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1 Introduction

Nature is �lled with examples of phenomena that exhibit seemingly chaotic behavior, such

as air turbulence, forest �res and the like. However, under this behavior it is almost always

possible to �nd self-similarity, i.e. an invariance with respect to the scale used. The structures

that appear as a consequence of self-similarity are known as fractals [12].
Fractals have been used in numerous disciplines (for a good coverage of the topic of fractals

and their applications see [14]). In the database arena, fractals have been sucessfully used to

analyze R-trees [6], Quadtrees [5], model distributions of data [7] and selectivity estimation

[3].

Fractal sets are characterized by their fractal dimension. In truth, there exists an in�nite

family of fractal dimensions. By embedding the dataset in an n-dimensional grid which cells

have sides of size r, we can compute the frequency with which data points fall into the i-th

cell, pi, and compute Dq, the generalized fractal dimension [8, 9], as shown in Equation 1.
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Among the dimensions described by Equation 1, the Hausdor� fractal dimension (q = 0),

the Information Dimension (limq ! 1Dq), and the Correlation dimension (q = 2) are widely

used. The Information and Correlation dimensions are particularly useful for data mining,

since the numerator of D1 is Shannon's entropy, and D2 meassures the probability that two

points chosen at random will be within a certain distance of each other. Changes in the

Information dimension mean changes in the entropy and therefore point to changes in trends.

Equally, changes in the Correlation dimension mean changes in the distribution of points in

the dataset.
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Fast algorithms exist to compute these dimensions. (FD3, an implementation based on

the ideas described in [11] can be obtained from [13] and other software repositories.)

In Section 2 we show examples of techniques that employ the fractal dimension to mine

large datasets.

2 Examples

In this section we present some examples of techniques that use the fractal dimension as a

mining tool. We are currently working in developing e�cient, scalable algorithms for all this

methods.

2.1 Event anomalies in time series

A time series is a temporal sequence of measured values, which mark the occurence of an

event such as a stock price changing, an electroencephalographic potential measurement, or

a TCP connection occurrence. In many cases, the pattern of event occurrences is self-similar

(e.g., tra�c in a network [10]) and a deviation from this pattern may indicate the prescence

of an anomalous behavior.

As an example, consider a time series that shows the occurences of half-open TCP connec-

tions in a network. A TCP connection is characterized as half-open [17] if one end has closed

or aborted the connection without the other end knowing. Normally, these connections are

caused by host crashing or by errors incured by software or by users. However, intruders use

half-open connections to invade networks in an attack that is known commonly as network

spoo�ng (an example of such attack can be found in [16]. This attack is characterized by the

sudden appearance of numerous half-open connections within a small amount of time.

How can we use the fractal dimension to detect this anomaly? We have experimented with a

time series where every � seconds, a measurement re
ects the number of half-open connections

made in that period. We have observed that the pattern of half-open connections in the time

series while the network is not being attacked is self-similar (exhibiting a fractal dimension

close to 1). However, in data traces that contain spoo�ng attacks, self-similarity breaks down

during the attack. This can be detecting rolling a moving window of size � = k � �, where

k is an integer, over the time series and computing the fractal dimension of the data covered

by the window. The resulting dimension shows a drastic decrease when the region of the

attack is entered. We have observed that the Correlationdimension drops from 0.98 when the

window contains attack-free data to half that value when the window covers the data where

the attack took place. 1 This suggest that the fractal dimension is a powerful, robust indicator

of anomalies in this time series. We are currently trying to de�ne other events that give way

to di�erent time series for network tra�c, and to use the fractal dimension over those series to

uncover other types of attacks. An obvious candidate, for example, is the event of connecting

to the password port in the FTP service (port 21). The pattern of accesses to this port is,

under normal conditions, self-similar; however, during a password guessing attack, the number

of connection attempts to this port is noticeably bigger, disrupting the pattern and altering

the fractal dimension.

1The Information dimension su�ers a similar drop.
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2.2 Self-similarity in association rules

Association rules [1] are rules of the formX �! Y where X and Y are sets of attribute-values,

with X
T

Y = ; and kY k = 1. The set X is called the antecedent of the rule while the item

Y is called consequent. For example, in a market-basket data of supermarket transactions,

one may �nd that customers who buy milk also buy honey in the same transaction, generating

the rule milk �! honey. There are two parameters associated with a rule: support and
con�dence. The rule X �! Y has support s in the transaction set T if s% of transactions in

T contain X [ Y . The rule X �! Y has con�dence c if c% of transactions in T that contain

X also contain Y .

With all their importance and practical applicability, association rules say nothing about

the way the common occurrence of attribute-values occur in time. For instance, if the previous

rule milk �! honey has a support of 0.7, all we know is that the out of all the transactions

analyzed in the dataset, 70 % of them contain both milk and honey. The rule says nothing

about the distribution of transactions that originated this support. We do not know whether

all the customers bought milk and honey over mostly during a short period of time (as a

response to a promotion, perhaps), or the buying of these two products together responds to

a pattern that is the same, regardless of the scale choosen (self-similar). This information is

indeed valuable to the supermarket: knowing that this rule is seasonal, or the reponse to a

promotion leads to di�erent decisions than knowing that the rule responds to a more \regular"

pattern.

We are interested in using the fractal dimension to analyze how association rules occur in a

dataset. Naively, it would be a simple task to roll a window over the data to perform a similar

analysis that we suggested in Section 2.1. However, this is wasteful, since it would lead to even

more passes over the data than the ones required by the implementation of the association

rules mining algorithm. Therefore, we are interested in �nding e�cient ways of performing the

fractal dimension analysis while the association rules algorithm is taking place. Consider the

a-priori algorithm described in [2]. Two things must be done to analyze self-similarity while

discovering itemsets with high support. First, as a k-itemset is under consideration, and we

are scanning the dataset to compute its support, we should also roll a window and compute

the fractal dimension of the occurrence of this rule as we go through the data. Secondly, and

more di�cult, if this itemset is found to have a lot of support, enough information about the

fractal dimension of this rolling window should be kept to be used when processing the k + 1

extensions of this itemset in the next iteration of the algorithm.

2.3 Analyzing patterns in datacubes

Investigating the patterns followed by many \special" values in a datacube can lead to im-

portant discoveries. For instance, an analyst can be interested in uncovering the trends of the

null cells in a cube (i.e., cells for which there is no aggregate). By doing this, he or she may

discover that some null cells are caused by special factors. For instance, the lack of sales of a

product in a particular store during certain months may be anomalous with respect to other

stores: uncovering this fact can lead to important knowledge about the store's operation.

Again, a similar technique to the ones used in Sections 2.1 and 2.2 can be used to detect

anomalous patterns. A hyperdimensional window can be rolled over the datacube, computing

the fractal dimension of the set of null cells contained in the window. Drastic changes in the
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fractal dimension should point out to anomalous trends. Probably, after an anomalous window

of cells has been identi�ed, it would be desirable to reduce the window size incrementally and

rolled over the anomalous region to try to isolate the cells that are causing the change in

trend. An e�cient algorithm to roll these windows without excesive I/O is needed.

2.4 Incremental clustering using the fractal dimension

Incremental clustering techniques are needed to deal with large datasets. In [4], the authors

describe the Extended K-Means algorithm, an incremental technique that requires only one

scan of the database. At every step of the algorithm, the data tuples already processed are

either retained (as outliers), reduced via compression and summarized, or discarded after

updating the description of the clusters. The algorithm is an extension of the classic K-Means

algorithm [15], operating over data and statistics of previously reduced data.

We plan to implement a variation of Extended K-Means, that uses fractal dimension to

characterize clusters and decide point membership. Running K-Means over a sample of the

dataset that �ts in memory, we can obtain a �rst clustering. After computing the fractal

dimension of each cluster, we can use the dimension to determine where a new tuple should

be included, by comparing the dimension one obtains in a cluster when adding this new

member(s). If the change is very substantial, this is probably not a good cluster to put the

new member(s) in. We plan to keep also a set of retained tuples (outliers) and a set of

representatives of a cluster to perform the next iteration with.

3 Conclusions

The fractal dimension can be a powerful parameter to uncover anomalous patterns in datasets.

We have presented, by via of examples, a suite of techniques based in the use of fractal di-

mension that can signi�cantly help analysts uncover valuable information from large datasets.

We are currently working in implementing these algorithms.
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