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Abstract

We introduce the concept of rule schema in this pa-
per in order to support constraints in the active
object-oriented paradigm. The rule schema provides
the meta-knowledge associated with constraints anal-
ogous to the way a database schema provides meta-
data about the database objects. It is used to com-
pile the constraints into clauses which are then \at-
tached" to appropriate object attributes. The com-
piled constraints incorporate the semantics associated
with inheritance over generalization hierarchies and
references to simple objects which are constituents
of complex objects. These clauses are evaluated and
enforced whenever an attribute value is retrieved or
updated. The update semantics for update propaga-
tion of object instances is embedded in the compiled
constraints; constraints therefore play a role similar
to methods in the model, but are speci�ed explicitly
rather than procedurally. They can therefore be man-
aged by the active object-oriented database.

1 Introduction

Object-oriented database systems have advantages
over relational or record-oriented database systems.
They model complex objects, which are constituted by
one or more objects of di�erent object types. Further,
in object-oriented systems one de�nes behavioral se-
mantics in terms of operations, or methods, associated
with objects. Our approach is to associate constraints
to objects.

Constraints can be user-de�ned and dispersed over ob-
ject types as methods associated with object types
[7, 10]. Because constraints are tightly coupled with
the object, it is simple to maintain object consistency
within an object when the object is updated [2]. But,
because of this tight coupling, it is hard to maintain
overall database consistency if the e�ects of the up-
date of an object are propagated and may lead to addi-
tional inconsistencies in other object types [6, 7]. This
di�culty occurs particularly when (1) the constraints
span more than one object along generalization hier-
archies, (2) the constraints refer to complex objects,
which then refer to one or more constituent objects of
di�erent types, and (3) complex objects in a general-
ization hierarchy refer to (simple) objects which are in
another generalization hierarchy.

To overcome this di�culty, there are three well known
approaches: naive approach, limited approach, and ex-
pert approach. In a naive approach, all constraints are
de�ned in one place (e.g., a root node or the \meta-
class") and all constraints are considered for enforce-
ment. The second approach, used in [5, 6, 7, 8, 10],
allows constraints to be de�ned and associated with
an object. Only those constraints (so called intra-
object constraints) associated with an object or inher-
ited from a supertype object are considered when an
update or a query is presented to the object. How-
ever, no propagation of update e�ects are considered
in object-oriented databases and so overall database
consistency can not be ensured. An expert approach
allows constraints (even inter-object constraints) to
be de�ned and associated with an object(s). More-
over, constraints are compiled, partly developed in [3],
and \materialized."1 In doing so, the update e�ects
are propagated thereby ensuring database consistency.
This paper describes the expert approach.

We believe that the natural way of developing an ex-
pert approach is to use meta-knowledge, de�ned in
this paper as a rule schema, that determines the de-
pendencies among constraints. This paper will show
how to construct a rule schema and demonstrate how
these schemas allow for constraint compilation. The
main contribution of this paper is to materialize con-
straints: the applicable (both intra- and inter-object)
constraints are compiled and associated with the ob-
ject type; and so these constraints can be triggered
actively over objects in generalization and aggregation
hierarchies to maintain semantic integrity.

This paper is organized as follows. The remainder of
this section provides an illustrative example and re-
views the literature. In Section 2, structural and be-
havioral models are brie
y reviewed. The concept of
rule schema is introduced in Section 3. Syntax and se-
mantics of the rule schema are presented. Using this
rule schema, constraints are compiled in terms of each
attribute in the object types in Section 4. Section 5 re-
constitutes the object-oriented database schema with

1In this paper, materialization denotes the compilation of
constraints into clauses, for both pre- and post-conditions, that
are attached to attributes of objects. This can be compared to
compiling the \connection graph" of predicate uni�cations in a
deductive database.



Proj (budget: money, manYears: int, type: char[1],
constraint ( pb1: Proj.budget > $200000 ^ Proj.manYears> 1000! Proj.type = \B"))

DefProj (isa: Proj, class: char[15],
constraint ( pc1: DefProj.type � \B" ! DefProj.class = \top secret"))

TechMgr (clearanceLevel: char[12]; supervises: fProjg,
constraint ( tc1: TechMgr.supervises.DefProj.class = \top secret"

! TechMgr.clearanceLevel = \top secret"))

Figure 1: An Example Object-Oriented Database

the applicable constraints being compiled and associ-
ated within appropriate object types. Finally, con-
tributions and open research issues are addressed in
Section 6.

1.1 Motivating Examples

Consider an object-oriented database schema, using
the generic notation of EXTRA/EXCESS [17], and
IQL [1], where attributes are de�ned as a pair \at-
tribute: domain" and constraints are associated with
an object type. Consider an example shown in Fig-
ure 1 consisting projects (Proj), defense projects (Def-
Proj) which are specializations of projects, and techni-
cal managers (TechMgr) who supervise projects. Def-
Proj isa Proj in our example. TechMgr refers to one or
more Proj's through the role of supervising, denoted
by \supervises : fProjg." In the constraint language,
a term is one or more forms of \object.attribute" pairs.
For example, the attribute \class" of a defense project
supervised by a technical manager can be represented
as a term \TechMgr.supervises.DefProj.class," where
TechMgr and DefProj are object types, and \super-
vises" and \class" are attributes. Each constraint has
a label, for example, pb1 represents that the project
whose budget is over $200,000 and man-year is over
1000 should be of type \B."

Suppose an update is presented to increase project
budgets by 10%. The problem is to determine whether
the intended update will lead to a consistent database
state, and whether the e�ects of updates must be prop-
agated. Conventional processing requires only that
constraints associated with the object type \Proj"
be applied. That is, constraint \pb1" is evaluated.
However, additional resources (i.e., methods as con-
straints, or relationships between object types) may
be impacted.

� How does the system know which constraints
should be selected to check for additional incon-
sistencies? Since the project budget is increased,
the project type may be modi�ed according to
pb1. What if its e�ects cause additional incon-
sistencies? What if Proj.class doesn't satisfy the
constraint \pc1?" By the same token, how might
the constraint \tc1" be activated?

� Suppose the database system is required to deter-
mine the constraints to apply for constraint exe-
cution. How does the system evaluate the term
\DefProj.type" in pc1 as triggered by the e�ect of

the execution of pb1 where \Proj.type" is evalu-
ated? Moreover, how does the system evaluate
the term \TechMgr.supervises.DefProj.class" in
tc1 as triggered by the e�ect of the execution of
pc1 where \DefProj.class" is evaluated? It must
reason about both generalization and aggregation
hierarchies.

RS R

DS D-

-

(2) (1)

Figure 2: Using Meta-Knowledge and Meta-Data for
Constraint Compilation

To resolve these problems, we will present the concept
of rule schema as a mechanism for an active database
to determine all applicable constraints. The new
mechanism is sketched in Figure 2. The horizontal ar-
rows describe the relationships between instances and
their schema, and the vertical lines describe evaluation
and compilation processes. The Database Schema,
DS , is an abstraction (meta-data) of database, D . The
Rule Schema, RS , is an abstraction (meta-knowledge)
of constraints, R. Typically, R are evaluated and trig-
gered against D as designed by the line (1) in Fig-
ure 2. As opposed to (1), the line (2) denotes that
RS can interact with DS to reason about the interac-
tion of the constraints and the schema in terms of the
object-oriented paradigm which supports property in-
heritance and object referencing , along generalization
and aggregation hierarchies, respectively.

1.2 Related Work

There has been considerable work [13, 14, 16] dealing
with the expressive power of relational constraint man-
agement. They view database relations as the predi-
cates of constraints. Chakravarthy [3] developed the
notion of constraint compilation for each database re-
lation. The constraints are compiled by the refutation
of the negation for each relation. However, the con-
straint compilation technique which will be presented



in this paper is performed by using meta-knowledge
for an update or a query.

Now, let's turn to constraint management in active
databases. An active database is a database system
enhanced with a rule processing capability in which
the rules monitor the database state and automati-
cally execute when rule conditions are satis�ed.

The literature [5, 6, 12] groups constraints and rules
together. By using a declarative language, constraints
and rules can be speci�ed uniformly. A drawback of
these approaches is that a constraint implemented by
these rules cannot activate other constraints unless
those constraints are speci�ed explicitly in the rules
or changes in a database state are monitored thereby
triggering another constraint. Our approach is more
general in that we determine the set of constraints ap-
plicable to a database update, before e�ecting that
update.

Finally, in object-oriented databases, constraints are
associated with object types (or classes). Since con-
straints are scattered in an object-oriented database,
inference is limited either to within an object type
to which the constraints are associated or outside the
scope of individual object types by means of explicit
triggers. Propagation algorithms (e.g., in [8]) are exe-
cuted in a predesignated manner for all users to make
use of the same database constraints. In these al-
gorithms, constraints are activated by explicitly pre-
de�ned activators.

Although Hull and Su [8] have developed object-
oriented constraint languages, the concept of method
is ignored. The literature [2] does not explicitly ad-
dress that constraints play the role of methods. How-
ever, [10] has introduced the concept of method to de-
�ne object-oriented constraints. Inference is limited to
using those constraints that are associated with an ob-
ject type or its subtypes. This restriction is examined
in [6, 7]. In this paper, we develop a rule schema to
represent and reason with meta-knowledge, by which
constraints may be compiled.

2 Object-oriented Database Model

Object-oriented databases are comprised of both
structural and operational aspects of data. In this sec-
tion, structural and behavioral models of the object-
oriented database are brie
y reviewed.

2.1 Structural Model { A Brief Review

We assume the existence of an in�nite set of symbols,
called attribute, and for each attribute a, of an in�nite
set of values, denoted dom(a), called the domain of a.
An object type (O) is de�ned as a �nite set (a1; a2; :::)
of attributes. The instance t of O is a mapping from
O to dom(O) with the restriction such that, for each
ai in O 2 O, t(O) is in dom(O:ai). The instance t
is identi�ed by an object identi�er(OID) as used in
O-Logic [11]. The OID is a powerful programming
primitive for database constraint languages [1].

A complex object refers to one or more objects or
object fragments connected by inter-object references

Rule ::= RID : Antecedent! Consequent
Antecedent ::= Predicate [^ Predicate]�

Consequent ::= Predicate j ?
Predicate ::= Term �D
Term ::= [Complex object path(OID).]�

Primitive path(OID)
Complex object path ::= Primitive path
Primitive path ::= Object.attribute

� ::= =j<j�j>j�j6=
D ::= dom(Primitive path)

Figure 4: Constraint Language

[4, 9]. The references of a complex object (O 2 O) is
de�ned as a mapping from O:a to dom(O:a) that is a
set of OID's.

In our company example, a project of type Proj is
supported by one or more agencies of type Agency. A
complex object \Proj" is de�ned as follows:

Proj ( oid: oid type,
supported: fref Agencyg,
manYears: int)

where OID's are generated by an object-oriented
database system and invisible to users, and its type
is called oid type. The value of Proj's attribute
\manYears" is mapped to domain \int," and the refer-
ences of an attribute \supported" is mapped to one or
more OID's of an object type \Agency," represented
in braces.

As the properties of an object type are inherited by
subtypes of objects, the references of a complex ob-
ject are inherited as well. For example, suppose that
DefProj isa Proj. An attribute \manYears" of type
Proj can inherited by type DefProj unless overridden.
Likewise, the type Proj is supported by one or more
agencies of type Agency, so DefProj is also supported
by one or more agencies again due to the inheritance.
This notion is very important in managing the con-
straints which are de�ned on complex objects as we
will discuss in a later section.

2.2 Behavioral Model

Constraints are de�ned as disjunctions of predicates in
a �rst-order Horn clause logic: L1&L2 &:::&Ln ! L0,
where Li is a predicate. Each predicate is of the form
\object:attribute(OID) � D," denoting the attribute
of the object of OID is compared with the domain
value, where � is a arithmetic comparison operator
(e.g., =; >; 6=, etc), and D 2 dom(object:attribute).
OID can be either a variable or a value. Each con-
straint is identi�ed by constraint identi�er (RID). The
detailed grammar is given in Table 4 by which con-
straints in Figure 3 are de�ned. For example, con-
straint ba1 represents that \there is no project whose
budget is over 700K," and constraint pa1 represents
that \any project which is supported by NSF should
not have a budget over 500K."

The references being mapped between a complex
object and a simple object can be represented by



de�ne type Proj
Attribute ( oid: oid type,

budget: money,
supported: fref Agencyg,
manYears: int,
type: char[1])

Rule ( pa1: Proj.supported(x).Agency.name(y) = \NSF" !Proj.budget(x) < 500000,
ba1: Proj.budget(x) > 700000! ?,
pt1: Proj.budget(x) > 200000 ^ Proj.manYears(x) > 1000! Proj.type(x) = \B",
pt2: Proj.budget(x) < 50000 ^ Proj.manYears(x)< 500 ! Proj.type(x) = \D")

end de�ne

de�ne type DefProj
Superclass (Proj)
Attribute ( oid: oid type,

class: char[15])

Rule ( pc1: DefProj.type(x) � \B" ! DefProj.class(x) = \top secret")
end de�ne

de�ne type Agency
Attribute ( oid: oid type,

name: char[15] )
end de�ne

Figure 3: Object Types in Company Database Example

using a functional path [15]. The term used in
constraints is of a form \[Complex object path(x).]�

Primitive path(y)," denoting that a complex object
x refers to one or more simple objects y. Note that
we de�ne the innermost functional path of a term as
\primitive functional path" (in short, primitive path)
while functional paths of the remainder are referenced
to as \complex object functional path" (in short, com-
plex object path). For example, a functional path
Proj.supported.Agency.name, serves as a connection
from a complex path \Proj.supported" to primitive
paths \Agency.name."

3 The Rule Schema

A rule schema is a triple: hA;R;Ci, where R is a set
of RID's, A and C are respectively sets of functional
paths used in the constraint and in the consequent of
a constraint. Notice that a Horn clause based rule
language leads to constituting set A and element C.

For example, given the constraints:

pt1: Proj.budget(x)> 200000 ^ Proj.manYears(x)> 1000
! Proj.type(x) = \B"

pt2: Proj.budget(x)< 50000 ^ Proj.manYears(x)< 500
! Proj.type(x) = \D"

the rule schema for constraints pt1 and
pt2 is: hfProj:budget; P roj:manY earsg; fpt1; pt2g;
fProj:typegi. Rule schema represents a skeleton of
the dependencies among object's attributes.

3.1 Syntax

The alphabet of a rule schema consists of terms such
as (1) a set of functional paths, A and C, used in
constraint speci�cations, and (2) a set of constraint
names R.

The term in a rule schema is de�ned as follows: (1) a
primitive path, Object.attribute (O:a), is a term; (2)
a complex object path (O2:f:O1:g) referring to either

a primitive path or another complex object path is a
term; (3) a constraint name (r) is a term.

3.2 Semantics

Given term set A and termC, we de�ne a rule schema,
hA;R;Ci, for the set R of constraints. The individ-
ual constraint r in R is a mapping from the terms
\Object.attribute" in a rule schema to the predicate
\Object.attribute(OID) � dom(Object.attribute)" in
a constraint. Each constraint is represented at most
once in the rule schema, but more than one constraint
may have the same rule schema. For example, for ei-
ther pt1 or pt2, there is only one rule schema as above.

If there are constraints applicable for a given attribute,
they must be a �nite set of constraints R. Con-
sider once again a rule schema in the previous ex-
ample, hfProj:budget; P roj:manY earsg, fpt1; pt2g;
fProj:typegi, constraints pt1 and pt2 which specify
the dependency from Proj.budget and Proj.manYears
to Proj.type must be in the rule schema above, either
pt1 or pt2. In other words, pt1 and pt2 are instan-
tiated from the rule schema. All constraints to be
considered are instantiated from rule schemas.

3.3 Properties

We are now ready to characterize the applicable con-
straints. Constraints that are represented over an ob-
ject may also apply over objects of subtypes or a com-
plex object. The rule schema can be used for various
di�erent types: (1) the rule schema of the constraints
which are inherited by a subtype can be used in the
objects of the subtype; (2) the rule schema of the con-
straints associated with a simple object type can be
referenced by the complex object type. The former is
possible by inheritance and the latter is possible by ref-
erence mapping. In order for constraints to apply over
objects of di�erent types, their rule schema should ex-
tend over other types. We call the rule schema ex-
tended over other types an equivalent rule schema.



De�nition 1 (Equivalence of Rule Schemas.) We de-
�ne two rule schemas, hA;R;Ci and hA0;R0;C0i to
be equivalent if (1) They are de�ned over the same
set of constraints, R � R0; and (2) The elements of
A;A0;C and C0 are related in that there exist paths
through inheritances or reference mappings. 2

The second condition means that equivalent rule
schemas are constructed over generalization and ag-
gregation hierarchies in object-oriented databases. An
equivalent rule schema uses the same constraints as
the original schema and has the same results, but
by simpler triggering. By obtaining equivalent rule
schemas, a constraint can span objects not only of the
same object type but also of di�erent types along gen-
eralization and aggregation hierarchies.

3.3.1 Inheritance

Given an inheritance hierarchy de�ned by the isa re-
lationship, we can de�ne object inheritance. An ob-
ject inherits the properties of its super-object. Unless
the inherited properties are overridden, they are avail-
able to the object. Similarly, rule schemas are also
available to subtypes by typing and unifying2 the su-
pertype with the subtypes. The following inheritance
property of rule schema is introduced:

De�nition 2 (Inheritance.) For hA;R;Ci, if any ob-
ject type in the term A is a supertype of those in A0,
then its equivalent rule schema is hA0;R;Ci, available
to the objects of its subtypes. Similarly, hA;R;C0i
may be also an equivalent rule schema if the term in
C is a supertype of C0. 2

Example 1

Suppose a rule schema is de�ned at type Proj:
hfProj:budget; P roj:manY earsg; fpt1;pt2g; fProj:typegi is
inherited to a subtype \DefProj" by unifying
\Proj" with \DefProj," thereby an equivalent
rule schema is: hfDefProj:budget;DefProj:manY earsg;
fpt1;pt2g; fDefProj:typegi. That is, the constraints pt1
and pt2 can be invoked when an update is presented
over not only a project but also a defense project. 2

3.3.2 Complex Object Referencing

As discussed earlier, the rule schema over a complex
object refers to one or more simple objects, while the
rule schema of a simple object may also inversely refer
to the complex object. We call the former referenc-
ing and the latter inverse-referencing . Referencing
concatenates a complex object path with the term
in a constraint, e.g., \complex object path.term."

2As in [10], the uni�cation algorithm is used accordingly to
incorporate type or class information.

Inverse-referencing is made by concatenating the in-
verse pointer3 of \complex object path" with the
term. For example, Mgr.supervises.Proj is inversely
Proj.supervised.Mgr, meaning that \a manager su-
pervises projects" is inversely \projects are supervised
by a manager" where supervised = supervises�1 .
From this notion, we have the following properties4:

De�nition 3 (Referencing.) Consider a 2 A in
hA;R;Ci. For a complex object term a0, if a complex
object refers to simple objects through the term a0:a
then its equivalent rule schema is hA0;R;Ci, where
a0:a 2 A0. Similarly, hA;R;Ci can be equivalent to
hA;R;C0i where c0:c 2 C0. 2

De�nition 4 (Inverse-referencing.) Consider a 2 A
in hA;R;Ci. For an inverse pointer of complex ob-

ject term, a0�1, if a complex object refers to sim-
ple objects through the term a0:a then its equivalent
constraint schema is hA0;R;Ci, where a0�1:a 2 A0.
Similarly, hA;R;Ci can be equivalent to hA;R;C0i,
where c0�1:c 2 C0. 2

Example 2

The constraint pc1 in Figure 3 is de�ned at the
type DefProj and can extend over to the type
Mgr. hfProj:typeg; fpc1g; fProj:classgi can be re-
ferred by its complex object \Mgr" by concate-
nating \Mgr.supervises" to \Proj.class," thereby its
equivalent rule schema is hfMgr:supervises:Proj:typeg;
fpc1g; fMgr:supervises:Proj:classgi. Consider another
example: hfMgr:supervises:DefProj:classg; ftc1; tc2g;
fMgr:clearanceLevelgi. First, its equivalent rule schema
hfDefProj:supervised:Mgr:supervises:DefProj:classg;
ftc1; tc2g; fDefProj:supervised:Mgr:clearanceLevelgi is ob-
tained by concatenating the inverse pointer \Def-
Proj.supervised." By neglecting a cyclic pointer,
we obtain an equivalent rule schema hfDefProj:classg;
ftc1; tc2g; fDefProj:supervised:Mgr:clearanceLevelgi Thus,
it is inverse-referenced by the simple object DefProj.
One or more Proj's are connected with Mgr, mean-
ing that a technical manager supervises one or more
projects, and thereby the \project's class" is equiv-
alent to \class of a project which is supervised by a
technical manager." 2

3Maintenance of \inverse" pointers is well described [15] and
Vbase.

4Note that for object types Oi;Oj 2 O; (i 6= j) and at-
tributes f; g; (f 6= g), the term O1:f

�1:O2:f:O1:g can be sim-
pli�ed to O1:g if the mapping f from O1 to O2 is \total", not-
ing that it does not have to be \one-to-one" however. That is,
for every object (instance) o1 2 O1, there exists an o2 2 O2

such that o2 = f(O1). Therefore o1 2 f�1(o2). For ex-
ample, Proj.supervised.Mgr.supervises.Proj.type is simpli�ed to
Proj.type because both terms deal with the \same objects," i.e.,
Proj.type, if all objects of type Proj participate in the reference
mapping with objects of type Mgr.



4 Constraint Compilation

The rule schema determines the constraints to be en-
forced for queries or updates. Using the rule schema,
constraints (p ! q) can be compiled into the clauses
(:p _ q) which are then associated with an object
type. In this section, constraint compilation algorithm
is described. Objects can be reconstituted with the
compiled constraint clauses and so the constraints are
\materialized."

4.1 Algorithm

Given the rule schema hA;R;Ci, consider a term a
which is a pair \object.attribute." Using the proper-
ties of the rule schema, the constraints are compiled
as follows.

� If a 2 C, all constraints 5 in rule set R are compiled
to ensure the correctness of updates or queries.

� If a 2 A, all constraints in rule set R are compiled
to ensure the e�ects of updates.

� Suppose that c 2 C is also an element of A0 of a
rule schema hA0;R0;C0i. In addition to compiling
the constraints in R, by the rule schema transitivity,
the appropriate constraints in R0 are compiled to in-
crementally maintain the propagation of the update
e�ects.

The algorithm compiles not only the exactly matched
constraints, but also all other constraints that must
be considered. It ensures that all relevant constraints
will be considered.

4.2 Object Reconstitution

In this section, the notion of materializing constraints
for object types is discussed. We transform the com-
piled constraints into clauses such that all the clauses
must hold in order to commit the update. The con-
junction of clauses is then associated with an ob-
ject type, similar to a procedure attachment (e.g.,
IF NEEDED or IF ADDED) so that the constraints
can be automatically triggered as object attributes are
retrieved or updated. The attribute speci�cation with
which the compiled constraints are associated is of the
form

attribute name: domain
n

RETRIEVED IF : Ri;
MODIFIED IF : Ri; Rj; Rk;

o

where Ri is a conjunction of clauses for checking the
correctness of a query or an update (Q), Rj is a con-
junction of clauses for ensuring the e�ects of Q , and
Rk is a conjunction of clauses for checking the propa-
gation of Q's e�ects. This notion has been partly de-
veloped as the terms pre-condition and post-condition
in the constraint language of [14].

A system allows the attribute to be retrieved if Ri

holds when a query is presented, or to be modi�ed if
Ri; Rj; Rk hold when an update is presented. These

5All accepted changes of the database should satisfy all
constraints.

conjunctions of clauses are grouped into two proce-
dure attachments: RETRIEVED IF and MODIFIED IF.
In doing so, not only the correctness of the modi�ca-
tion (i.e., Update, Insert, or Delete) is checked, but
also the e�ects of the modi�cation and the propaga-
tion e�ects are ensured. Furthermore, Ri is evalu-
ated to check the correctness of a query (i.e., Retrieve)
when the query is asked over attribute name.

5 The Object-oriented Database

Model { Revisited

By applying the compilation algorithm, an object-
oriented schema can be reconstituted. All constraints
for pre- and post-conditions related with an attribute
are associated with the attribute. These constraints
are then automatically triggered when the attribute is
updated. Given Figure 3 and 5 which depict portions
of an application, consider the following rule schemas
with respect to attribute \DefProj.type."

hfProj:budgetg; fba1g;?i
hfProj:budget; P roj:manY earsg;fpt1; pt2g;fProj:typegi
hfDefProj:typeg;fpc1g;fDefProj:classgi
hfMgr:supervises:DefProj:classg; ftc1; tc2g;
fMgr:clearanceLevelgi
hfMgr:supervises:DefProj:budgetg; fts1g;fMgr:salarygi
hfProj:supported:Agency:nameg; fpa1g;fProj:budgetgi

As shown in Figure 2, the notion of inheritance
and referencing is applied to reason about the
database and rule schemata to compile constraints.
Keeping this notion in mind, we will compile the
constraints applicable to \DefProj.type" by obtain-
ing equivalent rule schemas and applying the algo-
rithm. Let's �rst �nd equivalent rule schemas. For
hfProj:budget; P roj:manY earsg; fpt1;pt2g; fProj:typegi, an
equivalent rule schema is hfDefProj:budget;

DefProj:manY earsg; fpt1;pt2g; fDefProj:typegi due to in-
heritance.

Consider hfMgr:supervises:DefProj:classg; ftc1; tc2g;
fMgr:clearanceLevelgi. Its equivalent rule schema is
hfDefProj:classg; ftc1; tc2g; fDefProj:supervised

:Mgr:clearanceLevelgi by inverse-referencing as shown in
earlier section.

Hence, the equivalent rule schemas for the type Def-
Proj are obtained by using inheritance and referenc-
ing:

hfDefProj:budgetg;fba1g;?i
hfDefProj:budget;DefProj:manY earsg;fpt1; pt2g;
fDefProj:typegi
hfDefProj:typeg;fpc1g;fDefProj:classgi
hfDefProj:classg;ftc1; tc2g;
fDefProj:supervised:Mgr:clearanceLevelgi
hfDefProj:budgetg;fts1g;
fDefProj:supervised:Mgr:salarygi
hfDefProj:supported:Agency:nameg; fpa1g;
fDefProj:budgetgi

Since all terms in these equivalent rule schemas refer
to the type DefProj, it is feasible to apply the com-
pilation algorithm. An attribute DefProj.type is the
same as the c part of the rule schema of pt1 and pt2, so



de�ne type Mgr
Superclass (Emp)
Attribute ( oid: oid type,

supervises: fref Projg,
clearanceLevel: char[12])

Rule ( tc1: Mgr.supervises(x).DefProj.class(y) = \top secret"
! Mgr.clearanceLevel(x) � \top secret",

tc2: Mgr.Supervises(x).DefProj.class(y) = \con�dential"
! Mgr.clearanceLevel(x) � \con�dential",

ts1: Mgr.supervises(x).DefProj.supported(y).Agency.name(z)
= \DARPA" ! Mgr.salary(x)> 60000)

end de�ne

de�ne type Emp
Attribute ( oid: oid type,

name: person name,
salary: money )

end de�ne

de�ne type TechMgr
Superclass (Engr)

Attribute ( oid: oid type,
years of expr: int )

end de�ne

de�ne type Engr
Superclass (Emp)

Attribute ( oid: oid type,
Degree: char[3] )

end de�ne

Figure 5: Object Types in Company Database Example { Extended

the constraints pt1 and pt2 are compiled into clauses.
The clause Ri for ensuring the correctness of an up-
date is obtained (or instantiated) from the equivalent
rule schema above.

Ri :

8>>><
>>>:

:(DefProj:budget(x) > 200000)
_:(DefProj:manY ears(x)
> 1000)_DefProj:type(x) = \B";
:(DefProj:budget(x) < 50000)
_:(DefProj:manY ears(x)
< 500)_DefProj:type(x) = \D"

9>>>=
>>>;

To ensure the e�ects of this update, we need to
select the constraints to apply. DefProj.type 2
fDefProj.typeg holds in the rule schema, and there-
fore constraint pc1 is compiled. So, the clause Rj is:

Rj :

n
:DefProj:type(x) � \B"
_DefProj:class(x) = \topsecret"

o

Since the e�ects of the update propagate, additional
constraints need to be evaluated. For this reason, the
constraints tc1 and tc2 are compiled to clause Rk.
These clauses are instantiated from the equivalent con-
straint schema above.

Rk :

8>>><
>>>:

:DefProj:class(x) = \topsecret"
_DefProj:supervised(x):Mgr:clearanceLevel(y)
� \topsecret";
:DefProj:class(x) = \confidential"
_DefProj:supervised(x):Mgr:clearanceLevel(y)
� \confidential"

9>>>=
>>>;

By associating these clauses with an object attribute
DefProj.type, the type DefProj can be reconstituted
as shown in Figure 6.

There are several advantages to this approach: All
constraints associated with an object type do not have
to be evaluated when an update is presented over par-
ticular attributes. Instead, only the constraints associ-
ated with the attribute of an object type are evaluated.
In addition, since additional constraints related to the
e�ects of the attribute update are compiled, overall
database consistency is guaranteed. However, the re-
dundancies should be eliminated when a query or an
update is speci�ed over many attributes and those at-

tributes contain the same constraint clauses; this is a
well known typical query optimization issue. If there
are more than one rule schema to apply as traced,
one may either consider all rule schemas or choose
the most relevant one for the object type. Choosing
the most relevant rule schema is a topic of ongoing
research.

6 Contributions and Future Work

We have developed the concept of rule schema by
which the constraints are compiled and associated
with an object type. The constraints associated with
the object type can be used to maintain: (1) Database
updates, (2) The e�ects of the update, (3) The prop-
agation of the update e�ects.

The contribution of this paper is as follows: (1) An al-
gorithm for compiling constraints is developed. Equiv-
alent constraints are obtained to span objects of not
only the same object type but also di�erent types. The
equivalent constraint is instantiated from the equiva-
lent rule schema which is possibly also an abstraction
of that constraint. (2) Object types are reconstituted
by associating constraint clauses to appropriate ob-
jects. In doing so, constraints are materialized and
they span over several object types. This is a uni�ed
tool for maintaining overall database consistency as
stated above.

In addition, this compilation approach can be also
used for rule compilationwhich may correct constraint
violations, which is an area of current research. Pro-
duction rules for correcting constraint violations are
compiled together with constraints. Both the com-
piled constraints and rules are associated with object
types. Therefore, semantic invariants are ensured by
constraints and otherwise, corrections are enumerated
by production rules in a speci�c sequence.

Finally, the use of the rule schema concept provides
a formal way to (1) reason about constraints in a
database, (2) study the impact of operations and their
side-e�ects, and (3) compile constraints and associate



de�ne type DefProj
Attribute ( oid: oid type,

budget: money,
supported: fref Agencyg,
manYears: int,

type: char[1]

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

RETRIEVED IF :
:(DefProj:budget(x) > 200000)_ :(DefProj:manY ears(x) > 1000)
_DefProj:type(x) = \B";
:(DefProj:budget(x) < 50000)_ :(DefProj:manY ears(x) < 500)
_DefProj:type(x) = \D";
MODIFIED IF :
:(DefProj:budget(x) > 200000)_ :(DefProj:manY ears(x) > 1000)
_DefProj:type(x) = \B";
:(DefProj:budget(x) < 50000)_ :(DefProj:manY ears(x) < 500)
_DefProj:type(x) = \D";
:DefProj:type(x) � \B" _DefProj:class(x) = \topsecret";
:DefProj:class(x) = \topsecret"
_DefProj:supervised(x):Mgr:clearanceLevel(y) � \topsecret";
:DefProj:class(x) = \confidential"
_DefProj:supervised(x):Mgr:clearanceLevel(y) � \confidential";

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

class: char[15] )
end de�ne

Figure 6: Revised Object Type in Company Database Example

them with appropriate objects. In fact, the meta-data,
DS, and meta-knowledge, RS, can be used to sup-
port intelligent access to meta-information for query
processing.
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