Ignited = True { P1 Triggering event

Expected outputs: INACTIVE

3.2.3 Complete sequence criteria

At the complete sequence level, test engineers must use their experience and judgment to develop
sequences of states that should be tested. To do this well requires experience with testing, experience
with programming, and knowledge of the domain. These tests are omitted in this case study.

3.3 Implementation and Faults

A model of the cruise control problem was implemented in about 400 lines of C. Cruise has seven
functions, 184 blocks, and 174 decisions. The program accepts pairs of variable:values, where a
value can be 't', 'f', 'T', or 'F'. Upper case inputs signify a triggering event. For convenience, the
program was implemented so that the pre-state could be either set with a test case Prefix, or
explicitly by entering the name of a state.

Twenty-�ve faults were created by hand and each was inserted into a separate version of the
program. Most of these faults are based on mutation-style modi�cations, and most were in the
logic that implemented the state machine. Four were naturally occurring faults, made during initial
implementation.

3.4 Results and Analysis

As a way to measure the quality of these tests, block and decision coverage was computed using
the full predicate test cases. The coverage was measured using Atac [HL92]. Of the 174 decisions,
5 are infeasible, leaving 169. The results are shown in Figure 2. The 54 test cases covered 163
of the blocks (89%) and 155 of the decisions (95%). Of the 19 uncovered decisions, �ve were
infeasible, and eleven were related to input parameters that were not used during testing. That
is, these eleven decisions were not related to the functional speci�cations. The remaining three
decisions were left uncovered because the variables Activate, Deactivate, and Resume are only used
as triggering events in the speci�cations, not condition variables. Thus, there are statements in the
software that handle assignments to these variables as WHEN conditions that are never executed.
Although there have been very few published studies on the ability of speci�cation-based tests to
satisfy code-based coverage criteria, these results seem very promising.

The other measurement was for the fault-detection ability of the tests. Twelve test cases were
generated for the transition coverage criterion, and an additional forty-two for the full predicate
criterion (making 54 total). As a control comparison, 54 additional test cases were generated
randomly. Although 25 versions of Cruise were created, each one containing one fault, one was
such that the program goes into an in�nite loop on any input. Since this fault was so trivial, it was
discarded. Results from the three sets of test data are shown in Table 3.

11

Blocks Decisions

Total Covered

184
163

89%

Total Feasible Covered

174 169 155

95%

Figure 2: Branch and Decision Coverage Results

Random Transition Full Predicate

number of test cases 54 12 54

faults found 15 15 20

faults missed 9 9 4

percent coverage 62.5% 62.5% 83.3%

Table 3: Faults Detected

Detailed analysis of the faults showed that three of the four faults that the full predicate tests
missed could not have been found with the methodology used. The implementation runs in one of
two modes. In one mode, the test engineer explicitly sets a pre-state by entering the state name.
In the other mode, the software always starts at the initial state, and a test case pre�x must be
included as part of the test case. The pre�x should include inputs to reach the pre-state. All of
the tests that were used in this study explicitly set the pre-state, and three of the four faults that
were missed could not be found if the pre-state is explicitly set. These faults were in statements
that were not executed if the pre�x was explicitly set. None of the three sets of tests found these
three faults. The other fault that the full predicate tests missed was not found by either of the
other two sets of inputs. Of the other �ve faults missed by the random and the transition tests,
two were the same, and the other three were di�erent. All of the naturally occurring faults were
found by all three sets of tests.

The goals of this empirical pilot study were twofold. The �rst goal was to see if the speci�cation-
based testing criteria could be practically applied. The second was to make a preliminary evaluation
of their merits by evaluating the branch coverage and fault coverage. Both goals were satis�ed;
the criteria were applied and worked well. They performed better than random generation of test
cases. However, there are several limitations to the interpretation of the results. First, Cruise is of
moderate size; longer and more complicated programs are needed. Second, the 25 faults inserted
into Cruise were generated intuitively. More study should be carried out to reveal the types of
faults that can be detected by system testing. In Phase III, we hope to carry out a more complete
empirical evaluation.

12

4 ORDERING OF TEST CASES

The test case generation model creates test case values that are associated with speci�c portions of
the test speci�cation graph. For example, a test case value may be designed to test one transition
in the graph. Thus, a test case value has some pre-state associated with it; the state the system
must be in for the test to be executed, and each test case value needs to have values associated with
it to reach that pre-state. This section presents an algorithm that attempts to �nd an ordering
among the test cases such that the post-state of a test case ti yields the correct pre-state for test
case ti+1. This kind of ordering can reduce the amount of execution by allowing tests to be used
for two purposes, to satisfy test requirements and to supply pre�xes for other tests.

The algorithm in this section attempts to �nd an optimal ordering of test cases for execution
by constructing test sequences, which are sequences of tests that will be executed sequentially in
one test execution. The algorithm attempts to achieve the following goals:

1. Include all test cases

2. Include as many unique test cases in each sequence as possible

3. Include the fewest possible number of redundant test cases (test cases that are included more
than once)

This is not a problem that can have a simple solution. In fact, this is an NP-complete optimiza-
tion problem, and there is no polynomial-time solution. The approach taken here is to approximate
optimality, using heuristics that will always satisfy goal one, but may not fully satisfy goal three.

The test case ordering algorithm consists of two major steps. Both use a Test Case Graph,
which represents ordering relationships among the test cases. In a test case graph (TCG), nodes
represent test cases, and edges represent ordering dependencies among the test cases. The edges
are constructed according to the following rule:

If the post-state for test case value ti is the pre-state for test case value tj ,
then there is an edge from ti to tj .

The Step I algorithm (OrderTestCases Algorithm, Step I, in Figure 6) uses a depth-�rst search
technique on the TCG to attempt to put each test case value into a test sequence with as little
redundancy as possible. If there are test case values that are not included in any test sequence
(uncovered), Step II (OrderTestCases Algorithm, Step II, in Figure 8) works backwards through
the TCG to try to �nd the shortest path from each remaining test case value to an initial test case
value. Step II also tries to put as many uncovered test cases as possible into each test sequence.
It does this by pre-computing weights and distances for each node in the TCG (using the Weight
and Distance Algorithm, in Figure 7). The distance is the shortest number of nodes from an initial
node to the uncovered node, and the weight is the number of uncovered nodes on that path.

Step I and Step II are called from a main algorithm (OrderTestCasesMain Algorithm, in Figure
4). Figure 3 shows the call relationships among these algorithms. In the rest of this section, the
algorithms are described in detail, then several illustrative examples are given.

4.1 Order Test Cases Algorithms

The main algorithm is shown in Figure 4. It calls the algorithm OrderTestCases (in Figure 6), and
if there are still unused test cases, it calls FinishOrderTestCases (in Figure 7).

Each test sequence starts from an initial test case, which is a test case for which the pre-state
is an initial state in the speci�cation graph. First, we try to include as many uncovered test cases
as possible in one test sequence. OrderTestCases, Step I uses a depth-�rst search to build test
sequences. Each test case value is initially marked as \uncovered", then for each test case value t,
test cases whose post-states are the pre-states for t are saved in the set PrevTCs(t) and test cases

13

Order Test Case Main

Order Test Case, Step I Order Test Case, Step II

Weight and Distance

Figure 3: Call Relationships Among the Test Case Ordering Algorithms

algorithm: OrderTestCasesMain (TestCaseGraph)

input: A graph that indicates ordering relationships among test cases.

output: Test Sequence Set.

output criteria: Fewest number of sequences with fewest number of test cases.

declare: Status -- A variable that represents the coverage status of

TestCaseGraph for all test cases. Has two values: Finished, UnFinished.

OrderTestCasesMain (TestCaseGraph)

BEGIN -- Algorithm OrderTestCasesMain

Status = OrderTestCases (TestCaseGraph)

IF (Status = NotFinished)

FinishOrderTestCases (TestCasesGraph)

END IF

END Algorithm OrderTestCasesMain

Figure 4: The OrderTestCases Main Algorithm

14

Predecessor
tp

Successor
tn

Successor
t

CurTC

Figure 5: 2-Step Lookahead Decision

whose pre-states are the post-states for t are saved in the set NextTCs(t). These are predecessors
and successors of t.

Then a set of test sequences are built, starting with initial test cases. A test sequence is
initialized to be a test case with no previous test case (an initial test case), and that has not been
covered, or has been covered fewer times than any other initial test case. At each step in the
test sequence construction loop, the NextTCs set for the current test case (CurTC) is examined for
uncovered test cases. If one exists, it becomes the next current test case. If not, the algorithm uses
a \2-step lookahead" heuristic, as illustrated in Figure 5. If there is no uncovered successor for
CurTC, the algorithm looks for a successor to CurTC (t in Figure 5) that has an uncovered successor
(tn) with no uncovered predecessor (tp). If one is found, the successor to CurTC is concatenated
to the test sequence and its successor with no uncovered predecessor becomes the CurTC.

If no such successor to CurTC exists, the test sequence is �nished. If the loop was completed
and no tests were added (UncoveredTCs is unchanged), this means that Step I has �nished without
including all the test cases, and the algorithm terminates with the ag NotFinished. Otherwise,
the test sequence is saved, and the algorithm proceeds to the next test sequence. If all test cases
have been covered, then Step I terminates with the ag Finished.

There may be some test cases that cannot be reached with the 2-step lookahead approach. For
this case, the algorithm FinishOrderTestCases shown in Figure 7 is given. This algorithm �nds
paths from initial test cases to uncovered test cases, according to two criteria:

1. Each test sequence should include the maximum number of uncovered test cases.

2. When an uncovered test case must be included in a new test sequence that contains no other
uncovered test cases, the test sequence is built by �nding a shortest path through the test
case graph to the uncovered test case.

First, weights and distances are calculated for the graph. The distance is the shortest number
of nodes from an initial node to the uncovered node, and the weight is the number of uncovered
nodes on that path. This is computed using CalculateWeightDistance in Figure 8. Next, the
algorithm loops until there are no uncovered test cases. New test sequences are constructed by
working backwards through the TCG. An uncovered test case with maximum weight is selected,
and it is added to the current test sequence. If the current test case (CurTC) is an initial test case
(its distance is 0), then the current test sequence is completed. Otherwise, the predecessor to CurTC
that has the maximum number of uncovered test cases on its shortest path is chosen. This is the
predecessor with the largest weight. If all predecessors have no weight (no uncovered test cases on
their shortest paths), then the test case on the shortest path is chosen (the smallest distance value).

15

algorithm: OrderTestCases (TestCaseGraph)

input: A graph that indicates ordering relationships among test cases (TCG).

output: Test Sequence Set.

output criteria: Fewest number of sequences with fewest number of test cases.

declare: UncoveredTCs -- Set of test cases that have not yet been covered.

PrevTCs(t) -- The set of predecessor test cases for t.

NextTCs(t) -- The set of successor test cases for t.

testSequence -- A sequence of test cases that will be executed in order.

testSequenceSet -- A set of test sequences.

curTC -- A test case that is being examined.

t.CoveredTimes -- The number of times t has been covered.

OrderTestCases (TestCaseGraph)

BEGIN -- Algorithm OrderTestCases

FOR EACH test case t in TestCaseGraph

UncoveredTCs = UncoveredTCs [ftg

get PrevTCs(t) and NextTCs(t)

END FOR

-- Build one test sequence

WHILE (UncoveredTCs IS NOT EMPTY) LOOP

testSequence = EMPTY

curTC = t such that t is an initial node in TestCaseGraph
V

(t.CoveredTimes � tn.CoveredTimes 8 tn such that PrevTCs(tn) = ;)

LOOP -- Finds one test case sequence

testSequence = testSequence k curTC -- concatenate to end

UncoveredTCs = UncoveredTCs - fcurTCg

IF (9 t 2 NextTCs(curTC) such that t 2 UncoveredTCs) THEN

curTC = t

ELSE IF (9 t 2 NextTCs(curTC) such that 9 tn 2 NextTCs(t)
V

tn 2 UncoveredTCs)
V

(: 9 tp 2 PrevTCs(tn) such that tp 2 UncoveredTCs) THEN

testSequence = testSequence k t

UncoveredTCs = UncoveredTCs - ftg

curTC = tn

ELSE

IF (UncoveredTCs IS NOT CHANGED) THEN

RETURN (NotFinished)

END IF

testSequenceSet = testSequenceSet [ftestSequenceg

EXIT

END IF

END LOOP -- Build one test sequence

END LOOP -- All test cases covered

RETURN (Finished)

END Algorithm OrderTestCases

Figure 6: The OrderTestCases Algorithm, Step I

16

This algorithm terminates only when all test cases are covered; in the worst case, each uncovered
test case will appear in a unique test sequence.

The �nal algorithm is CalculateWeightDistance. It uses a breadth-�rst search technique to �nd
the distance of the shortest path from an initial node to each node in the graph. It also calculates
a weight for each node, which is the number of uncovered test cases along the shortest path. It is
a simple modi�cation of Dijkstra's well known shortest path algorithm.

4.2 Test Cases Order Examples

These algorithms are best understood through examples. The �rst example illustrates a simple case
where Step I is su�cient to cover all test cases. The second example is slightly more complicated.
The third example illustrates a simple case of Step II. The fourth example uses the common cruise
control speci�cation, illustrating a somewhat more complicated case that uses Step II.

Example 1. The �rst example uses speci�cation graph 1, in Figure 9. The nodes represent
states in the system, and the edges are annotated with test cases that will cause the state transition
associated with the edge. For example, test case 1 will cause the system to transition from state B
to state A. The associated test case graph is shown in Figure 10. There are two initial test cases,
TC1 and TC3. The algorithm starts with test case TC1, which has one successor test case, TC2.
TC1 is put into the test sequence, then TC2 is added. From TC2, the algorithm �nds TC4, and
from TC4 it �nds TC6. Since TC6 has no next test case, the �rst test sequence is completed, and
is: (TC1, TC2, TC4, TC6). For the next sequence, the algorithm starts with the other initial test
case, TC3. From TC3, the algorithm �rst visits TC4. TC4 is already covered, but the algorithm
still checks its next test cases in case TC4 is the only node to reach its successors, and there
are uncovered test cases among them. In this example, TC4's only next test case TC6 is already
covered, so the algorithm will not include TC4. Instead, TC2's other next test case, TC5, is visited.
TC5 is not covered, so it is included in the sequence. Next, the algorithm visits TC5's next test
case, which is TC6. TC6 is already covered and has no next test case, so it is not visited. Since
TC5 has no other next test case, the second sequence is completed: (TC3, TC5).

The complete set of test sequences for this example is:

1. (TC1, TC2, TC4, TC6)

2. (TC3, TC5)

Example 2. As another example, consider the �ve-state speci�cation graph in Figure 11. Its
test case graph is given in Figure 12. This TCG has �ve initial test cases. The algorithm will start
with test case TC1, then goes to its �rst next test case TC9. From TC9, the algorithm goes to
TC7, then to TC6. From TC6, the algorithm �rst looks at TC9, but TC9 is already covered. So
the algorithm checks its next test cases TC7 and TC8. Since TC7 is already covered, and TC8 has
uncovered predecessor test cases, the algorithm bypasses TC9 and visits TC10. TC10 is uncovered,
so it is included in the current test sequence, and the algorithm goes to TC8. From there, it checks
TC6 again. TC6 still has uncovered next test cases, but they have uncovered previous test cases.
So the �rst test sequence is completed, and is (TC1, TC9, TC7, TC6, TC10, TC8).

For the next sequence, the algorithm starts with TC2, and �rst visits TC11. Since TC11 has no
uncovered next test cases, the second test sequence is simply (TC2, TC11). Likewise, the third test
sequence is simply (TC3, TC12). The fourth test sequence starts at node TC4. Its only next test
case is TC6, which is already covered. But, since TC6 has an uncovered next test case (TC13), TC6
is included in this test sequence, followed by TC13, giving the test sequence (TC4, TC6, TC13).
The �nal test sequence is simply TC5 by itself.

The complete set of test sequences for this example is below. TC6 is used two times, so there
is one redundant test case.

1. (TC1, TC9, TC7, TC6, TC10, TC8)

17

algorithm: FinishOrderTestCases (TestCaseGraph)

input: A graph that indicates ordering relationships among test cases.

output: Test Sequence Set.

output criteria: Fewest number of sequences with fewest number of test cases.

declare: Q -- A queue for test cases starting from initial test cases.

t.Distance -- Number of test cases on the shortest path from an initial

test case to test case t.

t.Weight -- Number of uncovered test cases on the shortest path from an

initial test case to test case t.

FinishOrderTestCases (TestCaseGraph)

BEGIN -- Algorithm FinishOrderTestCases

CalculateWeightDistance (TestCaseGraph)

WHILE (UncoveredTCs IS NOT EMPTY) LOOP

testSequence = EMPTY

curTC = t such that t 2 UncoveredTCs
V

t.Weight � tp.Weight 8 tp 2 UncoveredTCs

LOOP

testSequence = curTC k testSequence

UncoveredTCs = UncoveredTCs - fcurTCg

IF (curTC.Distance = 0) THEN -- Initial test case

testSequenceSet = testSequenceSet [ftestSequenceg

EXIT -- next iteration of loop

END IF

-- Find the predecessor with the maximum weight.

IF (9 tp 2 PrevTCs(curTC) such that tp.Weight 6= 0
V

tp.Weight � t.Weight 8 t 2 PrevTCs(curTC)) THEN

tp.Weight = tp.Weight - 1

-- Weight changed - refresh the TestCaseGraph

CalculateWeightDistance (TestCaseGraph)

curTC = tp

ELSE

curTC = tp such that tp 2 PrevTCs(curTC)
V

(tp.Distance � t.Distance 8 t 2 PrevTCs(curTC))

END IF

END LOOP

END LOOP WHILE

END Algorithm FinishOrderTestCases

Figure 7: The OrderTestCases Algorithm, Step II

18

algorithm: CalculateWeightDistance (TestCaseGraph)

input: A graph that indicates ordering relationships among test cases.

output: Test case graph with weights and distances calculated for all test cases.

declare: Q -- A queue for test cases starting from initial test cases.

t.Distance -- Number of test cases on the shortest path from an initial

test case to test case t.

t.Weight -- Number of uncovered test cases on the shortest path from an

initial test case to test case t.

t.Reached -- Whether the test case has been reached or not.

CalculateWeightDistance (TestCaseGraph)

BEGIN -- Algorithm CalculateWeigtDistance

-- Find distance and weight of each test case

FOR EACH t such that t in TestCaseGraph
V

PrevTCs(t) = ;

t.Distance = 0

t.Weight = 0

EnQue (Q, t)

END FOR

WHILE (NotEmpty (Q)) LOOP

curTC = DeQue (Q)

FOR EACH test case tp such that tp 2 NextTCs(curTC)
V

tp.Reached = False

IF tp NOT IN Q THEN

tp.Distance = curTC.Distance + 1

IF tp 2 UncoveredTCs THEN

tp.Weight = curTC.Weight + 1

ELSE

tp.Weight = curTC.Weight

END IF

tp.Reached = True

EnQue (Q,tp)

END IF

END FOR

END LOOP

END Algorithm CalculateWeightDistance

Figure 8: The Weight and Distance Algorithm

19

A B

CD

TC6 TC2

TC1

TC4, TC5

TC3

Figure 9: Example 1: Speci�cation Graph 1

TC6

TC5

TC3

TC4

TC2

TC1

Figure 10: Example 1: Test Case Graph 1

20

E

DC

A B
TC1, TC2, TC3

TC4, TC5

TC6

TC7, TC8

TC9, TC10, TC11, TC12

TC13

Figure 11: Example 2: Speci�cation Graph 2

2. (TC2, TC11)

3. (TC3, TC12)

4. (TC4, TC6, TC13)
5. (TC5)

Example 3. Consider the speci�cation graph in Figure 13 and its test case graph in Figure
14. The algorithm starts with TC1, then goes to its �rst next test case, TC2. Its next test case is
TC4, TC4's next test case is TC6, and TC6's next test case is TC8. TC8 has no next test case, so
the complete �rst sequence is (TC1, TC2, TC4, TC6, TC8). Next, the algorithm starts with TC1
again, then �rst examines TC2. TC2 is covered, and its next test case TC4 is also covered, so TC2
is not included. TC3 is another next test case for TC1, and it is not covered, so TC3 is included in
the test sequence. TC3's only uncovered next test case is TC5, which is uncovered, so the second
test sequence is (TC1, TC3, TC5).

TC7 is still uncovered, so the algorithm starts with TC1 again, but it cannot reach TC7.
Because this does not change the UncoveredTCs set, the Step II algorithm, FinishOrderTestCases,
is used. First the weight and distance of each test case is calculated, as shown in Figure 15.

The algorithm FinishOrderTestCases starts from TC7. TC7 only has one predecessor, so the
�nal test sequence is: (TC1, TC2, TC4, TC7).

The complete set of test sequences for this example is below. TC1 is used three times, TC2
twice, and TC4 twice. So there is a total of four redundant test cases.

1. (TC1, TC2, TC4, TC6, TC8)
2. (TC1, TC3, TC5)

3. (TC1, TC2, TC4, TC7)

Example 4. The fourth example is the cruise control speci�cation graph, shown in Figure
16. Its test case graph is shown in Figure 17. The algorithm starts with test case TC1 in the
�rst test sequence, then visits TC1's �rst next test case TC2. TC2's only next test case is TC1,
which is already covered. Although TC1 has an uncovered next test (TC3), TC3 has uncovered
predecessors, so it is not visited. Thus, the �rst sequence is (TC1, TC2).

TC1 is the only initial test case, so the second sequence also starts with TC1. Node TC2 is
already covered and has no uncovered successors, so the algorithm proceeds to TC3 and appends
it to the sequence. The algorithm next inspects TC5, which is uncovered, so it is appended to
the sequence. The only successor to TC5 is TC3, which is already covered, and although TC3 has
several uncovered successors (TC6, TC7, TC8, and TC4), they all have uncovered predecessors. So
the second sequence is completed as (TC1, TC3, TC5).

21

TC1 TC2 TC3 TC4 TC5

TC6

TC9 TC10 TC11 TC12 TC13

TC7 TC8

Figure 12: Example 2: Test Case Graph 2

On the next iteration through the loop, both successors to the initial node TC1 (TC2 and
TC3) are already covered. All of the uncovered successors to TC2 and TC3 (TC6, TC7, TC8, and
TC4) have uncovered predecessors, so the OrderTestCases algorithm, Step I algorithm terminates
without covering all nodes.

FinishOrderTestCases is called next, and �rst gets the weight and distance of each test case in
the graph, using the CalculateWeightDistance algorithm. The test case graph is repeated in Figure
18, with the weights and distances shown beside each node. The uncovered test cases are shown
with dashed lines.

FinishOrderTestCases starts with a node that has the highest weight, and builds a test sequence
from the end to the beginning. It chooses arbitrarily from TC9, TC10, TC11, and TC12; assume
TC12 is chosen. TC12's predecessors are TC7 and TC8, both of which have weights of 1. Assume
TC7 is chosen. Its predecessors are TC3, TC11, and TC12. TC3 and TC12 are covered, so TC11
is taken. Its predecessors are TC7 and TC8, TC7 is covered, so TC8 is chosen. Now all of TC8's
predecessors (TC3, TC11, and TC12) are covered, so the node with the shortest distance is chosen
(TC3). Its predecessors are TC1, TC5, TC6 and TC10. TC1 and TC5 are covered, and TC6 and
TC10 have the same weight of 1, so one is chosen arbitrarily (assume TC6). As with TC8, all of
TC6's predecessors (TC3, TC11, and TC12) are covered, so TC3 is chosen. Its only remaining
uncovered predecessor is TC10, so it is added to the sequence. Both of TC10's predecessors (TC7
and TC8) are covered, so TC7 is chosen. All of TC7's predecessors (TC3, TC11, and TC12) are
covered, so the node with the shortest distance (TC3) is chosen. All of its predecessors are covered,
so TC1 is chosen as the initial test case in this sequence. The complete sequence is (TC1, TC3,
TC7, TC10, TC3, TC6, TC3, TC8, TC11, TC7, TC12).

The only remaining uncovered test cases are TC4 and TC9. For both of them, the shortest

22

TC1

TC3

TC2

TC4

TC5

TC6, TC7

TC8

G

F

E

D

C

BA

Figure 13: Example 3: Speci�cation Graph 3

TC8

TC7TC6

TC5TC4

TC3TC2

TC1

Figure 14: Example 3: Test Case Graph 3

23

TC8

TC7TC6

TC5TC4

TC3TC2

TC10, 0

0, 1 0, 1

0, 20, 2

1, 3

0, 4

0, 3

Figure 15: Example 3: Test Case Graph 3 With Weights

INACTIVE

OVERRIDE

CRUISEOFF
TC1

TC2

TC3

TC4

TC9

TC10

TC5, TC6

TC7,TC8

TC11, TC12

Figure 16: Example 4: Speci�cation Graph 4

24

TC1

TC2 TC3

TC4

TC9 TC12

TC5 TC6 TC7 TC8

TC10 TC11

Figure 17: Example 4: Test Case Graph 4

path (through covered test cases) is chosen, yielding (TC1, TC3, TC7, TC9) and (TC1, TC4).
The complete set of test sequences for this example is below. TC1 is used �ve times, TC3 is

used �ve times, and TC7 is used three times. So there is a total of 10 redundant test cases.

1. (TC1, TC2)

2. (TC1, TC3, TC5)

3. (TC1, TC3, TC7, TC10, TC3, TC6, TC3, TC8, TC11, TC7, TC12)

4. (TC1, TC3, TC7, TC9)

5. (TC1, TC4)

25

TC1

TC2 TC3

TC4

TC9 TC12

TC5 TC6 TC7 TC8

TC10 TC11

0, 0

0, 1

0, 2

0, 1

1, 2 1, 2 1, 2 1, 2

2, 3 2, 3 2, 3 2, 3

Figure 18: Example 4: Test Case Graph 4 With Weights

26

5 TEST PREFIX GENERATION

The pre�x for a test case includes all inputs necessary to reach the pre-state and to give the
triggering event variable its before-value.

Pre�xes can be generated automatically from the speci�cation graph. In the Phase I �nal report
[O�98], the question of whether this problem is generally solvable was left open. The problem of
determining pre�xes is related to the reachability problem in software analysis, which is generally
unsolvable. This Phase II report, however, presents an algorithm that will generate test case pre�x
speci�cations, thus showing that the problem is solvable. This problem is solvable for state-based
speci�cations because of the �nite deterministic nature of state-based systems.

To generate pre�x inputs, the speci�cation graph introduced previously is used to generate
pre�x inputs to �nd all paths from the initial state to a target state. The target state is the
pre-state for the test case. The algorithm uses a depth-�rst search and is shown in Figure 19.

The speci�cation graph is provided to the algorithm in an adjacency list structure, and returns
all possible paths from the initial state to the target state. The paths are returned as lists of
predicates that must be satis�ed to traverse from the initial state to the target state. These
predicates are then resolved into actual input values. There may be more than one path from the
initial state to the target state. In this case, all paths are returned, and the enclosing program
can choose which one to use. This choice can be made randomly, by choosing the �rst path, the
shortest, or the longest, depending on the needs of the test engineer.

As an example, consider the simple four-state speci�cation graph in Figure 20. Its adjacency
list representation is shown in Figure 21. Suppose the target node is S4. The algorithm will start
in node S1, then go to its �rst adjacent node S2. From S2, the algorithm �rst checks S1, but since
S1 has already been visited, the algorithm backtracks and goes to the next node that is adjacent to
S2, which is S4, the target node. So the �rst path discovered is (S1 ; S2 ; S4). Then, the algorithm
backtracks to node S1, and visits the next adjacent node, S3. The �rst adjacent node to S3 is S1,
which has already been visited, so the algorithm goes to S4, resulting in the path (S1 ; S3 ; S4).
Finally, the algorithm backtracks to node S1, and visits its last adjacent node, S4. This results in
the path (S1 ; S4).

The complete set of paths is: f(S1 ; S2 ; S4), (S1 ; S3 ; S4), (S1 ; S4)g. The corresponding

predicates are: f(A
V

B; B
V

C); (A
V

B; C); (A
V

B)g.

5.1 Pre�x Generation Example

This subsection presents an example of creating test pre�xes for a test case developed from the
cruise control system speci�cation. The speci�cations for the system were shown in Table 1, and
its speci�cation graph was shown in Figure 1. Figure 22 shows the adjacency list for the cruise
control graph.

The test pre�xes to reach the pre-state will be found with the algorithm. The test case we
choose tests the transition from state OVERRIDE to CRUISE. The pre-state from this test is
OVERRIDE and the post-state is CRUISE. The test case without the pre�x inputs is:

Pre�x: ???? { Reach OVERRIDE state

Test case value: Resume = False { Trigger before-value

Ignited = True { Condition variable

Running = True { Condition variable

Brake = False { Condition variable

Resume = True { Triggering event

Expected output: CRUISE

27

algorithm: FindSequenceOfTransitions (Size, Target)

input: A transition digraph represented by an adjacency list structure,

and a destination node Target.

output: The sequence set of transitions ST (Target) includes all possible paths

from the initial state S1 to the target state St.

comments: There are a total of Size states. Without loss of generality, let S1

be the initial state, and St target state. The algorithm

uses the following adjacency list structure:

TYPE VertexType IS 1..Size

TYPE NodePtr IS ACCESS StateNode

TYPE StateNode IS RECORD

Vertex : VertexType

Link : NodePtr

END RECORD

TYPE HeaderArray IS ARRAY (1..Size) OF NodePtr

StateList : HeaderArray

Ptr : NodePointer

V : VertexType

Path : ARRAY (VertexType) OF Integer

ST : Sequence Set of Transitions

-- Recursive function to implement Depth First Search.

Travel (Targ, Current)

BEGIN -- Travel

-- Loop found, already visited this node.

IF (Current IN Path) RETURN

-- Find the target.

-- Path represents one of the existing paths from S1 to St.

IF (Current = Targ)

ST (Targ) := ST (Targ) [Path

RETURN

END IF

Add Current to Path

FOR EACH node S linked to Current

Add S to Path

Travel (Targ, S) -- Recursion

Delete S from Path

END FOR

END Travel

Figure 19: The FindSequenceOfTransitions Algorithm

28

BEGIN -- FindSequenceOfTransitions

ST (Target) := EMPTY

Path := EMPTY

-- Check if no path starts from the initial node

Ptr := StateList (1)

IF (Ptr.Link = NULL) RETURN

-- Check there is a path to the target node

FOR EACH node N in StateList

FOR EACH node M adjacent to N

IF (Target = M)

Found := Target

END IF

END FOR

END FOR

IF (NOT Found) RETURN

Ptr := StateList (1)

Add 1 to Path -- The initial state

WHILE (Ptr 6= NULL) LOOP

Travel (Target, Ptr.Vertex)

Ptr := Ptr.Link

END LOOP

END FindSequenceOfTransitions

Figure 19: The FindSequenceOfTransitions Algorithm - continued

The derivation process of the pre�xes to reach the OVERRIDE state is as follows. There are
four states in this system. OFF is the initial state, and OVERRIDE is the target state for the pre�x
generation algorithm. In this depth-�rst search, the four vertices are visited in order of increasing
distance from the initial state.

First, vertex 2 (INACTIVE) is visited, since it is adjacent to 1 (OFF). The �rst vertex adjacent
to 2 is 1, but it has already been visited. So the search next visits vertex 3 (CRUISE). The
algorithm proceeds until the target 4 (OVERRIDE) is visited, which means a path to OVERRIDE
has been found. At this point, the algorithm looks for other paths to reach the target by returning
to previously visited vertices.

In this example, there is only one non-looping path to reach the OVERRIDE state, (1 ; 2 ; 3
; 4). So the pre�x speci�cations to OVERRIDE are: fP1 ; P3 ; (P7 _ P8)g. A completed test
case is therefore:

Pre�x: Ignited = True { Reach INACTIVE state

Activate = True

Running = True

Brake = False { Reach CRUISE state

Deactivate = True

Toofast = False { Reach OVERRIDE state

Test case value: Resume = False { Trigger before-value

Ignited = True { Condition variable

Running = True { Condition variable

29

S1

S3

S2

S4

A

C

B B C

A C

A BBAC

B

B

Figure 20: Example Speci�cation Graph

34

1 43

1 42

2 3 41

Figure 21: Example Adjacency List

30

1

2

31

1 42

3

2

1: OFF 2: INACTIVE 3: CRUISE 4: OVERRIDE

1

4

3

2

Figure 22: Adjacency List Structure for Cruise Control Graph

Brake = False { Condition variable

Resume = True { Triggering event

Expected output: CRUISE

31

6 REMOVING REDUNDANT TEST CASE VALUES

When a number of tests are created automatically, it is natural for some to be redundant. Di�erent
test requirements and speci�cations will lead to similar or the same tests. This leads to overlap
and extra expense when running the tests, evaluating the results from the tests, storing the tests,
and re-running the tests. As part of this work, analysis techniques have been developed to remove
redundancy so as to reduce the amount of e�ort that is required.

This also brings up a related issue that is of importance to practical execution of tests. When
a number of tests are available, they can be executed in one of two ways. Either each test can
be executed separately, or a number of tests can be combined to have fewer test executions. Both
ways have advantages and disadvantages.

When combining tests, there will be fewer tests to run, but each one will be larger. Because
of the overhead associated with setting up to run each test, the overall execution time will be less
when combining tests. On the other hand, it becomes harder to change the tests, and when the
software fails, big tests makes it harder for the debugger to track down the fault.

When separating tests, there will be more tests to run, but each one will be smaller. This will
result in more overall execution time. The advantages are that it is easier to change small tests,
and debuggers will need less e�ort to track down faults.

A compromise approach is to store and manipulate tests individually, then use automatic tech-
niques to combine them during execution. This gives the test maintenance advantages of small
tests, and the execution time advantage of combined tests.

The algorithm in this section attempts to reduce the amount of redundancy in the test sets. This
will also reduce the expense of running tests, as well as save e�ort when storing and modifying tests.
There are two kinds of redundancies that can be addressed, external and internal. Each test case
generated by our criteria is composed of a number of variable assignments, which can be modeled
as simple (variable:value) pairs. External redundancy refers to redundancy between test cases;
a test case is externally redundant if it is exactly the same as another test case. Internal redundancy
refers to redundancy inside test cases among the (variable:value) pairs; a (variable:value)

assignment is internally redundant if the variable already has the value when the assignment is
reached.

Because of the way test requirements and test cases are created under these criteria, there are
no externally redundant test cases. On the other hand, there can be many internally redundant test
case value assignments. The algorithm in this section searches through each (variable:value)

pair in each test case, and removes all redundant assignments.
The algorithm is shown in Figure 23. This is a simple algorithm. For each test case value

(CurValue) in a test case (CurTC), the subsequent test case values are searched. If a subsequent
test case value assigns the same value to the variable in CurValue (that is, it is redundant), then
the second assignment is removed. If a subsequent test case value assigns a di�erent value to the
variable, then the �rst assignment can be considered \dead", so the algorithm quits looking for
subsequent redundant test case values.

As an example, consider the simple test case below, which has boolean variables A, B, C, D,

and E:

A = True

B = True

A = False

B = True

C = False

D = False

A = True

E = True

32

algorithm: RemoveRedundantTestCaseValues (TestCaseList)

input: A list of complete test case scripts with prefixes and test case values.

output: Test Cases List without redundant test case values.

declare: TestCaseList -- Array of test case scripts. Each item represents a complete test case.

CurTC -- The test case script being processed.

CurValue -- The test case value being processed.

NextValue -- The test case value to compare with CurValue.

NumTCs -- The number of test cases in TestCaseList.

TYPE TestCaseValue IS RECORD

Name : String

Value : Boolean

Next : TestCaseValue

END RECORD

TYPE TestCaseScript IS LIST OF TestCaseValue

TYPE TestCaseListArray IS ARRAY (1..NumTCs) OF TestCaseScripts

TestCaseList : TestCaseListArray

CurValue, NextValue : TestCaseValue

CurTC : TestCaseScript

RemoveRedundantTestCaseValues (TestCaseList)

BEGIN -- Algorithm RemoveRedundantTestCaseValues

FOR (i = 1 TO NumTCs) LOOP

CurTC = TestCaseList (i)

FOR EACH CurValue in CurTC

NextValue = CurValue.next

WHILE (NextValue Exists) LOOP

IF (CurValue.Name = NextValue.Name) THEN

IF (CurValue.Value = NextValue.Value) THEN

REMOVE node NextValue from CurTC

ELSE

-- The name is the same, but a different value,

-- so the value is changing. No need to look further.

EXIT LOOP

END IF

END IF

NextValue = NextValue.Next

END WHILE LOOP

END FOR EACH

END FOR LOOP

END Algorithm RemoveRedundantTestCaseValues

Figure 23: The RemoveRedundantTestCaseValues Algorithm

33

t t ttt fff

A AB B C D EA

Figure 24: Example : Original Test Case Script

t ttt fff

A AB C D EA

Figure 25: Example : Processed Test Case Script

These test case values constitutes the test case value list shown in Figure 24. The algorithm
takes the �rst test case value, which contains the pair (A:t), and compares it with the rest of the
values in the list. The third test case value has the same name, but a di�erent value assignment,
so it is not redundant. Instead, the di�erent assignment indicates that the algorithm should not
look further for a test case value that is redundant. Then the algorithm considers the next test
case value, which contains the pair (B:t). The fourth test case value has the same variable name
and value, so the algorithm removes it from the list. The algorithm continues to check other test
case values until it reaches the end of the list. After the algorithm terminates, the resulting list of
test case values is as shown in Figure 25.

34

7 INTERACTION-PAIR TESTING

In the Phase I, 1997 report [O�98], transition-pair coverage was introduced to check the interfaces
among states. The attempt was to require that certain sequences of states be entered. The formal
de�nition was:

Transition-pair coverage level: For each state S, form test requirements such

that for each incoming transition and each

outgoing transition, both transitions must be

taken sequentially.

In this research, the notion is generalized to that of testing sequence-pairs. A sequence-pair is
a pair of states that can be entered in sequence. The concept of testing sequence-pairs is based on
the observation that some pairs of states have interactions that should be carefully tested. When
states have some interaction, there is a high potential for failures that will not be found unless both
states are reached under the same execution. In particular, a new test criterion is proposed that
is based on testing interaction-pairs, where an interaction-pair is a pair of states that have some
data or control interaction.

The interaction addressed in sequence-pair testing is that of control-ow; a pair of states inter-
act if there are direct transitions between them. Three interactions, primarily through data, are
identi�ed and de�ned here. The three interaction types are shared data items on transitions into
the states, shared data items on transitions out of the states, and state invariants. Pairs of states
that interact will be tested together to ensure that the speci�cations are de�ned correctly and that
the software is implemented correctly.

Interaction pair testing is de�ned as follows:

Interaction-pair coverage: For each state S1 and S2 such that the incom-

ing transition predicates for S1 and S2 are the

same, the outgoing transition predicates for S1
and S2 are the same, or S1 and S2 have the

same state invariant, form test requirements

such that there is an execution path from S1 to

S2 or from S2 to S1.

Consider the example speci�cation graphs in Figure 26. Figure 26.I shows the case where two
states have the same precondition. States S2 and S4 both have the precondition B ^ D. To test
this interaction, an execution path is needed that includes both states. Thus, the test requirement
for interaction-pair (S2:S4) is S4:S3:S2 =) B ^ C : B ^ D.

Figure 26.II shows the case where two states have the same postcondition. States S2 and S4

both have the postcondition B ^ C. To test this interaction, an execution path is needed that
includes both states. Thus, the test requirement for interaction-pair (S2:S4) is S4:S3:S2 =) B ^

C : A ^ C.
Figure 26.III shows the case where two states have the same state invariant. A state invariant

encodes predicates that are always true in a state, no matter from where it was reached. State
S2 has the preconditions A ^ B and B ^ D, and S4 has the preconditions B ^ D and B ^ C.
For both states, B is always true when the state is entered. To test this interaction, an execution
path is needed that includes both states. Thus, the test requirement for interaction-pair (S2:S4) is
S2:S3:S4 =) A ^ C : B ^ C.

Finally, Figure 27 shows a case where there is an interaction between two states, but no execution
path between them. States S2 and S4 both have the same postcondition, B ^ D, but there is no

35

S1 S2

S3S4

VB

V

B

V V VB D CB AD

C

D

A
S1 S2

S3S4

VB

V

B

V VD CB A

V

B D

C

D

A
S1 S2

S3S4

VB

V

B

V VCB A

C

D

A

C

V

DB

I. Same preconditions III. Same State InvariantsII. Same postconditions

Figure 26: Example : Speci�cation Graphs for Interaction-Pairs

S1 S2

S3S4

A

V

B

DB

VDB

S5

D

A C

V

V

Figure 27: Example : Speci�cation Graph for Interaction-Pair with no Execution Path

path from S2 to S4 and no path from S4 to S2, so no test requirement is generated.

36

8 CONCLUSIONS

This report presents results and strategies for practically applying test cases generated accord-
ing to the criteria presented previously. This research project addresses the problem of develop-
ing formalizable, measurable criteria for generating test cases from speci�cations, and applying
those criteria in practical, industrial situations. Algorithms for addressing the pre�x problem in
speci�cation-based testing were presented. This result provides a solution to a major problem
within speci�cation-based testing. The fact that the solution is algorithmic and complete points
out a signi�cant advantage of generating tests from speci�cations instead of from code { the comple-
mentary problem in code-based test data generation is unsolvable. Also presented were algorithms
to remove redundant test case values and to apply the idea of \interaction-pair" testing.

The immediate goal of this research was to develop mechanisms for practically applying the
test generation criteria from the previous year. Short term goals are to develop mechanical proce-
dures to derive test cases from formal speci�cations, and apply the method to industrial software
speci�cations. Future goals are to carry out an empirical evaluation of the testing method, and to
adapt the testing model and criteria to the Uni�ed Modeling Language (UML). An eventual goal
is to build an automatic test data generation tool for this technique.

37

References

[Atl94] J. M. Atlee. Native model-checking of SCR requirements. In Fourth International SCR
Workshop, November 1994.

[HL92] J. R. Horgan and S. London. ATAC: A data ow coverage testing tool for C. In Proceedings
of the Symposium of Quality Software Development Tools, pages 2{10, New Orleans LA,
May 1992.

[Jin96] Zhenyi Jin. Deriving mode invariants from SCR speci�cations. In Proceedings of Second
IEEE International Conference on Engineering of Complex Computer Systems, pages 514{
521, Montreal, Canada, October 1996. IEEE Computer Society.

[O�98] A. J. O�utt. Generating test data from requirements/speci�cations: Phase i �nal report.
Technical report ISSE-TR-98-01, Department of Information and Software Systems Engi-
neering, George Mason University, Fairfax VA, April 1998.

38

Contents

1 INTRODUCTION 2

2 SUMMARY OF PHASE I 3
2.1 Summary of Phase II Goals : 3

3 CASE STUDY 5
3.1 Methodology : 5
3.2 Test Generation : 7

3.2.1 Full predicate coverage criterion : 7
3.2.2 Transition-pair coverage criterion : 9
3.2.3 Complete sequence criteria : 11

3.3 Implementation and Faults : 11
3.4 Results and Analysis : 11

4 ORDERING OF TEST CASES 13
4.1 Order Test Cases Algorithms : 13
4.2 Test Cases Order Examples : 17

5 TEST PREFIX GENERATION 27
5.1 Pre�x Generation Example : 27

6 REMOVING REDUNDANT TEST CASE VALUES 32

7 INTERACTION-PAIR TESTING 35

8 CONCLUSIONS 37

