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Abstract|Although knowledge discovery is increasingly im-
portant in databases, discovered knowledge is not always
useful to users. It is mainly because the discovered knowl-
edge does not �t user's interests, or it may be redundant or
inconsistent with a priori knowledge. Knowledge discovery
in databases depends critically on how well a database is
characterized and how consistently the existing and discov-
ered knowledge is evolved.

This paper describes a novel concept for knowledge dis-
covery and evolution in databases. The key issues of this
work include: using a database query to discover new rules;
using not only positive examples (answer to a query) but
also negative examples to discover new rules; harmonizing
existing rules with the new rules. The main contribution of
this paper is the development of a new tool for (1) character-
izing the exceptions in databases and (2) evolving knowledge
as a database evolves.

Keywords| Knowledge discovery, database mining, active
database evolution, knowledge re�nement, expertise trans-
fer.

I. Introduction

Although knowledge discovery is increasingly important in
databases, discovered knowledge is not always useful to
users. It is mainly because the discovered knowledge does
not necessarily �t a user's interests, and may be redun-
dant or inconsistent with a priori knowledge. Knowledge
discovery critically depends on how well a database is char-
acterized and how consistently the existing and discovered
knowledge is evolved.
This paper makes use of database techniques to dis-

cover new rules. A database represents facts about the
real world and by its nature provides many attractive fea-
tures. A database models the world in a structured and
organized manner (e.g., relational/object-oriented model-
ing), and implicitly contains knowledge, knowledge which
abstracts the data. That is, the organization of data results
from codifying knowledge in the data such as relationships
among attributes and key constraints. The data can be
retrieved in accordance with user's interests by means of
queries. A query is the request for a subset of the database.
The key issues addressed in this work include: (1) using

a database query to discover new rules; (2) using not only
positive examples (the answer to a query) but also negative
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examples to discover new rules; (3) harmonizing or recon-
ciling both the new rules and the existing rules to maintain
consistency of the knowledge and database.
The criterion for knowledge discovery from databases is

the determination of how well rules Xi can characterize a
database S. For example, suppose S includes the tables,
\enrollment" and \transcript." Let X1, X2 and X3 be,
respectively, the discovered rules \the students enrolled in
CS714 have a GPA over 3.3," \the students enrolled in
CS714 have taken CS120," and \the students enrolled in
CS714 have taken CS525." This discovery is not always
interesting to users, especially for someone who poses the
query \List the course names that all students enrolled in
CS714 have taken." In this case, onlyX2 andX3 are useful
because this query asks for the course names. If there exists
in S the rule K such that \Students in the CS department
have taken CS120," X3 is the only useful discovered rule
because X2 is redundant with K.
The problems that motivate our research are: (1) expert

user's domain knowledge has not been used to discover new
rules. User's interests, intention, insights, or background
knowledge are conveyed by means of a query to support
knowledge discovery, which delimits the learning space. (2)
Rules are discovered from only positive examples. With-
out using negative examples, however, \constraints" can
not be discovered e�ciently if constraints characterize the
exceptions. (3) The discovered rules may be redundant
or inconsistent with the existing rules. Discovery of those
rules is time-consuming. A rule inconsistent with the ex-
isting rules is of no use or may be misleading.
The goal of this paper is (1) to discover the rules which

match and support a user's interests, and (2) to harmonize
the discovered rules to be consistent with the existing rules.
The main contribution of this paper is the development of a
new tool for (1) characterizing the exceptions in databases,
and (2) evolving knowledge as a database evolves.
The organization of this paper is as follows: Section II

investigates the related work. Section III reviews the basic
terms of relational database systems. In Section IV, a novel
concept of knowledge discovery is developed. A knowledge
discovery algorithm is also de�ned. Section V harmonizes
the discovered rules with the existing rules. Finally, the
contributions of this paper and future work are described
in Section VI.

II. Related Work

Until recently, the only methodology available about rea-
soning from databases has been based on statistical meth-

1



ods [2,20] For example, Smyth and Goodman [20] have
introduced the form of the probabilistic rule \IF Y = y

then X = x with probability p," in which the probability
p(x j y) is added to the rule. However, statistical or prob-
abilistic methods are not always e�cient for evolutionary
systems because of either the inexible statistical assump-
tions, such as the adherence to a particular probability
distribution model, or the limitation of the statistical ap-
proach, such as the inability to recognize the relationships
among data.
Structural information about databases is used to dis-

cover knowledge [3,18,21]. Quinlan [18] has introduced
a decision tree for classi�cation. Using a tree structure
makes it easier to search the rules. However, this approach
does not function e�ciently when data are inconclusive, or
when there are a fewer positive data and many more neg-
ative data. Cai, Cercone and Han [1] have determined the
generalization hierarchy of attribute values. The attribute
domains are de�ned in the given generalization hierarchy
and, in turn, used to generalize the attribute values in a
table. The strong assumption is the user's pre-de�ned do-
main hierarchy on which the generalization depends.
A few papers describe the assessment of the discovered

rules. Rules are measured by calculating probabilities p(A),
p(B), p(A&B) for A! B [7,20]. Schlimmer, Mitchell and
McDermott [19] have described a notion of justifying rules
to suggest the re�nements of the rules. Piatetsky-Shapiro
[16] has discussed the expected accuracy of the discovered
rules by using a statistical function about the number of
tuples.
There is a signi�cant di�erence between our approach

and the previous research [2,3,6,9,11,20,21] The previous
research has concentrated on how arti�cial intelligence can
help in knowledge discovery, without considering the char-
acteristics of databases. As shown in the diagonal vector
(2') of the following diagram, logically, if new rules X are
discovered from a database S (i.e., S ` X ) then X is sim-
ply added to the existing rules K, so K [ X will be the
knowledge base.
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On the other hand, we make use of the database tech-
nology. A query is used to access a database. Notice that
rather than developing a new learning command, an ordi-
nary SQL query language is used. The query answer A is
generated, as depicted by the vector (1) in the diagram.
A query embodies the user's interests, as does the answer.
Rules are discovered from the answer (refer to (2) in the
diagram) and the discovered rules are harmonized, or rec-
onciled, with the existing rules (refer to (3)). For an answer

A, a subset of S, A � S, if new rules X are discovered from
A and X is satis�ed with K (i.e., A ` X ;X j= K), then the
new knowledge base will be K [X .

III. Preliminaries

A relational database is a collection of n-ary relations
which are represented as tables. All data are treated as
being stored in tables. Each row in the table summarizes
information about some object or represents a relationship
among the objects. A row is called a tuple and a column
name is called an attribute. For example, the following ta-
ble \Teaches" contains four tuples, each of which represents
the three attributes \instructor", \course," and \dept."

Teaches
instructor course dept
Adam CS714 CS
Fox CS622 CS
Newman EE692 EE
Wiseman EE705 EE

From database tuples, concepts or regularities can be
discovered and expressed as rules representing either con-
straints or deductive rules. A rule is de�ned as a disjunc-
tion of predicates in a �rst-order Horn clause logic: L1&L2
&::: &Ln ! L0, where Li is a predicate. For example,
in the relational schemes Enrollment(student, course) and
Transcript(student, semester, course, GPA), the rule \Stu-
dents enrolled in CS714 have taken CS525" can be repre-
sented as:
Enrollment:course = CS714 ! Transcript.course =

CS525.
Rules can be interpreted by a model-theoretic approach:

the rule p! q (or :p_q) holds when either both p and q are
true, or p is not true (no matter what q is). Therefore, p!
q results in the three models (three true interpretations):
fp; qg, f:p; qg, and f:p;:qg.
Those data and rules investigated above are accessed by

a user's query. A query speci�es a subset of a database
according to user's interests. In SQL, a query speci�cation
is of the form \SELECT attributes FROM table names WHERE a
conjunction of predicates." As a query conveys the user's
intent, the answer to the query is also of interest to the
user. During query processing, the tables in the FROM part
of a query are joined if necessary. Query processing yields a
table, which is an answer, called \positive examples." The
other tuples of those tables, not included in the answer, are
called \negative examples." This notion is very important
in that rules are discovered not only from the true tuples
but also from the false tuples [13]. We de�ne positive and
negative examples as follows:

De�nition 1 (Positive and Negative Examples). Consider
a database consisting of a set of tables T = fR1; R2; :::; Rng,
where each table Ri is a set of instances. Let A be the an-

swer to a query Q, a set of the instances resulting from

query processing among the tables R (� T ) = fR1; R2; :::;

Rmg, where m � n. The instances in A satisfy the condi-

tion q of a query Q: A = �q(R1 � R2 � :::� Rm)[attriA],
where �q denotes a selection of the instances satisfying q,

Ri�Rj denotes the Cartesian product between Ri and Rj,
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and [attriA] denotes a projection of the attributes from the

table A. We call A positive examples. The negative exam-

ples �A is de�ned as a set of tables, each table is denoted
�Ai, such that �Ai is a subset of Ri which does not include

the instances included in A. That is, �Ai = Ri � (A ./

Ri)[attriRi ], where Ri ./ Rj denotes \join" operation be-

tween Ri and Rj. Clearly, �A = f �A1; �A2; :::; �Amg. 2

For example, for the following query, selecting all at-
tributes of the table Teaches for the CS department, the
positive and negative examples are:

SELECT *

FROM Teaches

WHERE dept = CS
positive-examples

instructor course dept
Adam CS714 CS
Fox CS622 CS

negative-examples

instructor course dept
Newman EE692 EE
Wiseman EE705 EE

IV. Knowledge Discovery from Databases

In our approach, knowledge discovery is performed when
a query is posed. For a query, the answer is generated. New
rules are discovered from the answer (or true database in-
stances) which is a subset of the database. These rules are
satis�ed by all the true instances (i.e., positive examples)
but not satis�ed by any false instances (i.e., negative ex-
amples). Knowledge can be discovered from positive and
negative examples. This discovered knowledge should be
satis�ed with all the positive examples but none of negative
examples. This notion is de�ned as follows:

De�nition 2 (Discovered Knowledge). Consider a database
consisting of a set of tables T . Let A be positive examples

and �A be negative examples to a query. The knowledge X

discovered from A and �A should have the following prop-

erty:

8t 2 A; t j= X and 8t 2 �A; t 6j= X. 2

Not only the positive examples but also the negative ex-
amples may be characterized. The rules characterizing the
positive examples represent dependencies among attributes
in the table. The rules characterizing the negative exam-
ples deal with the exceptions to the query, that is, those
database instances that do not satisfy the query conditions.

Theorem 1 (Knowledge Discovery fromPositive and Neg-
ative Examples). Consider a database consisting of a set of

tables T . If a clause (r) is satis�ed with an answer A(� T )
for a query condition (q), then q ! r holds. If a clause (r0)
is not satis�ed with A(� T ) for q, then q ^ r0 ! holds. 2

Proof: Let A and �A be positive and negative database
instances respectively, and Q be a query. Because r is
satis�ed with A which is for q, \A; q ` r" holds (see [17] for
details). That is, query processing in a database yields an
answer. Hence, A ` :q_r holds. Positive examples deduce
the implication q ! r. For negative instances, because r

is not satis�ed with A which is for q, it is satis�ed with
�A which is not for q. In other words, query processing
yields no answer. The deduction of \no" answer is the
deduction of the negation of the answer under the closed
world assumption. Therefore, �A; q ` :r0 holds. Hence,
�A ` :q _ :r0 holds, so does q ^ r0 !. 2

A. Knowledge Discovery Algorithm

We specify in Figure 1the algorithm to discover rules.
The motivation behind this algorithm is that it is simple

to characterize a decomposed table if this decomposed table

preserves its characterizations. The characterization is an
equality predicate describing an attribute (strictly speak-
ing, a target attribute) in a table. The target attributes are
the attributes used in a user's query, and, in turn, used to
to discover a rule interesting to the user. Characterizations
are preserved if all the instance values of a join attribute
are shown in the decomposed table.
A table of either positive or negative examples is decom-

posed through grouping by an attribute. When an answer
is obtained by a \join" operation between tables (or rela-
tions), the join attribute, which is in both tables and used
to join them, is considered to check if the decomposed table
preserves characterizations. We call these join attributes
\reference attributes."
If a table is not decomposed because all the values for

the target attribute are the same in the table, denoted as
j A j=j �A j, knowledge can be discovered as \target at-
tribute = value" simply, where j A j denotes the size of the
table A. If all the instance values of reference attributes are
shown in the decomposed positive example, then we may
have the rule: q ! r, where q denotes the condition of a
query and r is in the form of \target-attribute = value"
the characterizations of the decomposed table. If the value
of a target attribute does not appear in any negative ex-
amples, the rule r ! q can be generated. These two rules,
q ! r and r ! q, explain that any instance satisfying q

satis�es r. However, the rule r ! q cannot be generated
from negative examples because the safety problem1.
The decomposition of a table is performed e�ciently us-

ing sort algorithms. We observe that using the quick sort

for the inner loop (#3 in the algorithm) takes the average
time complexity of O(n logn), where n is the number of
tuples. The outer loop takes only O(m), where m is the
number of attributes, and m� n in databases.

B. Example

Consider a university database example in Figure 2. Sup-
pose the following query Q1 is presented to list List the
course names, department name, and a department chair-
person who teaches courses.

SELECT t.course, c.dept, c.name, c.rank

FROM Teaches t, Chair c

WHERE t.instructor = c.cname

AND c.dept = t.dept

As the query Q1 is processed on database S shown in
Figure 2, the answer is generated from a natural join of
Teaches and Chairs shown in the upper table of column
(1) of Figure 3.Negative examples are then the remainder
of the tables Teaches and Chairs as in the lower two tables
of column (1). The discovered rule X can be of the form

1The rule r ! :q does not guarantee that the instances satisfying
r do not satisfy only q. There are in�nitely many other cases than the
condition q.
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Algorithm: Knowledge Discovery /* e.g., a = V */
Input: An SQL query.
Output: A set of rules.
Method: (Assume that an SQL query is presented and the positive examples A and the negative examples �A are generated in the form of table.)
/* A and �A are generated according to De�nition 1. */
Let q be a disjunctive normal form of predicates, the condition of the SQL query.
Let S be a set of attributes fa1; a2; :::; ai; :::; ang speci�ed in SELECT part of the SQL query.
Let S0 be a set of join attributes fa0

1
; a0

2
; :::; a0

j ; :::; a
0

mg speci�ed in WHERE part.

/* If there is no join attribute, S is empty, i.e., a query is posed to only a single table. */
Let n be the number of attributes in S

for each ai in S do

begin

1. Let ai be the \target-attribute";
/* a0j can be treated as a target-attribute if the WHERE clause speci�es ai = aj. */

2. if S0 is not empty
then let a0j's in S0 be the \reference-attributes" and V 0

j be a set of the \instance values" for each a0j;

3. Group A and �A by ai;
4. Let s and t denote the number of decomposed tables from A and �A, respectively. Let each sub-table grouped from

A be Ak and each sub-table grouped from �A be �Al;
5. for each Ak; (1 � k � s), do /* for positive examples */

begin

(a) if S0 is not empty /* if tables are joined */

then if Ak contains all the instance values V 0j for an a0j
then the rule is the form \q! ai = Vi"

else if j Ak j = j A j /* if a single table is considered */

then the rule is the form \q! ai = Vi";

(b) if there exists no the value Vi for the attribute ai in any �Al

then the rule is \ai = Vi ! q"

end

6. for each �Al; (1 � l � t); do /* for negative examples */

if S0 is not empty and �Al contains all the instance values V 0
j for an a0j

then the rule is the form \q! :(ai = Vi)"
else if j �Al j = j �A j

then the clause is the form \q! :(ai = Vi)";
end

Note that j A j denotes the size of the table A.

Figure 1: The Algorithm of Knowledge Discovery

Enrollment
sname course
John CS622
John CS714
Lance IS511
Paul CS714
Paul CS722
Sam CS714

Chair
cname dept rank
Smith CS Visiting Professor
Richard IS Professor
Wiseman EE Professor

Transcript

sname semester course grade
Andy SP90 EE120 C
John FL91 CS722 A
John FL91 CS525 A
John SP91 CS611 C
John SP90 CS120 B
Lance SS90 CS129 B
Paul FL90 CS120 A
Paul FL91 CS525 A
Paul FL91 CS622 B
Sam FL91 CS525 B
Sam SS90 CS120 B

Teaches
instructor course dept
Adam CS714 CS
Brown CS722 CS
Fox CS622 CS
Newman EE692 EE
Richard IS511 IS
Wiseman EE705 EE

Figure 2: A University Database Example

according to Theorem 1 and the clauses r2 and r02 are dis-
covered from the positive example and negative examples,
respectively, by applying the above discovery algorithm.

(c:cname = t:instructor) ^ (c:dept = t:dept)! r2
(c:cname = t:instructor) ^ (c:dept = t:dept)! :r02

Consider the attribute \c.dept" (or \t.dept") as the tar-
get attribute while \t.instructor" and \c.cname" as the ref-
erence attributes. The set of the domain values for c:dept
of the positive examples are fEE, ISg in the top table while
the domain values of the negative examples are fEE, CSg
in the middle table and fCSg in the bottom table. Now, the
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tables in column (1) in Figure 3 are decomposed into sub-
tables in terms of the target attribute. The decomposed
tables are shown in column (2). The bottom table (marked
by \*") preserves the domain values fCSg for the reference
attribute and has the same value \Smith" for the target
attribute. The remaining tables become primitive and do
not preserve its characteristics. Therefore, the negative ex-
ample marked by \*" characterizes: r02 = fc:dept = CSg.
By substituting r02 in the X above, the discovered rule

is:

(c:cname = t:instructor) ^ (c:dept = t:dept)
! :(c:dept = CS)

meaning that \the chairperson of the CS department does
not teach any course o�ered by the CS department."
Furthermore, consider the attribute \c.rank" as the tar-

get attribute while \t.instructor" and \c.cname" as the ref-
erence attributes. The set of the domain values for c:dept
are the same as above. Now, the tables in column (1) in
Figure 4 are decomposed into sub-tables in terms of the tar-
get attribute \c.rank." The decomposed tables are shown
in column (2). Notice that the middle table cannot be de-
composed because it does not have the target attribute.
No rule can be discovered from this table. We know that
the decomposed tables (marked by \*") preserve the do-
main values of reference attributes and has the same value
of the target attribute. Therefore, the negative example
marked by \*" characterizes: r2 = fc:rank = Professorg
and r02 = fc:rank = V isitingProfessorg. Therefore, the
following two rules are discovered:

(c:cname = t:instructor) ^ (c:dept = t:dept)
! (c:rank = Professor)
(c:cname = t:instructor) ^ (c:dept = t:dept)
! :(c:rank = V isitingProfessor)

V. Knowledge Harmonization

Although rules can be discovered from a database, only
those deemed to be \useful" are considered for database
knowledge. Rules are useful when they are consistent and
non-redundant. The usefulness of rules depends on the ver-
sion of database instances. First, the knowledge versions
are de�ned with respect to database versions as follows.

De�nition 3 (Knowledge Version). Let Si denote a ver-

sion i of database S. That is, the versions of database S

are S1 � S2 � ::: � Si � Si+1. Note that Si+1 is a latest

version. Suppose that Si \Si+1 6= fg. Since the knowledge

Ki is discovered from database Si at a particular instant

in time, Si ` Ki, and thereafter Si+1 ` Ki+1, the version

of the knowledge is correspondingly K1 � K2 � ::: � Ki �
Ki+1. 2

As a database evolves, so do the rules characterizing the
database. Both the discovered rules and the existing rules
are evolved to be consistent.
In general, the concept of \models" of clauses are de�ned

as true interpretation. Since a clause is interpreted by value
assignment to the all variable arguments of the clause, the
models of the clause contain no variable symbols as argu-

ment. Now, we extend the concept of models in order to
interpret rules and constraints. Without value assignment
to the variable arguments in a rule or a constraint, we can
create a truth table. Notice that we do not emphasize the
distinction between rules and constraints when construct-
ing the truth table. Consider P (x; Y )! Q(x; Y ) (denotes
either a rule or a constraint), where x and y are variable
symbols.

P (x; Y ) Q(x; Y )
Case 1 T T

Case 2 F T

Case 3 F F

Those three cases make P (x; Y ) ! Q(x; Y ) hold. That
is, the three conjunctions, P (x; Y ) ^ Q(x; Y ), :P (x; Y ) ^
Q(x; Y ), :P (x; Y )^:Q(x; Y ), represent all possible mod-
els of P (x; Y ) ! Q(x; Y ) as the variable symbols x and y

denote the values in a database. We call these conjunctions
model schemas. A model schema determines true interpre-
tation of rules and constraints as they apply to a database.
The idea is that rules are harmonized by removing in-

consistent models (e.g., [4,5] ). To resolve inconsistencies,
the following theorem is proposed.

Method 1 (Knowledge Harmonization). Let 4 = fK;X;

Qg be a closed theory of the possible world containing the

existing rules K and the discovered rules X which corre-

spond to a query Q. Let E(K) and E(X) be the mod-

els of K and X, respectively. If 9jEi(K) j= Ej(X), then
[iEi(K) [j Ej(X) is a set of the harmonized models. 2

Rationale: Consider two versions of a database: St � St0 ,
versions t 6= t0. Suppose the existing rule K was discovered
from St: St ` K, similarly, a new rule X is discovered
from St0 : St0 ` X. Since t 6= t0 and St � St0 = �(6= fg) by
evolution, � 6� St0 and � 6` X. Thus, k; for � ` k 2 K is
outdated and so it should be eliminated. 2

It is needed to obtain only the models of those existing rules
consistent with at least one model of the newly discovered
rules. For any model of the new rule, the models of each
existing rule are ensured to be consistent. Those consistent
models are shown to be evolved by the new rules.

A. Example

Consider once again the new rule (X) discovered in the
previous section, \the chairperson of the CS department
does not teach any course o�ered by the CS department:"

(c:cname = t:instructor) ^ (c:dept = t:dept)
! :(c:dept = CS).

This rule can be rewritten as Chair(x;CS); T eaches(x; y; z)
!. Consider also rules (K) in Table 1.
The initial clauses (4K ;4X) for both the existing rules

and the discovered rule are:

Table 1: University Database Rules

Transcript(x;CS714;A) ! Can Be TA(x1;CS714)
Faculty(x1; CS) ^ Teaches(x1; x3) ! Offered(x3; CS)
Chair(x1; x2)! Faculty(x1; x2)
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Answering
=)

positive-examples
t.course c.dept c.cname c.rank
EE705 EE Wiseman Professor
IS511 IS Richard Professor

negative-examples
t.instructor t.course t.dept
Newman EE692 EE
Fox CS622 CS
Adam CS714 CS
Brown CS722 CS

negative-example
c.cname c.dept c.rank
Smith CS Visiting Professor

TableDecomp:
=)

positive-example
t.course c.dept c.cname c.rank
EE705 EE Wiseman Professor

positive-example
t.course c.dept c.cname c.rank
IS511 IS Richard Professor

negative-examples
t.instructor t.course t.dept
Newman EE692 EE

negative-examples
t.instructor t.course t.dept
Fox CS622 CS
Adam CS714 CS
Brown CS722 CS

negative-example*
c.cname c.dept c.rank
Smith CS Visiting Professor

ClauseGen:
=) r2 or r0

2

(1) (2)

Figure 3: The Knowledge Discovery Process 1

Answering
=)

positive-examples
t.course c.dept c.cname c.rank
EE705 EE Wiseman Professor
IS511 IS Richard Professor

negative-examples
t.instructor t.course t.dept
Newman EE692 EE
Fox CS622 CS
Adam CS714 CS
Brown CS722 CS

negative-example
c.cname c.dept c.rank
Smith CS Visiting Professor

TableDecomp:
=)

positive-examples*
t.course c.dept c.cname c.rank
EE705 EE Wiseman Professor
IS511 IS Richard Professor

negative-example*
c.cname c.dept c.rank
Smith CS Visiting Professor

ClauseGen:
=) r2 or r0

2

(1) (2)

Figure 4: The Knowledge Discovery Process 2

4K = f:Faculty(x;CS) _:Teaches(x; y)
_ Offered(y; CS); :Chair(x;CS) _ Faculty(x;CS)g

4X = f:Chair(x;CS) _ :Teaches(x; y; CS)g

These initial clauses are converted to possible model
schemas. The four model schemas Ei(K) and the three
model schemas Ej(X) respectively for the existing rules
and the discovered rule are obtained:

E1(K) = fChair(x;CS); Teaches(x;y); Faculty(x;CS);
Offered(y; CS)g

E2(K) = fChair(x;CS);:Teaches(x; y); Faculty(x; CS);
Offered(y; CS)g

E3(K) = fChair(x;CS);:Teaches(x; y); Faculty(x; CS);
:Offered(y; CS)g

E4(K) = f:Chair(x; CS); Teaches(x; y); Faculty(x; CS);
Offered(y; CS)g

E5(K) = f:Chair(x; CS);:Teaches(x; y); Faculty(x;CS);
Offered(y; CS)g

E6(K) = f:Chair(x; CS);:Teaches(x; y); Faculty(x;CS);
:Offered(y; CS)g

E7(K) = f:Chair(x; CS); Teaches(x; y);:Faculty(x; CS);
Offered(y; CS)g

E8(K) = f:Chair(x; CS); Teaches(x; y);:Faculty(x; CS);
:Offered(y; CS)g

E9(K) = f:Chair(x; CS);:Teaches(x; y);:Faculty(x;CS);
Offered(y; CS)g

E10(K) =f:Chair(x; CS);:Teaches(x; y);:Faculty(x;CS);
:Offered(y; CS)g

E1(X) = fChair(x;CS);:Teaches(x; y)g
E2(X) = f:Chair(x; CS); Teaches(x; y)g
E3(X) = f:Chair(x; CS);:Teaches(x; y)g

Until the new rule was discovered, the model schemas
E1(K); :::; E10(K) were themselves consistent and well ac-
cepted in the database. However, it is likely that an in-

consistency may take place as the new rule is added to the
existing rules. The modelE1(K) of the new rule is not con-
sistent with any one of model schemas E1(X); E2(X), or
E3(X). By applying Method 1: E1(K) is removed because
it does not satisfy any model of Ei(X) for i = 1; ::3. There-
fore, the consistent model schemas, Ei(K) for i = 2; :::; 10,
are obtained as follows:

E2(K) = fChair(x;CS);:Teaches(x; y); Faculty(x; CS);
Offered(y; CS)g

E3(K) = fChair(x;CS);:Teaches(x; y); Faculty(x; CS);
:Offered(y; CS)g

E4(K) = f:Chair(x; CS); Teaches(x; y); Faculty(x; CS);
Offered(y; CS)g

E5(K) = f:Chair(x; CS);:Teaches(x; y); Faculty(x;CS);
Offered(y; CS)g

E6(K) = f:Chair(x; CS);:Teaches(x; y); Faculty(x;CS);
:Offered(y; CS)g

E7(K) = f:Chair(x; CS); Teaches(x; y);:Faculty(x; CS);
Offered(y; CS)g

E8(K) = f:Chair(x; CS); Teaches(x; y);:Faculty(x; CS);
:Offered(y; CS)g

E9(K) = f:Chair(x; CS);:Teaches(x; y);:Faculty(x; CS);
Offered(y; CS)g

E10(K) =f:Chair(x; CS);:Teaches(x; y);:Faculty(x; CS);
:Offered(y; CS)g

E2(K) means that the CS department chairperson does
not teach courses o�ered by the CS department. E3(K)
means that the CS department chairperson does not teach
courses o�ered by other departments. E4(K) means that
faculty in the CS department who is not the chairperson
teaches the courses o�ered by the CS department. 2

B. Discussion
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A new rule and the existing rules are integrated by the
knowledge consistency checking method. The outcome of
this checking is a set of the model schemas each of which
represents a possible world as seen above. One advan-
tage of this approach is that rather than removing one or
more rules, inconsistent model schemas are removed. As a
query is presented later on, the model schemas of the query
should be satis�ed by those model schemas in the database.
For example, suppose the model schemas above are set as
constraints in the current database. Consider the insertion
of a new instance \Chair(x;CS) ^ Teaches(x; y)." Since
any of the model schemas, E2(K); E3(K); :::; E10(K), does
not satisfy the insertion, the insertion is not allowed so that
the database consistency is maintained.

VI. Conclusion

This paper describes a novel concept for knowledge dis-
covery from both positive and negative examples. The
rules discovered from positive examples characterize the
answer to an expert user's query. The rules discovered from
negative examples handle the exceptions in a database.
These rules are used to evolve the existing rules and make
the database consistent.
The bene�ts described in this paper include: (1) The

rules more suitable to user's interests are discovered be-
cause discovery process is initiated by a query which con-
veys the user's interests; (2) A higher performance of dis-
covery processing results from using answers to queries
rather than using the entire database; (3) Constraints which
handle the exceptions of a database can be discovered when
negative examples are used in knowledge discovery process;
and (4) The existing rules are evolved as they are harmo-
nized with the discovered rules.
Although this paper uses a small example, the discov-

ery process can scale up to handle the real world large
databases obtained from network fault/alarm data, satel-
lite data, aeronautical data, or meteorological data. Some
analysis of the model-theoretic interpretation approach and
experimentation on other large databases will be our future
research. This paper has focused on discovering rules with
equality predicates. Discovery of the rules with range re-
stricted predicates will be our future research. Moreover,
the rules discovered in this paper can be represented in a
concise and elegant form by generalization techniques. Dis-
covered rules may be re�ned [8,10] as a database is evolved.
The approach may also be useful for research in \cooper-
ative answers" [14,5] in which the system responds with
knowledge rather than simply providing the tuples satisfy-
ing the query.
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