
CHANGE IMPACT ANALYSIS OF OBJECT-ORIENTED

SOFTWARE

Technical Report ISE-TR-99-06

Michelle L. Lee (Li Li)

Department of Information and Software Engineering

School of Information Technology and Engineering

George Mason University

Fairfax, Virginia 22030-4444

lili@ise.gmu.edu

December 1998

TABLE OF CONTENTS

Page

ABSTRACT...XI
1 INTRODUCTION ... 1
1.1 SOFTWARE MAINTENANCE .. 1
1.2 CHANGE IMPACT ANALYSIS... 4

1.2.1 Change Process... 5
1.2.2 Impact Analysis ... 6
1.2.3 Benefits of Impact Analysis.. 7
1.2.4 Object-Oriented System Impact Analysis ... 11

1.3 RELATED WORK ... 14
1.3.1 Impact Analysis ... 14
1.3.2 Object-Oriented Impact Analysis ... 16
1.3.3 Inferencing .. 17
1.3.4 Control Flow, Data Flow and Data Dependency.. 17
1.3.5 Slicing ... 18

1.4 SCOPE AND GOALS OF THIS RESEARCH... 19
1.4.1 Problem Statement... 19
1.4.2 Thesis Statement .. 19

1.5 BRIEF DESCRIPTION OF RESEARCH RESULTS ... 20
1.6 ORGANIZATION OF THIS DISSERTATION ... 22
2 BACKGROUND CONCEPTS ... 24
2.1 OBJECT-ORIENTED CONCEPTS... 24
2.2 GRAPH AND DEPENDENCY DEFINITIONS ... 26

2.2.1 Graph Theory .. 26
2.2.2 General Dependency Concepts .. 30

3 NEW CONCEPTS/DEFINITIONS ... 33
3.1 NEW DEFINITIONS... 33

3.1.1 Change Impact Definitions .. 33
3.1.2 Object-Oriented Data Dependency Graph Theory ... 43

3.2 CALCULATE REFERENCE DEPENDENCY .. 47
3.2.1 Primitive Statements.. 47

ii

3.2.2 Conditionals and Loops ... 48
3.2.3 Method Processing and Parameter Passing ... 49
3.2.4 Processing of Pointers and References .. 50
3.2.5 Implementation Change... 51

3.3 IMPACT MODELS... 51
4 ALGORITHMS ... 55
4.1 ALGORITHMS DESCRIPTION ... 56
4.2 INPUTS AND OUTPUTS OF THE ALGORITHMS ... 59
4.3 TOTAL EFFECT.. 60
4.4 ENCAPSULATION... 61
4.5 THE CONTAINMENT RELATIONSHIP: FINDEFFECTINCLASS.. 62
4.6 THE USE RELATIONSHIP: FINDEFFECTAMONGCLIENTS ... 64
4.7 THE INHERITANCE RELATIONSHIP: FINDEFFECTBYINHERITANCE.. 66

4.7.1 Properties of Inheritance ... 66
4.7.2 FindEffectByInheritance.. 71

4.8 ALGORITHMS CORRECTNESS VERIFICATION ... 79
5 OBJECT-ORIENTED CHANGE IMPACT METRICS... 83
5.1 OBJECT-ORIENTED CHANGE IMPACT METRIC DESCRIPTION.. 85

5.1.1 Basic Object-oriented Change Impact Metrics... 85
5.1.2 Derived Object-oriented Change Impact Metrics... 88

5.2 METRICS PROPERTIES.. 92
6 INFERENCE APPROACH... 96
6.1 DATALOG ... 96

6.1.1 Facts in the Algorithms.. 98
6.1.2 Rules ... 102
6.1.3 User Composed Queries .. 108

7 PROOF-OF-CONCEPT EXPERIMENTAL SYSTEM.. 109
7.1 SYSTEM CONTEXT .. 109
7.2 ARCHITECTURE... 110

7.2.1 Information Extractor.. 112
7.2.2 Impact Analyzer... 113
7.2.3 Viewer ... 115

7.3 EMPIRICAL RESULTS ... 117
7.3.1 Change Propagation Inside Classes... 117
7.3.2 Change Propagation Inside a Class with Recursive Relationships 124
7.3.3 Change Propagation among Use and Containment Relationships.................................... 130
7.3.4 Change Propagation by Inheritance, Use and Containment Relationships....................... 138

7.4 A CASE STUDY FROM A COMMERCIAL INDUSTRY ENVIRONMENT.. 147
8 CONTRIBUTIONS AND FUTURE WORK.. 162
8.1 FUTURE WORK.. 163
APPENDIX A.................................OBJECT-ORIENTED CHANGE IMPACT RULES AND FACTS

167
APPENDIX B.. CLASS HEADERS OF TESTED MODULES

169
LIST OF REFERENCES .. 188

iii

LIST OF TABLES

Table

Page

1. Impact Power of Contaminate Type Values ... 46
2. Object Relationship Type Values... 46

iv

LIST OF FIGURES

Figure
Page

1. Define the steps in the maintenance process [MORE90].. 3
2. Typical Impact Analysis Process ... 10
3. Relationships between classes.. 25
4. Class Components Graph .. 34
5. Impact Model Dimension View... 52
6. Impact Set Venn Diagram... 54
7. Call Relationships among Change Impact Analysis Algorithms .. 55
8. Impact Set Component Graph ... 59
9. Total Effect Pseudo Code .. 60
10. Initialization Pseudo Code... 61
11. FindEffectInClass Pseudo Code... 64
12. FindEffectAmongClients pseudo code ... 65
13. FindEffectByInheritance Pseudo Code... 73
14. ForwardInheritanceTreeProcess(Cp) .. 74
15. BackwardInheritanceTreeProcess (Cc)... 74
16. Class Diagram of Inheritance Example ... 77
17. New FindEffectAmongClients Pseudo Code.. 79
18. Dependency Graph.. 98
19. Inheritance Example ... 101
20. Method m references method n and data member y in C1.. 103
21. Data member x in c1 references method m and data member y in c1 103
22. Component Connection Graph .. 110
23. Framework.. 111
24. Information Collector Hierarchy.. 112
25. Analyzer Class Hierarchy.. 113
26. ChAT Analyzer Class Diagram... 114
27. Class Member Dependencies in Example 7.3.1 ... 118
28. All Class Tree View in Example 7.3.1... 119
29. Impact Only Tree View in Example 7.3.1.. 120
30. The Impact Table in Example 7.3.1... 121
31. The Class Impact Table in Example 7.3.1 ... 122
32. Input Table in Example 7.3.1 .. 123
33. The recursive dependency in Example 7.3.2.. 124
34. All Class Tree View in Example 7.3.2... 125
35. Impact Only Tree View in Example 7.3.2.. 126

v

36. Impact Table of Example 7.3.2.. 127
37. Class Impact Table of Example 7.3.2 .. 128
38. Input Table in Example 7.3.2 .. 129
39. Example 7.3.3 header files .. 130
40. Example 7.3.3 Class Diagram ... 131
41. Class Member Dependencies of Example 7.3.3.. 132
42. All Class Tree View of Example 7.3.3... 133
43. Impact Only Tree View of Example 7.3.3.. 134
44. Impact Table of Example 7.3.3.. 135
45. Class Impact Table of Example 7.3.3 .. 136
46. Input Table of Example 7.3.3 .. 137
47. Inheritance Relationship Sample Code .. 139
48. Class Diagram of Example 7.3.4 ... 140
49. Class Member Dependencies in Example 7.3.4 ... 141
50. All Class Tree View of Example 7.3.4... 142
51. Impact Only Class Tree View in Example 7.3.4 .. 143
52. Impact Table of Example 7.3.4.. 144
53. Class Impact Table of Example 7.3.4 .. 145
54. Input Table of Example 7.3.4 .. 146
55. Class Diagram of Notification Module .. 148
56. Document Module Class Diagram... 149
57. Class Diagram of Graphic Module .. 150
58. Example 7.4.1.4 All Class Tree View.. 151
59. Example 7.4.1.4 Impact Only Class Tree View ... 152
60. Example 7.4.1.4 Member Impact Table... 153
61. Example 7.4.1.4 Class Impact Table ... 154
62. Input Table of Example 7.4.1.4 ... 155
63. Example 7.4.1.5 All Class Tree View.. 157
64. Example 7.4.1.5 Impact Only Class Tree View ... 158
65. Example 7.4.1.5 Impact Table... 159
66. Example 7.4.1.5 Class Impact Table ... 160
67. The Input Table of Example 7.4.1.5 .. 161

ABSTRACT

CHANGE IMPACT ANALYSIS OF OBJECT-ORIENTED SOFTWARE

Michelle L. Lee (Li Li), Ph.D.

George Mason University, 1998

Dissertation Director: Dr. A. Jefferson Offutt

As the software industry has matured, we have shifted our resources from being devoted to

developing new software systems to making modifications in evolving software systems. A

major problem for developers in an evolutionary environment is that seemingly small changes

can ripple throughout the system to cause major unintended impacts elsewhere. As such,

software developers need mechanisms to understand how a change to a software system will

impact the rest of the system. Although the effects of changes in object-oriented software can

be restricted, they are also more subtle and more difficult to detect. Maintaining the current

object-oriented systems is more of an art, similar to where we were 15 years ago with

procedural systems, than an engineering skill. We are beginning to see "legacy" object-oriented

systems in industry. A difficult problem is how to maintain these objects in large, complex

systems. Although objects are more easily identified and packaged, features such as

encapsulation, inheritance, aggregation, polymorphism and dynamic binding can make the

ripple effects of object-oriented systems far more difficult to control than in procedural

systems. The research presented here addresses the problems of change impact analysis for

object-oriented software. Major results of this research include a set of object-oriented data

dependency graphs, a set of algorithms that allow software developers to evaluate proposed

changes on object-oriented software, a set of object-oriented change impact metrics to evaluate

the change impact quantitatively, and a prototype tool (ChaT) to evaluate the algorithms. This

research also results in efficient regression testing by helping testers decide what classes and

methods need to be retested, and in supporting cost estimation and schedule planning.

1

1 INTRODUCTION

This dissertation presents results addressing the problem of change impact analysis on object-

oriented software. This chapter describes the basic concepts of software maintenance, and

introduces the concepts of change process and impact analysis, especially object-oriented

system impact analysis. It discusses what has been done in this research area, the problems,

and how this research addresses these problems.

1.1 Software Maintenance

Software evolution refers to the on-going enhancements of existing software systems, involving

both development and maintenance.

Software maintenance has been recognized as the most costly and difficult phase in the

software life cycle [LIWE94][SCHN87]. Over the life of a software system, the software

maintenance effort has been estimated to be frequently more than 50% of the total life cycle

cost. This maintenance cost shows no sign of declining [TURV94].

Unlike many other types of products, software products are intended to be adaptable. Even

though software neither deteriorates nor changes with age if its media are well-presented,

software maintenance is an expensive process where an existing program is modified for a

variety of reasons, including correcting errors, adapting to different data or processing

environments, enhancing to add functionality, and altering to improve efficiency [HARR93].

2

For programs with many interacting modules, modifying and then revalidating a program is

complex: analysis, testing, and debugging may be required for each module individually and

for the interactions among modules. The problem is further compounded because the

maintainers are rarely the authors of the code and usually lack a complete understanding of the

program. Even worse, maintainers often do not have access to specifications or design

documents – just the code. As software ages and evolves, the task of maintaining it becomes

more complex and more expensive.

Some of the other causes of software maintenance problems are:

(1) Software maintainability is often not a major consideration during design and

implementation.

(2) Maintenance has been largely ignored in software engineering (SE) research.

(3) Maintenance activities are not well understood.

Decades of research on maintenance activities in the procedural software have produced

several conclusions. Among them is the recommendation that a reduction in maintenance cost

could be achieved by a more controlled design process, and by more rigorous testing of

potential problem areas early in the life cycle.

Software maintenance can be classified into three categories: corrective, perfective, and

adaptive. Corrective maintenance is performed in response to software failures. Maintenance

due to changes in data and processing environments is categorized as adaptive maintenance.

Maintenance performed to eliminate processing inefficiencies, enhance performance, or

improve maintainability is termed perfective maintenance [IEEE90].

3

Moreton [MORE90] defines the steps of maintenance process as: change management, impact

analysis, system release planning, change design, implementation, testing and system

release/integration. These steps, which occur sequentially as shown in Figure 1, are supported

by a further activity that continues concurrently – progress monitoring.

Documentation Data dictionary
Source code Load module

Change
management

System release/
integration

Change
design TestingImplementation

System
release
planning

Impact
analysis

Process monitoring

Project
manangement

Quality
assurance

Figure 1. Define the steps in the maintenance process [MORE90]

For maintenance work to be effective, it is vital to control the input to the process – the

procedure by which change requests are notified and managed in the first place. The change

management and impact analysis are the first two steps in the maintenance process. The

software maintenance process can only be optimized if precise and unambiguous information is

available about the potential ripple effects (defined in 1.2.2) of a change on an existing system.

4

1.2 Change Impact Analysis

Of the total maintenance cost, 40% lies in rework (i.e. change) of software architecture,

component interaction, procedures/methods, and variables [PFLE90]. Experience shows that

making software changes without understanding their effects can lead to poor effort estimates,

delays in release schedules, degraded software design, unreliable software products, and the

premature retirement of the software system.

The two most expensive activities in software maintenance are the understanding of problems

or other expressed needs for change, in relation with the understanding of the maintained

software system, and the mastering of all the ripple effects of a proposed change [BARR95]. A

seemingly small change can ripple throughout the system to have major unintended impacts

elsewhere. As a result, software developers need mechanisms to understand how a change to a

software system will impact the rest of the system. This process is called change impact

analysis.

Change impact analysis improves the accuracy of resource estimates, provides better

scheduling, and can reduce the amount of corrective maintenance, because fewer errors will be

introduced. One example is the Year 2000 (Y2K) problem. In the past, memory and disk

spaces were precious resources, and some old systems used two digits to express the date. As

these software systems have evolved, legacy software has not been extended to address the date

requirement of the new century. In the year 2000, software systems that just use two digits to

express the year will think year 00 (2000) is less than 99 (1999) and will often produce

incorrect results.

5

Organizations attempting to address the Y2K problems have discovered that impact analysis is

essential to its solution. Without effective analysis to identify ripple-effects of changing date

variables, a great deal of time is needed to manually examine source code to identify date

variables, change them, and test them, only to find that other variables that use the date are

also impacted. Moreover, other software objects may also need to be examined and modified to

be consistent with the Y2K changes. Those changes could in return, impact the code that has

been changed and tested. Now, this software has to be changed and re-tested again. Articles

have been published that estimate the cost to correct the Year 2000 Problem in the industry to

be in the billions of dollars.

1.2.1 Change Process

To put change impact analysis in perspective, we first need to understand the process of

change. Madhaji [MADH91] defines the process of change as:

a) Identify the need to make a change to an item in the environment

b) Acquire adequate change related knowledge about the item

c) Assess the impact of a change on other items in the environment

d) Select or construct a method for the process of change

e) Make changes to all the items and make their inter-dependencies resolved satisfactorily

f) Record the details of the changes for future reference, and release the changed item back to

the environment

One key problem in accommodating changes in an environment is to know all the factors that

impact a given change, and the consequences of this change.

6

1.2.2 Impact Analysis

An impact (noun) is the effect or impression of one thing on another. Impact can be thought of

as the consequences of a change. Impact analysis (IA) is used to determine the scope of change

requests as a basis for accurate resource planning and scheduling, and to confirm the

cost/benefit justification. Software change-impact analysis estimates what will be impacted in

software and related documentation if a proposed software change is made. It is defined as the

process of assessing the effects on other components of the system resulting from the proposed

change. It determines the scope of the change and the complexity of the change. The

quantitative and qualitative effects of that change on other items are the major concerns of the

study of impact analysis.

IA has been practiced in various forms for years, yet there is no consensus definition

[ARNO93]. There are different definitions of change impact analysis. Pfleeger and Bohner

[PFLE90] define change impact analysis as “the evaluation of the many risks associated with

the change, including estimates of the effects on resources, effort, and schedule.” Turver and

Munro [TURV94] define change impact analysis as “the assessment of a change, to the

source code of a module, on the other modules of the system. It determines the scope of a

change and provides a measure of its complexity.” Arnold and Bohner [ARNO93] define

change impact analysis as identifying the potential consequences of a change, or estimating

what needs to be modified to accomplish a change. They emphasize the estimation of the

impacts. The Pfleeger [PFLE90] definition extends their definition to the evaluation of impacts.

The ripple effect of a change to the source code of a software system is defined as the

consequential effects on other parts of the system resulting from that change. These effects can

7

be classified into a number of categories such as logical effects, performance effects or

understanding effects.

1.2.3 Benefits of Impact Analysis

Experience has taught us that comprehensive up-front analysis of requirements during software

development pays high dividends by reducing the risk of costly rework and the potential for

errors in planning estimates. The same concept appears to hold true for software change

impact analysis. By identifying potential impacts before making a change, we greatly reduced

the risks of embarking on a costly change because the cost of unexpected problems generally

increases with the lateness of their discovery.

Impact analysis information can be used for planning changes, making changes,

accommodating certain types of software changes, and tracing through the effects of changes.

It makes the potential effects of changes visible before the changes are implemented to make it

easier to perform changes more accurately and identifies the consequences or ripple effects of

proposed software changes during development and maintenance.

There is often more than one change that can solve the same problem or satisfy the same

requirement. Assessing the complete impact of each change is often necessary to be able to

choose which change to apply. There are also, sometimes, external constraints that must be

taken into account when designing the change, such as packages to be interfaced with or parts

of the system that must not be impacted. Impact analysis helps the maintenance team identify

software work products impacted by software changes. Such analysis not only permits

evaluation of the consequences of planned changes; it also allows trade-offs between suggested

software change approaches to be considered.

8

Impact analysis can be used as a measure of the cost of a change. The more the change causes

other changes, the higher the cost is. Carrying out this analysis before a change is made allows

an assessment of the cost of the change and helps management choose tradeoffs between

alternative changes. It allows managers and engineers to evaluate the appropriateness of a

proposed modification. If a change that is proposed has the possibility of impacting large,

disjoint sections of a program, the change might need to be re-examined to determine whether a

safer change is possible.

Impact analysis can be used to drive regression testing, i.e., to determine the parts of a

program that need to be re-tested after a change is made. Regression test is a software

maintenance activity that refers to any repetition of tests (usually after software or data

changes) intended to show that the software’s behavior is unchanged except insofar as required

by the change to the software or data [BEIZ90]. To save effort, regression testing should retest

only those parts that are impacted by the changes. During maintenance, when some changes

have been made to the system, we need to estimate how many classes need to be retested.

Retesting too many classes in the system will increase the cost of testing, but retesting too few

classes in the system might adversely impact the quality of the software.

Impact analysis can also be used to indicate the vulnerability of critical sections of code. If a

procedure that provides critical functionality is dependent on many different parts of a

program, its functionality is susceptible to changes made in these parts.

A major goal of impact analysis is to identify the software work products impacted by

proposed changes. Evaluating software change impacts requires identifying what will be

impacted by a change and relies on the “impact assessment” to determine quantitatively what

the impact represents. Conceptually, it takes a list of software life-cycle objects – from

9

specifications to programs – analyzes these objects with respect to the software change, and

produces a list of items that should be addressed during the change process. Software staff can

use the information from such analysis to evaluate the consequences of planned changes as

well as the trade-offs among the approaches for implementing the change.

Examples of impact analysis activities are:

Using cross referencing listings to see what other parts of a program contain references to a

given variable or procedure

Using program slicing to determine the program subset that can impact the value of a given

variable

Browsing a program by opening and closing related files

• Using traceability relationships to identify changing artifacts

• Using configuration management systems to track and find changes

• Consulting designs and specifications to determine the scope of a change

Typical Impact Analysis Process

A typical impact analysis process is illustrated in the following picture:

10

Proposed Change
in real world

T
ra

n
s
la

te
 t
o

 C
h

a
n

g
e

S
p

e
c
ifi

c
a

tio
n

Change
Specification

Information Extractor
(Extract information from

information source)

Internal
Representation

Repository

C
onvert

Viewer
(Show Impact

Result...)
Software
System

Analyzer
(Calculate Change

Impact)

Figure 2. Typical Impact Analysis Process

Impact analysis can be broken down into following stages:

Stage 1. Convert proposed change into a system change specification.

Stage 2. Extract information from information source and convert into Internal

Representation Repository.

Stage 3. Calculate change impact for these change proposals. Do Stage 1-3 again for other

competing change proposals.

11

Stage 4. Develop resource estimates, based on considerations such as size and software

complexity.

Stage 5. Analyze the cost and benefits of the change request, in the same way as for a new

application.

Stage 6. The maintenance project manager advises the users of the implications of the

change request, in business rather than in technical terms, for them to decide whether to

authorize proceeding with the change [MORE90].

Impact Analysis is Difficult

Impact analysis is one of the most tedious and difficult parts of software change. Manual

impact analysis is labor intensive and error prone. Systematic approaches to impact analysis

are frequently not part of formal software engineering training [ARNO96]. It is performed only

when absolutely necessary due to the cost involved. Therefore, it effectively limits the quality,

consistency, and number of changes that can be made to a software system. The tools used in

most impact analysis processes are primitive and low level, and need a substantial human

interaction to accomplish the task. Automated impact-analysis tools often provide a rather

limited analysis.

Software change processes do not adequately address impact analysis. Software change

estimates (effort, schedule, and resources) are frequently inaccurate because the ramifications

of the changes are not clear [AUTH88].

1.2.4 Object-Oriented System Impact Analysis

Object-oriented design describes systems in terms of objects that make up the problem domain.

Applying object-oriented technology can lead to better system architectures, and enforce a

12

disciplined coding style. Rumbaugh [RUMB91] states that because the object classes provide a

natural unit of modularity, an object-oriented approach produces a clean, well-understood

design that is easier to test, maintain, and extend than non-object-oriented designs. An

empirical study [HSIA95] has addressed the relationship between the maintainability

characteristic of software and its architecture. The authors believe the features of the object-

oriented approach have a significant impact on maintainability.

Currently, maintaining object-oriented systems is more of an art (similar to where we were 15

years ago with procedural systems) than an engineering skill. We are beginning to see "legacy"

object-oriented systems in industry. A difficult problem is how to maintain these objects in

large, complex systems.

Despite the advantages of object-oriented technology, it does not by itself ensure the quality of

the software, shield against developer’s mistakes, nor prevent faults. In object-oriented

software, the new features like encapsulation, inheritance and polymorphism make software

maintenance more difficult, including identifying the parts that are impacted when the changes

are made. Although the effects of changes in object-oriented programs can be restricted, they

are also more subtle and more difficult to detect. Rine [RINE95] mentioned several structural

errors common to object-oriented programming when objects are dynamically introduced by

pointers.

For object-oriented systems, it is relatively easy to understand the data structures and member

functions of individual classes, but the combined effect or combined functionality of the

member functions is more difficult. Traditional, non-object-oriented software systems use a top

down approach, and emphasize control dependencies among different modules. The control

13

dependencies among these modules are mostly hierarchical, and control dependencies only exist

between the modules; hence, it is relative easy to identify the impacted modules.

On the other hand, object-oriented techniques primarily use bottom up approaches. The

relationships among classes form a network graph. Each class could potentially interact with

each other. This makes the relationships among classes more complicated.

The complex relationships between the object classes make it difficult to anticipate and identify

the ripple effects of changes. The instance of a class, the object, has its data structure, member

functions (behavior), and state. The data dependencies, control dependencies, and state

behavior dependencies make it difficult to define a cost-effective test and maintenance strategy

to the system. An object-oriented system by implication has structure and state dependent

behavior reuse, i.e., the data members, function members and state dependent behavior of a

class can be re-used by another class. There are data dependencies, control dependencies, and

state behavior dependencies between classes in the system. Polymorphism and dynamic binding

imply that objects can take more than one form, which is unknown until run time. All these

features make object-oriented maintenance more difficult.

To summarize, object-oriented systems maintenance is difficult for several reasons [KUNG94]:

1) Although it is relatively easy to understand most of the data structures and member

functions of the object classes, understanding of the combined effect or combined

functionality of the member functions is extremely difficult.

2) The complex relationships between the object classes make it difficult to anticipate and

identify the ripple effect of changes.

14

3) The data dependencies, control dependencies, and state behavior dependencies make it

difficult to prepare test cases and generate test data to efficiently retest the impacted

components.

4) Complex relations also make it difficult to define a cost-effective test strategy to retest the

impacted components.

1.3 Related Work

Modeling data, control, and component dependency relationships are useful ways to determine

software change impacts within the set of source code. The basic impact analysis techniques to

support these kinds of dependencies are data flow analysis [KEAB88] [WHIT92a] [HARR94],

data dependency analysis [MOSE90][KEAB88], control flow analysis [LOYA93][McCa92],

program slicing [WEIS84][HORW90] [LYLE90][KORE90], test coverage analysis

[DEMI91][OFFU91] [OFFU95][WHIT92a], cross referencing, and browsing [BOHN95], and

logic-based defects detection and reverse engineering algorithms [HWAN97].

1.3.1 Impact Analysis

The Yau and Patkow models are useful in evaluating the effects of change on the system to be

maintained. Yau [YAUS78] focuses on software stability through analysis of the ripple effect

of software changes. A distinctive feature of this model is the post-change impact analysis

provided by the evaluation of ripple effect. This model of software maintenance involves 1)

determining the maintenance objective, 2) understanding the program, 3) generating a

maintenance change proposal, 4) accounting for the ripple-effects, and 5) regression testing the

program.

15

Rombach and Ulery [ROMB89] proposed a method for software maintenance improvement

that focuses on the goals, questions, and specific measurements associated with activities in the

context of a software maintenance organization. However, their method does not specify a

framework that supports impact analysis in the software maintenance process.

Pfleeger and Bohner [PFLE90] recognize impact analysis as a primary activity in software

maintenance and present a framework for software metrics that could be used as a basis for

measuring stability of the whole system including documentation. The framework is based on a

graph, called the traceability graph, which shows the interconnections among source code, test

cases, design documents and requirements. This framework provides an example of the

inclusion of software work products as part of the system, although it is anticipated that the

level of detail on the diagram is insufficient to make detailed stability measurements.

Arnold and Bohner [ARNO93] define a three-part conceptual framework to compare different

impact analysis approaches and assess the strengths and weaknesses of individual approaches.

Their framework includes IA Application, IA Parts, and IA Effectiveness. IA Application

examines how the IA approach is used to accomplish IA. It looks at the features offered by the

IA approach interface. IA Parts examines the nature of the internal parts and methods used to

actually perform the IA. IA Effectiveness examines properties of the resulting search for

impacts, especially how well they accomplish the goals of IA.

Bohner [BOHN95] proposed a method for conducting impact analysis with a graph

traceability representation, and combines vertical traceability (relationships between objects of

the same kind) and horizontal traceability (relationships between objects of different kinds) in

the same analysis. He also proposed a software change process model that incorporates impact

16

analysis as a fundamental part of the process. This model depicts where in the software change

process impact analysis can be incorporated.

1.3.2 Object-Oriented Impact Analysis

Wilde and Huitt [WILD92] outline some of the main difficulties that can be expected in

maintaining OOPs and have proposed directions for possible tool support of the maintenance

process.

Kung et al. [KUNG94] describes an algorithm to identify the impacted parts of the system by

comparing the original system and the modified version, and find the differences between these

two systems. This can be used as a post analysis tool after the change is made, but cannot be

used for change impact prediction, because there is no changed version available for

comparison before the change impact is made.

Hsia et al. [HSIA95] conducted a case study showing that the architecture of object-oriented

systems impacts software maintenance. Their study suggests that maintainability for systems

developed using the object-oriented techniques depends on the characteristics of the

inheritance/uses tree of the system.

Heisler, Tsaim and Powell [HEIS89] present an object-oriented model of software that is

derived from maintaining software. They use ripple effect analysis as well as program slicing

to extract views of software to assist in making software changes. Kung et al. [KUNG94]

classified different types of code changes to the code, and identified the changes by calculating

the delta of two versions of software.

17

1.3.3 Inferencing

Intelligent Assistance for Software Development and Maintenance called Marvel [KAIS88] is

an environment that supports two aspects of an intelligent assistant: it provides insight into the

system and it actively participates in development through opportunistic processing. It has

insight, which means it is aware of the user’s activities and can anticipate the consequences of

these activities based on an understanding of the development process and the produced

software. It performs opportunistic processing, which means it undertakes simple development

activities so programmers need not be bothered with them. It models the development process

as rules that defines the preconditions and postconditions of development activities, and gathers

collections of rules into strategies.

1.3.4 Control Flow, Data Flow and Data Dependency

Control flow tools identify calling dependencies, logical decisions, and other control

information to examine control impact.

Loyall and Mathisen [LOYA93] present a language-independent definition of definition of

inter-procedural dependence analysis and have implemented it in a prototype tool. Their

prototype tool indicates different control dependencies among different procedures of a

program.

Moser [MOSE90] created a compositional method for constructing data dependency graphs

for Ada programs based on composition rules. This method combines composition rule

techniques with data dependency graphs to construct larger constructive units. These rules

match other composition-based program development techniques, and enable data dependency

graphs for complex programs to be constructed from the simpler graphs for the units of which

18

they are composed. The author examines composition rules for iteration, recursion, exception

handling, and tasking. Graphs for primitive program statements are combined together to form

graphs for larger program units.

Keables, Roberson and Mayrhauser [KEAB88] presented an algorithm that limits the scope of

recalculation of data flow information for representative program changes. Their prototype

data flow analysis program works on a subset of the Ada language.

A research project at Arizona State University that started in 1983 [COLL88] tried to develop

a practical software maintenance environment. The ASU tool operated on simplified Pascal

programs that are expected to be error free. It displays the structure chart of the Pascal code,

displays the parameters used in the module call and the global variables referenced in the

current module etc.

The McCabe Battlemap Analysis Tool (BAT) [McCa92] decomposes source code into its

control elements to create a view of the program that specifies the control flow for analysis.

1.3.5 Slicing

Program slicing provides a mechanism for constraining the view and behavior of a program to

a specific area of interest [WEIS84] [HORW90]. Program slices focus attention on small parts

of the program by eliminating parts that are not essential for the evaluation of the specific

variables at a certain location.

Horwitz, Reps, and Binkley [HORW90] concentrated their work on inter-procedural slicing,

and generated a new kind of graph called the system dependence graph, which extends previous

dependence representations to incorporate collections of procedures rather than just monolith

programs. Their inter-procedural slicing algorithms were restricted to certain types of slices:

19

rather than permitting a program to be sliced with respect to program point p and an arbitrary

variable, a slice must be taken with respect to a variable that is defined or used at p.

The Unravel tool developed by James Lyle of NIST [LYLE90] can be used to slice C

programs.

1.4 Scope and Goals of This Research

The motivation behind this work is to improve the maintainability of object-oriented software

systems, optimize the release planning activity and thus reduce the maintenance effort.

Reduction in effort can be achieved by reducing the time between a proposed change, its

implementation and its delivery, while at the same time maintaining quality. It allows the

maintenance managers and programmers to assess the consequences of a particular change to

the source code. It can be used as a measure of the effort of a change. The more the change

causes other changes to be made by rippling, in general, the higher the cost is. Carrying out

this analysis before a change is made allows an assessment of the cost of the change and allows

management to make a tradeoff between alternative changes.

1.4.1 Problem Statement

The scope of this research is to address the problem of change impact analysis of object-

oriented software.

1.4.2 Thesis Statement

The research described in this thesis address the above problem by applying algorithmic

software analysis techniques to object-oriented systems to discover relationships among

software components.

20

1.5 Brief Description of Research Results

Automated impact analysis depends on the ability to

• Create models of relationships among software objects

• Capture these relationships in software and associated representations

• Translate a specific software change into the impacted objects and relationships

• Trace relationships and reasonably bound the search for impacts

• Retranslate the estimated impacted objects back into software objects

The most common use of impact analysis is to determine the ripple effect of a change after it

has been made. The primary goal of this thesis is to address the problem of change impact

analysis of object-oriented software by applying automated algorithmic analysis. We address

the problem by analyzing in depth the relationships among the components of the object-

oriented systems, and by applying algorithmic software analysis techniques to compute

transitive closure of certain relationships among these software components. We also propose

an impact analysis model to describe the problem and solution characteristics.

Questions to be answered in this research are:

• What are the impacts a set of proposed changes can bring to a software system?

• How big is the closure of impact? If several alternative maintenance solutions are proposed

to a system, which one is the “best” in terms of cost and efficiency?

• How will the different relationships in the object-oriented system impact change

propagation?

21

• What are the maximum and minimum potential impacts, and how can they be modeled and

measured?

Our solution strategy:

• Analyze the software automatically, and save the relationships among the components in a

component relationship graph. The nodes will represent different types of objects

(components) and the edges will be weighted by the relationships of these components.

Different types of relationships will have different quantity measures to model the

propagation of changes.

• Compose a set of algorithms to retrieve the information from the graph, and calculate the

transitive closure of the impacts of the proposed changes. The different types of

relationships in the system will impact the change impact results in different ways.

• Create a set of object-oriented change impact metrics to measure the change impact of

object-oriented software quantitatively.

• Propose an impact model to describe the properties of the object-oriented change impact

analysis process.

• Build a proof-of-concept tool to validate the algorithms.

• Apply the proof-of-concept tool to a case study to evaluate the feasibility of the approach.

This strategy not only permits evaluation of the consequences of planned changes, but also

allows trade-offs between suggested software change approaches to be considered. Some

impact analysis is necessary before project-planning estimates can be completed.

22

A software system should not be considered only in terms of its source code. It consists of

many other related items such as specification and design documentation. Our tool can accept

information from design, specification documents or toolkits, as long as the information is

detailed enough to provide the inputs needed by our algorithms.

We use Control Flow Graphs (CFG) and Data Flow Graphs (DFG) at the statement level to

gather def/use information. The gathered information is then transformed to Object-Oriented

Dependency Graph (described later), which is used to calculate the transitive closure of the

change dependency. The calculation results are presented at both the class level and its class

member level.

Because the relationships among objects in a object-oriented system are more complicated and

have their own characteristics compared with the control relationship in procedural systems

and because most design and specification information stays at this level, the proof-of-concept

tool developed in this research operates at the object and method level. When necessary, it will

be easy to use the traditional CFG and DFG to analyze the statements control information

inside each method or function.

1.6 Organization of This Dissertation

This chapter provides information on software maintenance and impact analysis and discusses

the difficulties in the impact analysis for object-oriented systems. It last defines the research

scope and described briefly our research results.

Chapter 2 addresses background concepts used in this work. Chapter 3 presents the new

concepts, definitions, theories and models developed in this research. The detailed algorithms

are described in Chapter 4, which also includes the proofs of the correctness of the algorithms.

23

Chapter 0 presents a set of object-oriented change impact metrics to measure the change

impact of object-oriented software quantitatively. Chapter 6 explores the inference approach of

the algorithms. Chapter 7 explains the architecture and implementation details of the proof-of-

concept system called ChAT that is developed for this research and presents the empirical

results measured by ChAT. Finally, Chapter 8 outlines the contributions and future works of

this research.

24

2 BACKGROUND CONCEPTS

This section describes the background concepts necessary for full understanding of this

dissertation. The research is directed toward change impact analysis (CIA) of object-oriented

software, thus object-oriented concepts are described. The analysis used for CIA is based on

graphical representations of software, so general graph theory and how to represent programs

in graphs is described.

2.1 Object-Oriented Concepts

An object-oriented system is composed of objects and classes. An object is an abstract of a

real world entity composed of a set of properties, which define its state, and a set of operations,

which define its behavior. The state of an object encompasses all the properties of the object

plus the current values of each of these properties. Behavior is how an object acts and reacts,

in terms of its state changes and message passing [BOOC94]. The state of an object represents

the cumulative results of its behavior. The constants and variables that serve as the

representations of their instance’s state are called data members, instance variables, or data

members, depending on the programming language. Data member and data member will be

used interchangeably in this dissertation. Methods or member functions are operations that

clients may perform upon an object. A class is the specification of an object; it is the

"blueprint" from which an object can be created. A class describes an object’s interface, the

structure of its state information, and the details of its methods [MART95]. Objects are

25

runtime instances of a class. In this dissertation, we use Booch Notation [BOOC94] to express

relationships among classes. The following figure shows Booch Notations that indicate

relationships between classes.

Class name A
attributes

operations()
{constraints}

Class name B
attributes

operations()
{constraints}

A contains B by Value

Class name A
attributes

operations()
{constraints}

Class name B
attributes

operations()
{constraints}

B inherits from A

Class name A
attributes

operations()
{constraints}

Class name B
attributes

operations()
{constraints}

A associates with B

Class name A
attributes

operations()
{constraints}

Class name B
attributes

operations()
{constraints}

A uses B

Class name A
attributes

operations()
{constraints}

Class name B
attributes

operations()
{constraints}

A contains B by
Reference

Figure 3. Relationships between classes

Class A contains class B if the instance of class B is held in one of the instance variables of A.

This represents the "whole/part" relationship. For example, we can say a car has an engine, or

a car has doors.

Class A uses class B if A sends messages to B. For example, we say a person uses a car. The

person tells the car to start-up, to turn, and to stop by sending messages to the car through car

interfaces such as keys, steering wheels, etc.

Inheritance represents a hierarchy of abstractions, in which a subclass inherits from one or

more parent classes. The child class shares the structure or behavior defined in its parent class.

26

The child class differs from its parent class by modifying and adding properties. A class can

inherit the instance variables, interfaces, and instance methods of another class as if they were

defined within it. This expresses the generalization/specialization relationship. For example,

the class Sedan is a specialization of the general class Car. The class from which another class

inherits is called its parent or super-class. The class that inherits from a parent is called a

child, subclass or derived class. If a class has more than one parent, this kind of relationship is

called multiple inheritance.

Association is a semantically weak relationship. It only states there is some relationship

between the classes expressed without explicitly stating what kind of relationship. It could be

contains, use, or inheritance. This is usually used in the analysis and design phases when some

relationships among classes are still not clear or we just want to represent a general

relationship among the classes without being concerned which kind of relationship.

2.2 Graph and Dependency Definitions

This section describes the existing definitions and theories, which will be used in this thesis.

Most of the basic definitions are referenced from Loyall and Mathisen’s paper [LOYA93].

2.2.1 Graph Theory

A directed graph G is a set G = (NG, EG), where NG is a finite set of nodes, and EG ⊆ (NG ×

NG) is a finite set of edges. For each edge (u, v) ∈EG, u is the source and v is the destination.

A path in a graph G is a finite non-null sequence of nodes P = n1, n2, …nk with each ni ∈NG, for

i = 1…k and each (nj, nj+1) ∈ EG for j = 1…k-1. P is called a path from n1 to nk. k is the length.

27

A control flow graph (CFG) is a finite, connected directed graph G = (NG, EG, Ns, Nf) where

NG is a finite set of nodes, EG ⊆ (NG × NG) is a finite set of edges, Ns ∈ NG is the start node

and Nf ∈ NG is the final node. A node in a CFG represents a statement or a basic block, i.e., a

sequence of statements having the property that each statement in the sequence is executed

whenever the first statement is executed. An edge (ni, nj) represents a possible flow of control

between two basic blocks. The block represented by ni is executed before the basic block that

is represented by nj.

The predecessors, Pred (n), of a given node are defined as those nodes for which there is a

path to the given node. The immediate predecessors of a node ni, P (ni), are all nodes, nj, such

that (nj, ni) is in E.

The successors of n, Succ (n), are defined as those nodes for which there is a path from the

given node to them. The immediate successors of a node ni, denote S (ni), are all nodes, nj,

such that (ni, nj) is in E.

A definition of a program variable is any expression that modifies that variable. A path is said

to be definition-clear (or simply clear) with respect to a given variable if the path contains no

assignment to that variable. A definition is live at a given point in a program if there is a

definition-clear path from that point to a use of the variable in question. A definition made at

node ni is said to reach node nj if nj is a successor of node ni and there is at least one clear path

from ni to nj.

A data definition is an expression or part of an expression that modifies a data item. A data

use is an expression or that part of an expression that references a data item without modifying

it. A def-use pair is a definition and a use such that the definition may, under some executions,

28

reach the use without going through another definition. A data flow graph (DFG) is a directed

graph where the nodes and some edges are described by def-use relationships. A data

dependence exists when one statement provides a value subsequently used by another

statement either directly or through a chain of data definitions and references. Formally, A

def/use graph is a set of G = (∑, D, U), where G is the CFG for a procedure, ∑ is a finite set

of symbols, data variables, D: NG È Ρ(∑), and U: NG È P (∑). The set of symbols ∑ is the

set of identifiers and naming variables that occurs in procedure G. The functions D and U map

a node of G to the set of variables defined and used, respectively, in the statement represented

by the node. P (∑) represents the power set, i.e., the set of all sets, of ∑.

Let G = (∑, D, U) be a def/use graph and let u, v ∈ NG. Node u is directly data dependent on

node v if and only if there is a path vPu in G such that (D (v) ∩ U (u)) - D (P) ≠ 0. D (P)

denotes the union of all D (ni), where ni is a node in the sequence P. Node u is data dependent

on v if and only if there exists a sequence of nodes, n1, n2, …nk, k ≥ 2, such that u = n1, v = nk,

and ni is directly data dependent on ni+1 for i = 1, 2… k-1.

An inter-procedural control flow graph for a program is a set of graphs ς = (G1,…, Gk, C, R),

consisting of control flow graphs G1, …, Gk representing functions or methods in the program,

a set C of call edges, and a set R of return edges. An inter-procedural control flow graph ς

satisfies the following conditions:

1. There is an one-to-one mapping between C and R. Each call edge is of the form (u, niG) ∈

C and the corresponding return edge is of the form (nFGj, u) ∈ R, where u ∈ NG, for some Gi ∈

ς and niGj and nFGj are the initial and final nodes, respectively, of some Gj ∈ ς.

29

2. ς contains two distinguished nodes: an initial node niς = niGi, and a final node nFς = nFGi, GI

∈ ς.

An inter-procedural CFG is a set of CFGs for procedures linked together by call and return

edges. Each call edge is an edge from a node representing a procedural call to the initial node

of the CFG for the called procedure. There is a corresponding return edge for each call edge

from the final node of the called procedure’s CFG back to the node representing the procedure

call. For simplicity, we assume that there is a designated initial node and a designated end

node.

An inter-procedural def/use graph is a set Θ = (ς, ∑, D, U), where ς = (G1, …, Gk, C, R) is an

inter-procedural CFG, ∑ is a finite set of symbols and data variables, D: (NG1 ∪ … ∪ NGk) È

Ρ(∑), and U: (NG1 ∪ … ∪ NGk) È P(∑).

The set ∑ is the set of identifiers and variables that occur in the set of procedures represented

by ς. The definitions and uses of actual and formal parameters at nodes represent procedure

calls.

Formally, let Gi, Gj ∈ ς be CFGs in the interprocedural def/use graph Θ. For each nc ∈ NGi,

such that (nc, niGj) ∈ C and, therefore, (nFGj, nc) ∈ R, D (nc) includes

• Formal parameters of the called procedure into which values are passed

• Actual parameters into which values are returned (including variables into which function

values are returned)

U (nc) includes

30

• Actual parameters from which values are passed

• Formal parameters of the called procedure from which values are returned.

An inter-procedural path, P, in an inter-procedural CFG = (G1, G2, …, Gk, C, R) is a sequence

of nodes n1n2…nk where ni ∈ (NG1 ∪NG2 ∪ … ∪ NGk), in = 1…k, and (nj, nj+1) ∈ (EG1 ∪EG2

∪ … ∪ EGk ∪ C ∪ R). W satisfies the following conditions:

• P contains the sequence uniGYnfGv, where G ∈ ς, Y is a sequence of nodes, and u ≠ v, if

and only if Y contains the subsequence vniG.

• P cannot contain the sequence unFGvniG, for any G ∈ ς, v ∈ (NG1 ∪NG2 ∪ … ∪ NGk).

• P cannot contain the sequence nFGvniG, for any G ∈ ς, if and only if P = niG.

An inter-procedural u-v path P in ς represents a valid execution path from u to v in ς. Not

every path in a program’s inter-procedural CFG represents a valid execution path of the

program. This is because a procedure call in a program causes the procedure to be executed

exactly once and then returns to the point of the call. However, in the inter-procedural CFG for

a program there might be several return edges leading from the final node in a procedure.

There is often a path that enters a procedure from one node to a different node, although such a

path does not correspond to a valid execution of the program.

2.2.2 General Dependency Concepts

This section describes the general concepts related to program dependency, such as control

dependency and data dependency, ripple effect etc.

31

The transitive closure of a relationship R is the relation R+ defined by cR+d, if and only if

there is a sequence e1Re2, e2Re3,…, em-1Rem, where m >=2, c=e1, and d=en. Traceability refers

to the ability to define and trace relationships among entities such as software work products

and their components. A reachability matrix shows the objects that could be impacted by a

change to a particular object. Such a matrix also offers the distances associated with the

impact. The distance offers some insight into the relative ripple effects associated with each

object.

Data dependencies are relationships among program statements that define or use data. A data

dependence exists when a statement provides a value that is used directly or indirectly by

another statement in a program. Data def/use graphs are typical representations of these

dependencies. Data-flow analysis produces dependency information on what data goes where

in the software system.

Control dependencies are relationships among program statements that control program

execution. Control-flow analysis provides information on the logical decision points in

software and of the complexity of the control structure. Control-flow technology identifies

procedure-calling dependencies, logical decisions, and under what conditions the decision will

be taken.

A side effect is an “error or other undesirable behavior that occurs as a result of a

modification” [ARNO93]. A ripple effect is the “effect caused by making a small change to a

system which impacts many other parts of a system” [BOHN95]. Three major types of ripple

effects are coding, data, and documentation. Other important types of ripple effects defined by

researchers [BOHN95][YAUS80][YAUS87] are the following:

32

• Logical: influences the function or performance of the system

• Requirements: influences the operation of the system

• Interface: results in a change in specification of the hardware or software interface

• Environment: impacts development, maintenance, or test environments

• Management/logistics: cost, schedule, resource, contractual, deployment and training

impact

Ripple effect can be defined as the phenomenon where a change in one piece of a software

system impacts at least one other area of the same software system. A direct ripple effect

occurs when the change of one variable directly impacts the definition of another variable. An

indirect ripple effect occurs when the impacted variable in turn impacts other variables.

Stability refers to the ability of a program to resist ripple effects when it is modified. Stability

analysis differs from impact analysis in that it considers the sum of the potential ripple effects

rather than a particular ripple effect caused by a change.

The slice (sometimes called backward slice) of a program with respect to program point p and

variable x consists of all statements and predicates of the program that can impact the value of

x at point p. The slice of a program with respect to program point p and variable x consists of

a reduced program that computes the same sequence of values for x at p. That is, at point p

the behavior of the reduced program with respect to variable x is indistinguishable from that of

the original program.

A forward slice of a program with respect to a program point p and variable x consists of all

statements and predicates of the program that might be impacted by the value of x at point p.

33

3 NEW CONCEPTS/DEFINITIONS

This chapter presents the new concepts, definitions, theories and models that are developed in

this research. 3.1 defines the new concepts introduced in this research and the object-oriented

data dependency graph that are used to calculate dependencies. 3.2 discusses the dependency

calculations of different language constructions. 3.3 presents the impact models that describe

the impact analysis process.

3.1 New Definitions

This section introduces the definitions developed in this research. 3.1.1 defines the change

impact related concepts that will be used later in the algorithms. 3.1.2 defines the object-

oriented dependency graph, which is central to the research.

3.1.1 Change Impact Definitions

In structured programming, one thinks in terms of inputs, functions and outputs. In object-

oriented programming (OOP), the approach is different -- a message is passed to an object to

request an operation on the object. Objects have methods and data members; the methods

specify the allowable operations on the object’s private data, and the data members specify the

state information for the object. In this thesis, class member refers to either a method or data

member. When a class member changes, it could impact other classes through message

passing, inheritance etc.

34

3.1.1.1 Basic Types of Items

The basic component in our analysis is the class. A class is composed of member functions and

member variables. The relationships are shown in Figure 4.

Class ClassMember

 Member Function Data Fields

contains

ih
he

rit
s

fro
m

inherits from

Inherited from

Contain by
Reference

Contain by Value

Use

Figure 4. Class Components Graph

Sometimes, users want to focus on certain parts of their systems while ignoring other parts.

They can specify the classes they are interested in through a system analysis set, which include

all the classes a user is interested in analyzing. The classes that do not belong to the system

analysis set are called opaque types. In our proof-of-concept tool described later, we view all

the classes that are not compiled by the proof-of-concept system as opaque. For example,

simple types and classes in third party libraries can be treated as opaque.

35

3.1.1.2 Direct Relationship

There is a direct relationship R between class A and B (ARB) if A and B have one of the three

kinds of relationships: Containment, Use, or Inheritance. They are defined as follows:

• Containment:

Class A contains class B if B declared as a class member of A.

• Use/Reference:

There are several ways that a use/reference relationship can be formed.

1. Containment :

If class A contains class B, then class A uses Class B. If A contains B by reference, that

means that A contains a reference to B. B’s life span can be longer than A’s.

2. Classes passed in as method parameter:

If a method m of class A takes parameters P1, … Pn, we say class A uses each pi, i = 1..n, and

m is in the reference sets of each of Pi. Pi can be any class and type.

3. Classes referenced in the left hand side of assignment:

If class A or one of its members is specified in the left hand side of the assignment statement,

A or its member is defined by all the variables on the right hand side. Thus, class A (or its

member) belongs to the reference set of all those variables on the right hand side of the

equation.

4. Return type of method:

36

The return type of a method m is defined by m. m belongs to the reference set of this return

type. Since the parameters may not be used in the body, and their effect may not direct impact

the return type, we do not consider the return type to be defined by these parameter types. If

the return type is defined by a parameter, it will show up in the analysis of this method body.

5. Variables declared in a method:

Any variable that is referenced in the method m can be considered to be used by m and can be

put into the reference set of m.

• Inheritance relationship:

Class A inherits from Class B if B is declared as a super class of A.

3.1.1.3 Indirect Relationship

A has an indirect relationship with B if there exists a path B1, B2, … , Bn, such that A R B1, B2 R

B3 , … , Bn R B, expressed by AR+B.

3.1.1.4 Properties of Change Impact Dependency

A change impact dependency Α has the following properties:

Reflexive:

�&�Α�&

Class C depends on itself. It means that if C is impacted, it will impact itself.

Transitivity:

�%�Α�&�DQG�&�Α�'�⇒�%�Α�'

37

It means that if B impacts C and C impacts D, then B impacts D.

Cyclic:

There can be cycles in the impact dependency graph.

3.1.1.5 Characteristics of Impacted Member

When a member is proposed to be changed or could be impacted by another member that has

been proposed to change, it is called contaminated or impacted. The contaminated member

may or may not impact other members. According to the relationship between the impacting

member and impacted member, we classify the impact characteristics of one member to

another member into one of the four values of contaminate type: {Contaminated, Clean, Semi-

Contaminated, Semi-Clean}. If we think of impacting member as the starting node of an edge

and the impacted member as the end node, contaminate type can be thought of as the attribute

of the edge.

• Contaminated (Dirty): Start node is contaminated and it impacts the end node.

• Clean: Start node is clean and does not impact the end node.

• Semi-Contaminated (Semi-Dirty): Start node is contaminated, but it does not propagate the

contamination to the end node.

• Semi-Clean: Start node is not contaminated but it propagates the contamination to the end

node from the other source.

38

3.1.1.6 Change Criteria

This research requires an engineer to transfer the change requests to the change specification

that our algorithms can understand. When engineers want to specify the proposed change to the

system, they need to specify which parts of the system they are going to change (these changes

can be described by a set of change criteria). Our algorithms will calculate the change impact

for each criterion. The change criterion is defined as <C, CM, CT>, where C specifies the

class that is proposed to change, CM is the class member in the class C that is proposed to

change, and CT is the possible change type.

3.1.1.7 Impact Sets

FREF (x) (function reference set of x) is the set of functions that reference x; in other words,

member function m is in FREF (x) if m uses x as part of its implementation or definition.

FREF (x) represents the set of member functions that could be impacted by x if x changes.

DREF (x) (Data Member Reference Set of x) is the set of data members that use the variable

x. DREF (x) is the set of data members that can potentially be impacted by x. REF (x) is the

set of class members that reference x; REF (x) = FREF (x) ∪ DREF (x). x belongs to the

definition set of each member in REF(x). Reference set and definition set are two

complementary sets.

The Impacted Class Set (ICS) is the set of classes that could potentially be impacted by a

change. The Impacted Function Set of class C (IFS(C)) is the set of function members in C

that could potentially be impacted. The Impacted Data member Set of class C (IDS(C)) is the

set of data members in C that could potentially be impacted. The Impacted Member Set of C

(IMS(C)) is the set of class members in C that are impacted, IMS(C) = IFS(C) ∪ IDS(C).

39

The Semi Impacted Member Set (Semi-IMS) contains all the class members that are semi-

contaminated.

The Public Impacted Function Member Set (PIFS) of C is the subset of IFS that is composed

of public methods of C; PIFS(C) ⊆ IFS(C). The Public Impacted Data Member Set (PIDS) of

C is a subset of IDS that is composed of public data members of C; PIDS(C) ⊆ IDS(C). The

Public Impacted Member Set of C (PIMS(C)) is a set of public members in C that are

impacted; PIMS(C) ⊆ IMS(C). PIMS is the union of PIFS and PIDS; PIMS(C) = PIFS(C) ∪

PIDS(C). Semi Public Impacted Member Set (Semi-PIMS) is the set of semi-contaminated

public members.

3.1.1.8 Direct Impact

Member M in class B (B.M) is directly impacted (DA) by member M in B (B.M) if it satisfies

one of the following situations:

If (A contains B) and (A.M Ref B.M) and (B ∈ ICS) and (B.M ∈ IMS(B)) ⇒
B.M DA A.M

If (A inherits from B) and (A.M partially-redefines B.M) and (B ∈ ICS) and

(B.M ∈ IFS (B)) ⇒ B.M DA A.M

If (A inherits from B) and (A.M inherits from B.M) and (B ∈ ICS) and (B.M ∈
IFS (B)) ⇒ B.M DA A.M

If (A inherits from B) and (A.M virtual-inherits from B.M or A.M virtual-
redefines B.M) and (M is the return type or in the parameter list) and (B ∈
ICS) and (B.M ∈ IFS (B)) ⇒ B.M DA A.M

If (A uses B) and (A.M references B.M) and (B ∈ ICS) and (B.M ∈ IFS (B)) ⇒
B.M DA A.M

40

3.1.1.9 Indirect Impact

If there exist a series of direct impact relationships B1 A B2, … , Bn A Bn then B1 A
+ Bn.

B
1
A B

2
, … , B

n
 A B

n
⇒ B

1
 A+ B

n

3.1.1.10 Object-oriented System Dependency

A dependency in a software system is, informally, a direct relationship between entities in the

system X È Y such that a programmer modifying X must be concerned about possible side

effects in Y [WILD92].

Wilde and Huitt classified dependencies as: (1) data dependencies between two variables, (2)

calling dependencies between two modules, (3) functional dependencies between a module and

the variables it computes, and (4) definitional dependencies between a variable and its type.

Based on Wilde and Huitt’s classification on object-oriented dependencies, we come up with

the following seven dependency classifications.

1 Class-to-Class Dependencies

a) C1 is a direct super class of C2 (C2 inherits from C1)

b) C1 is a direct sub class of C2 (C1 inherits from C2)

c) C1 is an ancestor class of C2 (C2 indirectly inherits from C1)

d) C1 uses C2 (C1 references C2, include direct reference and indirect reference)

e) C1 contains C2

I. C1 contains C2 by value

II. C1 contains C2 by reference

2 Class to Method

a) Method M returns object of Class C

41

b) C implements method M

3. Class to Variable

a) V is an instance of Class C

c) V is a class variable of C

d) V is an instance variable of C

e) V is defined by class C

4. Method to Variable

a) V is a parameter for method M

b) V is a local variable in method M

c) V is imported by M (i.e. is a non-local variable used in M)

d) V is defined by M

5. Method to Method

a) Method M1 invokes method M2

b) Method M1 overrides M2

3.1.1.11 Types of Changes and Their Relationship

The section categorizes the different kinds of changes and their relationships. The changes can

be divided into syntactic changes and semantic changes. We focus on the syntactic change in

this research. The hierarchy of syntactic change is:

1 System level change

a) Add super class

b) Delete super class

c) Add sub class

d) Delete sub class

e) Delete an object pointer

f) Delete an object reference

42

g) Add an aggregated class

h) Delete an aggregated class

i) Change inheritance type

I. Change from public inheritance to private inheritance

II. Change from private inheritance to public inheritance

2 Class level change

a) Add member

b) Delete member

c) Define/Redefine member

d) Change member

I. Change member access scope

1) Change from public to private

2) Change from public to protected

3) Change from protected to public

4) Change from protected to private

5) Change from private to public

6) Change from private to protected

II. Change method

1) protocol change

• name change

• parameter change

• return type change

III. Change Data member

1) Add data declarations

(a) Delete data declarations

(b) Add data definitions

(c) Delete data definitions

(d) Change data declaration

43

• Change data type

• Change data name

(e) Change data definition

IV. Function implementation change

e) Add/delete an external data use

f) Add/delete an external data update

g) Add/delete/change a method call

h) Add/delete a sequential segment

i) Add/delete/change a branch/loop

j) Change a control sequence

k) Add/delete/change local data

l) Change a sequence segment

3.1.2 Object-Oriented Data Dependency Graph Theory

Traditionally, dependency analysis has been performed with so-called data dependency graphs,

unfortunately misnamed since the nodes of the graph really represent statements of the

program while the edges represent dependencies between statements. Thus, the graph makes no

reference to data. Data dependency graphs normally represent every statement of the program

with all of its dependencies [MOSE90].

In object-oriented designs, the emphasis is on what the program does to, data, instead of what

the program does. In order to put the emphasis on the data and the data relationships, we

introduce the Object-Oriented Data Dependency Graph (OODDG) to describe data

relationships in object-oriented systems. In an OODDG, the nodes represent data items, such

as classes, class members, variables and constants. The edges represent dependencies among

these data items.

Following are four definitions of graphs that describe object-oriented software.

44

1) Definition (Intra-Method Data Dependency Graph)

Intra-Method Data Dependency Graph (Intra-Method DDG) is a directed graph G = (N, E,

R, W). N is a set of nodes that represent symbols that include all the members of the method’s

container class, local and global variables, and global functions, parameters and return

variables of this method. E ⊆ (N × N) is the set of edges that describe the dependencies

between nodes. R is an attribute on E that assigns one of the contaminated type values (Clean,

Semi-Clean, Contaminated and Semi-Contaminated) to each edge. W, which quantitatively

represents the degree of the impact from the start node to end node, is a relation on E that

assigns a numeric weight to each edge.

An intra-method DDG is used to describe the data dependency among data elements inside a

method or function. It describes the types of the dependencies, and degree of impact among

these data elements. R on the edge describes the impact contaminate type of the starting node

to the end node. This graph can be used to calculate the impacted elements inside a method or

function when certain data elements in the function are changed.

2) Definition (Inter-Method Data Dependency Graph)

An inter-method data dependency graph (Inter-Method DDG) is a set of 4-tuples Θ = (Gi, ∑

vi, Ri, Wi), i = 1..k, where k is the number of intra-method DDGs in Θ. Gi is an Intra-Method

DDG and Ni is the node set of graph Gi. ∑ represents all the nodes in Θ, ∑ = N1 ∪ N2 ∪ … ∪

Nk. ∑vi represents the nodes in ∑ that are visible to Gi. Relation Ri: Ni È Ρ(∑vi) represents a

set of edges among the sub-graphs that maps a node in Ni to a set of nodes in P (∑vi). P (∑vi)

45

represents the power set, i.e., the set of all sets, of ∑vi. Wi is an attribute of the relation Ri that

assigns a numeric weight to Ri.

The Inter-Method Data Dependency Graph (Inter-Method DDG) describes the data

dependency relationships among different methods and functions. Ni is the set of all the eligible

variables in Gi. ∑vi is the set of symbols in the whole inter-graph that are accessible to Gi. The

accessibility depends on the relationships of those symbols to Gi. For example, all global

variables and global functions are accessible, the public and protected members of super

classes are accessible, and all the public members of any class inside the system are accessible.

This graph can be used to calculate the change dependency across the boundaries of different

methods.

3) Definition (Class Impact Weight Factor)

Class Impact Weight Factor is a numeric value used to express the impact level of one class to

another. It considers the factors of contaminate type and relationships among impacted classes.

Contaminate Type (Ct) describes the characteristics of the impact from one element to another.

Ct can be assigned to one of the four values: Clean, Semi-Contaminated, Semi-Clean, and

Contaminated. Clean is assigned the value 0, because it means the start node of the edge has no

impact on the end node. Semi-Contaminated is assigned the value 1, it means even though it is

contaminated it will not continue to propagate the contamination. Semi-Clean means that even

though the node is not impacted, it will propagate the contamination from its referenced set to

its referencing set; it is assigned the value of 2. Contaminated means the start node is

contaminated and it will propagate the contamination to elements that reference it.

Contaminated is assigned the highest value 3. These values are summarized in Table 1.

46

Table 1 Impact Power of Contaminate Type Values

Contaminate Type Impact Power (Value)

Clean 0

Semi-Clean 1

Semi-Contaminated 2

Contaminated 3

Object Relationship Type (Cr) describes the level of the impact of relationships among objects.

Cr can be assigned to one of the following values:

Table 2 Object Relationship Type Values

Object Relationship Impact Power (Value)

Use 1

Containment 2

Inheritance 4

Inheritance is assigned to the greatest impact power, with containment relationship in the

middle and use relationship the least, because we think the impact power of inheritance is

greater than the impact power of containment, and it is greater than the impact power of use.

Inheritance is considered to have the highest impact power because super class defines sub-

classes’ behavior. Any changes in the public and protected levels of the super class will impact

its sub classes. A containment relationship implies the use relationship with additional

constraints, like the life span of the contained object may be the same as that of the container

class. The contained classes’ constructors and destructors are always called by the container

class. So the impact power of containment is considered to be greater than that of the use

relationship. Since the coupling between inheritance is much higher, its impact power is

assigned a higher value than that of containment and use.

47

The class impact weight W is defined as

W = Ct + Cr

4) Definition (Object-Oriented System Dependency Graph)

Object-Oriented System Dependency Graph (OOSDG) is a graph Θ= {N, E, R, C, W}. N is

the set of nodes representing the classes. E = (N×N) is the set of edges connecting nodes that

represent the dependency relationships between the nodes. R, C and W are attributes of edges.

R is the edge label that assigns the relationships among object classes (inheritance,

containment, use) to each edge. C is the edge attribute that assigns the contaminate type

(Clean, Semi-Clean, Contaminated, Semi-Contaminated) to each edge. W is the class impact

weight factor that assigns the numeric class impact factor to each edge.

This graph describes the class level dependencies in object-oriented systems. It captures the

types of relationships among classes, the types of impacts and the numeric impact levels

between classes. It is used to calculate the change impact at the system level.

3.2 Calculate Reference Dependency

This section describes how to extract reference relationships among data items from different

types of statements. We describe the technique for primitive statement, if-else statements,

looping statements and switch statement. The method that contains the statements is defined as

the container method of those statements.

3.2.1 Primitive Statements

There are two kinds of primitive statements to consider: simple assignment and message

passing (procedure call).

48

• Assignment:

Variable x = Expression;

Variable x depends on all the variables, constants, objects and their members on the right hand

side of assignment. Those elements that are referenced in the expression are considered to be

belong to the definition set of x. x belongs to the reference set of each of those elements.

• For message passing (procedure call):

Variable x = object.method (P1, P2, …, Pn);

Both variable x and the method that contains this variable depend on the object on the right

hand side and all its parameters. So x and the container method of this statement belong to the

referencing set of object and Pi, i = 1..n.

3.2.2 Conditionals and Loops

• If-else statement

If (b) then statemen1 else statement2;

The container method of this statement references all the elements in b and in statement1 and

statement2. Since the value of b decides the execution path of the if-else statement, the

referencing set of all the data elements in b includes all the data elements in statement1 and

statement2.

• While/Repeat statement

While (b) then statements;

Repeat statements until (b)

49

The container method of the while and repeat statement references all the data elements in b

and data elements in the statements of the looping block. Since the value of b decides whether

statements in the loop are executed and how many times they are executed, the referencing sets

of all the data elements in b include all the data elements in the loop.

• Switch statement

switch (b)

{

 case CONST1: statement1; break;

 case CONST2: statement2; break;

 …

 case CONST n: statement n; break;

 default:

statement 0;

}

The container method of the switch statement references all the data elements in b and in

statements of different switch branches. Since the value of b decides which branch to execute,

the referencing sets of all the data elements in b include all the data elements in the statements

of all branches.

3.2.3 Method Processing and Parameter Passing

Method parameters and local variables play an important role in change propagation. When a

method is called, the actual parameter is used to substitute the formal parameter described in

the prototype.

Method_name@Q1,…Qk È R is used to express the signature of method. Q1 to Qk will be

substituted by the actual parameters A1 to Ak. If the actual parameters are changed, they will

impact other members if they are used in the body of the method. So Q1 to Qk are considered

to be the referencing set of A1 to Ak.

Ai ∈ ReferencingSet(Qi)

50

Any variables and methods that are used in the body of the method belong to the referencing

set of the current method. The formal parameters are not considered to be part of the

referencing set of the method unless it is actually used in the method body.

The life span of the local variable is limited to the body of the method or block. Within the

block, it can propagate the change from one class member to another one. For example,

member m1 of class C is impacted, there is a local variable v defined by m1, and there is

another member m2 defined by v. C::m1’s change will impact C::m2 because of v. Just as with

formal parameters, the declared local variables will not automatically belong to the referencing

set of the current method unless they are actually used, referenced or defined in the body.

3.2.4 Processing of Pointers and References

When the parameter passing is by value like C++, any changes to the formal parameter (Q)

inside the method body will not propagate back to the actual parameter (A) being passed in. So

Q belongs to the reference set of actual parameter A, but A is not considered to belong to the

reference set of Q.

When the parameter passing is by reference, or when the parameter passing is by value but the

parameter is passed as a pointer or reference, changes inside the method can be propagated

back to the actual parameter. So when an object is passed as a pointer or reference, the formal

parameter Q is considered to be the reference member of the actual parameter A, and the

actual parameter A is considered to be the reference set member of the formal parameter Q.

In summary, when parameters are passed by value:

Ai ∈ ReferencingSet(Qi)

When parameters are passed by reference or as pointers:

51

Ai ∈ ReferencingSet(Qi) ∩ Qi ∈ ReferencingSet(Ai)

Similarly, when a pointer is assigned to the address of another object, the dependency path is

bi-directional. It means:

P = &Object1;

P ∈ ReferencingSet(Object1) ∩ Object1 ∈ ReferencingSet(P)

When P = &Object2, P and Object2 set up the bi-directional dependency while the bi-

directional dependency between the P and Object1 is broken.

P ∈ ReferencingSet(Object2) ∩ Object2 ∈ ReferencingSet(P) ∩ P ∉
ReferencingSet(Object1) ∩ Object1 ∉ ReferencingSet(P)

The operations are:

ReferencingSet(Object1) = ReferencingSet(Object1) ∪ P

ReferencingSet(P) = ReferencingSet(P) ∪ Object1

ReferencingSet(Object2) = ReferencingSet(Object2) - P

ReferencingSet(P) = ReferencingSet(P) - Object2

3.2.5 Implementation Change

When the implementation details of a method/function are changed, but the interface and

semantics remain the same, the change will not propagate and impact other classes and class

members in the system. This type of change is called Semi-Clean.

3.3 Impact Models

We divide the types of impact into two dimensions: static and dynamic impact and syntactic

and semantic impact.

52

Static Dynamic

Semantic

Syntactic

Figure 5. Impact Model Dimension View

The syntactic impact is calculated purely by information extracted from the source code. This

information includes the data flow, the control flow and the calling hierarchy. In addition to

syntactic knowledge, semantic knowledge is necessary to find the probable ripple effects.

Semantic knowledge consists of programming knowledge and domain knowledge. Semantic

knowledge is more difficult to derive and more difficult to verify.

In software testing, debugging and maintenance, one is often interested in the following

question:

When can a change in the semantics of a program statement impact the execution behavior

of another statement?

This question is undecidable in general [PODG90]. Dependence analysis, like data flow

analysis, avoids problems of undecidability by trading precision for decidability. During

dependence analysis, programs are represented by def/use graphs, which contain limited

semantic information but are easily analyzed. Dependence analysis allows semantic questions

to be answered “approximately,” because a program’s dependencies partially determine its

semantic properties. See 0 for more detailed ideas on this subject.

53

Static impact is calculated according to static information obtained at compile time. The

calculated set will be bigger than the set calculated by run time information. For example, a

class in the method’s signature can be substituted by any of its subclasses at run time, but

which subclass cannot be known until run time. We have to approximate the result to count all

its subclasses’ effect.

While dynamic binding provides flexibility for object-oriented languages, it may also greatly

complicate the tracing of dependencies. When a message is sent to a variable holding an object,

the actual method implementation that will be called depends on the object’s class. Since

different implementations will establish different dependencies, static analysis will not always

be able to precisely identify the dependencies in the program.

There are four possible approaches to the problem of dynamic binding:

1. Perform a “worst case” analysis in which the possible effects of the message are taken to

be the union over all the relationships set up by any of the method implementations. This

method might be adequate for C++ programs that use the virtual directive sparingly; it will be

less satisfactory for systems such as Java in which every method is polymorphic.

2. Use dynamic analysis, in which the program is run for several test cases with probes

inserted to detect the real classes of the objects of interest. The problem is that the test cases

may not detect all the behaviors that the program is capable of exhibiting, and thus incorrect

conclusions may be drawn.

3. Allow human input to identify the possible classes of objects. Users can limit the scope of

a query to obtain much more focused results. In our research, we allow users to specify a list

of components that they are not interested in to cut down the scope.

54

4. It may be possible to analyze each message to reduce greatly the number of possible

classes for each object.

Dynamic impact is calculated by executing the program. Since we have more accurate

information at run time, such as what subclass is substituted for what base class, the

calculated sets are smaller. But the results are only related to their corresponding input cases.

The following graph shows the relations among the different sets. Max impact set is defined as

the full program. The max impact set contains the static impact set. The static impact set

contains the dynamic impact set. The dynamic impact set contains the minimum impact set.

Max Impact Set
(Whole System)

Static Impact Set

Dynamic Impact Set

Min Impact Set

Figure 6. Impact Set Venn Diagram

55

4 ALGORITHMS

In this chapter, we introduce five algorithms that work together to analyze the impact that a set

of proposed changes can have on the system. The algorithms check each class that has been

proposed to be changed, called the change-class, then check all the classes that are related to

the change-class, (such as subclasses or client classes), to see if the change-class can impact

them.

There are five separate routines for computing the change impact: TotalEffect (section 4.3

page 60), SetInit (section 4.3, page 60), FindEffectInClass (section 4.5, page 62),

FindEffectAmongClients (section 4.6, page 64), and FindEffectByInheritance (section 4.7.2,

page 71),. The call relationships are shown in Figure 7. The next four subsections describe the

algorithms in detail.

TotalEffect

SetInit FindEffectInClass FindEffectByInheritance FindEffectAmongClients

Figure 7. Call Relationships among Change Impact Analysis Algorithms

56

This research emphasizes the class and method level, even though statement level information

is extracted from the source. In general, object-oriented programs tend to be structured rather

differently than conventional programs. For many tasks, very short methods may be written

that simply “pass through” a message to another method with very little processing. Thus a

system may consist of a large number of very small modules rather than a relatively smaller

number of larger ones. So object and message level output is more useful in object-oriented

development. The method level dependencies indicated by the tool are closer to the software

developer/maintainer’s view of a system than statement or variable level dependencies. Another

reason to emphasize the object and its members is that the traditional structural analyses are

mainly focused on the statement level. There is already a fair amount of research in that area

while not enough work focuses on the specific characteristics of object-oriented software. If we

need to extend our work to the statement level, the only thing we need to do is integrate our

results with the traditional CFG and DFG techniques. In other words, apply the CFG and DFG

techniques to the statements inside the methods of classes, or global functions. After all, class

methods are simply functions; what has been said about functions applies to method as well.

4.1 Algorithms Description

One important aspect of impact analysis is how to specify a change that could be understood

by our algorithms. As defined in Chapter 3, a change is represented as a triplet <C, CM, CT>,

where C specifies the change-class, CM is C’s class member; and CT is the possible change

type. When engineers want to specify the proposed change, they need to specify which parts of

the system they are going to change by specifying a set of change criteria.

57

After change criteria have been specified, our algorithms calculate the change impact for each

criterion. Our tool converts the control flow graphs (CFGs) and data flow graphs (DFGs) of

the examined functions of the change-class to object-oriented data dependency graphs

(OODDGs). The algorithms will find all member functions and data members in the examined

software that could be impacted. According to the specified change criteria, the algorithms first

calculate the impact that changes could have inside the class. After calculating all the impacted

members in the impacted class, the algorithms examine the relationships among the objects in

the system. According to the characteristics of inheritance and encapsulation, the algorithms

calculate the change effects by following different types of relationships in the system. The

algorithms continue until no new impacted class or impacted class member could be found.

The result is the transitive closure of the change criteria.

Semantic knowledge of the analyzed system combined with syntax knowledge could be used to

make the change impact analysis more accurate. We categorize possible changes to an object-

oriented system and give each type of change an attribute according to how the change can

impact the rest of the system. The algorithms are optimized according to the change categories.

We have also developed an object-oriented metrics system to measure the change impact. The

algorithms are described in detail in our paper [LIOF96] and the technical report [LIOF96a].

The technical report [LIOF96b] expresses the algorithms in datalog rules.

A Typical Use of the Impact System

Assume that we want to calculate the impact of a set of change criteria <C, CM, CT>. First,

the Impacted Class Set (ICS) is initialized to the set of change-classes, and initializes the

impacted function member set of Ci (IFS (Ci)) and impacted data member set of Ci (IDS (Ci))

58

of each class in the ICS. For example, if class C is in the ICS, its data member f0 and method

m0 have been proposed to be changed, we have:

Step 1

ICS = {set of classes proposed to change}

IFS (c) = {m0}

IDS (c) = {f0}

Assume that at step n-1, IFSn-1(C) contains all the impacted function members in C, and IDSn-

1(C) contains all the impacted data members in C:

Step n

IFSn(c) = {m ∈ C | ∃ x∃ C’(m ∈ FREF (x) ∧ x ∈ IDS n-1 (c’))}

 ∪ {m ∈ C | ∃ f ∃ C’(m ∈ FREF (f) ∧ f ∈ IFS n-1 (C’))}

The above formula means that IFS(C) at step n is the union of two sets. The first set is

composed of all the function member m in C such that there is at least one variable x for which

m belongs to the reference set of x and x belongs to the IDS set at step n-1. The second set is

composed of all the function members, m, such that at least one function member n exists for

which m belongs to the reference set of n and n belongs to the impacted function set at step n-

1.

In other words, the above formula means the IFS of C contains all the function members that

reference any data members in IDSn-1, plus all the function members that reference any other

function members in IFSn-1.

Step n

IDS n(c) = {d ∈ C | ∃ x∃ C’(m ∈ DREF (x) ∧ x ∈ IDS n-1 (c’))}

 ∪ {d ∈ C | ∃ f ∃ C’(m ∈ DREF (f) ∧ f ∈ IFS n-1 (C’))}

The above formula means that IDS(C) at step n is the union of two data member sets. The first

set is composed of all the data members d in C such that there is at least one variable x for

59

which d belongs to the reference set of x and x belongs to the impacted data member set

calculated at step n-1. The second set is composed of all the data members, d, such that there is

at least one function member f for which d belongs to the reference set of f and f belongs to the

impacted function set of step n-1.

In other words, the above formula means the IDS of C contains all the data members that are

defined by any field in IDSn-1, plus all the data members that are defined by any member

functions in IFSn-1.

4.2 Inputs and Outputs of the Algorithms

Inputs:

• The legacy system

• The change criteria that users specify

Outputs:

• ICS, and IFS, IDS of each class in ICS

• A set of metrics that measure the impact

ICS

Impacted
Methods

Impacted
Data Fields

Impacted
Classes

1

n

n1 Impacted
Members

Inherited from

Contain by Reference

Contain by Value

Use

Figure 8. Impact Set Component Graph

60

The output of the algorithms is the Impacted Class Set (ICS), which contains a set of impacted

classes. Each class in the ICS contains one or more impacted class members. The class

members can be data members or function members. Users can also view a set of object-

oriented change impact metrics values developed in this research to measure the change impact

quantitatively.

4.3 Total Effect

The algorithm TotalEffect is the main algorithm that glues the other algorithms together.

TotalEffect initializes the ICS and the IFS and IDS of each class in ICS using SetInit ().

SetInit () also marks each class in the ICS as unchecked. TotalEffect picks an unchecked class

from the system, marks it checked, then calls the different subroutines to analyze the impact

caused by the different relationships among classes. FindEffectInClass(C) analyzes the impact

effects within the class, FindEffectByInheritance(C) analyzes the effects following the

inheritance hierarchy in the system, and FindEffectAmongClients(C) analyzes the effects in the

system according to encapsulation and the use (reference) relationship. During execution, if the

IFS or IDS of any checked class increases, the set is marked as unchecked again for further

examination.

Algorithm TotalEffect ()
Input: The set of changed classes and their changed methods and data members.
Output: The impacted classes and their methods, data members in the system.
BEGIN
 SetInit ();

 WHILE (ICS ≠ φ)

 BEGIN
 Pick one class from the ICS and mark it checked
 FindEffectInClass(C)
 FindEffectByInheritance(C)
 FindEffectAmongClients(C)
 ENDWHILE
 END TotalEffect

Figure 9. Total Effect Pseudo Code

61

• Initialization (SetInit)

SetInit initializes the ICS, IFS(C), and IDS(C) according to the change criteria that the user

specifies. The ICS is set to the change-classes in the criteria; and IFS(C) is set to the function

members in C that have been proposed to change. Similarly, IDS(C) is initialized to the data

members of C that have been proposed to change

Algorithm SetInit ()

BEGIN

 ICS = {the set of changed classes}

 Mark each class in the ICS unchecked

 FOR each class in the ICS

 BEGIN

 IFS[Ci] = {the set of function members changed in Ci }

 IDS[Ci] = {the set of data members changed in Ci }

 ENDFOR

END SetInit

Figure 10. Initialization Pseudo Code

4.4 Encapsulation

In traditional programming, the basic unit is a procedure. In object-oriented programming,

methods or member functions are the actions that can be performed on objects. They

manipulate and express the state of the object, define the interface to other classes and in many

ways are not logically independent.

For each class C, IFS[C] contains all the function members that could be impacted by the

specified changes. IDS[C] holds all the data members that could be impacted by the specified

changes. Since the only way to observe the state of an object or operate on an object is through

its public members, an object’s clients can only be directly impacted by the public members.

PIFS[C] contains all the public function members that could be impacted. PIDS[C] holds all

the public data members that could be impacted. PIFS[C] ⊆ IFS[C] and PIDS[C] ⊆ IDS[C].

62

Encapsulation is a way to separate the implementation of a data object from its specification.

An object does this by managing its own resources and limiting the visibility of what others

should know. An object publishes a public interface that defines how other objects or

applications can interact with it. An object also has a private component that implements the

methods. The object’s implementation is encapsulated -- that is, hidden from the public view.

In the presence of encapsulation, the only way to observe the state of an object is through its

interface (public methods). The class hides the properties of its instances to conceal the data

structure and the details of implementation. All the features of an object are usually hidden,

such that the only way the state can be examined or modified is by invoking part of the

interface formed by its public properties. The interface is a basis for a protocol that objects use

to communicate with each other by requesting an object to invoke one of its operations. Class

members inside the class can see all the properties within the class, so there is no scope

restriction in FindEffectInClass. Because of encapsulation, in FindEffectAmongClients,

methods or data members in a client class can only be impacted by public members of the

server class, and in FindEffectByInheritance, methods or data members in a subclass can only

be impacted by public or protected members of the parent class.

4.5 The Containment Relationship: FindEffectInClass

FindEffectInClass (C) calculates change impacts inside a class. It examines each class member

m (including function member and data member) in C that is not in the impacted member set

(IMS). If m references any methods in IFS (FREF (m) ∩ IFS (C) ≠ φ) or m references any

data members in IDS (DREF (m) ∩ IDS (C) ≠ φ); m could be impacted by the changes in IFS

and IDS. So it will be added to IMS and to PIMS if m is public.

63

This sounds reasonable, but unfortunately this calculation is not sufficient. Assume a class has

methods m1, m2, m3, m4, and m5, m1 and m2 are in IMS. m3 references m5 and m5

references m2, so m3 references m2 indirectly. Since m2 ∈ IMS, m3 should belong to IMS.

But when the algorithm is checking m3, m5 has not been checked yet, and m3 could not find

any reference in IMS set, so the algorithm thinks it is clean and fails to put it in IMS.

FindEffectInClass solves this problem by calculating the transitive closure of the impacted

member set. FindEffectInClass, a breadth-first search algorithm based on the δ-wavefront

algorithm [QUAD91], starts from the initial impacted class members, and iterates to find all of

the members that could be impacted by the members in IFS and IDS. In other words, it iterates

to find all of the nodes reachable from these initial nodes.

In this section, we use IMS(C) to specify the set that contains the class members of C (IMS[C]

= IFS[C] + IDS[C]). Current_IMS is used to specify the nodes found in each iteration. IMS

accumulates nodes found during different iterations of the algorithm. We could accept the

following simple approach. At the beginning of the kth iteration, Current_IMS holds the

impacted class members that could be impacted by the impacted member in the kth iteration;

the generated node is one arc away from those nodes in IMS (or k arcs away from the initial

nodes). The newly generated nodes, which form the new Current_IMS, are put into the IMS.

The iteration process continues until IMS does not change from one iteration to another. This

simple approach suffers a serious drawback when dealing with a graph that is not a list or tree.

This is because this version of algorithm has no memory. During an iteration, it may process

some nodes in the base graph, even through those nodes might have been encountered and

processed during some earlier iteration. This type of process is redundant since it does not add

any new nodes (or impacted members) to the ones already found in earlier iteration. We can

64

solve this problem by processing, at each iteration, only those nodes in Current_IMS that have

not been encountered during any previous iteration.

FindEffectInClass(C)

//Find the effect within the class if certain data members or methods have changed

Input: The IFS and IDS sets of C. They could come from initialization or as a result

 of a previous execution.

Output: New IFS and IDS in Class C. They include the original members plus

 any newly added impacted members

BEGIN

 FOR (each class member in C)

 REF[C] = MREF[C] + FREF[C]

 // Initialize current IMS

 Current_IMS[C] = IMS[C]

 WHILE (Current_IMS[C] ≠ φ)

 BEGIN

 Current_IMS = {m∈ C| ∃ x∃ C”, (m ∈ REF (x)) ∧ (x ∈
IMS[C’])}

 // Find the IMS created in current iteration

 Current_IMS = Current_IMS - IMS

 IMS = IMS ∪ Current_IMS

 END WHILE;

 PIMS = {m ∈ C | m ∈ IMS ∧ m is public}

 IFS = {f ∈ C | f ∈ IMS ∧ f is function member}

 IDS = {d ∈ C | d ∈ IDS ∧ d is data member}

 ENDFOR

END FindEffectInClass

Figure 11. FindEffectInClass Pseudo Code

4.6 The Use relationship: FindEffectAmongClients

If class A sends messages to class B, we say that class A is class B’s client, and B is A’s

server. Encapsulation builds a wall between a class and its clients. Because of encapsulation,

the clients of A can only access this class through its public members, which means its clients

can only be impacted by the PIFS and PIDS of the server. FindEffectAmongClients examines

each client class and puts any class member that references any member in the PIFS or PIDS

into their own IFS or IDS or into their PIMS and PIFS if they are public..

65

Each change-class is marked unchecked during the initialization. Unchecked classes are picked

by TotalEffect in the initial loop. We define OLDIFS and OLDIDS to be the two sets that

contain the IFS and IDS before FindEffectAmongClients starts. At the end, the algorithm

checks whether there are any new methods or data members that have been added to IFS or

IDS by comparing the IFS and IDS with the OLDIFS and OLDIDS. If there are new methods

or data members in a client class being impacted in this calculation iteration, it means these

newly added impacted members in the client class might influence more classes in the system.

This class needs to be checked again by the algorithms, so it is marked as unchecked waiting to

be picked again by the main loop in TotalEffect. FindEffectAmongClients is shown in Figure

12.

Algorithm FindEffectAmongClients (C0)
Input: The ICS, IMS of C0. They could come from initialization or
 as a result of a previous execution.
Output: The expanded sets: ICS, IMS, PIMS.
BEGIN
 FOR (each client class C that uses C0)
 BEGIN
 OLDIMS[C] = IMS[C]
 FOR each member m in C
 BEGIN

 IF (m ∉ IMS) ∧ ((REF (m) ∩ PIMS (C0) ≠ φ) ∨ (REF (m)

∩ PIDS (C0) ≠ φ))

 IMS(C) = IMS(C) ∪ {m}
 IF (m is public)

 PIMS(C) = PIMS(C) ∪ {m}
 ENDIF
 ENDFOR

 IF (OLDIMS[C] ≠ IMS[C])
 BEGIN
 Mark C unchecked

 ICS = ICS ∪ {C}
 ENDIF
 ENDFOR each class C that uses C0

END FindEffectAmongClients

Figure 12. FindEffectAmongClients pseudo code

66

4.7 The Inheritance Relationship: FindEffectByInheritance

Inheritance is the abstraction mechanism that allows developers to create new child classes --

known as subclasses or derived classes -- from existing parent classes. Different languages

accept different inheritance schemes (strict inheritance, subtyping, subclassing, etc.). Strict

inheritance is the simplest inheritance scheme; it keeps the exact behavior of its parent. The

inherited properties cannot be modified, and the derived class can only be redefined by adding

new properties. Subtyping is the most commonly used scheme. Subtyping allows the inherited

properties to be redefined when the parent’s operation is not appropriate for the subclass. In

subclassing, the derived class is not considered to be a specialization of the base class, but a

completely new abstraction that bases part of its behavior on part of another class. This

scheme is also called implementation inheritance. The derived class can therefore choose not

to inherit all the properties of its parent (sometimes called suppression). In this research, we

assume the language uses subtyping (as in C++ and Java). The algorithm can be easily

modified for other inheritance schemes.

4.7.1 Properties of Inheritance

Inheritance represents a hierarchy of abstractions, in which a subclass inherits from one or

more super classes. The child class shares the structure or behavior defined in its parent class.

The child class can express differences with its parent class by modifying and adding

properties. If the class c inherits from p, we express it as c::p. If the object is an instance of

class c, we express it as o:c. The signature of the method can be expressed as

Method_name@Q1, … , Qk È T, where Q1, … , Qk are parameters and T is the return type.

Kifer and Lausen [KIFE95] express inheritance in their frame logic:

67

Inheritance reflectivity:

I È p::p

Inheritance reflectivity says p can be its own parent.

Inheritance transitivity:

If I È p::q and IÈq::r then IÈp::r

Inheritance transitivity says that if p is a subclass of q and q is a subclass of r then p is a

subclass of r.

Inheritance acyclicity:

If I È p::q and I È q::p then I È p = q

Inheritance acyclicity says there is no cycle in the inheritance relationship except the

inheritance relationship among itself. In other words, if two classes inherit from each other,

they are the same class.

Inheritance Inclusion:

If I Èp:q and IÈ q::r then I È p : r

Inheritance Inclusion says that if p is an instance of q and q is a subclass of r then p is an

instance of r also.

Because of the inheritance, the signature of the method can have these properties:

Type inheritance:

If I È p [method@q1, … , q n È s] and I È r::p then I È r[method@q 1, … , q n È s]

Input restriction:

68

If I È p [method@q1, … , qi, … , qn È s] and I È q i

’ ::qi then I È [mehtod@q1, … ,
qi

’ , …, q n È s]

Output restriction:

If I È p [method@ q 1, … , qn È s] and I È r::s then I È [method@q 1, … , q n È r]

Type inheritance tells us that if r is a subclass of p, then the method r inherits the signature of

p’s method. But this does not mean r cannot modify the semantics of the method. R can

completely inherit the behavior of p, partially overwrite it or completely overwrite the original

method. Input restriction says if qi’ is a subclass of qi, then qi’ can appear at any place where qi

can in the signature. Output restriction says that if r is a subclass of s then the method that

returns s can return r as well.

Inheritance can be thought of as an incremental modification technique that combines a parent

P with a modifier M to get a resulting class R, R=P⊕M. The subclass designer specifies the

modifier, which may contain various types of attributes that alter the parent class to get the

resulting subclass. Although M transforms P into a new class R, M does not totally constrain

R. We must also consider the inheritance relation since it determines the effects of composing

the attributes of P and M and mapping them into R. The inheritance relation determines the

visibility, availability and format of P's attributes in R. Since inheritance is deterministic, rules

can be constructed to identify the availability and visibility of each attribute.

When a subclass redefines one of its parent's methods, it can either totally replace the method

or simply expand its functionality. The impact of the parent's method on this subclass will be

different depending on how the subclass expands the parent's method. If the subclass totally re-

implements its parent's method, the change in the parent's method will not impact the subclass.

If the subclass expands its parent's service based on the service the parent's method provides,

69

any change in the parent’s method could impact this subclass. Harrold and McGregor

[HARR92] proposed an attribute classification to describe the different types of attributes

according to their inheritance relationship. We extend their attributes classification by splitting

the redefine and virtual redefine into extended redefine, total redefine, virtual-extended

redefine, and virtual-total-redefine. As a result, methods in subclasses are divided into the

following extended categories:

• New attribute: A is an attribute that is defined in M but not in P, or A is a member

function attribute in M and P but has a different signature. In this case, A is bound to the

locally defined attribute in M. A is accessible within R and accessible outside R if A is public;

A is not accessible in P.

• Inherited attribute: A is defined in P but not in M. In this case, A is bound to the locally

defined attribute in P. A is accessible within R and accessible outside R if A is public; A is

accessible both within and outside P.

• Extended-redefined attribute: A is defined in both P and M with the same signature. The

A in M extends the functionality of A in P by using the services of A in P. In this case, A is

bound to the locally defined attribute in M. A in R is accessible inside R and if it is public,

outside R; A in R is not accessible in P.

• Total-redefined attribute: A is defined in both P and M with the same signature. The A in

M replaces the functionality of A in P by implementing the services without using the A in P.

In this case, A is bound to the locally defined attribute in M. A in R is accessible within R and

accessible outside R if A is public; A in R is not accessible in P.

70

• Virtual-new attribute: A is specified in M but its implementation may be incomplete in M

to allow later definitions or A is specified in M and P and its implementation may be

incomplete in P, but A’s signature differs in M and P. In this case, A is bound to the locally

defined attribute in M. A is accessible within R and if it is public, outside R; A is not

accessible in P.

• Virtual-inherited attribute: A is specified in P but its implementation may be incomplete in

P to allow later definition, and A is not defined in M. In this case, A is bound to the locally

defined attribute in P. A in R is accessible within R and if it is public, outside R; A in R is

accessible both inside and outside P.

• Virtual-extended-redefined attribute: A is specified in P but its implementation may be

incomplete in P to allow for later definition and A is defined in M with the same signature as A

in P. The A in M will extend the functionality of A in P by using the services of A in P in M’s

implementation. In this case, A is bound to the locally defined attribute in M. A in R is

accessible inside and if it is public, outside R; A in R is not accessible in P.

• Virtual-total-redefined attribute: A is specified in P but its implementation may be

incomplete in P to allow for later definition and A is defined in M with the same signature as

in P. The A in M will replace the functionality of A in P by implementing the services without

using the A in P. In this case, A is bound to the locally defined attribute in M. A in R is

accessible inside and if it is public, outside R; A in R is not accessible in P.

The inheritance relation determines visibility, availability and format of P’s attributes in R. A

language may support more than one inheritance mapping by allowing specification of a

parameter value to determine which mapping is used for a particular definition.

71

4.7.2 FindEffectByInheritance

This section analyzes how changes in an ICS propagate through its parent and subclasses by

inheritance and polymorphism. From the attribute categories above, we know that any change

in a child will not impact its parent because its parent cannot access the methods or data

members of its children. However, changes in a parent can impact its children. Smith and

Roberson [SMIT90] make the conservative claim that a change to a parent class can

potentially impact all descendants. We have observed that we can reduce our impacted set by a

detailed analysis of the type of inheritance. Now, we analyze the change impacts through the

inheritance categories, and find that there are many cases where a change will not effect

descendents.

• If the method or data member A in a child class is a new attribute, A is defined in M but

not in P, or the signatures of A in M and P are different. Since A is not accessible in P, the new

attribute in R will not impact A in P, but it can impact R’s children.

• If a method or data member A in a child class is an inherited attribute; A is locally bound

to P. In this situation, if A in P changes, A in R could be impacted.

• If the method or data member A in a child class is a total-redefined attribute, M redefines

A without using P’s version of A. So A’s change in P will not impact A in R.

• If a method or data member A in a child class is an extended-redefined attribute; A is

locally bound to P. In this situation, if A in P changes, A in R could be impacted.

72

• If the method or data member A in a child class is a virtual new attribute, A is defined in

M but not in P, or the signatures of A in M and P are different. Since A is not accessible in P,

the new attribute in R will not impact A in P. But it will impact R’s children.

• If a method or data member A in a child class is a virtual inherited attribute, A is locally

bound to P. In this situation, if A in P changes, A in R could be impacted. If A in R changes, A

in P will not be impacted, but P::A’s client could be potentially changed because of

polymorphism. (P::A means method A in P; details of this rule will be explained in the next

section under polymorphism.)

• If a method or data member A in a child class is an virtual total-redefined attribute, M

redefines A without using P's version of A, so A's change in P will not impact A in R. On the

other hand, if A in R changes, A in P will not be impacted, but P::A’s client could potentially

be impacted because of polymorphism.

• If a method or data member A in a child class is a virtual extended-redefined attribute; A is

locally bound to P. In this situation, if A in P changes, A in R could be impacted. If A in R

changes, A in P will not be impacted, but P::A’s client could be potentially impacted because

of polymorphism.

The following pseudo code shows the algorithm that finds the impacts of changes through

inheritance. FindEffectByInheritance (Cp) calls ForwardInheritanceTreeProcess (Cp) and

BackwardInheritanceTreeProcess (Cc). ForwardInheritanceTreeProcess (Cp) follows the

inheritance tree forward from Cp to all its child nodes and calculates the impact accordingly.

BackwardInheritanceTreeProcess (Cc) follows the inheritance tree backward from Cc to all its

ancestors and marks the status of the ancestor nodes.

73

FindEffectByInheritance (Cp)

BEGIN

 ForwardInheritanceTreeProcess (Cp); // Work Down the inheritance tree

 BackwardInheritanceTreeProcess (Cp); // Work up the inheritance tree

END FindEffectByInheritance

Figure 13. FindEffectByInheritance Pseudo Code

The following two figures presents the two algorithms ForwardInheritanceTreeProcess (Cp)

process and BackwardInheritanceTreeProcess (Cc). The CP passed to the

BackwardInheritanceTreeProcess has been noted as Cc in BackwardInheritanceTreeProcess for

easy reading because Cp in FindEffectByInheritance is served as child in

BackwardInheritanceTreeProcess.

ForwardInheritanceTreeProcess (Cp)

BEGIN
// Work down the inheritance tree

 FOR (each class Cc that inherits from Cp)

 FOR (each method mc in Cc)

 BEGIN

 CASE (inheritance type of mc)

 New:

 Virtual-New:

 Virtual-Totally-Redefined:

 BREAK
 Inherit:

 Extended-Redefined:

 Virtual-Inherit:

 Virtual-Extended-Redefined:

 IF (mp and mc have the same signature ∧ mp ∈ IFS(Cp))

 BEGIN

 IFS(Cc) = IFS(Cc) ∪ {mc}

 IF (mc is public)

 PIFS(Cc) = PIFS(Cc) ∪ {mc}

 ENDIF

 ENDIF

 BREAK
 Others:

 BREAK

 ENDCASE;

 // Handle reference/use relationships between

 // parent and child

 IF (mc ∉ IFS(Cc) ∧ ((DEF (mc) ∩ IFS(Cp) ≠ φ) ∨ (DEF (mc)

∩ IDS (Cp) ≠ φ))

 BEGIN

74

 IFS(C) = IFS(C) ∪ {mc}

 IF (mc is public)

 IFS(C) = IFS(C) ∪ {mc}

 ENDIF

 ENDIF

 ENDFOR // end of for each method

 FOR (each data member f in class Cc)

 IF (f ∉ IDS(Cc) ∧ ((DDEF (f) ∩ IDS(Cp) ≠ φ)

 ∨ (FDEF (f) ∩ IFS (Cp) ≠ φ))

 BEGIN

 IDS(C) = IDS(C) ∪ {f}

 IF (f is public)

 PIDS(C) = PIDS(C) ∪ {f}

 ENDIF

 ENDIF

 ENDFOR // end of each field loop

 ENDFOR // end of for each class loop

END //Forward Inheritance Tree Process

Figure 14. ForwardInheritanceTreeProcess(Cp)

BackwardInheritanceTreeProcess(Cc)

BEGIN

 // Work up the inheritance tree

 FOR (each parent Cp of Cc)

 FOR (each method mp in Cp)

 BEGIN

 CASE (inheritance type between mp and mc)

 Virtual-New;

 Virtual-Inherit:

 BREAK;

 Virtual-Total-Redefine:

 Virtual-Extended-Redefine:

 IF (mp and mc have the same signature ∧ mc ∈ IFS(Cc])

 BEGIN

 // Semi-Clean means the clients of this method could be impacted,

 // even this method itself could be clean.

 Mp.ContaminateType = Semi-Clean

 ENDIF

 Others:

 BREAK;

 ENDCASE

 ENDFOR // end of each mp in Cp

 ENDFOR // end of each parent of Cc

END // BackwardInheritanceTreeProcess

Figure 15. BackwardInheritanceTreeProcess (Cc)

75

• Polymorphism

Polymorphism allows one reference to denote instances of various classes. It is usually

constrained by inheritance. Polymorphism allows the same method to do different things,

depending on the class that implements it. For example, it lets two similar objects be viewed

through a common interface and allows subclasses to override an inherited method without

impacting the ancestor’s methods [ORFA96]. If the inheritance scheme is subtyping, the

denoted objects all have at least the properties of the root class of the hierarchy. Thus an object

belonging to a derived class could be substituted into any context in which an instance of the

base class appears, without causing a type error in any subsequent execution of the code.

Martin[MART95] calls this total polymorphism, as described by the Liskov Substitution

principle:

If for each object o1 of type S, there is an object o2 of type T such that for all
programs P defined in terms of T, the behavior of P is unchanged when o1 is
substituted for o2 then S is a subtype of T[MART95].

Less formally, the software can always pass a pointer or reference to a derived class to a

function that expects a pointer or reference to a parent class. Since polymorphic names can

denote objects of different classes, it is impossible to predict which class will be executed until

run time. This type of inheritance is also called strict inheritance and has the following

characteristics:

• Pre-conditions on a particular method in a class must be no stronger than those of the same

method in a parent class.

• Post-conditions on a particular method in a class must be no weaker than those on the

same method in a parent class.

76

• The invariant for a class must be a superset of the invariant for a parent’s class.

These properties are useful guiding principles, but there are no languages that enforce these

constraints. For example, when the inheritance type is total-redefine or virtual total-redefine,

the method in the subclass can totally rewrite the meaning of its parent’s method and break the

pre-conditions, post-conditions and its invariant. Especially when it is a virtual method, this

could cause the parent’s clients to malfunction if they expect the parent’s method to be

executed but get the subclass method instead.

Since an object belonging to a derived class could substitute into any context in which an

instance of the base class appears, the method of the subclass will be called instead of the base

class’s method, which is specified in the program at run time. So, the behavior or semantic

change in subclass can potentially change that base class’s clients. For example:

SubClass1 and SubClass2 are subclasses of class Base. Class A is class Base’s client (means

A uses Base). The method N in Class A references Base in its parameter list, for example, void

A::N (Base& b) means Method N in A takes a reference to Base called b as the parameter.

Base::M is virtual and SubClass1::M and SubClass2::M overwrites M in Base. (The

relationships are illustrated in the class diagram in Figure 16.) A::N takes Base as a parameter

and invokes b.M in N’s implementation. Since, at run time, we can substitute Subclass1 or

Subclass2 as Base to A::N, and when the M is virtual, the M of the subclass version could be

called instead of Base::M (), A::N will be impacted by Subclass1::M or SubClass2::M if they

are changed. This could happen when the inheritance type is Virtual-Total-Redefine or Virtual-

Extended-Redefine. When the inheritance type of the subclass’ method is Virtual-New, the

parent does not contain the protocol of this new method, and its clients cannot see it. It will not

77

impact the parent or the parent’s clients. When the inheritance type of the subclass’ method is

Virtual-Inheritance, by definition, it means there is no change to the parent’s method, thus the

parent’s method will not be impacted.

A
void N(Base& b);

Base
virtual void M();

SubClass1
virtual void M();

SubClass2
virtual void M();

x

1

x

1

x
1 Reference Set:

A.N, X.M2...

Reference Set:
Z.N, Y.M2...

x
1

x
1

 ...
b.M();
...

Inherited from

Contain by
Reference

Contain by Value

Use

Figure 16. Class Diagram of Inheritance Example

The algorithm fragment of inheritance in FindEffectByInheritance of Figure 13 shows this

logic.

 // Work up the inheritance tree

 FOR each parent Cp of Cc)

 FOR each method mp in Cp

 BEGIN

 CASE (inheritance type between mp and mc)

 Virtual-New;

 Virtual-Inherit:

 BREAK;

 Virtual-Total-Redefine:

 Virtual-Extended-Redefine:

 IF (mp and mc have the same signature ∧ mc ∈ IFS[Cc])

 BEGIN

78

 // Semi-Clean means the clients of this method could be impacted,

 // even this method itself could be clean.

 Mp.ContaminateType = Semi-Clean

 ENDIF

 Others:

 Break;

 ENDCASE

 ENDFOR // end of each mp in Cp

...

Following is the portion of the algorithm in the FindEffectAmongClients that handles

polymorphism.

FOR (all A.N in Referencing set of B::M)

 If (Base::M is Dirty ∨ (B::M is virtual ∧ any B::M is Semi-Clean)

 A.N is dirty

ENDFOR

...

This is integrated into FindEffectAmongClients in Figure 12 as follows:

FindEffectAmongClients (co)

Input: The ICS, IFS, and IDS for C. They could come from initialization or

 the result from previous execution.

Output: The expanded ICS, and the expanded sets: ICS, IFS, IDS, PIFS, and PIDS.

BEGIN

 FOR (each class C that uses C0)

 BEGIN

 OLDIMS[C] = IMS[C]

 FOR (each member m in C)

 BEGIN

 IF (m ∉ IMS) ∧ ((REF (m) ∩ PIFS (C0) ≠ φ) ∨ (REF (m)

∩ PIDS (C0) ≠ φ))

 IMS(c) = IMS(c) ∪ {m}

 IF (m is public)

 PIMS(c) = PIMS(c) ∪ {m}

 ENDIF

 // Find out the IMS caused by polymorphism

 IF (m ∉ IMS) ∧ (REF (m) ∩ Semi-PIMS (C0) ≠ φ)

 IMS(c) = IMS(c) ∪ {m}

 IF (m is public)

 PIMS(c) = PIMS(c) ∪ {m}

 ENDIF

 ENDFOR

 IF (OLDIMS[c] ≠ IMS[c])

 BEGIN

79

 Mark C unchecked

 ICS = ICS ∪ { c }

 ENDIF

 ENDFOR each class C that uses C0

END FindEffectAmongClients

Figure 17. New FindEffectAmongClients Pseudo Code

4.8 Algorithms Correctness Verification

Definition:

If A is the impact source, then class C is defined to be potentially impacted if one of the

following three conditions hold:

i) C ≡ A; C is A itself.

ii) C has a direct relationship R with A, and R is a relationship type that can propagate

change (expressed as ARC or A ÈC).

iii) C has a indirect relationship with A, (A R+ C), which means that there is a sequence of

class dependencies B1, B2, … , Bn, such that

A R B1 R B2 R B3 R … R Bn R C

ICS is the impacted class set generated by the algorithms.

Theorem:

Every potentially impacted class is included in the Impacted Class Set (ICS), if and only if

every class in the ICS is potentially impacted.

• Assumptions:

80

• We assume the analysis gets the correct dependency relationship among objects in the

system.

• Impact Dependency follows the transitivity rule: If A impacts B and B impacts C, then A

impacts C.

• A is used to express all the impacted entities in the system.

• ICS is the impacted class set calculated by the algorithms.

• Proof:

Every class in the ICS is potentially impacted È Every potentially impacted class is included

in the ICS

Assume there exists a potential impacted class C, which is C ∉ ICS.

If C is a potentially impacted class, there must exist some dependency between A and C.

Case 1: If A ≡ C, C is the impacted class, according to the algorithms C ∈ ICS. This conflicts

with the assumption.

Case 2: Class C is directly impacted by A, A ∈ ICS. According to the algorithms, C will be

included in the ICS, C ∈ ICS, which conflicts with the assumption.

Case 3: If Class C is indirectly impacted by A, and A ∈ ICS, then there is a relationship

transitive closure R+, A R+ C. That means there exists classes B1, B2, … , Bn, such that A È B1

È B2 È B3 È … È Bn È C, R is the relationship that will propagate the change impact.

Using induction, it is obvious that the algorithm will include C in ICS, (C ∈ ICS). It conflicts

with the assumption.

81

If C ∉ ICS, it means there is no dependency between the impact source A and C. Then C could

not be impacted, which also conflicts with the assumption.

So, in either case, C is a member of ICS, which contradicts our assumption. Proved.

Every potentially impacted class is included in the ICS È every class in the ICS is

potentially impacted.

Assume class C is a member in ICS, but class C is not potentially impacted.

Since A is the change source, C could not be impacted, meaning that A does not impact C,

directly or indirectly.

From the algorithm, for C to belong to ICS, there must either exist a series of classes B1, B2, … ,

Bn, such that A È B1 È B2 È B3 È … È Bn È C or C is directly impacted by A.

Case 1: If A ≡ C, and A is impacted, then C is impacted. This conflicts with the assumption.

Case 2: C has a direct relationship R with A, A is impacted, and R is the relationship that will

propagate impact. According to the algorithms, C will be impacted. This conflicts with the

assumption.

Case 3: Assume there exists such a series of B1, B2, … , Bn, such that

A È B1 È B2 È B3 È … È Bn È C

According to the transitivity rule of the impact dependency relationship, C is indirectly

impacted by A.

This also conflicts with the assumption.

Proved.

82

83

5 OBJECT-ORIENTED CHANGE IMPACT METRICS

A metric is a standard of measurement. It is used to judge the attributes of something being

measured, such as quality or complexity, in an objective manner. A measurement determines

the value of a metric for a particular object [LORE94]. Mills [MILL88] (as referenced by

Champeaux [CHAM97]) defines software metrics as something that “deals with the

measurements of the software product and the process by which it is developed.”

Formally, a metric is a function from a domain of software artifacts (e.g. use cases, inheritance

graphs, and classes), to a range of assessment values [CHAM97].

µ : {artifact domain} ÈR+

Metrics have been primarily used for two purposes: the prediction of defects and the prediction

of effort. These predictions are based on the simple notion that the more complex a piece of

software is, the more likely it is to contain defects and the longer it will take to build. The goal

of software metrics is the identification and measurement of the essential parameters that

impact software development. More specifically, metrics attempt to:

• Measure actual development costs for a particular time period, possibly qualified per type

of development activity

• Measure development fragments in order to predict or estimate future subsequent

development costs

84

• Measure quality aspects in order to predict or estimate subsequent development costs to

achieve acceptable product quality

• Measure development aspects to enhance a general awareness of “where we are and where

we are going”

Champeaux [CHAM97] gives several desirable characteristics of a metric:

• A metric is either elementary, in that it measures only a single well-defined aspect, or

alternatively, it is an aggregation of more elementary metrics within a definition of the

aggregation function.

• It is objective in that it does not depend on the judgement of a human user and can be

preferably expressed in a machine-executable algorithm.

• It can be applied at reasonable cost.

• It is intuitive.

• It is compositional; a metric applied to a composite artifact should be some kind of sum of

the metric applied to the components of the artifact.

• Its value domain is numeric and allows meaningful arithmetic operations.

There is a lot of research on software metrics [DEVA96][FENT91][KERN86]

[CHER91][SNEE95], and some research on object-oriented metrics [LORE94][CHID94]

[WHIT92] [CHAM97]. We have not seen any work on the metrics of object-oriented change

impact analysis.

The object-oriented change impact metrics developed in this research provide numeric views of

the effect of a change, which allows a maintainer to evaluate the effect of alternative changes

85

quantitatively. These metrics allow comparisons between alternative maintenance (and design)

decisions, and allows a maintenance engineer to monitor the effect of his or her actions on the

software structure. The correlation between the metric and the effort required to develop

software can let us estimate the effort required to implement a change.

5.1 Object-Oriented Change Impact Metric Description

This section describes the metrics to measure object-oriented software change impact. The

Number of Impacted Classes, Percentage of Impacted Classes, Number of Impacted

Methods, Average Number of Impacted Methods, Weighted Number of Impacted Members

and Weighted Average Number of Impacted Members are simple and intuitive metrics.

Method Impact Level (MIL), Class Impact Level (CIL), and System Impact Level (SIL) are

more elaborate and complex metrics that give more accurate estimate about the impact of the

change. These metrics are defined in the next seven subsections. Some of these formula used

constants to assign weights to different items in the formula. How to choose value for these

constants is discussed in the future work section.

5.1.1 Basic Object-oriented Change Impact Metrics

Formula 1 Number of Impacted Classes

The Number of Impacted Classes, I, is the number of impacted classes in the system. The

smaller the number is, the less impact the change can bring to the system. The lower bound of I

is the total number of classes involved in the change criteria, which would indicate the

proposed changes do not impact any other classes in the system. The upper bound of I is the

total number of classes in the system, which would mean the proposed changes impact the

whole system.

86

Formula 2 Percentage of Impacted Classes

The Percentage of Impacted Classes is the number of impacted classes in the system divided

by the number of classes in the system.

PercentageOfImpactedClasses =(I/C)*100

C – the total number of classes in the system

The smaller the result is, the less impact the changes can have on the system. Since the total

number of classes in the system is constant, the lower bound is the number of impacted classes

divided by the number of classes. The upper bound is 1, which would mean the number of

impacted classes in the system is equal to the total number of classes in the system.

Formula 3 Number of Impacted Members

Number of Impacted Members is the sum of all the impacted members of all the impacted

classes in the system.

NumberOfImpactedMembers = ∑
=

I

i
miI

1

Imi – the number of impacted members in class i

The lower bound of this metric is the number of impacted members involved in the initial

change criteria. The upper bound is the number of all the class members in the system.

Formula 4 Average Number of Impacted Members

Average Number of Impact Members is the sum of all the impacted members divided by the

sum of all the members in the system.

87

 AverageNumberOfImpactedMembers =
∑

∑
=

∑
=

=

=

C

i
i

I

i
mi

C

i
i M

I

M

erspactedMembNumberofIm

1

1

1

Mi – the number of members in class i

Formula 5 Weighted Number of Impacted Members

Weighted Number of Impacted Members is the sum of all the impacted members of all the

impacted classes in the system, weighted by impact powers.

WeightedNumberOfImpactedMembers = ∑∑
==

+
I

i
di

I

i
fi ICIC

1
2

1
1 **

Ifi – the number of impacted function members in class i

Idi – the number of impacted data members in class i

C1 and C2 are constants that assign different impact powers to function members and data

members. In an object-oriented system, when a data member or function member is changed,

the maintenance effort that can be applied to the method is much greater than the maintenance

effort that can be applied to each data member. It is the function members that we have to

change and retest to make sure they still perform the desired task requirements. When a data

member is changed, its effect will be taken into account by the algorithms and show up in the

function members that reference the impacted data member. So the constant that adjusts the

impact power of function members is much greater than the constant that adjusts the impact

power of data members (C1 > C2).

Formula 6 Average Weighted Number of Impacted Members

88

Average Weighted Number of Impact Members is the weighted number of impacted members

divided by the total number of members in the system.

WeightedNumberOfImpactedMembers =
∑
=

C

i
iM

sctedMembermberOfImpaWeightedNu

1

5.1.2 Derived Object-oriented Change Impact Metrics

This section describes metrics that measure the object-oriented system in more accurate and

elaborate ways. Method Impact Level (MIL) describes the method impact power. Class Impact

Level (CIL) describes the class impact power. System Impact Level (SIL) measures the impact

of a change on the whole system.

Formula 1 Method Impact Level (MIL)

In addition to simply accounting for the number of impacted methods, the size, complexity and

modifiability of the methods play an important role on the impact of change. The Method

Impact Level (MIL) measures the impact inside the method. It considers not only the impacted

variables and statements but also the size and complexity of the method itself.

MIL (method) = C1*Is +C2* Iv + C3*size (method) +C4* VG (method)

C1, C2, C3, and C4 are constants that assign weights to the various terms. Is is the number of

impacted statements in the method, Iv is the number of impacted variables in the method. Size

is a function that counts the token numbers or lines of code (LOC) in the method. VG is the

cyclomatic complexity of the control flow graph (CFG) of the method [McCa76].

VG (method) = (L –N +2)P

L = the number of edges in the CFG.

89

N = the number of nodes in the CFG.

P = the number of disconnected parts in the control flow graph.

The bigger the method is the harder it is to understand and modify it, so the size impacts the

modifiability of the method. VG is used to describe the control complexity side of the method;

some smaller programs could be more difficult to understand and modify because of their

complexity. In the above formula, C1*Is+C2*Iv describes the impacts on the method. The size

and complexity are included to account for the difficulty of modifying the method. C1, C2, C3,

and C4 are independent constants that are used to tune the metrics. The initial values can be got

by the characteristics of the elements. For example, if we think VG (method), the complexity of

the method, impacts the change impact more, we can assign bigger value to C4 compared with

C3. We need to run experiments to find the best suited value.

Formula 2 Class Impact Level (CIL)

Class Impact Level (CIL) measures the impact level inside the class. It considers the impacts

on methods and on variables, and the contributions of the size and the complexity of the class

to the impact level.

For the classes in the inheritance tree, there are two ways to measure the size of the class: by

considering only local members and by considering local members plus all the inherited

members. For the first case, CIL is:

)*()*()*(

)*())(*()*()*()(

765

4
1

32
1

1

iii

di

M

j
idi

I

j
ji

DCRCIC

MCMethdsizeCICMILCclassCIL
fifi

+++

+++= ∑∑
==

C1 through C7 are the independent constants to tune the impact powers of different factors.

90

Mi = the total number of members in class i

Mfi = the total number of function members in class i

Mdi = the total number of data members in class i

Imi = the number of impacted members in class i

Ifi = the number of impacted function members in class i

Idi = the number of impacted data members in class i

size (Methodj) = the size of member j

Ii = the depth of inheritance tree from root to class i

Ri = the number of classes that reference class i

Di = the number of classes referenced by (or defined by) class i

In the above formula, the first two terms, C1*∑ MIL+C2*Idi, measure how much impact the

class i has. The next two terms, C3*∑ size(method)+C4*Mdi, include the size of the method.

The final three terms, C5*Ii+C6*Ui+C7*Ri, measure the coupling and complexity of the class.

The depth of the inheritance tree (Ii) measures the number of parent classes from the root class

to class i. It is the number of classes we may have to understand in order to use a particular

method. The class referencing number (Ri) is the number of use and reference relationships

with other classes for the class i. It describes the number of classes we need to understand in

order to use a particular class. The referenced set (called definition set) number of a class (Di)

measures the number of other classes called by the methods of this class. It is defined as the

size of the definition set for the class, which consists of all the methods of the class and all the

methods of other classes called by the methods of the class.

91

When the size of the class includes the inherited members, the Class Impact Level is:

iiididi

M

j
i

erclass

i

V

j
di

I

j
ji

RCUCICMCMCMethdsizeC

berVisibleMemsizeCICMILCclassCIL

fi

mfi

*****)(*

)(***)(

98765
1

4

#sup

1 1
32

1
1

++++++

++=

∑

∑ ∑∑

=

= ==

In the above formula, Vm is the number of the visible members, which are public and protected

members of a specified class. The size of class i is the sum of all the sizes of the visible

members of its super classes plus the sum of the local members of the class i. The rest of the

parameters are the same as in the previous calculation of CIL.

Formula 3 Cyclomatic Complexity of Object-Oriented Data Dependency Graph

The cyclomatic complexity metrics can be used to measure the complexity of the object-

oriented data dependency graph.

VG (OODDG) = (L –N +2)P

L = the number of edges in the OODDG.

N = the number of nodes in the OODDG.

P = the number of disconnected parts in the OODDG.

Formula 4 System Impact Level (SIL)

System Impact Level (SIL) measures the impact at system level.

)(
1

OODDGVGCILSIL
Imi

j

+= ∑
=

92

System Impact level is the sum of all the class impact level plus the complexity of the system.

VG(OODDG) is the cyclomatic complexity of the object-oriented data dependency graph.

5.2 Metrics Properties

It is recommended that software metrics should posses certain properties to increase their

usefulness. It is desirable to have a formal set of criteria with which to evaluate proposed

metrics. Weyuker [WEYU88] has developed a formal list of desiderata for software metrics

and has evaluated a number of existing software metrics using these properties. Her desiderata

include notions of monotonicity, interaction, non-coarseness, non-uniqueness and permutation.

Most of the concrete metrics will, in fact, not satisfy one or more of these desired features.

Weyuker evaluated four complexity metrics against her properties: statement count, cyclomatic

number [McCa76], effort measure [HALS77], and data flow complexity [OVIE80]. The

conclusion of the study was that none of the four measures satisfied all nine properties, but that

data flow and effort measures performed best. Cherniavsky and Smith [CHER91] presented a

measure that satisfies all nine of the properties, but which has no practical utility in measuring

the complexity of a program. We consider the Weyuker criteria to be desirable although not

necessary for all acceptable metrics.

Property 1 (Noncoarseness):

(∃ P)(∃ Q)(|P|≠ |Q|)

This property is satisfied by nontrivial measures and states that there are at least two

programs with differing measures.

Property 2:

Let c be a non-negative number, then there are only finitely many programs of
complexity c.

93

This property states that there are only a finite number of programs of the same

complexity. This implies that there are no arbitrarily long programs of fixed measures.

Property 3:

(Nonuniqueness): There are distinct programs P and Q such that |P| = |Q|

This property again asserts that the measure is nontrivial, in that there are multiple

programs having the same measure.

Property 4 (Importance of Implementation):

(∃ P)(∃ Q)(P ≡ Q and |P|≠ |Q|)

This property expresses the condition that there are functionally equivalent programs with

different complexities.

Property 5 (Monotonicity):

(∀ P)(∀ Q)(|P|≤ |P; Q| and |Q|≤ |P; Q|)

P;Q means Q follows P. This property is satisfied for monotonic measures. It roughly

expresses that adding on to a program makes a more complex program.

Property 6a (Nonequivalence of Interaction):

(∃ P)(∃ Q)(∃ R)(|P|=|Q| and |P; R|≠ |Q; R|)

This property is a contextual property. Code occurring after different but equally complex

prologues may be differently impacted by the distinct prologues (at least regarding its

complexity). This is an inter-program property.

Property 6b(Nonequivalence of Interaction):

(∃ P)(∃ Q)(∃ R)(|P|=|Q| and |R; P|≠ |R; Q|)

94

This property is similar to the previous one except that the identical code occurs at the

beginning of the program.

Property 7 (Nonequivalence of Permutation):

There are program bodies P and Q such that Q is formed by permuting the order of
statements of P and |P|≠ |Q|.

This is again a contextual property, but more of an intra-program contextual property.

Thus changing the order of statements may change the complexity of the program.

Property 8:

If P is a renaming of Q, then |P| = |Q|.

This property states that uniformly changing variable names should not impact a

program’s complexity.

Property 9 (Interaction Increases Complexity):

(∃ P)(∃ Q)(|P|+|Q|< |P+Q|)

P+Q means P combined with Q. |P| is used to describe the complexity of P. This property

states that a combined program may be more complex than its constituent parts.

Our object-oriented change impact metrics mentioned in this section satisfies all of Weyuker’s

criteria except property 7, which does not apply.

It is not surprising to have two different programs to have different impact values. There are a

lot of factors in the system that causes two program to have different impact metrics, so the

impact metrics satisfy property 1. As described above, all the impact metrics have upper

bounds and lower bounds, so they satisfy property 2.

95

They satisfy property 3, because two different programs can have the same level of impact.

For example, two different systems have the same isolated class or function, and this class or

function is proposed as the change source. Under this situation, the only class or function being

impacted is the class or function shown in the change criteria itself. Because the class or the

function is the same in both systems, the impact values on both systems are the same.

As long as two programs have different implementation classes and relationships, they might

have different impacts even if their functionality are the same. The impact metrics satisfy

property 4.

These metrics satisfy property 5. Two programs connected together can only increase the

complexity, not decrease the amount of impact a change can have, so |P| ≤ |P; Q| and |Q| ≤ |P;

Q|.

For property 6a and 6b, if |P; R| and |Q; R| change the dependencies between P and Q, it will

satisfy 6a and b. Our algorithms focus on method level, so property 7 does not apply to our

metrics. Renaming will not change dependency, so our metrics satisfy property 8. For property

9, if P+Q adds more dependencies than before they are combined, |P+Q| will have more impact

than the two programs P and Q by themselves. Thus, these metrics satisfy property 9.

96

6 INFERENCE APPROACH

In this section, we discuss our algorithms from another point of view. The impact calculating

algorithms described in previous sections are expressed in data base deductive rules. The

advantage of this approach is that we can take advantage of the deductive capability of logic

database to let users compose their own questions to the system.

6.1 Datalog

Datalog is a logic-based data model. Its name hints that it is a version of Prolog suitable for

database systems. Prolog statements are composed of atomic formulas, which consist of a

predicate symbol applied, as if it were a procedure name, to arguments. These arguments may

later be applied to arguments just as we would call a function in an ordinary programming

language. Predicate symbols should be thought of as producing true or false as a result; i.e.,

they are Boolean-valued functions. Function symbols, on the other hand, may be thought of as

producing values of any type one wishes. Datalog does not allow function symbols in

arguments, but allows variables and constants as arguments of predicates. Atomic Formulas in

datalog are formally defined as predicate symbols with a list of arguments, p (A1, ..., An),

where p is a predicate symbol. An argument in datalog can be either a variable or a constant,

for example, employee (Name, “Software Department”, salary, address).

97

In the datalog model, a literal is either an atomic formula or a negated atomic formula; a

clause is a sum (logical or) of literals. A horn clause is a clause with at most one positive

literal. It is either:

• A single positive literal, p (X, Y), which we regard as a fact.

• One or more negative literals, with no positive literal, which is an integrity constraint, or

• A positive literal and one or more negative literals, which is a rule.

Logical statements, often called rules, will usually be expressed in the form of Horn Clauses.

In “B: - A1 & A2 & ... & An”, (read as if A1 and A2 and ... An are true, then B is true), B is the

head of the rule and the part after ”: - “is the body of the rule. The horn clause¬ p1 v...v

¬ pn v q is logically equivalent to p1∧ p2...pn --> q, or q :- p1, p2, … pn, which is a

statement of the form: “If p1 and p1 and ... pn are true, then q is true.” A datalog program is a

set of rules.

Logic rules are often used to express dependency relationships. To do so, we can draw a

dependency graph, whose nodes are the ordinary predicates. There is an arc from predicate p

to predicate q if there is a rule with a sub-goal whose predicate is p and with a head whose

predicate is q. A logic program is recursive if its dependency graph has one or more cycles. All

the predicates that are on one or more cycles are said to be recursive predicates. A logic

program with an acyclic dependency graph is nonrecursive.

Suppose we have a relation Parent (p, c), meaning p is c’s parent, and a relation ancestor (a,

c), meaning a is c’s ancestor. a is c’s ancestor if (1) a is c’s parent or (2) a is b’s ancestor and

b is c’s parent. Ancestor is the transitive closure of parent. In datalog logic rules, this is

expressed as:

98

Ancestor (p, c): - Parent (p, c).

Ancestor (a, c): - Ancestor (a, b), Parent (b, c).

This example is a recursive program, and its dependency graph is:

Ancestor

Parent

Figure 18. Dependency Graph

A predicate whose relation is stored in the database is called an extensional database (EDB).

A predicate defined by logical rules is called an intentional database (IDB).

6.1.1 Facts in the Algorithms

This section lists some of the facts that the system can store as defaults, and explains their

semantics. Users can add their own facts if needed. Following is a list of facts that describe the

entity relationship of the object-oriented system.

• Class Member Category

A class member can either be a method or a data member. If a class member is not a method it

can imply that it is a data member, and vice versa.

99

member (c, m) -- m is a member of class c.

method (c, m) -- m is a method of class c.

data_field (c, f) -- f is a data member of class c.

method (c, m): - member(c, m), ¬ data_field(c, m);

data_field (c, m): - member(c, m), ¬ method (c, m);

• Class Member Protection Level:

We assume 3 levels of class member protections. A member can be either public, protected, or

private. For example, we can also deduct the information of private(c, m) by other information.

If m is not public or protected, we can assume it is private, so we use this information

implicitly.

public(c, m) -- m is a public member of class c.

protected(c, m) -- m is a protected member of class c.

private(c, m) -- m is a private member of class c.

public(c, m): - member(c, m), ¬ protected(c, m), ¬ private(c, m);

protected(c, m): - member(c, m), ¬ public(c, m), ¬ private(c, m);

private(c, m): - member(c, m), ¬ protected(c, m), ¬ public(c, m);

• Inheritance Overwriting

children (p, c) -- c is the subclass of p.

100

p-overwrite (p, m, c, n) -- n in class c partially overwrites m in class p. It means n extends the

service of m by calling the original m.

c-overwrite (p, m, c, n) -- n in class c completely overwrites m in class p.

inherit (p, m, c, n) -- n in class c completely inherits the behavior of m in p.

Methods in children’s classes can overwrite the methods in parents’ classes to have different

behavior. The children’s method can totally rewrite the parent’s method, expand the parent’s

method by adding some operations to the original method or inherit all the service of the

parent’s method without any change. inherit (p, m, c, n) is true if n in class c completely

inherits the behavior of m in p. p-overwrite(p, m, c, n) is true if n in class c partially overwrites

m in p by using m’s service from p. c-overwrite(p, m, c, n) is true if the method in a child class

completely redefines the behavior of the same method in its parent; any change to this method

of the parent will not impact the corresponding method of the child. From the characteristics of

inheritance, the parent does not depend on the children. So any change in a child will not

impact the parent. In the default system, we only store the facts and rules that relate to the

change impact of the system. For example, when a method in a child completely overwrites the

parent’s method, a change to the parent will not impact the child. So the system will not

initially store the relationship between the method of the children and the method of the parent.

Users can add their own facts and rules if needed.

Following is an example of inherit and p-overwrite. Class C is a subclass of class P. Class P

has virtual methods method_1, method_2, and method_3. C has virtual methods method_1 and

method_2.

class P {

public:

 virtual void method_1(int x, int y);

101

 virtual void method_2();

 virtual void method_3();

private:

 ...

}

class C : public class P {

public:

 virtual void method_1(int x, int y);

 virtual void method_2();

private:

 ...

}

void C::method_1(int x, int y)

{

 out<<“Totally rewrite the method_1 of p”;

 ...

}

void C::method_2()

{

 P::method_2();

 out<<“Add my own stuff here.”

 ...

}

Figure 19. Inheritance Example

In class C, method_2 is a partial redefinition of parent’s method_2, so p-overwrite (P,

method_2, C, method_2) is true in the above example, while method_3 in class C inherits from

P.

• Facts entered by user:

IICS (c) -- initial impacted class set.

IIMS (c, m) -- initial impacted member set of c.

IIFS (c, f) -- initial impacted function member set of c.

IIDS (c, f) -- initial impacted data member set of c.

IICS(C) is the initial impacted class set, as specified by a user. IIMS(C, m) is the initial

impacted member set of C, as specified by a user. IIFS(C, f) is the initial impacted function

102

member set of C that the users specify. IIDS(C, f) is the initial impacted data member set of C

that the users specify.

6.1.2 Rules

In this section, we describe some of the default rules to calculate change impacts of an object-

oriented system and explain the semantic meanings of these rules. Users can expand or

customize the system and algorithms by adding or removing rules from the system. For

example, we define 3 levels of member and instance protections, public, protected, and

private. Some people view Java as having four levels of protection, public, protected, private,

and package. To extend the algorithm to take care of this fourth level of protection, It is

necessary to add one extra fact, package(c, m) and associated corresponding rules.

6.1.2.1 Reference Set and Definition Set

The Reference set of class member m includes all those variables that reference m directly or

indirectly. For example, the fact that class c2’s member m2 references class c1’s member m1

can be represented as ref (c1, m1, c2, m2). Class c2’s member m2 directly references class

c1’s member m1 if there is an edge from c2’s m2 to c1’s m1 in the dependency graph (this can

be expressed as direct-ref (c1, m1, c2, m2)).

ref (c1, m1, c2, m2) :- direct-ref(c1, m1, c2, m2)

ref (c1, m1, c3, m3) :- ref(c1, m1, c2, m2) direct_ref(c2, m2, c3, m3)

ref (c1, m1, c2, m2) :- direct-ref (c1, m1, c2, m2) says that if c2::m2 is a member of c1::m1‘s

direct reference set, then we can say c2::m2 is also a member of c1::m1’s reference set.

ref (c1, m1, c3, m3) :- ref (c1, m1, c2, m2), direct_ref(c2, m2, c3, m3) says that if c2::m2

belongs to c1::m1’s reference set, and c3::m3 belongs to c2::m2’s reference set, then c3::m3

belongs to c1::m1’s reference set.

103

Following is an example of a method m in C that references method n and data member y in C:

void c1::m() {

c2 vc2;

...

c1::n();

x = c1::m2() + vo2.y;

...

}

Figure 20. Method m references method n and data member y in C1

In the above example, ref (c1, m, c1, n), ref (c1, m, c1, m2), and ref (c1, m, c2, y) are true

because m reference n, m2, and y as part of its implementation. Here is another example of a

data member x that references method m and data member y in c1.

...

c1 obj1;

c2 obj2;

obj2.x = obj1.m + obj1.y;

...

Figure 21. Data member x in c1 references method m and data member y in c1

In this example, ref (c2, x, c1, m) and ref (c2, x, c1, y) are true because c2’s x references c1’s

m and y in its definition.

6.1.2.2 Inside the class

A class member defined in a class can access everything inside that class. A member could be

impacted if it references any other members in the class that have already been impacted

1) member(c, f) :- method (c, f)

2) member(c, d) :- data_field(c, d)

3) IFS(c, f) :- IFS(c, m), method(c, f), ref(c, f, c, m)

4) IFS(c, f) :- IDS(c, d), method(c, f), ref(c, f, c, d)

5) IDS(c, d) :- IFS(c, n), data_field(c, m), ref(c, d, c, n)

6) IDS(c, d) :- IDS(c, x), data_field(c, m), ref(c, d, c, x)

Rule number one and number two say that method and data member are class members. Rule

number three means f is an impacted function member of class c if method f in c references

104

member m in c, and m has been impacted. The fourth rule means f is an impacted function

member of class c if f in c references the data member d in c, and d has been impacted. The

same rule holds for IDS. The fifth rule means d is an impacted data member of c if d

references method m and m has been impacted. The sixth rule means d is an impacted member

of c if d references data member x in c and x has been impacted.

6.1.2.3 Inheritance

If a class c is a child class of class parent, and method m in parent and method m in c have the

same signature, there are several rules for m in c related to m in parent:

• Each method in class c could inherit the method in class parent without change. In this

situation, any change in method m will impact the m of subclass c.

IFS(c, m) :- ICS(parent), children(parent, c), method(c, m), inherit(parent, m, c, m),
IFS(parent, m)

The above rule says if the parent is an impacted class, c is a subclass of the parent, m in c

inherits the m of the parent without change, and if m in the parent is impacted, then m in c

could also be impacted.

• The m in subclass c can expand the service of its parent by using the service of its parent

and adding its own functions. In this situation, any changes in m of parent will impact m in

subclass c also.

IFS(c, m) :- ICS(parent), children(parent, c), method(c, m), p-overwrite(parent, m, c,
m), IFS(parent, m)

The above rule says if a parent is an impacted class, c is a subclass of the parent, m in c

partially overwrites the m of parent, and if m in the parent is impacted, then m in c could also

be impacted.

105

• If m in a subclass totally redefines m without using the service of m in the parent, then any

change in the m of the parent will not impact the m in c.

Any member in a subclass can access any public or protected parent member, according to the

definition of the public and protected member. If the parent member referenced happen to be

impacted, these methods or data members will also be impacted. The following eight rules

encode this fact.

1) IFS(c, m) :- ICS(parent), children(parent, c), method(c, m), ref(parent, x, c, m),
IFS(parent, x), public(parent, x)

The above rule means if the parent is an impacted class, c is a subclass of parent, method m of

c references the public function member x of parent and x is impacted, then m in c could be

impacted.

2) IFS(c, m) :- ICS(parent), children(parent, c), method(c, m), ref(parent, x, c, m),
IFS(parent, x), protected(parent, x)

The above rule means if the parent is an impacted class, c is a subclass of parent, method m of

c references the protected function member x of parent, and x is impacted, then m in c could be

impacted.

3) IFS(c, m) :- ICS(parent), children(parent, c), method(c, m), ref(parent, n, c, m),
IDS(parent, n), public(parent, n)

The above rule means if the parent is an impacted class, c is a subclass of parent, method m of

c references the public data member n of parent, and n is impacted, then m in c could be

impacted.

4) IFS(c, m) :- ICS (parent), children(parent, c), method(c, m), ref(parent, n, c,
m), IDS(parent, n), protected(parent, n)

106

The above rule means if the parent is an impacted class, c is a subclass of parent, method m of

c references the protected data member n of parent, and n is impacted, then m in c could be

impacted.

5) IDS(c, d) :- ICS (parent), children(parent, c), data_field(c, d), ref(parent, x,
c, d), IFS(parent, x), public(parent, x)

This rule means if the parent is an impacted class, c is a subclass of parent, data member d of

c references the public function member x of parent, and x is impacted, then d in c could be

impacted.

6) IDS(c, d) :- ICS (parent), children(parent, c), data_field(c, d), ref(parent, x,
c, d), IFS(parent, x), protected(parent, x)

This rule means if the parent is an impacted class, c is a subclass of parent, data member d of

c references the protected function member x of parent, and x is impacted, then d in c could be

impacted.

7) IDS(c, d) :- ICS (parent), children(parent, c), data_field(c, d), ref(parent, m,
c, d), IDS(parent, m), public(parent, m)

This rule means if the parent is an impacted class, c is a subclass of parent, data member d of

c references the public data member x of parent, and x is impacted, then d in c could be

impacted.

8) IDS(c, d) :- ICS (parent), children(parent, c), data_field(c, d), ref(parent, m,
c, d), IDS(parent, m), protected(parent, m)

This rule means if the parent is an impacted class, c is a subclass of parent, data member d of

c references the protected member x of parent, and x is impacted, then f in c could be impacted.

6.1.2.4 Use Relationship

If an impacted method or data member in c0 is public, any other class can access it and can

potentially become impacted. The following six rules are used.

107

1)PIFS(c, m) :- IFS(c, m), public(c, m)

This rule says that if m is a public method of c and m is impacted, then m is a public impacted

method.

2)PIDS(c, f) :- IDS(c, f), public(c, f)

This rule says that if f is a public data member of c and f is impacted, then f is a public

impacted data member.

3) IFS(c, m) :- client (c0, c), method(c, m), ref(c0, n, c, m), PIFS(c0, n)

This rule says if c is a client of c0, c’s method m references c0’s method n and n is a public

impacted method of c0, then m could be impacted.

4) IFS(c, m) :- client (c0, c), method(c, m), ref(c0, f, c, m), PIDS(c0, f)

This rule says if c is a client of c0, c’s method m references c0’s data member f and f is a public

impacted data member of c0, then m could be impacted.

5) IDS(c, f) :- client (c0, c), data_field(c, f), ref(c0, n, c, f), PIFS(c0, n)

This rule says if c is a client of c0, c’s data member f references c0’s method n and n is a public

impacted method of c0, then f could be impacted.

6) IDS(c, f) :- client (c0, c), data_field(c, f), ref(c0, x, c, f), PIDS(c0, x)

This rule says if c is a client of c0, c’s data member f references c0’s data member x and x is a

public impacted data member of c0, then f could be impacted.

6.1.2.5 Impacted Class Set

If a class contains any impacted member, the class itself is considered impacted and belongs to

the ICS.

ICS(c) :- IICS(c)

108

ICS(c) :- IFS(c, f)

ICS(c) :- IDS(c, d)

6.1.3 User Composed Queries

One of the advantages of using datalog to model the algorithm is we can expand the original

application domain from change impact to all sorts of interesting questions that can be

expressed by datalog queries. For example, to express the query: “Find all the impacted classes

that are children of c0,” we can use:

C_ICS(c) :- ICS(c), children(c0, c)

To express the query “Find all the classes which are not impacted” we can use:

Clean_Class (c) :- NOT ICS(c)

To express the query “Find the impacted classes that have the fewest impacted methods," we

can use:

IFS_Count(c, m, cnt) :- IFS(c, m), cnt = 1

IFS_Count(c, m, cnt) :- IFS_Count(c, m, cnt), IFS(c, n), cnt = cnt + 1

MIN_IFS(c, m, min(<cnt>)) :- IFS_Count(c, m, cnt)

To express the query, “Find the impacted classes that have the most impacted methods," we

can use:

MAX_IFS(c, m, max(<cnt>)) :- IFS_Count(c, m, cnt).

109

7 PROOF-OF-CONCEPT EXPERIMENTAL SYSTEM

This chapter describes the structure and design of the proof-of-concept system called Change

Impact Analysis Tool (ChAT). Section 7.1 describes the environment and the context of ChAT.

Section 7.2 outlines the architecture and high level design of the tool. Section 7.3 presents the

empirical results used to verify the algorithms.

7.1 System Context

ChAT is implemented in C++ and Java, and runs on multiple platforms. We have tried it on

Solaris 5.4 and NT platform. There are three major parts in ChAT: Parser, Analyzer, and

Viewer. The parser is extended from the gnu software g++ that is written in yacc, lex and C,

which is composed of roughly 445000 lines of yacc, lex and C code and 6600 lines of C++

code to interpret the tree node of g++ and transfer it to the information format the analyzer

needs. The implementation difficult in this phase lies in understanding the complicated

structures and implementation details. Analyzer consists of 2300 lines of Java code. Viewer is

written in Java JFC, it is about 2200 lines of Java code.

ChAT provides a convenient environment for users. The legacy programs can be compiled,

analyzed and viewed without leaving the environment. Classes in the system are shown in a

tree hierarchy. When ChAT compiles a program, it extracts information for later analysis.

After a user specifies the changes by choosing the different class members or classes in the

110

class tree, ChAT will calculate the impact of the change and display the impacted classes and

members.

7.2 Architecture

There are three major sub-systems in ChAT: information extractor, impact analyzer, and

impact viewer. Information extractor extracts information the tool needs from the source, (it

could be source code, documentation, or output of other case tools) and stores them in the

information repository. Impact analyzer gets information it needs from the information

repository, and calculates the change impact according to the user’s change criteria. The

results are passed to impact viewer for displaying and analyzing.

Figure 22 shows the analysis process.

Source
Code

Impact Analyzer

Information
Extractor

Information
Repository

(CFG, DFG PDG...)

Impact Viewer

Document

Design Case
Tools

Figure 22. Component Connection Graph

111

The target of ChAT is object-oriented software written in C++. ChAT could be extended to

handle software written in other languages like Java and Small Talk by using a different

information extractor. Information extractor can also be expanded to extract information from

other information sources like document and other case tools. If the analysis target is a design

document, the information extractor could be a set of application programming interferences

(APIs) that work with the case tool to extract the relationships of the objects described in the

document. The current implementation only analyzes source code.

The framework of ChAT (shown in

Figure 23) connects the different components of the architecture. Although the tool created for

this research only handles C++, the tool is flexible enough to handle different languages, accept

different algorithms, and handle new requirements as the system evolves by plugging in

different components into the framework as long as these components follow the interface of

the framework.

C++
Parser

Concrete
components

to choose from

Set
Analysis
Engine

Datalog
Inference
Engine

Java
Parser

Graph
Analysis
Engine

Matrix
Analyzer
Engine

I

Information
Repository

Informati
on

Extractor

Case
Tool
Info.

Extract
or

Analy
zer

Figure 23. Framework

112

7.2.1 Information Extractor

The information repository stores representations of the software and relationships among the

entities in the system, and policies of the analysis technique. It is independent of where the

information comes from, and can receive information from the parser, design documents, or

any other sources. The information extractor collects information and saves it in the

information repository. It could be a parser of any language that parses programs into

meaningful information and stores them into the information repository, or it could be a design

case tool, which can get information from the design documents and store them into

information repository. The framework can work with parsers for different languages if these

parsers produce information that the framework understands.

Abstract
Information
Extractor

Parser Case Tool
Interface

C++ Parser Eiffel Parser Java Parser

Inheritance

A

A

A Abstract Class

Figure 24. Information Collector Hierarchy

113

7.2.2 Impact Analyzer

Analyzer defines the interface for the analysis techniques. As long as we keep the analyzer

interface the same, changing the analysis technique will not impact the framework. Other

possible analyzers include an analyzer that calculates change impacts by set operations, an

analyzer that uses deductive database rules, an analyzer that calculates change impacts by

graph theory, or an analyzer that calculates change impacts by a propagation matrix (as

illustrated in Figure 25). ChAT is implemented using the set operation approach. The inference

approach is discussed in chapter 0. Other implementation approaches of the algorithms are left

for future work.

Analyzer

Matrix Analysis
Engine

Graph Analysis
Engine

Set Analysis
Engine

Datalog Inference
Engine

Inherited from

Contain by Reference

Contain by Value

Use

Figure 25. Analyzer Class Hierarchy.

The class diagram in Figure 26 describes the static structure of the analyzer. Class

EffectFinder is responsible for the top-level control of the impact calculating algorithms. Its

data members include _total_class_set, which holds the information for all the classes in the

system, and _impacted_class_set, which stands for a set of impacted classes. _total_class_set

and _impacted_class_set are a set of objects, which are instances of ClassInfo. ClassInfo

114

contains information about a specific class. It contains a set of ClassMemberInfo classes,

which describes the generic information of its class members. MethodInfo and DataFieldInfo

are subclasses of ClassMemberInfo. MethodInfo contains method-specific information and

operations. DataFieldInfo contains data member specific information and operations.

MethodInfo contains a parameter information list, and a local variable information list. Each

ClassMemberInfo contains a client-referencing dictionary that contains all the members that

references the current member. Each parameter information and local variable information

class also inherit from the ClassMemberInfo class, so a client-referencing dictionary can take

any class member as well as parameters and local variables uniformly. Global functions and

global variables are considered to be the methods and data members of a global class, allowing

them to be treated the same as other class members.

EffectFinder ClassInfo ClassMemberInfo

MethodInfo
DataFieldInfo

ClientReferenceDict
<Client, MemberSet?

ParameterListInfo

Local Variable
ListInfo

Inherited from

Contain by
Reference

Contain by Value

Use

Figure 26. ChAT Analyzer Class Diagram

115

7.2.3 Viewer

Maintainers need some way to sort out the components and perceive the overall architecture of

the system. A high level understanding will give a maintainer a framework to help make sense

of the more detailed information acquired as specific maintenance tasks are undertaken. A

calling hierarchy is a useful tool for understanding systems designed using functional

decomposition approaches in which the main packaging unit is the processing module. In such

systems, the top level “main module” will likely be a good place to start in system

understanding and, if the modules subordinate to it are reasonably cohesive, examining them

may give a quick overview of system functions. But in object-oriented programs, the calling

hierarchy is a hierarchy of methods, which has several disadvantages. First, the dynamic

binding problem makes the hierarchy difficult to compute. Second, there may be no real

“main” method in the system. This is a fact about object-oriented that beginners tend to find

disconcerting. Finally, a hierarchy of methods loses sight of the grouping of methods in

objects, which is presumably the most important aspect of the design.

An obvious understanding aid would be the object class hierarchy, but because it groups

objects with similar methods, it fails to show how the objects combine to provide the different

functional capabilities of the program. One possible high-level viewer would be a display of

the class diagram. The result is a graph rather than hierarchy. This is clearer when there are

relatively few classes in the system. When the system contains a large number of classes, the

graph becomes very difficult to understand. In general, graphs are notoriously more difficult to

display and comprehend than trees.

The prototype tool ChAT presents the results in five types of display: all class tree view,

impact only tree view, change input table, member impact table, and class impact table. The

116

all class tree view shows the hierarchy of all the classes in the system. Each class node

includes a member view node, a children classes node, and a client classes node. Member

view node contains all the members of that class. Children classes node displays all its sub-

classes and client classes node contains all the classes that reference this class. Classes and

members picked by the user are displayed in magenta and times roman font (initial change

mode), the impacted classes and their members are displayed in red and arial black font

(impacted mode), and the not impacted ones are displayed in blue and courier font (clean

mode)1. Impact only tree view is similar to all class tree view, but instead of showing all the

classes and their class members, it only displays the impacted classes and their impacted

members. This figure allows users to concentrate on analyzing the impacted parts of the

system. Member impact table lists all the impacted class members and their member impact

level. Class impact table lists all the impacted classes and related metrics such as number of

impacted members in the class, average number of impact members in the class and the class

impact level. The change input table displays only initial change classes that are specified by

the user.

1 Fonts are added to express the node states, for readers to view clearly in normal print out.

117

7.3 Empirical Results

This section demonstrates, by a set of examples, how the technique presented in this research

can help developers keep track of change impacts in their software. There are five subsections

in this section. Each subsection presents an example that is designed to capture the different

relationships in object-oriented software. Some of the examples put more emphasis on one kind

of relationship while others combine different relationships together to simulate a real world

problem. Section 7.3.1 presents an example explaining how changes propagate inside the class

when there are no dependency relationship among class members. Section 7.3.2 gives a similar

example but with a cyclic dependency relationship among class members. Section 7.3.3 shows

how the algorithms handle the use and containment relationships among classes through an

example. Section 7.3.4’s example helps us understand how the changes propagate through

inheritance and how polymorphism plays a role in the change propagation. Section 7.4 applies

ChAT to some modules of a commercial product, and analyzes the change impacts among

these modules when changes are invoked from different modules.

7.3.1 Change Propagation Inside Classes

This section uses a simple example to explain how changes propagate inside the class among

class members. This example has only one class with an acyclic dependency relationship

among its class members.

/* The example tests propagation inside the class */

class ClassA {

public:

 int A_meth1();

 int A_meth2() {

 …

 _A_field2 = A_meth1();

 …

 _A_field1 = _A_field2 + _A_field3 * 8.0;

 …

118

 }

 int A_meth3();

private:

 float _A_field1;

 int _A_field2;

 int _A_field3;

};

ClassA has six class members, A_meth1(), A_meth2(), A_meth3(), _A_field1, _A_field2, and

_A_field3. As shown in Figure 27, Method A_meth2() references _A_field1, _A_field2,

_A_field3, and A_meth1(), data member _A_field1 is defined by both data member _A_field2

and _A_field3, and data member _A_field2 is defined by A_meth1().

ClassA::_A_field1

ClassA::A_meth2()

ClassA::A_meth1()ClassA::_A_field2

ClassA::_A_field3

Figure 27. Class Member Dependencies in Example 7.3.1

This acyclic dependency relationship means the change propagation goes in one direction. For

example, if _A_field1 is changed it will impact A_meth2(), but A_meth2()’s change will not

impact _ A_field1.

119

Figure 28 through Figure 31 show the results yielded when A_meth1() in ClassA is specified

as the initial change class member.

The tree in Figure 28 shows all the members in ClassA with A_meth1() in initial change mode,

A_meth2(), _A_field1 and _A_field2 in impacted mode, and other not impacted members in

clean mode. The metrics result box shows that there are 4 impacted method numbers in this

example.

Initial change mode

Affected mode

Clean mode

Figure 28. All Class Tree View in Example 7.3.1

120

Figure 29, the impact only class view, displays only the impacted classes and their impacted

class members with A_meth1() in initial change mode and A_meth2(), _A_field2 and _A_field1

in impacted mode.

Figure 29. Impact Only Tree View in Example 7.3.1

121

Figure 30, the impact table, displays the impacted classes and their impacted class members in

a table. The table shows ClassA::A_meth1(), ClassA::A_meth2(), ClassA::_A_field1, and

ClassA::_A_field2 are impacted, and their impact level are 24, 12, 3, and 3. The average

impacted method number of this example is 0.5, which means half of the members in this

example are impacted (as shown in metrics result box.)

Figure 30. The Impact Table in Example 7.3.1

122

Figure 31, the class impact table, shows the impacted classes and their related class level

change impact metrics. The table shows ClassA is the impacted class. Its number of impacted

members is 4, its average number of impacted member is 0.5, and its class impact level is 42.

The metrics result box shows the system impact level is 42. Because ClassA is the only class

in this example, the system impact level is equal to ClassA’s class impact level.

Figure 31. The Class Impact Table in Example 7.3.1

123

Users can review the initial change classes and the initial change class members in the input

table. Figure 32 shows the initial impacted class member is ClassA::A_meth1.

Figure 32. Input Table in Example 7.3.1

124

7.3.2 Change Propagation Inside a Class with Recursive Relationships

This section demonstrates how the algorithms handle recursive dependencies among the

members of the same class. ClassA (presented in the previous section) is modified to contain a

recursive (cyclic) dependency relationship among its members. Figure 33 shows the recursive

dependency relationship: A_meth1() references A_meth2(), A_meth2() references A_meth3(),

A_meth3() uses _A_field1, and _A_field1 is defined by A_meth1().

ClassA::meth_2()

ClassA::meth_1()

ClassA::meth_3()

ClassA::_field_1

Figure 33. The recursive dependency in Example 7.3.2

When _A_field1 is specified to be changed, it will impact A_meth2(), A_meth3() and

_A_field1. A change to any member in this dependency cycle could potentially impact all other

members. Figure 34 through Figure 37 show the yielded results when _A_field1 in ClassA is

changed.

125

The tree in Figure 34 shows all the members in ClassA with _A_field1 in initial change mode,

A_meth1(), A_meth2(), and A_meth3() in impacted mode. It shows in the metrics result box

that there are 4 impacted members in this example.

Figure 34. All Class Tree View in Example 7.3.2

126

Figure 35, the impact only class view, displays only the impacted classes and their impacted

class members with _A_field1 in initial change mode, A_meth1(), A_meth2(), and A_meth3()

in impacted mode, and other not impacted members in clean mode. Its metrics result box shows

that the average impacted method numbers in this example is 0.5, which means half the class

members are impacted by the proposed change.

Figure 35. Impact Only Tree View in Example 7.3.2

127

Figure 36, the impact table, displays the impacted classes and their impacted class members in

a table. The table shows that ClassA::A_meth3(), ClassA::A_meth2(), ClassA A_meth1(), and

ClassA::_A_field1 are impacted, and their impact level are 35, 24, 12, and 3. The metrics

result box indicates that the system level impact is 74.

Figure 36. Impact Table of Example 7.3.2

128

Figure 37, the class impact table, shows the impacted classes and the related class level change

impact metrics. The table lists ClassA as the impacted class. ClassA’s number of impacted

members is 4, the average number of impacted member is 0.5, and the class impact level is 74.

The metrics result box shows the system impact level is 74. Because ClassA is the only class

in this example, the system impact level is equal to the class impact level of ClassA.

Figure 37. Class Impact Table of Example 7.3.2

129

Users can review the initial change classes and the initial change class members in the input

table. Figure 38 shows the initial impacted class member is ClassA::_A_field1

Figure 38. Input Table in Example 7.3.2

130

7.3.3 Change Propagation among Use and Containment Relationships

This section exhibits how ChAT handles use and containment relationships. The header files

are show in Figure 39, and Figure 40 shows the class diagram of this example.

/* Example to test the propagation among use and containment relationships */

class ClassA {

public:

void A_meth1() { … A_meth2(); … _A_bclass->B_meth1(); … }

int A_meth2();

int A_meth3();

private:

 ClassB* _A_bclass;

};

class ClassB {

public:

 int B_meth1(ClassD& d, ClassC* c) {

 int x;

 if (c->C_meth1())

 x = d.D_meth1();

 ….

 }

 int B_meth2(ClassD& d) { …; d.D_meth2(); … }

 int B_meth3(ClassC& c) {…; c.C_meth2(); … }

};

class ClassC {

public:

 int C_meth1(ClassA& aparam) { … aparam.A_meth2(); … }

 int C_meth2();

};

class ClassD {

public:

 int D_meth1();

private:

 int D_field1;

};

Figure 39. Example 7.3.3 header files

131

ClassA
public:

void A_meth1()
int A_meth2()
int A_meth3()

private:
ClassB* _aBClass

ClassB
public:

 int B_meth1(ClassD& d,
ClassC* c);

 int B_meth2(ClassD& d);
 int B_meth3(ClassC& c);

ClassC
pubilc:

 int C_meth1(ClassA&);
 int C_meth2();

ClassD
public:

 int D_meth1();
private:

 int D_field1;Contain by Value

Use

Figure 40. Example 7.3.3 Class Diagram

There are four classes in Figure 40, ClassA, ClassB, ClassC, and ClassD. ClassA has

A_meth1(), A_meth2(), A_meth3(), and a private field _A_bclass pointing to ClassB. ClassB

has B_meth1(), B_meth2(), and B_meth3(). ClassC has C_meth1 and C_meth2, and ClassD

has D_meth1 and D_field1.

As shown in Figure 40, ClassA contains ClassB as one of its field members, and ClassB

references ClassC and ClassD. In turn, ClassC references ClassA.

Figure 41 displays the dependencies at the class member level. As indicated in the figure,

ClassA::A_meth1() references ClassA::A_meth2() and ClassB::B_meth1(),

ClassB::B_meth1() references ClassC::C_meth1() and ClassD::D_meth1(),

ClassB::B_meth2() references ClassD::D_meth1(), ClassB::meth3() references

ClassC::C_meth1(), and ClassC::C_meth1() references ClassA::A_meth2().

132

ClassA::_A_bclass

ClassA::A_meth1()

ClassC::C_meth1()

ClassB::B_meth1()ClassA::A_meth2() ClassB::B_meth2()

ClassD::D_meth1()ClassA::A_meth3()

ClassB::B_meth3()

ClassC::C_meth2()

Figure 41. Class Member Dependencies of Example 7.3.3

 If we choose to change D_meth1() of ClassD, ClassD::D_meth1() will impact

ClassB::B_meth1() and ClassB::B_meth2(). The impact to ClassB::B_meth1() will in turn

impact ClassA::meth1(). The following four figures show the result.

The tree in Figure 42 shows all the classes in the example, and all the members in each class.

ClassD::D_meth1 is shown in initial change mode, and ClassB::B_meth1(),

ClassB::meth_2(), and ClassA::A_meth1() are shown in impacted mode. All the other items

are shown in normal mode. The metrics result box shows that the percentage of impacted

classes in this example is 75%.

133

Figure 42. All Class Tree View of Example 7.3.3

134

The tree in Figure 43 shows only the impacted classes and their impacted members.

ClassD::D_meth1 is shown in initial change mode, and ClassA::A_meth1(),

ClassB::B_meth1() and ClassB::meth_2() are shown in impacted mode. The metrics result

box shows that the number of impacted classes in this example is 3. ClassC is not shown in

this tree since it is not impacted.

Figure 43. Impact Only Tree View of Example 7.3.3

135

Figure 44, the impact table, displays the impacted classes and their impacted class members in

a table. The table shows that ClassD::D_meth1(), ClassB::B_meth2(), ClassB::B_meth1(),

and ClassA_meth1 are impacted, and their impact level are 45, 67, 45, and 26. The metrics

result shows that the number of impacted members in this example is 4.

Figure 44. Impact Table of Example 7.3.3

136

Figure 45, the class impact table, shows the impacted classes and the related class level change

impact metrics. The figure shows ClassD, ClassB and ClassA are the impacted classes. The

class related metrics, such as number of impacted members in each class, the average number

of impacted members, the class impact level are listed in the table. The metrics result box

shows that the average number of impacted members is 0.211.

Figure 45. Class Impact Table of Example 7.3.3

137

Users can review the initial change classes and the initial change class members in the input

table. Figure 46 shows the initial impacted class member is ClassD::D_meth1. The metrics

result box in this figure shows that the system impacted level caused by ClassD::D_meth1 is

183.

Figure 46. Input Table of Example 7.3.3

138

7.3.4 Change Propagation by Inheritance, Use and Containment

Relationships

This section demonstrates how changes propagate in an inheritance relationship, and how

polymorphism impacts the change propagation. The class headers are shows in Figure 47, and

Figure 48 shows the class diagram of this example.

/* ===

 * The example tests the change propagation in inheritance and use

 * relationships. It demonstrates how inheritance and polymorphism impacts

 * the change propagation.

 ===*/

/* ClassA contains ClassB */

class ClassA {

public:

 void A_meth1();

 int A_meth2();

 int A_meth3();

private:

 ClassB* _A_bclass;

};

/*

 * ClassB inherits from ClassA and overwrites A_meth1() in ClassA by

 * referencing A_meth1() in A.

 */

class ClassB : public ClassA {

public:

 void A_meth1() {

 //...

 // Reference the A_meth1 in the parent class

 ClassA::A_meth1();

 //...

 }

 virtual int B_meth2();

 int B_meth3(ClassC& c);

};

139

/*

 * ClassC inherits ClassA, but does not overwrite any methods in ClassA,

 * C_meth2 references ClassB’s virtual function B_meth2 ().

 */

class ClassC : public ClassA {

public:

 int C_meth1(ClassA& aparam);

 int C_meth2(ClassB& b) {

 //...

 b.B_meth2();

 //...

 }

};

/*

 * ClassD inherits from ClassB, and overwrites its virtual function B_meth2().

 */

class ClassD : public ClassB {

public:

 int D_meth1();

 virtual int B_meth2() {

 //...

 ClassB::B_meth2();

 //...

 }

private:

 int D_field1;

};

/*

 * ClassE inherits ClassB, and overwrites the virtual function B_meth2().

 */

class ClassE : public ClassB {

public:

 int E_meth1();

 virtual int B_meth2() {

 //...

 ClassB::B_meth2();

 //...

 }

private:

 int E_field1;

};

Figure 47. Inheritance Relationship Sample Code

140

ClassA
public:

void A_meth1();
int A_meth2();
int A_meth3();

private:
ClassB* _aBClass;

ClassB
public:

void A_meth1();
 int B_meth1();

 virtual int B_meth2();
 int B_meth3(ClassC& c);

ClassC
pubilc:

 int C_meth1(ClassA&);
int C_meth2(ClassB&);

ClassD
public:

virtual int B_meth2();
 int D_meth1();

private:
 int D_field1;

Inherited from

Use

ClassE
public:

virtual int B_meth2();
 int E_meth1();

private:
 int E_field1;

Figure 48. Class Diagram of Example 7.3.4

Figure 48 shows the relationship at the class level: ClassA is the parent of ClassB and ClassC.

ClassB is the parent of ClassD and ClassE. ClassC uses ClassB.

At the class member level, ClassB overwrites ClassA’s A_meth1() by reusing

ClassA::A_meth1()’s service. Any change in ClassA::A_meth1() will impact

ClassB::A_meth1(). Since A_meth1() is not virtual, changes in ClassB::A_meth1() will not

impact ClassA. ClassD and ClassE overwrite the virtual function B_meth2() of ClassB and

reuse ClassB::B_meth2()’s service. ClassC::C_meth2() uses ClassB::B_meth2(). Since

ClassD and ClassE are ClassB’s children and overwrite ClassB’s B_meth2(), a change to

141

ClassB::B_meth2() will impact B_meth2() in ClassE and ClassD. Because ClassC uses

ClassB in ClassC::C_meth2(ClassB& b), b can be substituted at run time by a reference to an

object of ClassB and an object of any class that inherits from ClassB. b.B_meth2() could refer

to any B_meth2() that comes from any subclass of ClassB. So, if the B_meth2() in ClassD or

ClassE are changed, they could impact the client class of ClassB, ClassC. Figure 49 shows the

member dependencies in this example

ClassC::C_meth2() ClassB::B_meth2()

ClassE::B_meth2()

ClassD::B_meth2()

ClassB::A_meth1()

ClassA::A_meth1()

Figure 49. Class Member Dependencies in Example 7.3.4

If we choose B_meth2() in ClassB to be the initially changed class member, the results of

ChAT are shown in Figure 50 through Figure 53.

The tree in Figure 50 shows all the classes in the example, and all the members in each class.

ClassB::B_meth2() is shown in initial change mode, and ClassC::C_meth2(),

ClassD::B_meth2(), and ClassE::B_meth2() are shown in impacted mode. All the other items

142

are shown in normal mode. The metrics result box shows that the number of impacted classes

in this example is 4.

Figure 50. All Class Tree View of Example 7.3.4

143

The tree in Figure 51 shows only the impacted classes and their impacted members in the

example. ClassB::B_meth2 is shown in initial change mode, while ClassC::C_meth2(),

ClassD::B_meth2() and ClassE::B_meth2() are shown in impacted mode. The metrics result

box shows that the number of impacted classes in this example is 4. ClassA is not shown in

this tree since it is not impacted.

Figure 51. Impact Only Class Tree View in Example 7.3.4

144

Figure 52, the impact table, displays the impacted classes and their impacted class members in

a table. The table shows that ClassE::B_meth2(), ClassD::B_meth2(), ClassC::C_meth2(),

and ClassB::B_meth2() are impacted, and their impact level are 56, 23, 34, and 34. The

metrics result shows that the percentage of impacted members in this example is 80%.

Figure 52. Impact Table of Example 7.3.4

145

Figure 53, the class impact table, shows the impacted classes and the related class level change

impact metrics. The figure shows ClassE, ClassD, ClassC and ClassB are the impacted

classes. The class related metrics, such as number of impacted members, the average number

of impacted members, and the class impact level are listed in the table. The metrics result box

shows the system impact level is 147.

Figure 53. Class Impact Table of Example 7.3.4

146

Users can review the initial change classes and the initial change class members in the input

table. Figure 54 shows that the initial impacted class member is ClassD::D_meth1. The

metrics result box in this figure shows that the average number of impact member is 0.16.

Figure 54. Input Table of Example 7.3.4

147

7.4 A Case Study From a Commercial Industry Environment

To demonstrate realistic applicability of this tool, we applied ChAT to LCC International’s

Golf product, a wireless frequency planning tool. Document, notification, and graphic are

three major modules in Golf. The notification module, with 20 classes and 2,624 lines of code,

provides a system wide mechanism for the propagation of information among classes and

functions. The document module, with 48 classes and 10,000 lines of code, provides basic

functionality to manage multiple layers of data. The graphic module, with 63 classes and

16,884 lines of code, provides the drawing capability.

Users can view more than one kind of data at the same time. For example, terrain elevations

are drawn as one layer of data to express the height of the terrain in the covered area, while

highway layer is the layer to draw highways in that area. Users can overlay the highway on top

of terrain. There are other kinds of data such as building data, morphology data, and the signal

strength covering that area etc. Users can add more layers to the view, remove layers from the

view, and shuffle the order of layers. Whenever an action is triggered by the users, the

document module will use the notification module to send out the corresponding notification to

all listeners that are registered for that kind of action. All the listeners will do their respective

work after receiving the notification, such as change the user interface status or update the

graphic view. Instead of accessing the document directly, the graphic module is one of its

listeners. Whenever the graphic class gets a notification, it performs the drawing. For example,

when a user presses the load terrain button, Golf will create an icon to represent the loaded

terrain on the screen, and draw the terrain in different colors according to their heights. When

the load terrain button is pressed, instead of directly calling the icon view object to create the

icon and calling the graphic object to draw the terrain layer, the button just sends out a load

148

terrain notification. When the icon view object that is responsible for creating the terrain icon

receives the notification, it creates the terrain layer icon. When the graphic object that is

responsible for drawing receives the notification, it draws the terrain layer on the view. This

design isolates the different tasks in different modules and objects to minimize the coupling

between different objects. Ignoring the detailed design information, we focus on the

relationships among the interface classes of these modules because it is the interfaces that will

impact classes in other modules. To understand the relationships among these modules better,

we need to know the interface classes in each of these three modules.

7.4.1.1 Notification Module

The interface classes of the notification modules, Interest, Notification, Notifier, and Receiver,

are the classes that are accessible to classes outside of the module. Changes to these classes

tend to impact the classes in other modules more heavily.

LNotifier
void AddReceiver(LReciever&);

void RemoveReciever(LReceiver&)
Bool HasReceiver();

Notify(LNotifidation&)
 virtual void Register(LInterest*,

LABSFunctor*);
 virtual void DeRegister(LInterest*);

LAbsReceiver
void AddInterest(LInterest&, LABSFunctor);

void RemoveInterest(LInterest&)
void RemoveInterestWrapper(LInterest&,

LABSFunctor&);
Bool HasInterest();

A

InterestNotification

Figure 55. Class Diagram of Notification Module

• Interest identifies an event or action.

149

• Notification conveys news of actions to receivers. When a sender wants to propagate an

action, it uses the appropriate interest, and possibly additional specific data, to create a

notification. Clients use notifications to communicate with each other.

• Notifier is the action dispatcher. Senders use the notifier to send out notification to

receivers that have registered.

• Receivers are the action listeners, they get notified whenever the action they have

registered for happens.

7.4.1.2 Document Module

The interface classes of the document module are DocLayer, DocPage, and Document.

Document holds a list of DocPages. DocPage holds a list of DocLayer. Figure 56 displays the

class diagram of this module.

DocLayer DocPage

Document

Figure 56. Document Module Class Diagram

150

• A DocLayer is the super class of all concrete data layers, for example, terrain layer,

highway layer.

• A DocPage owns a queue of DocLayers, and is responsible for adding, removing, and

shuffling the order of these layers. Whenever a DocLayer is added, removed or shuffled, a

notification is sent.

• A Document holds a list of DocPages. It is responsible for adding and removing document

pages.

7.4.1.3 The Graphic Module

Receiver

GraphicLayer
 void handleLayerAdded (LNotification&);

 void handleLayerRemoved (LNotification&);
 void handlePageAdded (LNotification&);

 void handlePageRemoved (LNotification&);
 void handleLayerShuffled (LNotification&)};

Figure 57. Class Diagram of Graphic Module

The graphic module is responsible for the graphic viewing of the document layer. Class

GraphicLayer is a sub-class of Receiver. Whenever the document module performs an action,

the notifier will invoke the corresponding handler from GraphicLayer.

151

7.4.1.4 Example One: Change in the Notification Module

Since the document and graphic modules use the notification to communicate, changes in the

notification interface will heavily impact the other two. Document uses LNotification to send

notifications, graphic module uses LNotification to get specific information while it is handling

the notification. So, if we change the LNotification::_interest, the classes in both document

and graphic modules will be impacted. Figure 58 through Figure 61 shows the yielded results

when LNotification::_interest is changed.

The tree in Figure 58 shows all the classes in the example, and all the members in each class.

LNotification::_interest is shown in initial change mode, and class Document, DocPage,

DocLayer, and GraphicLayer are shown in impacted mode. The not impacted items are shown

in normal mode. The metrics result box shows that the number of impacted classes in this

example is 5.

 Figure 58. Example 7.4.1.4 All Class Tree View

152

Figure 59, the impact only class view, displays only the impacted classes and their impacted

class members. Lnotification::_interest is shown in initial change mode, and classes

Document, DocPage, DocLayer, and GraphicLayer are shown in impacted mode. The metrics

result box shows that the percentage of impacted classes in this example is 41%.

Figure 59. Example 7.4.1.4 Impact Only Class Tree View

153

Figure 60, the impact table, displays the impacted classes and their impacted class members in

a table. Each line contains the impacted class name, impacted member name, and the impact

level of that impacted member. The metrics result box shows that the number of impacted

members is 33.

Figure 60. Example 7.4.1.4 Member Impact Table

154

Figure 61, the class impact table, lists the impacted classes and the related class level change

impact metrics. This table shows that DocPage, Document, GraphicLayer, DocLayer, and

Lnotification are the impacted classes. The related change impact metrics are listed for each

impacted class. The metrics result box shows that the average number of impacted members is

0.186.

Figure 61. Example 7.4.1.4 Class Impact Table

155

Users can review the initial change classes and the initial change class members in the input

table. Figure 62 shows that the initial impacted class member is Lnotification::_interest. The

metrics result box shows that the system level impact caused by the LNotification::_interest

change is 243.

Figure 62. Input Table of Example 7.4.1.4

156

7.4.1.5 Example Two: Change in the Document Module

Since the document holds the data the graphic layer needs, we might think there are a lot of

dependencies between these two modules. But, since these two modules communicate through

the notification, the coupling between these two modules is very weak. For example, when

AddPage() in Document is changed, the following figures show that there is no effect on the

graphic and notification modules. It means whenever the classes in the document module are

changed, the classes in the graphic module are not impacted. Conversely, whenever the classes

in the graphic module are changed, the classes in the document module are not impacted. This

approach decreases the coupling among the modules, and makes the system easy to expand and

maintain.

The tree in Figure 63 shows all the classes in the example, and all the members in each class.

Document::AddPage(DocPage&) is shown in initial change mode. Since DocPage’s

constructor uses the service of Document::AddPage(DocPage&), DocPage::DocPage() is

impacted. So, DocPage class is shown in impacted mode. Other not impacted items are shown

in normal mode. The metrics result box shows that the number of impacted classes in this

example is 2.

157

Figure 63. Example 7.4.1.5 All Class Tree View

158

Figure 64, the impact only class view, displays only the impacted classes and their impacted class

members. Document::AddPage() is shown in initial change mode, and class DocPage is shown in

impacted mode. Other not impacted items are not shown in the figure. The metrics result box

shows that the percentage of impacted classes in this example is only 16%.

 Figure 64. Example 7.4.1.5 Impact Only Class Tree View

159

Figure 65, the impact table, displays the two impacted classes and their impacted class member

in a table, Document::AddPage() and DocPage::DocPage(). Each line contains the impacted

class name, impacted member name, and the impact level of that impacted member. The

metrics result box shows the number of impacted members is 2.

Figure 65. Example 7.4.1.5 Impact Table

160

Figure 66, the class impact table, lists the impacted classes and the related class level change

impact metrics. This table shows that DocPage and Document are the impacted classes. The

metrics result box shows the average number of impacted member is 0.011.

Figure 66. Example 7.4.1.5 Class Impact Table

161

Figure 67 shows the input table of this example.

Figure 67. The Input Table of Example 7.4.1.5

162

8 CONTRIBUTIONS AND FUTURE WORK

This dissertation has presented four major new results. First, a new analysis technique for

object-oriented software has been defined and developed. The research led to the creation of a

set of new concepts including the object-oriented data dependency graphs object-oriented

intra-method data dependency graph, object-oriented inter-method data dependency graph,

and object-oriented system dependency graph. We classified the different dependency

relationships in object-oriented software, and the different types of changes that could be

applied to object-oriented software. This analysis technique also includes a set of algorithms to

calculate the change impact according to the criteria that users specify. Second, this analysis

technique has been used to address the problem of change impact analysis for object-oriented

software. Third, a set of metrics has been defined for object-oriented software that can be used

to quantitatively measure the object-oriented change impact. Fourth, a proof-of-concept tool

has been implemented and used to demonstrate the practical feasibility of this approach on

industrial software.

By using the technology developed in this research to identify potential impacts before making

a change, we can greatly reduce the risks of embarking on a costly change because the later the

problem is discovered the more it costs. This technology can provide visibility into the

potential effects of changes before the changes are implemented, and identify the consequences

or ripple effects of proposed software changes. As a result, it can help software developers and

163

maintainers plan changes, make changes more accurately, accommodate certain types of

software changes, and trace through the effects of changes. They can also use it to evaluate the

appropriateness of a proposed modification. If a proposed change has the possibility of

impacting large, disjoint sections of a program, the change might need to be re-examined to

determine whether a safer change is possible. Managers can use this technique to run "what if"

analyses on different change proposals, and choose the one that is most cost effective. Software

developers can use this technique to indicate the vulnerability of critical sections of code. If a

module that provides critical functionality is dependent on many different parts of a program,

its functionality is susceptible to changes made in these parts. Software testers can use it to

find which areas are impacted by the changes, enabling them to focus only on those areas and

still feel confident about the quality of the software.

This research also creates a set of object-oriented change impact analysis metrics that can help

software maintainers to quantitatively measure the software in regards to its susceptibility to

change. We have not seen any other concrete metrics for measuring change impacts of object-

oriented software.

We also explored the inference approach to solve the change impact analysis problem. The

impact calculating algorithms are expressed in data base deductive rules. The advantage of this

approach is that we can take advantage of the deductive capability of logic database to let

users compose their own questions to the system.

8.1 Future Work

One aspect of this research that needs to be refined is that of choosing the right constants for

the metrics developed in Chapter 0. A major undertaking would be to validate these metrics,

164

and explore how best to apply them to real-life software. The constants used in these metrics

are used to assign weights to different items expressing how much impact these items will have

to the software. We can assign the initial values to these constants according to the

characteristics of the items they applied to, the conduct various experiments to find the most

suited values.

We did not actually implement all the approaches studied in this research. For example, we

explored the inference approach and how to implement it using an inference tool called Coral,

but the prototype did not use this approach because of performance issues.

Another area to consider for further research involves analyzing software change impact from

the semantic perspective. The syntactic impact is calculated purely by information extracted

from the source code. This information includes the data flow, the control flow and the calling

hierarchy. Semantic knowledge consists of programming knowledge and domain knowledge.

Semantic knowledge is more difficult to derive and more difficult to verify compared to

syntactic knowledge because it is less concrete and tangible. We can extract accurate syntactic

information by parsing the software while the exact semantic information such as the

program’s behavior is harder to get.

As an example, using semantic analysis in software testing, debugging, and maintenance, one

is often interested in this question:

When can a change in the semantics of a program statement impact the execution behavior

of another statement?

This question is undecidable in general [PODG90]. Dependence analysis, like data flow

analysis, avoids problems of undecidability by trading precision for decidability. During

165

dependence analysis, programs are represented by def/use graphs, which contain limited

semantic information but are easy to analyze. Dependence analysis allows semantic questions

to be answered “approximately,” because a program’s dependencies partially determine its

semantic properties.

We could improve the semantic analysis by plugging in semantics checking instruments. The

results would be impacted by semantic information that can be controlled by users. For each

method, we would expect to use pre-condition, post-condition and axiom verifications.

PRE-CONDITION: Rule1 && Rule2…

Method1’s implementation

….

POST-CONDITION: Rule1 && Rule2…

AXIOMS: Rule…

PRE-CONDITION is used to describe under what certain condition this method will start its

operations. POST-CONDITION is used to describe what this method will deliver if PRE-

CONDITION is met, and the behavior of the method has to meet whatever is described in the

AXIOM rules.

If the signature of the method remains the same, changing the method’s implementation, while

keeping the PRE-CONDITION, POST-CONDITION, and AXIOM the same will not impact

this method’s clients. This approach has the potential to dramatically reduce the extend of the

impact that is calculated from syntactic information.

Another future research possibility is dynamic change impact analysis. Static impact is

calculated according to static information obtained at compile time. Dynamic impact is

calculated by executing the program. The change impact set calculated from static analysis

166

will be bigger than the one calculated from dynamic analysis. For example, a class in the

method’s signature can be substituted by any of its subclasses, but the information about

which subclass will be substituting that base class cannot be known until run time. We have to

approximate the result to count the effect of all its subclasses in static analysis. With this

information in hand, the dynamic change impact set only needs to consider the actual subclass

that is substituting the base class, So, the result set is smaller and more accurate, but the

dynamic change analysis set is limited to the corresponding input data at that execution.

167

APPENDIX A. OBJECT-ORIENTED CHANGE IMPACT RULES AND

FACTS

This section summaries the facts and rules used in Section 0.

ref (c1, m1, c2, m2) :- direct-ref(c1, m1, c2, m2).

ref (c1, m1, c3, m3) :- ref(c1, m1, c2, m2), direct_ref(c2, m2, c3, m3).

• Facts and rules that describes information inside the class

member(c, m) :- method (c, m)

member(c, n) :- data_field(c, n)

IFS(c, m) :- IFS(c, n), method(c, m), ref(c, m, c, n).

IFS(c, m) :- IDS(c, f), method(c, m) ref(c, m, c, f).

IDS(c d) :- IFS(c, n), data_field(c, d), ref(c, d, c, n).

IDS(c, d) :- IDS(c, x), data_field(c, d), ref(c, d, c, x).

• Rules and facts about inheritance

IFS(c, m) :- ICS(parent), children(parent, c), method(c, m), inherit(parent, m, c, m),

 IFS(parent, m);

IFS(c, m) :- ICS(parent), children(parent, c), method(c, m), p-overwrite(parent, m, c, m),

 IFS(parent, m);

IFS(c, m) :- ICS(parent), children(parent, c), method(c, m), ref(parent, x, c, m),

 IDS(parent, x), public(parent, x).

IFS(c, m) :- ICS(parent), children(parent, c), method(c, m), ref(parent, x, c, m),

 IDS(parent, x), protected(parent, x).

IFS(c, m) :- ICS(parent), children(parent, c), method(c, m), ref(parent, n, c, m),

 IMS(parent, n), public(parent, n).

IFS(c, m) :- ICS (parent), children(parent, c), method(c, m), ref(parent, n, c, m),

 IMS(parent, n), protected(parent, n).

IDS(c, f) :- ICS (parent), children(parent, c), data_field(c, f), ref(parent, x, c, f),

 IFS(parent, x), public(parent, x).

IDS(c, f) :- ICS (parent), children(parent, c), data_field(c, f), ref(parent, x, c, f),

 IFS(parent, x), protected(parent, x).

IDS(c, f) :- ICS (parent), children(parent, c), data_field(c, f), ref(parent, m, c, f),

 IDS(parent, m), public(parent, m).

IDS(c, f) :- ICS (parent), children(parent, c), data_field(c, f), ref(parent, m, c, f),

 IDS(parent, m), protected(parent, m).

168

• Rules and facts related to containment/use relationships

PIMS(c, m) :- IMS(c, m), public(c, m).

PIDS(c, f) :- IDS(c, f), public(c, f).

IFS(c, m) :- client (c0, c), method(c, m), ref(c0, n, c, m), PIFS(c0, n).

IFS(c, m) :- client (c0, c), method(c, m), ref(c0, f, c, m), PIDS(c0, f).

IDS(c, f) :- client (c0, c), data_field(c, f), ref(c0, n, c, f), PIFS(c0, n).

IDS(c, f) :- client (c0, c), data_field(c, f), ref(c0, x, c, f), PIDS(c0, x).

• Initialize impacted class set facts

ICS(c) :- IICS(c).

ICS(c) :- IFS(c, m).

ICS(c) :- IDS(c, f)

169

APPENDIX B. CLASS HEADERS OF TESTED MODULES

#ifndef INTEREST_H

#define INTEREST_H

//

// Linterest is the class used to expressed for the events

// intended to notify other classes

//

// Copyright (c) LCC, LLC

//

// June 96

// Li Li

#include <rw/cstring.h>

#include <stdlib.h>

class LInterest

{

 public:

 LInterest(const char* operation = 0);

 LInterest(const RWCString& opStr);

 LInterest(const LInterest& interest);

 virtual ~LInterest();

 public:

 LInterest& operator = (const LInterest& interest);

 int operator == (const LInterest& interest) const;

 int operator != (const LInterest& interest) const;

 const RWCString & GetOperation() const;

 static unsigned PtrHashFunc(const LInterest & interest);

 static unsigned ValHashFunc(const LInterest & interest);

 protected:

 RWCString _operation;

};

#endif // INTEREST_H

#ifndef _LRECEIVER_H

#define _LRECEIVER_H

170

#ifndef NOTIFICATION_H

#define NOTIFICATION_H

#include "Notification/Interest.h"

//

// Notification class header file

//

// Copyright (c) LCC, LLC

// Nov 96

// Li Li

class LNotification

{

 public:

 LNotification(const char* operation = 0);

 LNotification(const RWCString& operation);

 LNotification(const LInterest& interest);

 virtual ~LNotification();

 public:

 int operator == (const LNotification& n) const;

 // sub class need to overwrite the clone method.

 // Because I cannot predict whether the notification object

 // is a heap or stack object. When the client throw notification

 // within notification, the notify action will be queued for later

 // execution.

 virtual LNotification* Clone() const = 0;

 public:

 const LInterest& GetInterest() const ;

 void SetInterest(const LInterest& interest);

 LInterest* GetReceiverInterest() const { return _receiver_interest; }

 void SetReceiverInterest(LInterest* interest) { _receiver_interest = interest; }

 static unsigned PtrHashFunc(const LNotification& notification);

 protected:

 LNotification(const LNotification& notification);

 LNotification& operator = (const LNotification& n);

 private:

 int _allocate_interest;

 LInterest _interest;

 LInterest* _receiver_interest;

};

//--

// LDefaultNotification is the simplest notification that just

// overwrite the LNotificaiton’s Clone method. So, it can be

171

// instantiable.

class LDefaultNotification : public LNotification

{

public:

 LDefaultNotification(const char* operation = 0);

 LDefaultNotification(const RWCString& operation);

 LDefaultNotification(const LInterest& interest);

 virtual ~LDefaultNotification();

 virtual LNotification* Clone() const;

protected:

 LDefaultNotification (const LDefaultNotification& other);

};

class LBatchNotification : public LNotification

{

public:

 LBatchNotification (const LInterest& interest) : LNotification(interest)

 {

 }

 virtual LNotification* Clone() const {

 return (new LBatchNotification(*this));

 }

protected:

 LBatchNotification (const LBatchNotification& other)

 : LNotification(other)

 {

 }

};

#endif // NOTIFICATION_H

172

//

// LNotifier only send out one notification at a time instead of batched the
notification

// and send later.

//

// Copyright (c) LCC, LLC

// Nov 96

// Li Li

#ifndef _NOTIFIER_H

#define _NOTIFIER_H

#include "Action/ActionQueue.h"

#include <rw/tpslist.h>

#include <rw/tvhdict.h>

#include "Notification/Interest.h"

#include "Notification/PtrHashFuncTemplate.h"

#include "Notification/Notifier.h"

#include "Notification/Receiver.h"

class LNotification;

class LNotifierConnection;

class LABSAction;

typedef RWTPtrSlist<LNotifierConnection> ConnectionList;

typedef RWTValHashDictionary<LInterest, ConnectionList*> InterestConnectionSetMap;

class LNotifier

{

 public:

 LNotifier();

 virtual ~LNotifier();

 public:

 int operator == (const LNotifier& notifier) const

 {

 return (this == ¬ifier);

 }

 // public protocols

 public:

 //--

 // Notify will not wait for outside level

 // notifier to finish, if there are any

 // embeded notify. SyncNotify will save

 // the whole operation, and execute after

 // outer level of notifiers finish notify.

 virtual void Notify (LNotification& theNotification);

 virtual void SyncNotify(LNotification& theNotification);

173

 virtual void BeginNotification() {}

 virtual void EndNotification() {}

 virtual int IsNotifyLocked() { return (_notify_lock); }

 public:

 virtual void AddReceiver(LReceiver& receiver);

 virtual void RemoveReceiver(LReceiver& receiver);

 virtual int HasReceiver(const LReceiver& receiver) const ;

 public:

 //--

 // The Interface here applies to the classes that are not

 // LReceiver and still want to register for notification.

 // It is caller’s responsibility to remember to DeRegister

 // the interest when the interest is not longer needed.

 //--

 // Register interest and function

 virtual void Register(const LInterest&, const LABSWrapper&);

 //--

 // Deregister all the wrapper associated with the interest

 virtual void DeRegister(const LInterest&);

 //--

 // Deregister the specified the interest and wrapper

 virtual void DeRegisterInterestWrapper(const LInterest&, const LABSWrapper&);

 public:

 //--

 // Convenient methods for different users

 virtual void RemoveInterestFromAllReceivers(const LInterest&);

 public:

 //===

 // public methods for implementation purpose

 virtual void AddConnection(LNotifierConnection* connection);

 virtual void RemoveConnection(LNotifierConnection* connection);

 virtual void AddInterestConnection(const LInterest& interest,

 LNotifierConnection* connection);

 virtual void RemoveInterestConnection(const LInterest& interest,

 LNotifierConnection* connection);

 void AddWaitingAction(LABSAction* action);

 void RemoveWaitingAction(LABSAction* action);

 void DoNotify (LNotification& theNotification);

 private:

 virtual void ClearAllReceivers();

174

 virtual void ClearConnectionReceiver(LNotifierConnection* con);

 void DumpConnectionInterest();

 private:

 LReceiver _receiver_agent; // used to register member function

 // for classes that is not a receiver

 // and register for static and global functions

 InterestConnectionSetMap _interest_connectionset_map;

 int _notify_lock; // set to 1 if notifer is notifying

 // when notifier is notifying, all

 // actions comes in will be put to

 // _action_waiting_list.

 LActionQueue _action_waiting_queue;

 };

#endif

175

//

// Receiver class header

//

// Copyright (c) LCC, LLC

// Nov 96

// Li Li

#include <rw/tpslist.h>

class LInterest;

class LNotifier;

class LNotifierConnection;

class LABSWrapper;

class LABSAction;

typedef RWTPtrSlist<LNotifier> NotifierList;

class LReceiver {

public:

 LReceiver(LNotifier* notifier);

 LReceiver();

 virtual ~LReceiver();

public:

 //===

 // public interface of receivers

 // add interest to receiver, this will not take effect

 // until notifier Add this receiver to itself using AddReceiver

 // Note: I forgot whey LABSWrapper takes a pointer instead of reference. Li

 // Add Interest and Wrapper

 virtual void AddInterest(const LInterest& interest,

 const LABSWrapper& wrapper);

 // Remove all wrappers associated with the interest from receiver

 virtual void RemoveInterest(const LInterest& interest);

 // Remove the specified interest and wrapper from receiver

 virtual void RemoveInterestWrapper(const LInterest& interest,

 const LABSWrapper& wrapper);

 // Remove all interest of the receiver

 virtual void RemoveAllInterests();

public:

 //===

 // implementation interface; used by other classes in the

 // framework, but not for the user.

 LNotifier* GetActiveNotifier();

 virtual int IsNotifierAttached(const LNotifier* notifier) const ;

 virtual void AttachNotifier(LNotifier* notifier);

176

 virtual void DetachNotifier(LNotifier* notifier);

 virtual void DeRegisterItSelfFromAllNotifiers();

 virtual void RegisterReceiverToNotifier(LNotifier* notifier);

 virtual void DeRegisterItSelfFromNotifier(LNotifier* notifier);

private:

 // implementation interface of receiver

 void ActivateNotifier(LNotifier* notifier);

 void AddActionToRegisteredNotifiers(LABSAction* action);

private:

 // notifier list behave like a stack, the item added last

 // is at first, and become the current active one.

 NotifierList* _notifier_list;

 LNotifierConnection* _connection;

};

#endif

177

#ifndef DocLayer_H

#define DocLayer_H

///

// The DocLayer header file.

//

// Copyright (c) LCC, LLC

// April 96

// Olivier Jojic

///////////////////////////////////////

// Import Section

#include <Tools/Port.h>

#include <Tools/String.h>

#include <Tools/PList.h>

#include <Tools/Object.h>

#include <Notification/Notification.h>

#include <Notification/Interest.h>

class Document;

///////////////////////////////////////

// The DocLayer abstract class

//

// A layer is a (sharable) part of a document.

class DocLayer

 : public Object

{

public:

 //Calls the destructor internally

 virtual void destroy ();

 //----------------------------------

 // The document owner of this layer

 Document& document;

 //--

 // Name and description of this layer.

 const String name;

 String description;

 //---

 // Notifications

 //

 // All notifications are generated by concrete subclasses.

 // (notifications are sent to all documents that have a

 // reference to this layer)

 // The concrete notification is layer dependent.

 //

 // To register a receiver, use the notifier of the document.

 //

178

 // Warning: the interests below are only valid for THIS layer,

 // ie, the registered receivers will only get notified when

 // THIS layer changes (for other layer instances use their own interests).

 const LInterest dataAddedInterest;

 const LInterest dataRemovedInterest;

 const LInterest dataChangedInterest;

protected:

 DocLayer (Document&, const String& name);

 virtual ~DocLayer ();

};

#endif

179

#ifndef DocPage_H

#define DocPage_H

#include <Tools/Port.h>

#include <Tools/PList.h>

#include <Tools/Object.h>

#include <Notification/Notification.h>

#include <Notification/Interest.h>

#include <DocLayers/Document.h>

class DocLayer;

////////////////////////////////////

// The DocPage final class.

//

// A page is a part of a document and has a stack of layers.

// The layers must belong to the document.

class DocPage

 : public VObject

{

public:

 DocPage (Document&);

 ~DocPage ();

 Document& document;

 // The first layer in the list is the top layer.

 // The last layer in the list is the bottom layer.

 const PList<DocLayer>& layerList () const { return itsLayerList; }

//Adding/removing a layer

// During the call of the "add()" method, if the layer does

 // not belong to the Document of this page, it is automatically added.

void add (DocLayer&);

void remove (DocLayer&);

 //Show/hide

//A switch to/from shown/hidden sends the LayerNotification

//for the visibility change interest.

 void show (DocLayer&);

 void hide (DocLayer&);

bool isHidden (DocLayer& layer) {

return (itsHiddenLayers.has (layer)) ? true : false;

}

 // These send a ‘ShuffleNotification’

 void moveLayerUp (DocLayer&);

 void moveLayerDown (DocLayer&);

 void putLayerOnTop (DocLayer&);

180

 void putLayerToBottom (DocLayer&);

 void putLayerAbove (DocLayer& aLayer, DocLayer& aTarget);

 void putLayerBelow (DocLayer& aLayer, DocLayer& aTarget);

 DocLayer* currentLayer () const { return itsCurrentLayer; }

 void setCurrentLayer (DocLayer*);

 // Notifications

 // ---

 // (uses the notifier of the Document)

 // The "instance level" interests are only valid for THIS page,

 // ie, the registered receivers will only get notified when

 // this page changes.

 // The "class level" interests are valid for ANY page.

 // (It’s normaly a bad idea for a receiver to register for both the

 // instance level and for the class level interest).

 const LInterest currentLayerInterest;

 const LInterest layerAddedInterest;

 const LInterest layerRemovedInterest;

 const LInterest layerShuffledInterest;

const LInterest layerVisibilityInterest;

 static const LInterest currentLayerClassInterest;

 static const LInterest layerAddedClassInterest;

 static const LInterest layerRemovedClassInterest;

 static const LInterest layerShuffledClassInterest;

static const LInterest layerVisibilityClassInterest;

 // Notification sent when the current layer changes

 class CurrentLayerNotification : public Document::PageNotification {

 public:

DocLayer* const previousCurrentLayer;

DocLayer* const currentLayer;

 private:

CurrentLayerNotification (DocPage& thePage,

 const LInterest theInterest,

 DocLayer* thePreviousCurrentLayer,

 DocLayer* theCurrentLayer)

 : Document::PageNotification (document, theInterest, thePage)

 , previousCurrentLayer (thePreviousCurrentLayer)

 , currentLayer (theCurrentLayer)

{}

friend class DocPage;

 };

 // Notification sent when a layer is shown or hidden

 class LayerNotification : public Document::PageNotification {

181

 public:

DocLayer& layer;

 int index;

 protected:

LayerNotification (DocPage& thePage,

 const LInterest& theInterest,

 DocLayer& theLayer,

 int theIndex)

: Document::PageNotification (thePage.document, theInterest, thePage)

, layer (theLayer)

 , index (theIndex)

{}

friend class DocPage;

 };

 // Notification sent when layers are shuffled

 class ShuffleNotification : public LayerNotification {

 public:

int const layersPreviousIndex;

//To get the new index of the layer:

//

// int newIndex = notification.page.layerList().indexOf

// (notification.layer);

 private:

ShuffleNotification (DocPage& thePage,

 const LInterest& theInterest,

 DocLayer& theLayer,

 int theLayersPreviousIndex)

 : LayerNotification (thePage,

 theInterest,

 theLayer,

 thePage.layerList().indexOf (theLayer))

 , layersPreviousIndex (theLayersPreviousIndex)

{}

friend class DocPage;

 };

private:

PList<DocLayer> itsLayerList;

PList<DocLayer> itsHiddenLayers;

DocLayer* itsCurrentLayer;

};

#endif

182

#ifndef Document_H

#define Document_H

///

// Document header file.

//

// Copyright (c) LCC, LLC

// April 96

// Olivier Jojic

#include <Tools/Port.h>

#include <Tools/PList.h>

#include <Tools/String.h>

#include <Tools/Object.h>

#include <Notification/Notifier.h>

#include <Notification/Notification.h>

#include <Notification/Interest.h>

#include <DocLayers/DocLayer.h>

class DocPage;

//

// The Document class.

// (should not be subclassed)

//

// A document is composed of pages, each page is a stack of layers.

class Document

 : public Object

{

public:

 //---------------------------------

 // Creation/Destruction

 // Static list of all documents existing in this application.

 // When the application quits, the remaining documents are

 // deleted.

 static const PList<Document>& theirList () {

 return theirDocumentList;

 }

 Document ();

 ~Document ();

 void clearAll ();

 //-----------------------

 // Pages:

 //

 // A document is composed of pages.

 // A page belongs to one and only one document.

 // The only way to add or remove pages is to actually

183

 // create or destroy them (the page constructor takes a

 // document as a parameter).

 const PList<DocPage>& pageList () const {

 return itsPageList;

 }

 // I’m not sure the concept of "current page" should be

 // kept in the document

 DocPage* currentPage () const {

 return itsCurrentPage;

 }

 // Generates the "current page changed" notification

 void setCurrentPage (DocPage*);

 //--------------------

 // Layers:

 //

 // A page is a stack of layers.

 // For convenience, the document has its own list of all layers.

 const PList<DocLayer>& layerList () const {

 return itsLayerList;

 }

 DocLayer* getLayer (const String& aLayerName) const;

 void showLayerInAllPages (DocLayer&);

 void hideLayerInAllPages (DocLayer&);

 // Notifications:

 //----------------------

 // Notifications are sent whenever something changes in the

 // document, in a page or in a layer.

 // All these notification use the same "notifier", ie, the one

 // belonging to the document.

 LNotifier notifier;

 // List of interests handled by the Document itself.

 // Pages and layers may provide additional specific interests.

 // Generates the current page changed notification

 static const LInterest pageCreatedInterest;

 static const LInterest pageDestroyedInterest;

 static const LInterest layerAddedInterest;

 static const LInterest layerRemovedInterest;

 static const LInterest currentPageInterest;

 // The common superclass for all notifications generated

 // by a document, a page, or a layer.

 class Notification : public LNotification

184

 {

 public:

 Document& document;

 const LInterest& interest;

 virtual LNotification* Clone() const {

 return (new Notification(*this));

 }

 protected:

 Notification (const Notification& other)

 : LNotification(other)

 , document(other.document)

 , interest(other.interest)

 {

 }

 Notification (Document& aDocument,

 const LInterest& anInterest)

 : LNotification (anInterest)

 , document (aDocument)

 , interest (anInterest)

 {}

 };

 // Notification sent when a page is created or destroyed.

 class PageNotification : public Notification

 {

 public:

 DocPage& page;

 virtual LNotification* Clone() const {

 return (new PageNotification(*this));

 }

 protected:

 PageNotification (const PageNotification& other)

 : Notification(other)

 , page(other.page)

 {

 }

 PageNotification (Document& aDocument,

 const LInterest& aCreateOrDestroyInterest,

 DocPage& aPage)

 : Notification (aDocument, aCreateOrDestroyInterest)

 , page (aPage)

 {}

 friend class Document;

 };

 // Notification sent when the current page changes

185

 class CurrentPageNotification : public Notification

 {

 public:

 DocPage* const previousCurrentPage;

 DocPage* const currentPage;

 virtual LNotification* Clone() const {

 return (new CurrentPageNotification(*this));

 }

 private:

 CurrentPageNotification (const CurrentPageNotification& other)

 : Notification(other)

 , previousCurrentPage(other.previousCurrentPage)

 , currentPage(other.currentPage)

 {

 }

 CurrentPageNotification (Document& aDocument,

 DocPage* thePreviousCurrentPage,

 DocPage* aPage)

 : Notification (aDocument, currentPageInterest)

 , previousCurrentPage (thePreviousCurrentPage)

 , currentPage (aPage)

 {}

 friend class Document;

 };

 // Notification sent when a layer is added or removed.

 class LayerNotification : public Notification

 {

 public:

 DocLayer& layer;

 virtual LNotification* Clone() const {

 return (new LayerNotification(*this));

 }

 protected:

 LayerNotification (const LayerNotification& other)

 : Notification(other)

 , layer(other.layer)

 {

 }

 LayerNotification (const LInterest& addOrRemoveInterest,

 DocLayer& theLayer)

 : Notification (theLayer.document, addOrRemoveInterest)

 , layer (theLayer)

 {}

 friend class Document;

 };

186

 // And a function usefull for the generation of uniq names

 // while creating interests:

 static String getUniqString (const String&);

private:

 void AddPage (DocPage&);

 void RemovePage (DocPage&);

 void AddLayer (DocLayer&);

 void RemoveLayer (DocLayer&);

 PList<DocLayer> itsLayerList;

 PList<DocPage> itsPageList;

 DocPage* itsCurrentPage;

 static PList<Document> theirDocumentList;

 friend class DocPage;

 friend class DocLayer;

};

#endif

187

LIST OF REFERENCES

188

LIST OF REFERENCES

[ARNO96] R. S. Arnold and S. A. Bohner, “An Introduction to Software
Change Impact Analysis,” Software Change Impact Analysis, IEEE
Computer Society Press 1996.

[ARNO93] R. S. Arnold and S. A. Bohner, “Impact Analysis - Towards A
Framework for Comparison,” Proceedings of the Conference on Software
Maintenance, Los Alamitos, CA, September 1993, pp. 292-301.

[AUTH88] Lowell Jay Authur, “Software Evolution: A Software Maintenance
Challenge,” John Wiley and Sons, 605 Thrid Avenue, New York, N.Y.
10158, February, 1988.

[BARR95] S. Barros, Th. Bodhuin, A. Escudie, J.P. Queille, and J.F. Voidrot,
“Supporting Impact Analysis: A Semi-Automated Technique and Associated
Tool,” Proceedings of the Conference on Software Maintenance, 1995. IEEE,
Piscataway, NJ, USA, 95CB35845 pp. 42-51.

[BEIZ90] Boris Beizer, “Software Testing Techniques”, Second Edition, Van
Nostrand Reinhold, 115 fifth Avenue, New York, NY 10003. 1990.

[BOHN95] S. A. Bohner, "A Graph Traceability Approach for Software Change
Impact Analysis," Ph.D. Dissertation, George Mason University, Fairfax VA,
1995.

[BOOC94] Grady Booch, "Object-Oriented Analysis and Design with
Applications," Second Edition, Benjamin/Cummings Publishing Company,
Redwood City, CA, 1994.

[CHAM97] Dennis de Champeaux, “Object-Oriented Development Process and
Metrics,” Simon & Schuster/A Viacom Company, Upper Saddle River, NJ
07458, 1997.

[CHER91] John C. Cherniavsky and Carl H. Smith, “On Weyuker’s Axioms For
Software Complexity Measures”, IEEE Transactions on Software
Engineering. Volume 17, No. 6, June 1991. pp.635-638.

189

[CHID94] Shyam R. Chidamber and Chris F. Kemerer, “A Metrics Suite for
Object-Oriented Design,” IEEE Transactions on Software Engineering,
Volume 20. No. 6, June 1994, pp.476-493.

[COLL88] James S. Collofello and Mikael Orn, “A Practical Software
Maintenance Environment,” Conference on Software Maintenance, IEEE CS
Press, Los Alamitos, CA. October 1988, pp.45-51.

[DEMI91] Richard A. Demillo and A. Jefferson Offutt, “Constraint-Based
Automatic Test Data Generation,” IEEE Transactions on Software
Engineering, Volume 17, No. 9, September 1991, pp.900-910.

[DEVA96] Prem Devanbu, Sakke Karstu, Walcelio Melo and William Thomas,
“Analytical and Empirical Evaluation of Software Reuse Metrics,”
Proceedings-International Conference on Software Engineering, 1995, IEEE,
Los Alamitos, CA. pp.189-199.

[IEEE90] IEEE Std 610-12[729] – 1990, “Software Engineering Terminology,”
Published by the Institute of Electrical and Electronics Engineering, Inc. 345
East 47th Street, New York, NY 10017-2349, USA, 1990.

[FENT91] Fenton, N. E., “Software Metrics, A rigorous approach,” Chapman &
Hall, New York, 1991.

 [HALS77] Maurice Howard Halstead, “Elements of Software Science.” New
York, Elsevier-North Holland, 1977.

[HARR92] Mary Jean Harrold and John D. McGregor, "Incremental Testing of
Object-Oriented Class Structures," 14th International Conference on
Software Engineering, IEEE Computer Society, Melbourne, Australia, May
1992, pp. 68-80.

[HARR93] Mary Jean Harrold and Brian Malloy, “A Unified Interprocedural
Program Representation for a Maintenance Environment,” IEEE Transactions
on Software Engineering, Volume 10, No. 6, June 1993, pp. 584-593.

[HARR94] M. J. Harrold and Gregg Rothermel, “Performing Data Flow Testing
on Classes,” Symposium on Foundations of Software Engineering, ACM
SIGSOFT, New Orleans, LA, December 1994, pp.154-163.

[HEIS89] Keisler K. G., Tsai W. T. and Powell P. A., “An Object-Oriented
Maintenance-Oriented Model for Software,” IEEE Spring Compcon (Digest
of Papers), February 1989, pp. 248-253.

[HORW90] Susan Horwitz, Thomas Reps, and David Binkley, “Interprocedural
Slicing Using Dependence Graphs,” ACS Transactions on Programming
Languages and Systems, Volume 12, No. 1, January 1990, pp.26-60.

190

[HSIA95] P. Hsia, A. Gupta, C. Dung, J. Peng, and S. Liu, “A Study on the
Effect of Architecture on Maintainability of Object-Oriented Systems,”
Proceedings of the Conference on Software Maintenance, 1995, pp.4-11.

[HWAN97] Yih-Feng Hwang, "Detecting Faults In Chained-Inference Rules In
Information Distribution Systems," Ph.D. Dissertation, George Mason
University, Fairfax VA, 1997.

[KAIS88] Gall E. Kaiser, Peter H. Feller, and Steven S. Popovich, “Intelligent
Assistance for Software Developmeht and Maintenance,” IEEE Software
Transaction, Volume 5, No. 3, May 1988, pp.40-49.

[KEAB88] J. Keables, K. Roberson, and A. von Mayrhauser, “Data Flow
Analysis and its Application to Software Maintenance,” Proceedings of the
Conference on Software Maintenance, IEEE CS Press, Los Alamitos, CA.,
October 1988, pp. 335-347.

[KERN86] Joseph K. Kearney, Robert L. Sedlmeger, William B. Thompson,
Michael A. Grey, and Michael A. Alder, “Software Complexity
Measurement,” Communications of the ACM, Volume 29, No. 11, November
1986, pp. 1044-1050.

[KORE90] Bogdan Korel and Janusz Laski, "Dynamic Slicing of Computer
Programs," The Journal of Systems and Software, Volume 13, No. 3,
November 1990, Elsevier North Holland Inc, pp. 187-195.

[KUNG94] D. Kung, J. Gar, P. Hsia, F. Wen, Y. Togoshima, and C. Chen,
“Change Impact Identification in Object-Oriented Software Maintenance,”
Proceedings of the Conference on Software Maintenance, August 1994,
IEEE, Piscatawary, NJ, USA. 94CH34385-0.. pp.202-211.

[LIOF96] Li Li and A. Jefferson Offutt, “Algorithmic Analysis of the Impact of
Changes to Object-Oriented Software," IEEE International Conference on
Software Maintenance, November 1996, Monterrey CA, pp. 171-184.

[LIOF96a] Li Li and A Jefferson Offutt, “Algorithmic Analysis of the Impact of
Changes to Object-Oriented Software," George Mason University ISSE Dept.
Technical Report, ISSE-TR-96-02, February 1996.

[LIOF96b] Li Li and Jeff Offutt. “Applying Logic-based Database to Impact
Analysis of Object-oriented Software”, George Mason University ISSE Dept.,
Technical Report ISSE-TR-96-08, September 1996.

[LIWE94] Wei Li and Sallie Henry, “An Empirical Study of Maintenance
Activities in Two Object-oriented Systems,” Journal of Software
Maintenance, Research and Practice, Volume 7, No. 2 March-April 1995,
pp.131-147.

191

[LYLE90] James R. Lyle, Dolores R. Wallance, James R. Graham, Keith B.
Gallagher, Joseph P. Poole, and David W. Binkley, “Unravel: A CASE Tool
to Assist Evaluation of High Integrity Software Volume 1: Requirements and
Design”, National Institute of Standards and Technology, Computer Systems
Laboratory, Gaithersburg, MD 20899, 1990.

[LORE94] Mark Lorenz and Jeff Kidd, “Object-Oriented Software Metrics,”
Prentice Hall Inc. Englewood Cliffs, NJ 07632, 1994.

[LOYA93] Joseph P. Loyall and Susan A. Mathisen, “Using Dependence
Analysis to Support the Software Maintenance Process,” Conference on
Software Maintenance, IEEE CS Press, Los Alamito, CA. September 1993,
pp. 282-291.

[MADH91] Nazim H. Madhavji, “Environment Evolution: The Prism Model of
Changes,” IEEE Transaction on Software Engineering, Volume 18, No. 5,
May 1992, pp.380-392.

[MART94] Robert C. Martin, “Object-Oriented Design Quality Metrics, An
Analysis of Dependencies.” 847.918.1004, August 1994.

[MART95] Robert C. Martin, "Designing Object-Oriented C++ Applications
Using the Booch Method," Prentice Hall, Inc. Englewood Cliffs, New Jersey
07632, 1995.

[McCa76] McCabe, T.J., “A Complexity Measure,” IEEE Transaction Software
Engineering, Volume SE-2, No. 4, 1976, pp.308-320.

[McCa92] McCabe & Associates, Inc., “Battlemap Analysis Tool Reference
Manual,” McCabe & Associates, Inc., Twin Knolls Professional Park, 5501
Twin Knolls Road, Columbia, MD, December 1992.

[MILL88] Mills, E. E., “Software Metrics,” SEI Curriculum Module SEI-CM-
12-1.1, Carnegie Mellon University, Pittsburgh, PA, 1988.

[MORE90] Robert Moreton, “A Process Model for Software Maintenance”,
Journal Information Technology, Volume 5, 1990, pp. 100-104.

[MOSE90] Louise E. Moser, “Data Dependency Graphs for Ada Programs,”
IEEE Transactions on Software Engineering, Volume 16. No. 5, May 1990,
pp.498-509.

[OVIE80] E. I. Oviedo, “Control Flow, Data Flow and Program Complexity,” in
Proceeding IEEE COMPSAC, The IEEE Society’s Fourth International
Computer Software and Application Conference, Chicago, USA, 1980,
pp.146-152.

192

[OFFU95] A. Jefferson Offutt and Alisa Irvine, "Testing Object-Oriented
Software Using the Category-Partition Method," Seventeenth International
Conference on Technology of Object-Oriented Languages and Systems,
(TOOLS USA ’95), Santa Barbara, CA, August 1995, pp. 293-304.

[OFFU91] A. Jefferson Offutt, “An Integrated Automatic Test Data Generation
System,” Journal of Systems Integration, November 1991, pp391-409.

[ORFA96] Robert Orfali, Dan Harkey, and Jeri Edwards, "The Essential
Distributed Objects Survival Guide," John Wiley & Sons, Inc., 605 Third
Avenue, New York, N.Y. 10158, 1996.

[PFLE90] Shari Lawrence Pfleeger and Shawn A. Bohner, “A Framework for
Software Maintenance Metrics,” IEEE Transactions on Software
Engineering, May 1990, pp. 320-327.

[PODG90] Andy Podgurski and Lori A. Clarke, “A Formal Model of Program
Dependencies and Its Implications for Software Testing, Debugging, and
Maintenance,” IEEE Transactions on Software Engineering, Volume 16, No.
9, September 1990, pp. 965-979.

[QUAD91] Ghassan Z. Qadah, Lawrence J. Henschen, and Jung J. Kim,
“Efficient Algorithms for the Instantiated Transitive Closure Queries,” IEEE
Transactions on Software Engineering, Volume 17, No. 3, March 1991,
pp.296-309.

[RINE95] David Rine, “Structural Defects in Object-Oriented Programming,”
Computer Science Department, George Mason University, Fairfax, VA
22030, Technical Report, May 1995.

[ROMB89] Dieter H. Rombach and Bradford T. Ulery, “Improving Software
Maintenance through Measurement,” Proceedings of the IEEE, Volume 77,
No. 4, April 1989, pp.581-595.

[RUMB91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick
Eddy, and William Lorensen, “Object-Oriented Modeling and Design,”
Prentice Hall, Englewood Cliffs, New Jersey 07632, 1991.

[SCHN87] Norman F. Schneidewind, “The State of Software Maintenance,”
IEEE Transactions on Software Engineering, SE-13, No. 3, March 1987,
pp.303-310.

[SMIT90] M. D. Smith and J. J. Robson, “Object-Oriented programs - the
problems of validation,” Proceedings of IEEE Conference on Software
Maintenance, San Diego, CA, November 1990, pp.272-281.

193

[SNEE95] Harry M. Sneed, “Estimating of Costs of Software Maintenance
Tasks,” Conference on Software Maintenance, 1995, IEEE, Piscataway, NY,
USA. 95CB35845.. pp168-181.

[TURV94] Richard J. Turver and Munro Malcolm, “An Early Impact Analysis
Technique for Software Maintenance,” Journal of Software Maintenance:
Research and Practice, Volume 6, No. 1, January-February 1994, pp.35-52.

[WEIS84] M. Weiser, “Program Slicing,” IEEE Transactions on Software
Engineering, Volume 10, No. 4, July 1984, pp. 352-357.

[WEYU88] W. Weyuker, “Evaluating Software Complexity Measures,” IEEE
Transactions on Software Engineering, Volume 14, No. 9, September 1988,
pp. 1357-1365.

[WHIT92a] Lee J. White, “A Firewall Concept for both Control-Flow and Data-
Flow in Regression Integration Testing,” IEEE Transactions on Software
Engineering, 1992, pp. 262-171.

[WHIT92] S. Whitmire, “Measuring Complexity in Object-Oriented Software,”
Third International Conference on Applications of Software Measurement,
La Jolla, CA, 1992.

[WILD92] Norman Wilde and Ross Huitt, “Maintenance Support for Object-
Oriented Programs,” IEEE Transaction Software Engineering, Volume 18,
No. 12, December 1992, pp.1038-1044.

[YAUS78] S. S. Yau, J. S. Collofello, and T. MacGregor, “Ripple Effect
Analysis in Software Maintenance,” Proceedings of IEEE COMPSAC, The
IEEE Society’s Fourth International Computer Software and Application
Conference, 1978, pp.60-65.

[YAUS80] S. S. Yau and J. S. Collofello, “Some Stability Measures for
Software Maintenance,” IEEE Transactions on Software Engineering,
Volume SE-6, No. 6, November 1980, pp.545-552.

[YAUS87] S. S. Yau and J. J. Tsai, “Knowledge Representation of Software
Component Interconnection Information Large-scale Software
Modifications,” IEEE Transactions on Software Engineering, Volume SE-13,
No. 3, March 1987, pp. 355-361

194

CURRICULUM VITAE

Michelle L. Lee, a US citizen since 1998, was born on June 8, 1964 in LeShan, SiChuan
Province, China. She received her Bachelor of Science (1985) and Master of Science (1988) in
Computer Engineering from Beijing University of Aeronautics and Astronautics. In addition,
she received her Master of Science degree in Computer Science from George Mason University
in 1995. She is a senior software system engineer with LCC International.

