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Abstract

In any environment of multiple information sources it is practically unavoidable
that information sources would overlap; that is, describe the same portion of the real
world. And when information sources overlap, it is practically unavoidable that in-
formation would be inconsistent; that is, describe differently the same portion of the
real world. In this report we define a formal framework for resolving inconsistencies
that are detected in the process of processing queries against a collection of informa-
tion sources. This framework establishes basic database concepts, such as schemes,
instances, views, queries and integrity constraints, as well as new concepts, such as
view equivalence, scheme mappings, multi-databases, multi-database queries and in-
consistency. Altogether, it provides the formal foundations necessary for addressing
issues of information integration and inconsistency resolution. Qur approach to the
integration of inconsistent answers is based on information goodness, a measure for
estimating the proximity of stored information to the ideal information. We propose
to maintain for each information source a goodness basis: a set of basic views whose
goodness has been established and are expected to be useful for inferring the goodness
of anticipated queries. When a query is answered inconsistently by individual informa-
tion sources we propose to (1) infer the goodness of each individual answer from the
appropriate goodness basis, and (2) integrate the individual answers in an answer of
the highest goodness. We sketch the architecture of a software agent, called Harmony,
that will implement our approach.

*This work was supported in part by ARPA grant, administered by the Office of Naval Research under
Grant No. N0014-92-J-4038.



1 Introduction

In any environment of multiple information sources it is practically unavoidable that infor-
mation sources would overlap; that is, describe the same portion of the real world. And
when information sources overlap, it is practically unavoidable that information would be
inconsistent; that is, describe differently the same portion of the real world.

Inconsistency is a most challenging issue in any attempt at information integration and
interchange. Inconsistencies fall into two main categories: (1) intensional inconsistencies,
and (2) extensional inconsistencies.

Intensional inconsistencies, often referred to as semantic heterogeneity occur when over-
lapping information is represented differently in the different sources. Simple examples in-
clude (1) naming conflicts (e.g., DOB vs. Date_of birth); (2) use of different units (e.g.,
inches vs. centimeters); (3) conflicting levels of generalization (e.g., a Person entity with a
Sex attribute vs. separate Male and Female entities). A more difficult case of intensional in-
consistency is when the sources employ altogether different models (e.g., an object-oriented
model with frame-based knowledge representation vs. a relational model with rule-based
knowledge representation).

The subject of intensional inconsistency has been receiving attention for almost two
decades, and researchers have developed different methods for coalescing the semantics of
independent database schemes, or for constructing gateways that will allow different database
systems to exchange information. For the most part. this research has been either in the
context of view integration as part of the database design process (e.g., [4, 9, 12]) or in
the context of systems for virtual merging of independent databases (e.g., [13, 14, 7]). For
overviews of this area, see [2, 5].

Compared to this focus on intensional inconsistency, the equally challenging problem of
extensional inconsistency has received much less attention. Extensional inconsistencies sur-
face only after all intensional inconsistencies have been resolved, at a point where the systems
participating in a specific transaction may be assumed to have identical intensional repre-
sentation for all overlapping information. At that point it is possible that two information
sources would provide two different answers to the same query.

We may assume that individual information sources would be responsible for resolving all
their internal extensional inconsistencies. The problem here is similar to “simple” database
inconsistency, and is usually addressed with a combination of proper design that avoids
repetitions, and appropriate integrity constraints to control those repetitions allowed to
remain. However, the autonomy assumed in environments of multiple information sources
implies that extensional inconsistencies across the environment are entirely possible.

Currently, most architectures for integrating information from multiple sources approach
this issue in one of two ways. Some systems (e.g., [1]) assume that the information sources
are never inconsistent. Thus, when the same information could be retrieved from multiple
sources, the cheapest source (in terms of variables such as communication costs) is used.



Usually, this assumption of perfect consistency is unrealistic. Other approaches (e.g.. [10])
detect and report inconsistencies, but do not attempt to resolve them in any way.

In this report we define a formal framework for resolving extensional inconsistencies that
are detected in the process of processing queries against a collection of information sources.
We make two simplifying assumptions. First, our discussion here is within the framework
of relational databases; however, most of our results could be generalized to other kinds of
information systems. Second, we take advantage of previous efforts in the area of intensional
inconsistency and we assume that all such inconsistencies have been resolved. In its simplest
form, the problem we address is formulated as follows.

A query () is presented to n different instances dy,...,d, of the same database scheme
D, and is answered by n different answers ¢,...,q,. What is the true answer to Q)7

This formulation assumed that the individual databases have identical schemes. A more
general framework allows for intensional inconsistencies among the individual schemes, but
assumes that they have been resolved by means of a global databases scheme, which consol-
idates the individual database schemes. This general problem is formulated as follows.

A query (@) is presented to a database scheme D that integrates multiple database schemes.
In the process of evaluating this query, a related query T' is found to be answerable in n
individual databases, and is translated to n “equivalent” queries 14,...,7T,,. These queries
are submitted to the individual databases, and are answered by n different answers ¢4, ..., 1,.
What is the true answer to 7' (and hence Q))?

Our general approach is as follows. We assume that every database D has a hypothetical
instance dy that correctly represents the real world. A given database instance d is therefore
an approzimation of the real world instance dy. We then adopt a measure of goodness of
information. This measure attempts to quantify the prozimity of database information to
real world information. Goodness is assigned to database views: for a given database view
V. the goodness of V measures the proximity of its extension v in a database instance d
to its extension vg in the real world instance dyg. As queries are also views, goodness also
measures the quality of database answers.

Of course, since the real world instance dy is unavailable, the goodness of a given database
view v cannot be readily computed. Nevertheless, the goodness of such views can be esti-
mated either by external methods such as sampling, or by internal methods such as knowledge
discovery.

Our first goal is to estimate the goodness of an arbitrary view (i.e., any answer provided
by one of the available database instances). Our approach is to select for each database a set
of basic views, to be termed a goodness basis, whose goodness will be established by external
or internal methods. The goodness of arbitrary views will be inferred from the goodness of
these basic views. This goal is phrased formally as follows.

Given a set of m views Vi,...,V,, and their respective extensions vy,...,v, in a given
database instance, and given the respective goodness estimates of these extensions g1, ..., ¢,



estimate the goodness ¢ of the extension v in the same database instance of an arbitrary
view V.

It may now be assumed that each of the n answers to the query ) has a goodness estimate
associated with it. Our final goal is to conclude from these answers a single, possibly new,
answer which is the best answer to (). Formally, this goal is phrased as follows.

Given a set of n answers ¢y,...q, to query @,! obtained from n different database in-
stances, and given their respective goodness estimates ¢4, ..., g,, find an answer ¢ that has
the highest goodness.

In summary, our approach to the integration of inconsistent information can be summa-
rized as follows.

Preparatory Procedure:

P1 Establish a measure of information quality (goodness measure).

P2 For each database determine a set of basic views whose goodness will be useful for
inferring the goodness of anticipated queries (goodness basis).

P3 Estimate the goodness of each view in the goodness basis (and maintain these estimates
continuously).
Integration Procedure:
I1 Given a query, decompose it into related queries against the individual databases, and
obtain all answers.

[2 For every group of overlapping queries, check whether the individual answers are con-
sistent. If not, then provide the Harmonization Procedure with the intersection query
and its individual answers, and obtain an authoritative answer.

I3 Consolidate the individual answers in an answer to the original query.
Harmonization Procedure

H1 Estimate the goodness of each answer from the inconsistent set.
H2 Combine the inconsistent answers in an answer of the highest goodness.
As mentioned earlier, we assume a multi-database system that conforms to the Integration

Procedure (i.e., steps I1 and I3), and the focus of this project is the Preparatory Procedure,
the detection of inconsistencies (step 12), and the Harmonization Procedure.

'In the more general case, q1, ..., q, are answers to “equivalent” queries Q1,..., Qn.



Our work is distinguished by several fundamental aspects. First, we address an important
issue of information integration that so far been largely neglected: the inconsistency of
multiple information sources.

Second, we acknowledge that information sources are rarely perfect. This state of affairs
may be conveniently ignored when there is a single source of information, but it must be
acknowledged when there are multiple and overlapping sources. Consequently, we treat all
information sources as estimates.

Third, we require providers of information (or independent “certifiers”) to assess the
goodness of their information. Such declarations may be regarded as formalization of every-
day practices. For example, a library describing its collection as “excellent” in the area of
French Classicism and “poor” in the area of Italian Romanticism; or a film guide claiming to
include “over 85% of English speaking films, and over 75% of European films”; or a mailing
list supplier that boasts of less that 10% error rate.

Finally, our model has attractive uniformity: available databases are assumed to have
associated levels of goodness, answers from individual databases are similarly associated
with levels of goodness, and multi-database answers are constructed to optimize their level
of goodness.

In the next section we provide definitions for essential database concepts, such as a
scheme, an instance, a constraint, a view, a query, and an answer. In Section 3 we formalize
the concept of a multi-database, and define a multi-database query, a multi-database answer,
and answer inconsistency. In Section 4 we define goodness of information and we discuss
specific goodness measures. Qur treatment is entirely formal, yet our ultimate goal is an
operational software tool for resolving answer inconsistencies. In Section 5 we sketch an
architecture of a software agent. which we call Harmony, for resolving inconsistent answers in
an environment of multiple databases, and we summarize the major research issues currently
under investigation.

2 Database

As indicated earlier, our formalization is within the framework of relational databases. Ini-
tially, we consider databases that are a single relation, queries that are selection-projection
expressions, and a simple type of integrity constraints. A more general treatment will be
attempted at later stages of this research.

2.1 Schemes and Instances

Assume a finite set of attributes D = {A4,... A, }. and for each attribute A; (: = 1,...,n)
assume a finite domain dom(A;).



A relation scheme R is a non-empty set of attributes ) # R C D. In particular, the
relation scheme D is called the database scheme.

A tuple t of a relation scheme R is a partial function that assigns every attribute in R a
value from the domain of that attribute. Formally, let att(t) denote the set of attributes on
which the tuple ¢ is defined. Then

VA € att(t): t(A) € dom(A)

This definition allows tuples that are only partially specified, a feature which is useful when
some values are unavailable (unknown or inapplicable).

As an example, consider the attribute set D = {A, B,C'} and the domains dom(A) =
{a1, as, as,as}, dom(B) = {by, b2}, and dom(C) = {e¢1, ¢z, cs}. An example of a tuple on the
relation scheme {A,C} is the function that maps A to a; and C to ¢; it will be denoted
{A = a1,C = ¢1}. Another example is the function that only maps A to ay; it will be

denoted {A = ay}.

' is a subtuple of 1, denoted t' C ¢, if att(t') C att(t) and t and ' agree on the values of
the attributes in att(t’); ie., VA € att(t') : t'(A) = t(A). If att(t') C ati(t), then t' is a
strict subtuple of ¢, denoted ¢' C .

A relation r on relation scheme R is a finite set of tuples of R, such that no tuple is a
strict subtuple of another. A database instance d is a relation on the database scheme D.

For example, the following set of tuples constitutes a database instance: { {A = a1, B =
bi},{A = a3.C = 3}, {A = a3, B = by, C = ¢3} }. We shall also use the following tabular

representation

| A|B|C|
ap | by

a2 C3
as | by | c3

If the tuple {A = a3,C = ¢3} were added to this instance, the result would not be an
instance, because the new tuple is a subtuple of {A = a3, B = by, C = ¢3}.

2.2 Views and Queries

Assume a set of variables X = {vy,...,v,}.

A view V of database scheme D is a combination of a function sy on D and a subset py
of D. The function assigns every attribute either a value from its domain or a variable from
X, with the restriction that two attributes may be assigned the same variable only if they
have the same domain. Formally,

VAe D: sy(A)€dom(A)UX
\V/A,',A]‘ € D : Sv(A,'),Sv(A]‘) € X, Sv(A,') = Sv(A]‘) — dom(A,) = dom(A])

5



Intuitively, the function sy specifies selection constraints on d of two kinds: a value a for
attribute A is a constraint that is satisfied by tuples that have value a in attribute A;
an identical variable for two different attributes A; and A; is a constraint that is satisfied
by tuples that have the same value in attributes A; and A;. The subset py specifies the
attributes on which the selected tuples are projected.

The extension v of view V = (sy,py) in a database instance d is a relation on the
database scheme py as follows: ¢ € v if and only if there exists ¢’ € d such that

VA€ py: t'(A)=1(A)

VAe D: sy(A)e X = dd' €dom(A): t'(A)=d
VAe D: sy(A) €dom(A) = t'(A) =sv(A)
\V/A,',Aj eD: Sv(A,') = Sv(A]‘) — t’(A,') = t’(Aj)

o s

Consider again the database scheme D = {A. B, C'} and the variables {z,y, z}. Together,
the function that maps A to x, B to y, and C to ¢z, and the subset of attributes {A, B}
describe a view. This view selects the tuples for which ¢ = ¢3 and projects them on
attributes A and B. We shall also use the notation projects pselecto—., (D). Its extension
in the previous database instance (using the tabular representation) is

A8

a2
93 | by

Given views V’ and V of database scheme D, V' is a subview of V, denoted V' C V if

L. pv: Cpv

2.VA€e D, Yeedom(A): sv(A)=c = svi(A)=c¢

3. \V/A,',A]‘ eD: Sv(A,') = Sv(A]‘) — SVI(AZ') = SVI(Aj)
Intuitively, one view is a subview of another, if the former’s selection constraint is more
restrictive than the latter’s, and the former’s projected attributes are contained in the latter’s.

Assume V' C V and let v’ and v be their respective extensions in some database instance d.
Then every tuple of v' is a subtuple of some tuple in v.

Views V] and V; of database scheme D are overlapping, it

L. py, Npy, #0

2. VA€ D Ve, ea € dom(A): sv(A)=c1 N sy(A)=ca = ¢ =

Intuitively, two views are overlapping, if their selection constraints are not contradictory,
and their projected attributes have a non-empty intersection.



Assume V] and V; are two overlapping views of a database scheme D. The intersection of
Vi and V4, denoted V) A V4, is the view obtained by conjoining their selection constraints and
intersecting their projection attributes. The intersection of two views is a subview of each
of the original views: Vj; AV, C Vi and V3 AV, C V5. It can be verified that the extension of
the intersection view V; A V5 1s equal to the intersection of the extensions of V; and V5.

A query () against database scheme D is a view of D. The extension of () in a database
instance d is called the answer to () in the database instance d.

2.3 Integrity Constraints

Quite often the information stored in a database must satisfy specific relationships. These
relationships, called integrity constraints, restrict the allowable instances of a database. Our
definition of integrity constraints follows the one in [8].

An integrity constraint I on database scheme D is a view of D. A database instance d
satisfies an integrity constraint [, if the extension of [ in d is the empty set.

As an example, consider the database scheme Emp = (Name, Level, Title, Salary, Su-
pervisor) and the integrity constraint

]1 : projeCtNameseleCt(Level:junior)/\(Title:manager) (Emp)

This integrity constraint is satisfied in any database instance that does not have a tuple in
which Level = junior and T'itle = manager. Intuitively, it models a real world restriction
that junior employees may not be managers.?

Assume a constraint [ and a view V on scheme D. [ is applicable to V', if [ is a subview
of V. Let v be the extension of V' in some database instance. Then v satisfies the constraint

1.
For example, with the previous scheme consider the view

‘/1 : projeCtName,LevelSeleCtTitle:manager(Emp)

The constraint [ (there are no junior managers) is applicable to the view V] (the names and
levels of managers).

Assume a constraint [ and a query ¢} on scheme D, and assume that [ and () are
overlapping views. Let I’ = I AQ). Then I’ is a constraint applicable to (). Given a database
scheme D, a set C of integrity constraints on scheme D, and a query ) on scheme D, the
set of constraints obtained by intersecting () with every overlapping constraint in C' is called
the reduction of C' to (), and is denoted Cg. Intuitively, the answer ¢ to () in every instance
d satisfies the constraints in Cg.

20f course, the expressive power of integrity constraints corresponds to the expressive power of queries.
For example, if a query can be formulated to retrieve the employees who are paid more than their supervisors,
then the constraint could be formulated that all employees may not earn more than their supervisors.



For example, with the previous scheme consider the view

‘/2 : projeCtNameSeleCtSuperm'sm‘:jones (Emp)

The intersection of the constraint Iy with the view V5 is given by

]2 . proj eCtName5eleCt(Level:junior)/\(Title:manager)/\(Supervisor:jones) (Emp)

The constraint [, (there are no junior managers working for Jones) is applicable to the
view V5 (the employees supervised by Jones). The transformation of database constraints
to constraints that are applicable to a given view is similar to constraints residues discussed

in [3].

Finally, a database (D, C.d) is a combination of a database scheme D, a set C of integrity
constraints on the scheme D, and a database instance d on the scheme D that satisfies all the
integrity constraints in C'. A database (D, C.d) acts as a function from queries to answers:
given a query () on scheme D. it computes its answer ¢ in instance d. We shall use the term
model to refer collectively to the scheme and the constraints.

3 Multi-database

There have been many individual approaches to the problem of integrating multiple databases.
In this section we provide a formal framework that encompasses many of these individual ap-
proaches. Our framework extends the commonly accepted definitions for a single database
environment (a version of which we gave in the previous section) to an environment of
multiple databases. Specifically, we formalize the concept a multi-database, and define a
multi-database query, a multi-database answer, and answer inconsistency.

3.1 View and Constraint Equivalence

Consider a database (D, C,d). Let D' be a database scheme that is a view of D. ? The view
that transforms D to D’ also determines a set of integrity constraints C’ and a database
instance d’. Altogether, this view determines a derivative database (D', C", d').

Consider a database (D, C,d), and let (D, Cy,dy) and (D3, Cy, dy) be two such derivative
databases. These three databases are all mutually “consistent” in the sense that “equiva-
lent” views are extended identically in the databases in which they apply, and “equivalent”
constraints are satisfied (or unsatisfied) simultaneously in the databases in which they apply.
These notions of view and constraint equivalence are defined formally as follows.

A view V] of D and a view V, of Dy are equivalent, if for every instance d of D the
extension of Vj in d; and the extension of V; in d, are identical. Intuitively, view equivalence

3Qur present definition of views permits selections and projections, but could be extended to views that
involve additional operations, such as aggregations or attribute renaming.



allows us to substitute the answer to one query for an answer to another query, although
these are different queries on different schemes.

A constraint [; on Dy and a constraint I, on Dy are equivalent, if for every instance d
of D I is satisfied in d;y if and only if I is satisfied in dy. Intuitively, two constraints are

equivalent if they model the same real world restriction.?

3.2 Model and Instance Assumptions

To define equivalence among views and constraints in different databases, we assumed that
the databases were all derived from a “universal” database. In general, we shall assume
that there exists a single (hypothetical) database that represents the real world. This ideal
database includes the usual components of scheme, constraints, and instance. Its scheme
and constraints constitute the perfect model, and its instance constitutes the perfect data.
We now formulate two assumptions. These assumptions are similar to the Universal Scheme
Assumption and the Universal Instance Assumption [6], although their purpose here is quite
different.

The Model Consistency Assumption. All database models (schemes and con-
straints) are derivatives of the scheme and constraints of the real world model. The meaning
of this assumption is that the different ways in which reality is modeled are all correct; i.e.,
there are no modeling errors, only modeling differences. To put it in yet a different way,
all intensional inconsistencies among individual database models are reconcilable. We adopt
this assumption.

The Instance Consistency Assumption. All database instances are derivatives of
the real world instance. The meaning of this assumption is that the information stored in
databases is always correct; i.e., there are no factual errors, only different representations of
the facts. In other words, all extensional inconsistencies among individual database instances
are reconcilable. We do not adopt this assumption.

This approach allows us to ignore the possibility of irreconcilable intensional inconsisten-
cies, and to assume that all manifestations of semantic heterogeneity can be reconciled with
techniques established by previous research. On the other hand, we acknowledge that, in
reality, database instances are only approximations of the true information, and information
stored in different databases is not necessarily consistent.

Consequently, we treat all statements of view and constraint equivalence as constraints:
conditions that should be satisfied in any database that is consistent with reality, but are
not necessarily satisfied by the database instances at hand. In other words, if view V] of one
database and view V; of another database are declared to be equivalent, but their extensions
are different, then at least one of the database instances is in error.

4Again, the expressivity of view or constraint equivalence is limited only by the expressive power of the
query language.



3.3 Model Mapping

We assumed that all differences among models (schemes and constraints) are reconcilable.
The reconciliation between two different models is achieved by means of mappings.

Assume two database schemes Dy and Dy. A scheme mapping (D1, D2) is a collection of
view pairs (V;1,V2) (¢ = 1,...,m), where each V; ;1 is a view of Dy, each V, 5 is a view of Dy,
and V;; is equivalent to V; 5. Let (] be a set of constraints on scheme D; and let C; be a
set of constraints on scheme Dy. A constraint mapping (Cy, C3) is a collection of constraint
pairs (I;1,1;2) (¢ =1,...,m), where each [;; is a constraint on Dy, each [, is a constraint
on Dy, and [, is equivalent to [; 5.

As an example, the equivalence of attribute A in scheme D; and attribute B in scheme
D, is indicated by the view pair

( projecta(Dy), projectg(Ds) )

As another example, given the schemes Emp = (Name, Title, Salary, Supervisor), and
Manager = (Ename, Level, Sal, Sup), the retrieval of the salaries of managers is performed
differently in each database, as indicated by the view pair

( projeCtName,SalarySeleCtTitle:manager(Emp)7 projeCtEname,Sal(Manager) )

The constraint that Jones does not supervise any managers is expressed differently in
each scheme, as indicated by the constraint pair

( projeCtNameseleCt(Title:manager)/\(Supervisor:jones)(Emp)a projeCtEnameseleCtSup:jones(Manager) )
Finally, a multi-database is

1. A scheme D.

2. A set C of integrity constraints on scheme D.

3. A collection (Dq,C1,d1),....(D,.Cy,d,) of databases.

4. A collection (D, Dy),....(D. D,) of scheme mappings.

5. A collection (C,C1),...,(C,C,) of constraint mappings.

This definition may be considered a formalization of virtual databases defined in [7].

Scheme mapping may be considered an abstraction of the different solutions that have been
advanced to the task of relating global schemes to individual schemes (e.g.. [7, 1, 13]).

Note that the mappings from D and C to the individual databases are not necessarily
“total”; i.e., not all views and constraints on D) are expressible in every individual database

10



(and even if they are expressible, there is no guarantee that they are mapped). Similarly,
these mappings are not necessarily “onto”; i.e., the individual databases may include views
or constraints that are not expressible in D (and even if they are expressible, there is no
guarantee that they are mapped).

Recall that we do not assume that the individual instances are all derived from a single
instance. Thus, the inclusion of view pairs (V, V1) and (V,V2) in two scheme mappings
of a multi-database does not imply that the extensions of V in the individual databases
are identical. Rather, it implies that they should be identical. Similarly, the inclusion of
constraint pairs ([, [1) and ([, [3) in two constraint mappings does not imply that they are
satisfied simultaneously.

3.4 Multi-database Queries

When a multi-database receives a query (). the scheme mappings are used to locate related
queries (called decomposition queries) that can be processed in the individual databases. Sev-
eral, possibly overlapping, such queries ()1, . ..., (),, are submitted to the individual databases
(more precisely, the mappings of these queries are submitted). The answers ¢1,. ..., ¢, re-
turned from these databases are then assembled into an extension ¢ of the target query Q).
This extension is delivered to the user.” Hence, like a single database, a multi-database is a
function from queries to answers: given a query ) on scheme D. it computes its answer ¢ in

the databases (Dq,C1,d1), ..., (D, Cy,dy).

As a simple example, assume databases D = (A, B,C, D, E), D1 = (A, B,C) and Dy =
(A, D, F), and assume the obvious scheme mappings between D and D; and between D and
Ds. A multi-database query such as Q) = (B, D) will be decomposed into )1 = (A, B) which
will be submitted to the first database and Q)3 = (A, D) which will be submitted to the
second database. Their answers ¢; and g, will be integrated (by a natural join) in an answer
q to the original query ). Note that the decomposition queries ()1 and (), are “related” to
(), but are not strictly subqueries of ().

Each individual answer satisfies the integrity constraints applicable to it in its individual
database. The integrated answer should be defined so it satisfies the constraints applicable
to it in the multi-database. Consider, for example, two databases with the same scheme
Emp = (Name, Level, Salary) and the constraint that employees at the same level must earn
the same salary. Each individual answer will satisfy this constraint, yet two employees, one
included in one answer and the other included in the second answer, could have identical
levels but different salaries.

Assume two decomposition queries of (): )y is mapped to S; which is submitted to
(D1,C1,dq), and Q2 is mapped to Sz, which is submitted to (Dy, Cy,dy). Let ¢; and ¢o

denote their respective answers. ()7 and (), are both queries on the scheme D. When ()4

5The decomposition of Q into @1, ..., Q. and the composition of q1, ..., ¢ into ¢ is the central part of
any system that integrates information from multiple sources. We assume that such a method exists.
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and ()9 overlap we construct the intersection view T'= Q1 A (J5. T is a view of the scheme
D and a subview of both (); and (),, and therefore can be answered from both ¢; and ¢s.
Let #; and t; denote the respective answers.

In summary, a query 7" on the scheme D (a query related to the original query @) has
two answers ?; and t5. In general, a query 7" on the scheme D may have n answers t4,...,1,.
If t1,...,1, are are not identical, then we must ask: what is the true answer to T (and hence

Q)7

Note that different answers are not necessarily inconsistent. We shall assume that each
answer 1s accompanied by a claim of goodness that estimates its relationship to the true
answer. It is then possible that different answers may be harmonized into a single answer
that satisfies the goodness claims of the individual answers.

As an intuitive example, assume a query () is answered by ¢; = {1,2} and ¢, = {1, 3.4},
and assume that ¢; is “half sound and half complete” and ¢, is “complete and two-thirds
sound”. Any two element answer that contains either 1 or 2 will satisfy the goodness claim
of ¢1. Either {1,3}, {1,4} or {3,4} will satisfy the goodness claim of ¢;. Therefore, two

answers, {1,3} and {1,4}, are within the goodness claims of both ¢; and ¢,.

Different answers are inconsistent, if there is no single answer that meets their goodness
claims. As a trivial example, different answers that claim to be perfect are inconsistent.
Goodness of answers is the subject of the next section.

4 Goodness of Answers

4.1 Soundness, Completeness and Perfectness of Answers

As explained in the introduction, we assume the existence of a hypothetical database instance
dy that captures perfectly that portion of the real world which is modeled by the database
scheme D (the perfect or true database). In addition, we assume one or more actual database
instances d; (¢ > 1) that are approxzimations of the perfect database dy.

Given a query (), we denote by ¢o its answer in the perfect database dy (the perfect or
true answer to ), and we denote by ¢; its answer in the actual database d;. Thus, the
answers ¢; are approximations of the perfect answer gq.

Consider query (). its perfect answer ¢g, and an approximation ¢. If ¢ O o, then ¢ is a
complete answer. If ¢ C g, then ¢ is a sound answer. Obviously, an answer which is sound
and complete answer is the perfect answer.

The concepts of a perfect instance and soundness and completeness of database answers
were first introduced in [8].

12



4.2 Goodness of Answers

We wish to assign each answer a value that denotes how well it approximates the perfect
answer. We shall term this value the goodness of the answer. We require that the goodness
of each answer be a value between 0 and 1, that the goodness of the perfect answer be 1,
and that the goodness of answers that are entirely disjoint from the perfect answer be 0.
Formally, a goodness measure is a function ¢ on the set of all possible answers

Vg : g(q) €[0,1]

Vg: ¢Ng=0 = g(q)=0
Q(QO):l

A simple approach to goodness is to compare the number of tuples in ¢ and ¢o. Let |q|

denote the number of tuples in ¢. Then

lg N qol
g

expresses the proportion of the database answer that appears in the true answer. Hence, it
is a measure of the soundness of ¢. Similarly,

lq N qo
|(I0|

expresses the proportion of the true answer that appears in the database answer. Hence, it
is a measure of the completeness of .

It is easy to verify that soundness and completeness satisfy all the requirements of a
goodness measure. ¢ Soundness and completeness are very similar to precision and recall in
information retrieval [11].

While these appear to be the only natural measures of goodness that correspond to the
degree of soundness and to the degree of completeness (in both cases: the degree to which
one set is contained in another), there appear to be several possible goodness measures that
correspond to the degree of perfectness (the degree to which two sets are identical).

One measure that expresses the degree of “agreement” or “overlap” between two answers
is the Jaccard measure [11]
g M ol
g U ol
Another possible measure that satisfies all the requirements of a goodness measure is the
dice measure [11]

2]q N qo
lq] + |qo]

SWhen ¢ is empty, soundness is 0/0. If ¢ is also empty then soundness is defined to be 1; otherwise it is
defined to be 0. Similarly for completeness, when ¢¢ 1s empty.

13



4.2.1 More Precise Estimation

As defined, a tuple t € ¢ is either correct (identical to a tuple in ¢g), or incorrect. Partial
correctness is not defined. To consider partial correctness we decompose the information
encapsulated in a tuple into more elementary components.

Let g be an answer to query Q. The decomposition of ¢, denoted dec(q), is the set of all
subtuples of every tuple of ¢:

dec(q)={t'|Fteq: t'Ct}

The measures of soundness, completeness and perfectness can now be modified to calcu-
late the number of tuples in the decomposition of answers. For example, a measure of the
perfectness of ¢ is given by

|[dec(q) N dec(qo)|
|[dec(q) U dec(qo)|

5 Conclusion

In this final section we sketch an architecture of a software agent for resolving inconsistent
answers in an environment of multiple databases, and we summarize the major research
issues currently under investigation.

5.1 Harmony: An Inconsistency Resolver

A possible implementation of the framework that we described in this paper is by using
a software agent that would be engaged by intelligent information integrating systems (I°
systems) whenever they encounter inconsistencies. So that it is deployable by different I°
systems, this agent, which we call Harmony, will assume that the behavior of I° systems is
abstracted by the concept of multi-database that was defined formally in Section 3.

To resolve an inconsistency Harmony must be provided with the following information.

1. The definition of the problem query T and the constraints Cr that its answer must
satisfy.

2. The individual answers ¢; and their respective goodness estimates ¢;.

If a goodness estimate g; cannot be provided, then Harmony must estimate it. In such a
case it must be provided with

1. The scheme D; and the constraints C;.
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2. The goodness basis of database (D;,C;,d;); i.e.. a set of view definitions and their
goodness estimates.

3. The ability to submit queries against (D;, C;, d;); e.g., to materialize any of the goodness
views.

Eventually, Harmony will provide the I? system with a single answer ¢ and an associated
goodness value g.

5.2 Research Issues

In this report we explored the problem of extensional inconsistencies in an environment
of multiple information sources. We formalized a framework in which the problem can be
investigated, and we illustrated a procedure for resolving extensional inconsistencies, using
a “free agent” called Harmony. This agent would be engaged by any system whose abstract
behavior subscribes to that of a multi-database.

Three core research issues are currently under investigation. (1) How to select and
maintain a goodness basis for each individual database. (2) How to infer the goodness
of an arbitrary database view (query) from the goodness basis of that database. (3) Given
different answers to the same query (obtained from different databases) and their respective
goodness estimates, how to integrate these answers in an answer of the highest goodness.

Other issues that need to be investigated are concerned with generalizations of our as-
sumptions; in particular, databases with multiple relations, more powerful queries and con-
straints, and information systems other than relational databases.

As explained earlier, we assumed a method exists for processing multi-database queries,
and our research focus is the resolution of inconsistencies encountered during this process.
Thus, we only provided the formal framework for representing the semantic information
needed to decompose queries (scheme mappings), but did not describe any method for per-
forming the actual decomposition. Yet, it is possible that knowledge of information goodness
can be used to guide the process of query decomposition. This possibility requires further
research.
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report: Alessandro D’Atri, Igor Rakov and Alex Brodsky.
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