
Using Approximations to Scale Exploratory Data

Analysis in Datacubes

Daniel Barbar�a Xintao Wu

George Mason University �

Information and Software Engineering Department

Fairfax, VA 22303

dbarbara,xwu@gmu.edu

March 4, 1999

Paper 188

Abstract

Exploratory Data Analysis is a widely used technique to determine which factors

have the most in
uence on data values in a multi-way table, or which cells in the table

can be considered anomalous with respect to the other cells. In particular, median

polish is a simple, yet robust method to perform Exploratory Data Analysis. Median

polish is resistant to holes in the table (cells that have no values), but it may require

a lot of iterations through the data. This factor makes it di�cult to apply median

polish to large multidimensional tables, since the I/O requirements may be prohibitive.

This paper describes a technique that uses median polish over an approximation of a

datacube, easing the burden of I/O. The results obtained are tested for quality, using a

variety of measures. The technique scales to large datacubes and proves to give a good

approximation of the results that would have been obtained by median polish in the

original data.

1 Introduction

Exploratory Data Analysis (EDA) is a technique [13, 14, 22] that uncovers structure in data.

EDA is performed without any a-priori hypothesis in mind: rather it searches for \exceptions"

of the data values relative to what those values would have been if anticipated by an statistical

model. This statistical model �ts the rest of the data values rather well and can be accepted

as a description of the dataset. When applied to multidimensional tables, EDA also uncovers

the attribute values that have the greatest e�ect on the data points. As pointed out by [19],

�This work has been supported by NSF grant IIS-9732113

1

these exceptions can be used by an analyst as starting points in the search for anomalies,

guiding the analyst work across a search space that can be a very large.

A widely used data model for On-Line Analytical Processing (OLAP) is the datacube [12].

A datacube is a multidimensional data abstraction, where aggregated measures of the combi-

nations of dimension values are kept. For instance, in a company datacube, the dimensions

can be product names, store names and dates. The measure can be the total sales in dollars.

A cell of the datacube corresponds to a combination of the dimension values and contains an

aggregate of the measure: e.g., the cell of product #001, store `AAA', during the month of

May, 1998, contains the total amount of sales of that product, in that store for that month.

Datacubes de�ne cells at all levels of aggregation, e.g., sales for ALL the products in store

`AAA' during May, 1998. Moreover, dimensions have associated hierarchies that specify other

aggregation levels, e.g., stores can be grouped individually, by city, by state, etc.

At any level of aggregation, datacubes can be viewed as multi-way tables, that can be

subjected to EDA. Two traditional ways of performing EDA in tables are median polish and

mean polish [14]. Both methods try to �t a model (additive or multiplicative) by operating on

the data table, �nding and subtracting medians (means) along each dimension of the table.

Starting with one dimension, the method calculates the median (mean) of each \row" 1 and

subtracts this value from every observation in the row. Then, the method moves to the next

dimension and uses the table resulting from the previous operation to �nd medians (means)

in each row and subtract them from the entries in this row. Of course, doing that changes the

medians (means) on the previous dimension rows. The process continues with each dimension

and iteratively cycles through the set of dimensions. In principle, the process continues until

all the rows in each dimension have zero median (mean), hence the number median (mean)

polish. (In practice, the process stops when it gets su�ciently close to that goal.) One gets

two kinds of information from this process. First, one gets the e�ect that each row in each

dimension has on the model, given by the algebraic sum of the medians (means) that have

been subtracted in that row at every step. Secondly, one gets residuals in each cell of the

table, which tell us how far apart that particular cell is from the value that would have been

predicted by the model being �t.

It has been pointed out that the main drawback of the mean polish method is its lack

of resistance to outliers (i.e., cells that do not �t the model well). This lack of resistance

manifests itself specially when \holes," e.g., missing cells, are present [14]. This is particularly

troublesome for datacubes, which are usually sparse (i.e., not every cell has a value). On

the other hand, median polish, being more resistant to outliers and holes, is very adversely

a�ected by holes which increase substantially the number of iterations needed by the process

[14]. Increasing the number of iterations can drastically impose enormous I/O demands (by

requesting many passes over a large dataset) and therefore render the process impractical

1we use the term \row" to refer to the set of cells in the hypercube which share the same attribute value

for one of the dimensions

2

Race

Age White African American Hispanic

10-14 years 0.8 4.2 2.7
15-17 years 30.0 69.7 72.9
18-19 years 81.2 137.1 157.9

Figure 1: Birth rates to teenagers, by age and race: United States, 1995.

for large datacubes. Previous work in using EDA for datacubes [19] has chosen to use mean

polish, precisely for being less demanding on the number of iterations needed to �nish.

This paper explores a method that bene�ts from the high robustness of median polish,

while at the same time scales well for large datacubes. Our method uses statistical models

to approximate subsets of the datacube, eliminating the need to do several passes over the

dataset in order to compute the medians. However, by doing so, the row e�ects and the

residuals computed are only an approximation of those that would have been computed by

applying median polish to the dataset. We show that this tradeo� of lesser I/O demands

versus accuracy in the results is very bene�cial. The anomalies pointed out by our approximate

method are very close to those pointed out by applying the method to the real dataset, while

the resulting process scales well to large datacubes.

This paper is organized as follows. In Section 2, we present the median polish method

and illustrate its results via a simple example. In Section 3, we present the basis of our

methods, including the algorithms and data structures utilized in them. Section 4 presents the

experimental results obtained by our method using several real and synthetic datasets. Section

5 summarizes the related work. Finally, Section 6 presents the conclusions and directions of

future work.

2 Median Polish Revisited

In this section we brie
y review the median polish method and present an example, in order

to help clarify the concepts presented in the rest of the paper.

To illustrate the procedure, we use a simple example taken from from [16]. Figure 1 shows

a simple two-way table of birth rates to teenagers in the year 1995, by three age groups and

race and Hispanic origin 2.

The relationship between the rate (response variable) and the two factors in the table (race

and age) can be expressed using many models. A simple, additive model can be written as

shown in Equation 1, where � is the overall typical value for the whole table (common value),

�i is the row e�ect of row i, �j is the column e�ect of column j and �ij is the departure of yij

2Hispanic is not really a race: people of Hispanic origin may be of any race.

3

Race

Age White African American Hispanic new median e�ect
10-14 years 36.3 0.0 -4.7 (1.5) -67.0
15-17 years 0.0 0.0 0.0 (0.0) 0.0
18-19 years -16.2 0.0 17.6 (0.0) 67.4

new median (0.0) (0.0) (0.0) (0.0) (0.0)
e�ect -39.7 0.0 0.0 0.0 69.7

Figure 2: Final table.

from the model or residual.

rij = � + �i + �j + �ij (1)

Figure 2 shows the table after the median polish procedure. (We omit the intermediate steps

for lack of space.) All row and column medians have reached a value of 0. The \previous"

column and row contain the e�ects of the rows and columns respectively. The cell on the

lowest, right-hand corner contains the total e�ect. So, we can see that teenager birth rates

are lowest among whites (column e�ect �1 = �39:7), lowest among the 10-14 age range (row

e�ect �1 = �67), and highest among the 18-19 age range (row e�ect �3 = 67:4). We also

see that the cell that least �ts the model is that of White teenagers on the age range 10-14

(residual �11 = 36:3). These parameters explain the in
uence of each factor with respect

to the overall data, allowing the analyst to make meaningful conclusions (e.g., teenage birth

rates are lowest among whites, when compared with the other race groups).

It is easy to see that this method cannot scale well. During each iteration, we need full

access to the entire dataset. If the dataset does not �t in main memory, this implies severe

I/O demands: a row of the table would be brought to memory only to be replaced by other

portions of the dataset later, and brought back in the next iteration. Our method aims to

eliminate the need for all these I/O at the expense of working with data approximations.

3 Our method

In this section we describe in detail how we scale the median polish procedure to large dat-

acubes. The aim of our method is to avoid having to bring data cells to main memory

repeatedly in order to compute the medians. We do that by characterizing portions of the

core cuboid of the datacube 3, employing statistical models that can be later used to estimate

3the core cuboid is the set of cells of �nest granularity; any other cuboid in the datacube can be computed

from the core cuboid by aggregating on one or more of the dimensions.

4

the values of the individual cells. To avoid incurring in large errors by using the estimated

cell values, we retain all the cell values whose estimated values are too erroneous (farther

away from the real value by more than a preestablished threshold). We then keep the model

parameters (for each portion of the core cuboid) in main memory, along with the retained set

of cells (or at least as much of these values as we can �t in memory) and start the median

polish procedure. In each iteration, the procedure will use, for a given cell one of the following

values: a) the estimated value given by the corresponding model, if the cell is not retained or,

b) the actual cell value, if the cell has been retained. Hence, this method minimizes I/O by

not having to fetch cells from the disk too often (if all the retained cells �t in main memory,

the I/O requirements after modeling the portions of the core cuboid drop to zero). Of course,

the usage of the estimated value brings as a consequence that the results of the median pol-

ish procedure are only approximate. However, as we shall show in the results section, the

results are extremely close to performing median polish in the real datacube, even when large

estimation errors are allowed.

It is important to point out that while our descriptions and experiments have been per-

formed using the core cuboid, it is straightforward to use our data structures and method to

perform approximate EDA in any other cuboid of the datacube. The models used to describe

portions of the core cuboid, can be used to perform aggregations to obtain cells in any other

cuboid, and our method can then operate in these aggregations.

The issues involved in performing our approximate method can be summarized as follows:

� Selecting chunks of the core cuboid that will be described by models, selecting the model

to use to characterize them, and deciding which cells need to be retained.

� Organizing the model parameters and retained cells to e�ciently access them during the

median polish run.

� Evaluating the quality of the results obtained by the approximate method.

In the rest of this section, we describe in detail how we solved each of these issues.

3.1 Dividing the core cuboid

In order to select the chunks in which we divide the core cuboid we use a density based

approach called hierarchical clustering [15] to get high density portions of the cube. This

approach has been previously utilized to identify regions of high density in multidimensional

data ([1]). (The aim in [1] is to have a density approach to clustering, where a cluster is

de�ned as a region with higher density of points than its surrounding regions.) We assume

that the core cuboid has been computed (an algorithm such as the one presented in [18] is

well suited for the task).

5

Given a d�dimensional datacube with dimensions A = fA1; A2; � � �Adg, we assume it be

a set of bounded, totally ordered domains space4. Accordingly, S = kA1k�kA2k�� � ��kAdk,

is the possible number of cells in the core cuboid. The non-empty cells in the cuboid are a

set of multidimensional points, V = fv̂1; v̂2; � � � ; v̂mg. where each v̂i = fvi1 ; vi2; � � � ; vid; mig,

with vij the i-th dimension value and mi the value of the cell.

Initially, we partition the space of the cuboid into non-overlapping rectangular 1st-level

chunks which have the same chunk size f�1
1
; � � � ; �1

d
g. Hence, the number of chunks in 1st-level

is C1

no
=
Q
d
kAik

k�1
i
k
e. We use c1

i
to denote the i-th chunk in the �rst level. The size of any

of the 1st-level chunks is given by di =
Q
�1
i
. Clearly, we require that �1

i
� Ai for all i;

moreover, we choose not to divide those dimensions with small domains (for them we make

�1
i
= Ai). At any point during the process of partitioning we may decide to further divide

a 1-st level chunk into several 2nd level chunks, and successively an j-th level chunk into

j + 1-th level chunks. The size of an j-th level chunk is predetermined to be f�j1; � � � ; �
j

d
g, for

j = 1; � � � ;MAXLEV EL, where MAXLEV EL is the maximum level of any chunk.

Before we formally present the algorithm for cuboid partitioning, let us describe the data

structures that are needed to make it work. A chunk is described as a structure which contains

the following �elds (each with the obvious meaning): Chunk-number, Number-cells, Number-

outliers, Level, State, Pointer-to-parent, Parameter-list, Cell-list, Outlier-list.

In particular, State de�nes the state of the chunk, which changes dynamically as the

partitioning process runs. The possible states where a chunk can be found are as following:

� STAT-NULL : no cells are located in this chunk. This is the initial state of every chunk

and the �nal state for empty chunks.

� STAT-SPARSE : a chunk with very few cells in it. (We just retain all cells in this chunk.)

� STAT-DENSE : a chunk with enough cells which can be modeled.

� STAT-REDV : a chunk with intermediate density (enough cells not to be sparse, but

not enough to be modeled yet), or a chunk where a model �t is not satisfactory. This

are chunks subjected to further partitioning to the next level.

� STAT-MODL : this chunk has been modeled.

� STAT-DVOK: this chunk has been further subdivided.

After the partitioning procedure, every chunk should be in STAT-NULL, STAT-SPARSE

or STAT-MODL. The rest are intermediate states.

4Without loss of generality and to keep the presentation simple, we assume in this paper that the actual

attribute values are consecutive integer values from 0 to kAik�1 where kAik is ith-dimension attribute domain

size , For the general case where the actual attribute values are not necessarily consecutive, we can map each

actual attribute value to its rank.

6

At every step of the partitioning process we maintain a CHUNK-DESC list in memory

which contains information about every chunk's level, state, and count of cells. Moreover,

there are three parameters used to drive the partitioning process:

� � : this marks the minimum acceptable density for chunks measured by the number of

cells in the chunk divided by the chunk's size.

� � : this is the maximum error level tolerated in the estimation process. That is if y is

the value of a cell and ŷ the value of the estimation by the model describing the chunk,

the relative error given by jy � ŷj=y must be less than or equal to �. Any cell whose

estimation error surpasses � is declared an outlier.

�
 : this is the maximum percentage of outlier cells allowed in the chunk, which is

measured as the number of outliers divided by the number of cells in the chunk. If the

percentage of outlier cells is bigger than
, we declare the chunk's state as STAT-REDV

and proceed to partition it further.

Figure 3 presents the pseudo-code for the partitioning algorithm. As can be noticed, the

algorithm proceeds to divide the initial cuboid in 1-st level chunks, assigning cells to each one

and proceeds to classify each chunk, further dividing it if necessary, until the chunk is declared

STAT-SPARSE, STAT-NULL or STAT-MODL. It is worth noticing that the algorithm will

read the number of cells in the core cuboid into memory only once. Then each chunk that

is neither sparse not null will be read into memory (with its respective cells) and processed

(subdivided, modeled) until no more processing is needed for the chunk. If each chunk �ts in

memory, then it is guaranteed that the each cell will be read into memory only once, making

the input activity equivalent to two passes of the data and the write activity also equivalent

to two passes of the data. If a chunk does not �t in memory several reads and writes to

the chunk will be needed, making the total read activity loosely bound by MAXLEV EL

number of passes through the data. (In practice the I/O activity will be much less, since there

will be child chunks that �t in memory.) Moreover, we need to point out that all this I/O

activity takes place before the EDA is undertaken. (Chunks and their models can be stored as

part of the cuboid and reused for further analysis and other uses, such as approximate query

processing and other types of data mining [5, 6, 3].)

A point we need to make in this subsection is that of modeling. Several choices of models

are possible (a survey of methods can be found in [4]). The general technique is, however, quite

independent of the model chosen for the chunks. Of course, there will be some models that are

better suited for speci�c classes of data and therefore will produce smaller estimation errors.

However, as we will show in Section 4, the results of the approximate median polish are quite

robust, in spite of the errors incurred by the modeling process. For our prototype, we chose

a simple linear regression model in the number of dimensions. The regression was computed

using the marginal values (total sum of measure values per \row" of each dimension).

7

Partition(core� cuboid)
BEGIN

Divide(core� cuboid)
while there is a chunk C in the CHUNK-DESC list such that

C:Stat 2 f STAT-DENSE, STAT-REDV g

switch (C:Stat)

case 'STAT-REDV'

if C:level < MAXLEV EL

C:Stat = STAT-DVOK

Divide(C)
else

C:Stat = STAT-SPARSE

case 'STAT-DENSE'
Model(C)
If (C:Number-outliers/C.Number-cells) >

and C:Level < MAXLEV ELS

Divide(C)
else

C:Stat = STAT-MODL

END

Divide(CHUNKC)
Begin

For each cell in chunk C do
include cell the corresponding child chunk C 0

increase C 0.Number-cells

let d be the size of any child chunk
for each child chunk C 0 do

add C 0 to DESC-LIST.
if C 0.Number-cells = 0.

C 0:Stat = STAT-NULL.
else

if C 0:Number-cells=d � �.
C 0:Stat = STAT-DENSE.

else

C 0:Stat = STAT-SPARSE.
END

Figure 3: Partitioning Algorithm

8

Special mentioning should be made of the treatment of holes for chunks whose state is

STAT-MODL. (Holes in chunks whose state is STAT-SPARSE are taken care of by de�nition:

only a list of non-zero cells is kept on those.) Since it is assumed that the number of holes

of a STAT-MODL type of chunk is small (since � must be big), we can simply treat them as

outliers and keep them in the outliers list. Otherwise, we need a separate index to indicate

which cells are non-zero. This has repercussions in our median polish method: the smaller the

chunk descriptions are, the more of them we will be able to keep in memory, thereby avoiding

the need for fetching them from the disk.

3.2 Median Polish Algorithm Using the Chunk Models

In Figure 4 we present the algorithm to perform the median polish process by using the

chunk characterization. First, both the CHUNK-DESC list and a number of chunk structures

(as many as the memory bu�er allocated for such purpose allows) are prefetched into main

memory (lines 1 and 2). Then the e�ects for every row of every dimension are initialized to

0 (line 3). The process of polishing medians is conducted until a predetermined number of

steps is carried out (MAX � STEP) or more than � rows have median equal to 0 (line 10).

(In practice, we do not demand that the median be equal to zero, but rather less than a small

value.) Then the for loops of lines 4 and 5 drive the median polish computation. First, a

query q is set up to describe all cells belonging to row j of dimension i (q = (Ai = j))

(line 6). Then the procedure get � residual is called for that row (using q): get � residual

maps q to the chunks that contain data that satisfy q (to avoid going through every chunk).

Notice that the chunks at this stage can be of state STAT-SPARSE or STAT-MODL. In case

the chunk used is of the type STAT-SPARSE, the algorithm reads the real cell values, stored

in the chunk structure, otherwise (if the chunk is of the type STAT-MODL, the cell values

can be either estimated by using the model parameters, or read if the cell happens to be an

outlier. As cells are used or estimated (i.e., taken from the outliers or modeled), they are

placed in the set r (lines 19 and 24). Once all the chunks in the list have been processed,

the cells in r are processed one by one, subtracting to the cell value all the median values

for all the dimension attribute values that de�ne the cell (lines 25, 26 and 27). In this way,

the values kept in the chunks correspond, at every step, to those of the original cuboid. This

makes it unnecessary to write a chunk to disk, if we need to reclaim the bu�er space occupied

by it. After subtracting the medians, the cell value re
ects the residual at that step of the

computation. With these values, we compute the median of the row (line 8) and subtract that

from the corresponding e�ect (line 9). If the entire set of values r does not �t in memory, we

can perform the classic divide-and-conquer approach used to compute order statistics, which

divides the list in k sequences of krk=k, computes the medians of the sequences and the median

of the sequence of medians and recursively calls the procedure to �nd the overall median (see

[2, 7]).

We want to revisit the issue of the chunk description size here. As we said in Section

9

median-polish()

BEGIN

read CHUNK-DESC list to memory (1)
prefetch chunks to memory (2)/* as many as can be held*/
make effij = 0 for i 2 f1; 2; � � � ; dg and j 2 f0; 1; � � � ; kAik � 1g
for (step=0; step < MAX � STEP ;step++) (3)

forall dimension i 2 f1; 2; � � � ; dg (4)
for (j = 0; j < kAik � 1) (5)

q = (Ai = j) (6)/* set a query q to �nd cells for which Ai = j.*/
r = get-residual(QUERY q); (7)
medianij = median(r)(8)
effij + = medianij (9)

if count(median = 0) > � (10)
break (11)

get-e�ects() (12)/*compute the common value and e�ects*/
END

get-residual(QUERY q)

BEGIN
r = ; (13)/* initialize the residual set */
get chunks C which involved in the QUERY q (14)
forall chunk c 2 C (15)

switch (c:Stat) (16)
case 'STAT-SPARSE'

if c is not in memory, read it from the disk (17)
for every cell z in c that satis�es q (18)

put z in r (19)
case 'STAT-MODL'

if c is not in memory, read it from the disk (20)
forevery cell z in c:outliers that satis�es q (21)

put z in r (22)
for every cell z not in c:outliers such that c satis�es q (23)

estimate z:value and put z in r (24)
for every z 2 r (25)

for every dimension i 2 f1; 2; � � � ; dg (26)
let z:i = j (27)
z:value � = effij (28)

END

Figure 4: Median Polish Algorithm

10

3.1, the ability to keep many (or all) the chunks in memory decreases with the size of the

chunks. This implies that lines 17 and 20 of the algorithm of Figure 4 will not be executed

very frequently if the chunks are small. This, of course, assumes that the regions covered

by chunks whose state is STAT-MODL are indeed dense (i.e., contain few holes). If this is

not the case, the zero (or non-zero 5) cells need to be indexed, making the description larger.

So our procedure is more e�ective for data that is highly clustered in subspaces along the

datacube. Fortunately, this is the case in many real datasets. (Commercial systems exploit

this property: for instance, Arbor Software's Essbase, stores dense and sparse regions of the

core cuboid using di�erent data structures [9, 10]). However, as the results will show, we still

get a substantial bene�t in performance if the density in the clusters is low.

3.3 Quality Measures

Since our procedure is approximate, we need to de�ne ways to compare the results with those

that are obtained by applying the median polish method to the base cuboid. In this subsection

we describe the measures we use for that purpose.

The �rst measure has to do with the error incurred in the calculations of the common

e�ect by using the models instead of directly calculating medians over the data. Equation 2

shows the relative error for the common e�ect.

CErr =
kC � Ĉk

kCk
(2)

More important than the relative errors made in the computation of row e�ects and resid-

uals is the rank that a particular e�ect (or residual) has, in an order list of e�ects (or resid-

uals). After all, we want to direct the attention of the user to those e�ects (residuals) which

are large. (In an ordered list of e�ects, based on their values, one is presumably very in-

terested in those which rank very high -large positive e�ects- or very low -large negative

e�ects-.) To measure the quality of our results regarding the ranks, we de�ne the ordered sets

Ei = fei0; ei1; � � � ; ein where n = kAik� 1 and eij is the rank of e�ect j in dimension i, as

the set of dimension i ranks. Given these sets, Equation 3 de�nes the average rank slipperage

(AveRSl), as the mean of the relative di�erences in rank between e�ects computed by using

median polish in the original cuboid (eij) and approximate cuboid (^eij).

AveRSli =
sumj(

keij � êijk
eij

)

ni
; for i = 1; 2; � � � ; d j = 0; 1; � � � ; ni;

ni = kAik � 1: (3)

Let us de�ne the sets E+

i and E�
i as the sets of the k topmost ranked e�ects and the

k lowest ranked e�ects in row i respectively, where k = k E+

i k = k E�
i k. Given the

5the choice of which one we should index depends on which ones are fewer.

11

equivalent sets Ê+

i
and Ê�

i
, obtained by the approximate median polish, we can de�ne the

positive and negative e�ect recall (Re+; Re�) and the positive and negative e�ect precision

(Pe+; P e�) in the manner shown in Equations 4,5,6, and 7.

Re+
i

=
k E+

i
\ Ê+

i
k

k E+

i
k

; for i = 1; 2; � � � ; d (4)

Re�
i

=
k E�

i
\ Ê�

i
k

k E�
i
k

; for i = 1; 2; � � � ; d (5)

Pe+
i

=
k E+

i
k

k Ê+

i
k
; for i = 1; 2; � � � ; d: (6)

Pe�
i

=
k E�

i
k

k Ê�
i
k
; for i = 1; 2; � � � ; d: (7)

Finally for the residuals we de�ne the set R as the set of the k-th largest residuals, with

k R k = k computed by the standard median polish and R̂ de�ned for the residuals obtained

with the approximate cuboid. Then we de�ne the Recall (Rec) and Precision (Pres) measures

in Equations 8 and 9 respectively.

Rec =
k R \ R̂ k

k R k
; with k R k = k R̂ k (8)

Pres =
k R k

k R̂ k
; such that k R̂ k is the minimum value for which R � R̂: (9)

4 Results

The experiments were conducted in a SUN Ultra 2, with two processors, and 500 Mbytes of

RAM. We conducted the experiments in three datasets. The results follow.

4.1 Dataset 1

The �rst dataset is a real dataset from a retailer application. The set contains 4,933 tuples

and three dimensions of cardinality 42, 61, and 18.

The experiment in dataset 1 was conducted with an � = 0:01 and
 = 0:2. Figure 5

shows the values for CErr and AveRSli; i = 1; 2; 3 for the �rst dataset. Both the relative

error for the common e�ect and the average slipperage for the e�ects remain low even for

� = 0:4, re
ecting the very good quality of the results obtained by the approximate method.

Figure 6 shows the positive and negative e�ect recall and precision for dataset 1. For the

sake of brevity in the table, this is done only for one � values (0:1).

12

� CErr AveRSl1 AveRSl2 AveRSl3
0.1 0.090 0.194 0.364 0.340
0.2 0.107 0.270 0.528 0.399
0.3 0.108 0.317 0.601 0.471
0.4 0.108 0.343 0.629 0.476

Figure 5: Relative errors for common e�ect and average rank slipperage for dataset 1

Figure 7 shows the recall and precision �gures for dataset 1. In each case, the experiments

were done with four di�erent values for �, to show the trends as we choose to store less

outliers. Notice that the recall values remain high for the entire set of experiments. For �s of

0:1 and 0:2 they are all above 90% with the exception of the value obtained for kjRkj = 500

and � = 0:2. Even for models that tolerate higher errors (higher �s), the values are very

high. This shows that most of the larger residual e�ects found in the standard median polish

will be captured by an equal sized set of residuals in the approximate method. The precision

results show that if beta is kept at 10%, we will only need to look at a set that is at most

15% (i.e., 1=0:87 in kRk = 200) larger than the set R, and in most cases this value would be

signi�cantly smaller. For higher �s and a larger set R, the precision gets progressively worse.

(It is important to keep in mind that the user is likely to be interested in a few residuals -the

largest ones-.)

4.2 Dataset 2

The second dataset used is taken from the U.S Census Bureau data [8]. It is a two dimensional

table that contains the population for 227 countries from the year 1950 to the year 2049 (future

years had been projected by the Census Bureau). There are 22700 tuples in it and no holes.

The experiment in dataset 2 was conducted with � = 0:01 (which is really irrelevant

here, since the set has no holes) and
 = 0:2. The relative error of the common e�ect and

the average slipperage for the two dimensions of the dataset are presented in Figure 8. As in

the previous dataset, the relative errors and slipperage values are small.

Figure 9 shows the positive and negative e�ect recall and precision values for dataset 2.

Again, only one value of � = 0:1 is reported in the table.

Figure 10 shows the recall and precision values for dataset 2 (again for four di�erent values

of �). The results for recall are again very high across the spectrum of experiments, showing

that most of the largest residual e�ects of the standard method will be captured by an equal

sized set of residuals in the approximate method. Precision values are high for the the �rst

two rows and two � values. The rest indicate that a larger residual set is needed in the

approximate method to capture all the largest e�ects on the standard median polish.

13

k Re+1 Re+2 Re+3 Re�1 Re�2 Re�3 Pe+1 Pe+2 Pe+3 Pe�1 Pe�2 Pe�3
5 0.6 0.6 0.6 0.8 0.2 0.8 0.385 0.263 0.5 0.385 0.167 0.833
10 0.6 0.5 0.9 0.7 0.5 0.7 0.556 0.526 0.91 0.589 0.244 0.667
15 0.8 0.667 0.8 0.66 0.75 0.652 0.83 0.365
20 0.95 0.85 0.95 0.7 0.645 0.513 0.95 0.488
25 0.80 0.72 0.610 0.595
30 0.767 0.80 0.714 0.714

Figure 6: Positive and negative e�ect recall and precision values for dataset 1 (k is the size of
the set of largest positive or largest negative e�ects; empty values re
ect the fact that the set
of positive or negative e�ects is smaller than the corresponding k.)

Rec Pres

k R k � = 0:1 � = 0:2 � = 0:3 � = 0:4 � = 0:1 � = 0:2 � = 0:3 � = 0:4
50 0.96 0.98 0.94 0.94 0.93 0.91 0.89 0.88
100 0.98 0.96 0.95 0.94 0.92 0.84 0.81 0.76
150 0.95 0.93 0.92 0.92 0.79 0.76 0.71 0.70
200 0.98 0.97 0.94 0.93 0.99 0.87 0.80 0.75

Figure 7: Recall and Precision for the residuals of dataset 1 for four di�erent � values.

4.3 Dataset 3

This is a synthetic dataset whose parameters can be changed to drive a series of experiments.

It is important to point out that we use this dataset to test the scalability of the method as

the number of non-zero cells in the datacube grows. The quality measures for this dataset are

of secondary importance. The dataset has four dimensions with corresponding cardinalities

320,160,80 and 40. The non-zero cells values are distributed with a normal distribution of

mean 20 and variance 4. We perturb the distribution by adding to the value of the cell

a number which depends on the cell's position in the cube. (We do this to make the values

depart from the normal distribution.) We choose the size of the dataset in number of non-zero

cells, Nc, the size of a chunk sc and the density of the dense chunks �. Those values determine

the number of dense chunks, Ndc as b
Nc

� � sc
c. The remaining non-zero cells not attached to

a dense chunk are randomly placed in the remaining (spare) chunks. Also, the placement of

dense chunks is done randomly. We conducted all the experiments with a � = 0:2,
 = 0:2,

and two values of � (0.33 and 0.95).

Figures 11 plots the execution time of the standard method and the approximate method

for chunk densities of 33% and 95%. As can be observed, the approximate method scales

well with the size of the dataset, while the execution time of the standard method gets to

be impractical for large sizes (more than 10 hours for 2 million non-zero cells). It is also

worth pointing out that in the high density case, the approximate algorithm performs better

14

� CErr AveRSl1 AveRSl2
0.1 0.032 0.024 0.040
0.2 0.033 0.024 0.041
0.3 0.025 0.027 0.027
0.4 0.108 0.031 0.027

Figure 8: Relative errors for common e�ect and average rank slipperage for dataset 2

k Re+1 Re+2 Re�1 Re�2 Pe+1 Pe+2 Pe�1 Pe�2
10 1 1 1 0.60 1 0.625 1 1
20 0.95 0.95 1 0.80 0.714 0.689 1 0.952
30 1 1 0.97 0.933 1 0.937 0.938 1
40 0.975 1 1 1 0.975 1 1 1
50 1 1 1 1 1 1 1 1
60 0.983 1 0.984 1
70 1 0.985 1 0.972
80 1 0.988 1 0.988
90 1 1 1 1
100 0.99 1 0.99 1

Figure 9: Positive and negative e�ect recall and precision values for dataset 2.(k is the size of
the set of largest positive or largest negative e�ects.)

Rec Pres

k R k � = 0:1 � = 0:2 � = 0:3 � = 0:4 � = 0:1 � = 0:2 � = 0:3 � = 0:4
50 0.92 0.92 0.68 0.68 0.79 0.79 0.53 0.53
100 0.96 0.96 0.85 0.85 0.90 0.90 0.23 0.23
150 0.88 0.88 0.80 0.79 0.58 0.58 0.05 0.05
200 0.92 0.92 0.78 0.77 0.42 0.42 0.06 0.06

Figure 10: Recall and Precision for the residuals of dataset 2 for four di�erent � values.

15

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

number of non−zero cells (in thousands)

e
x
e

c
u

ti
o

n
 t
im

e
 (

in
 s

e
c
o

n
d

s
)

approximate 0.95
standard 0.95
approximate 0.33
standard 0.33

Figure 11: Execution time for the standard and approximate method for dataset 3. The Y
axis shows the execution time in seconds; The X axis shows the number of non-zero cells in
thousands.

since there is no need to index the non-zero cells in the chunk. Nevertheless, in the case of

low density, the approximate algorithm still outperforms the standard by a ratio of 10:1 (as

opposed to a ratio of more than 30:1 in the dense case).

Figure 12 shows the number of steps taken by the methods over dataset 3 for two di�erent

densities in STAT-MODL type chunks: 33 % and 95 %, for both the approximate method

and the standard method. The table shows also the time to build the models in the case of

the approximate method. We can appreciate that the model building time is less than 10 %

of the time taken to do the approximate median polish for the larger datasets. Also, we see

that the number of steps taken by the approximate and standard method are comparable in

most cases.

Finally, Figures 13, 14 and 15 show the quality measures for one of the sizes of dataset 3.

(Table 14 shows only the results for 3 dimensions, to keep the table small; the 4-th dimension

results are similar to the others.) The results obtained for other sizes are very similar.

16

Number density

of non-zero 0.95 0.33
cells approximate standard approximate standard

Nc tb steps steps Nc tb steps steps
50 10 4.97 3 4 27 6.97 6 46
500 100 58.14 16 10 290 86.46 8 6
1,000 202 116.04 10 6 566 215.36 4 4
2,000 404 267.27 5 5 1128 492.18 4 4

Figure 12: Number of dense chunks, steps and time to build models for each dataset size (in
thousands of non-zero cells) for two di�erent chunk densities.

5 Related Work

Using median polish for �tting additive models in a two-way table was described, along other

methods to do exploratory data analysis in the �rst edition of [22]. More recent books like

[13, 14] describe median and mean polish and show their use with real datasets. It is generally

agreed that polishing with medians is more resistant to outliers and holes than the mean

polishing method. Tukey [21], includes a general discussion of polishing methods. Methods

of �tting that minimize a sum of absolute deviations were proposed initially by [17, 20].

Gentle [11] discusses fast computation algorithms for this approach. Mean polish provides

the solution to a least-squares problem that aims to minimize the sum of squared residuals.

However, when there are holes in the data, the least-squares solution does not correspond to

that given by mean polish.

There is very little work addressing the scalability of polishing methods in datacubes.

Sarawagi et al [19] address this issue and develop an algorithm to scale mean polish to large

datasets. However, they choose to ignore the missing values and their e�ects in order to avoid

the need of multiple passes over the data that methods like median polish require. As pointed

out in [13, 14], this can have a dramatic e�ect on the calculation of e�ects. Our method

chooses to go over more iterations and make each iteration less I/O costly (by estimating data

instead of reading the actual data cell values).

6 Conclusions

In this paper we have described an approximate method to do EDA, using the median polish

procedure over datacubes. We have shown that the method scales well with the size of the

cube, allowing the user to perform EDA in cases where the cost of doing the standard algorithm

would be prohibitive.

The price one pays for using the approximate method is a decrease on the quality of the

17

� CErr AveRSl1 AveRSl2 AveRSl3 AveRSl4
0.2 0.0021 0.0742 0.0195 0.0004 0

Figure 13: Relative errors for common e�ect and average rank slipperage for dataset 3, size
1,000,000 non-zero cells, density 0.95 %

k Re+1 Re+2 Re+3 Re�1 Re�2 Re�3 Pe+1 Pe+2 Pe+3 Pe�1 Pe�2 Pe�3
10 0.6 1 1 1 1 0.90 0.714 1 1 1 1 0.91
20 0.8 1 1 0.95 0.90 1 0.800 1 1 0.952 0.83 1
30 1 1 1 0.933 1 1 1 1 1 0.938 1 1
40 0.925 0.95 1 0.975 0.95 1 0.851 0.93 1 0.876 0.952 1
50 0.98 1 0.960 1 0.862 1 0.943 1
60 1 1 0.967 1 1 1 0.909 1
70 0.971 1 0.986 1 0.875 1 0.897 1
80 0.975 1 0.988 1 0.941 1 0.988 1
90 0.977 0.956 0.918 0.918
100 0.98 1 0.952 1
110 0.973 0.973 0.866 0.957
120 1 0.958 0.944 0.96
130 1 0.977 1 0.95
140 1 1 1 1

Figure 14: Positive and negative e�ect recall and precision values for dataset 3.(k is the size
of the set of largest positive or largest negative e�ects.)

k R k Rec Pres

50 0.46 0.254
100 0.68 0.325
150 0.74 0.462
200 0.81 0.505
250 0.84 0.628
300 0.86 0.682
350 0.911 0.665
400 0.928 0.733
450 0.936 0.781
500 0.930 0.751

Figure 15: Recall and Precision for the residuals of dataset 3 four � = 0:2 .

18

results. However, as shown in Section 4, the quality of the results obtained by the approximate

method is good. In most cases, by selecting the set of large positive and negative e�ects

obtained by the approximate method, one obtains a large percentage of the equivalent set in

the standard method. The same is true for the residuals. This has been shown using datasets

extracted from real applications.

Although our method performs best when the data is highly clustered in regions of the

cube, it was shown that it still outperforms the standard method by a large ratio, when that

is not the case. In practice, most datasets will exhibit a high degree of clustering.

We are currently continuing this work by looking at methods to improve the quality of our

results (by using di�erent modeling techniques), while retaining the scalability of the method.

Also, we want to explore techniques to visualize the results of the EDA. Moreover, we are

also examining other EDA and mining techniques that can take advantage of approximate

methods.

References

[1] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic Subspace Clustering

of High Dimensional Data for Data Mining Applications. In Proceedings of the ACM

SIGMOD International Conference on Management of Data, Seattle, June 1998.

[2] A. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer Algo-

rithms. Addison-Wesley, 1974.

[3] D. Barbar�a. The Role of Approximations in Data Mining Algorithms. Technical report,

George Mason University, Information and Software Engineering Department, March

1999.

[4] D. Barbar�a, W. DuMouchel, C. Faloutsos, P.J. Haas, J.M. Hellerstein, Y. Ioannidis,

H.V. Jagadish, T. Johnson, R. Ng, V. Poosala, K.A. Ross, and K.G. Sevcik. The New

Jersey Data Reduction Report. Bulletin of the Technial Committee on Data Engineering,

20(4):3{45, December 1997.

[5] D. Barbar�a and M. Sullivan. Quasi-Cubes: Exploiting Approximations in Multidimen-

sional Databases. SIGMOD Record, 26(3), September 1997.

[6] D. Barbar�a and M. Sullivan. Quasi-Cubes: A Space-E�cient Way to Support Approx-

imate Multidimensional Databases. Technical Report ISSE-TR-98-03, George Mason

University, Information and Software Engineering Department, October 1998.

[7] M. Blum, R.W. Floyd, V.R. Pratt, R.L. Rivest, and R.E. Tarjan. Time bounds for

selection. Journal of Computer and System Sciences, 7(4):448{461, 1972.

19

[8] U.S. Census Bureau. Population data. http://www.census.gov/main/www/access.html.

[9] Arbor Software Coorporation. Application Manager User's Guide. Essbase Version 4.0.

[10] R.J. Earle. Method and Apparatus for Storing and Retrieving Multi-dimensional Data

in Computer Memory, October 1994. U.S. Patent No. 5,359,724.

[11] J.E. Gentle. Least absolute values estimation: an introduction. Communications in

Statistics, B6:313{328, 1977.

[12] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational aggregation

operator generalizing group-by, cross-tabs and sub-totals. In Proceedings of the 12th

International Conference on Data Engineering, pages 152{159, 1996.

[13] D.C. Hoaglin, F. Mosteller, and J.W. Tukey. Exploring Data Tables, Trends and Shapes.

Wiley, 1985.

[14] D.C. Hoaglin, F. Mosteller, and J.W. Tukey. Understanding Robust and Exploratory Data

Analysis. Wiley, 1986.

[15] A.K. Jain and R.C. Dubes. Algorithms for Clustering Data. Prentice Hall, 1988.

[16] U.S. Department of Health. Statistics. in

http://www.cdc.gov/nchswww/fastats/PDF/461s2t01.pdf, 1995.

[17] E.C. Rhodes. Reducing observations by the method of minimum deviations. Pilosophical

Magazine, 7th Series, 9:974{992, 1930.

[18] K.A. Ross and D. Srivastava. Fast Computation of Sparse Datacubes. In Proceedings of

the 23rd VLDB Conference, Athens, Greece, 1997.

[19] S. Sarawagi, R. Agrawal, and N. Meggido. Discovery-driven Exploration of OLAP Data

Cubes. In Proceedings of the International Conference on Extending Data Base Technol-

ogy, pages 168{182, 1998.

[20] R.R. Singleton. A method of minimizing the sum of absolute values of deviations. Annals

of Mathematical Statistics, 11:301{310, 1940.

[21] J.W. Tukey. Data analysis, computation, and mathematics. Quarterly of Applied Math-

ematics, 30:51{65, 1972.

[22] J.W. Tukey. Exploratory Data Analysis. Addison Wesley, 1977.

20

