
An Experimental Determination of Su�cient
Mutation Operators

A. Je�erson O�utt
Ammei Lee
George Mason University
and
Gregg Rothermel
Roland Untch
Clemson University
and
Christian Zapf
Siemens Corporation

*** Draft { Submitted ***

Mutation testing is a technique for unit testing software that, although powerful, is computationally expen-

sive. The principal expense of mutation is that many variants of the test program, called mutants, must

be repeatedly executed. Selective mutation is a way to reduce the cost of mutation testing by reducing the

number of mutants that must be executed. This paper reports experimental results that compare selective

mutation testing to standard, or non-selective, mutation testing. The results support the hypothesis that

selective mutation is almost as strong as non-selective mutation; in experimental trials selective mutation

provides almost the same coverage as non-selective mutation, with a four-fold or more reduction in cost.

1 Introduction

Mutation testing is a technique, originally proposed by DeMillo et al. [DLS78] and Hamlet [Ham77],

that requires a person testing a program to demonstrate that the program does not contain a �nite,

well-speci�ed set of faults. The tester does this by �nding test cases that cause faulty versions of

the program to fail, and either getting correct output from the test program (demonstrating its

quality) or causing the test program to fail (detecting a fault).

O�utt partially supported by the National Science Foundation under grant CCR-93-11967. Authors' ad-
dresses: A. J. O�utt and A. Lee, Department of Information and Software Systems Engineering, George
Mason University, Fairfax, VA 22030, fofut,aleeg@isse.gmu.edu; G. Rothermel and R. Untch, Department of
Computer Science, Clemson University, Clemson, SC 29634-1906, fgrother,untchg@cs.clemson.edu; C. Zapf,
Siemens AG { Medical Group, BNES 13, Henkestrasse 127, 91052 Erlangen, Germany, zapf@erlh.siemens.de.

1

Unit level testing techniques such as mutation, hold great promise for improving the quality of

software. Unfortunately, most of these techniques are currently so expensive that we cannot a�ord

to use them. In a previous paper [ORZ93], we gave a preliminary de�nition and evaluation of a

mutation approximation method called selective mutation. There, we reported results that saved,

on average, over 50% of the execution cost of mutation, with negligible loss of e�ectiveness by one

measure. Since then, we have extended selective mutation and have gotten results that, on average,

save over 75% of the execution cost on our experimental programs, and more on larger programs.

More importantly from a theoretical point of view, our mechanism reduces the cost of mutation by

a factor of the size of the program's data space.

In the following sections, we describe mutation testing, analyze its cost, and de�ne the method

of selective mutation. We then present experimental results to validate the e�ectiveness of selective

mutation, and �nally, discuss possible future directions.

1.1 Mutation Testing Overview

Mutation testing helps a user to create test data by interacting with the user to iteratively

strengthen the quality of test data. During mutation testing, faults are introduced into a pro-

gram by creating many versions of the program, each of which contains one fault. Test data are

used to execute these faulty programs with the goal of causing each faulty program to fail. Hence

we use the term mutation; faulty programs are mutants of the original, and a mutant is killed when

a test case causes it to fail. When this happens, the mutant is considered dead and no longer needs

to remain in the testing process since the faults represented by that mutant have been detected,

and more importantly, it has satis�ed its requirement of identifying a useful test case.

Figure 1 contains a small Fortran function with three mutated lines (preceded by the � symbol).

Note that each of the mutated statements represents a separate program. The most recent mutation

system, Mothra [DGK+88, KO91], uses 22 mutation operators to test Fortran-77 programs. These

operators have been developed and re�ned over 10 years through several mutation systems. The

2

FUNCTION Min (I,J)

1 Min = I

� Min = J

2 IF (J .LT. I) Min = J

� IF (J .GT. I) Min = J

� IF (J .LT. Min) Min = J

3 RETURN

Figure 1: Function Min.

mutation operators are limited to simple changes on the basis of the coupling e�ect, which says

that complex faults are coupled to simple faults in such a way that a test data set that detects all

simple faults in a program will detect most complex faults [DLS78]. The coupling e�ect has been

supported experimentally [O�92] and theoretically [Mor84].

The mutation testing process begins with the construction of mutants of a test program. The

user then adds test cases (generated manually or automatically) to the mutation system and checks

the output of the program on each test case to see if it is correct. If the output is incorrect, a

fault has been found and the program must be modi�ed and the process restarted. If the output is

correct, that test case is executed against each live mutant. If the output of a mutant di�ers from

that of the original program on the same test case, the mutant is assumed to be incorrect and it is

killed.

After each new test case has been executed against each live mutant, each remaining mutant

falls into one of two categories. One, the mutant is functionally equivalent to the original program.

An equivalent mutant always produces the same output as the original program, so no test case

can kill it. Two, the mutant is killable, but the set of test cases is insu�cient to kill it. In this

case, new test cases need to be created, and the process iterates until the test set is strong enough

to satisfy the tester.

The mutation score for a set of test data is the percentage of non-equivalent mutants killed by

that data. We call a test data set mutation-adequate if its mutation score is 100%.

3

1.2 The Cost of Mutation Testing

The major computational cost of mutation testing is incurred when running the mutant programs

against the test cases. Budd [Bud80] analyzed the number of mutants generated for a program

and found it to be roughly proportional to the product of the number of data references times

the number of data objects. Typically, this is a large number for even small program units. For

example, 44 mutants are generated for the function Min shown in Figure 1. Since each mutant must

be executed against at least one, and potentially many, test cases, mutation testing requires large

amounts of computation. We explore this cost in more detail in Section 4.

2 Selective Mutation Testing

One way to reduce the cost of mutation testing is to reduce the number of mutant programs

created, using an approximation approach originally suggested by Mathur [Mat91]. To understand

his proposal, we must �rst discuss the method by which mutant programs are generated.

The syntactic modi�cations responsible for mutant programs are determined by a set ofmutation

operators. This set is determined by the language of the program being tested, and the mutation

system used for testing. Mothra uses 22 mutation operators that are derived from studies of

programmer errors and induce simple syntax changes based on errors that programmers typically

make. This particular set of mutation operators represents more than ten years of re�nement

through several mutation systems. Table 1 lists the operators; their detailed descriptions are

elsewhere [KO91]. Each of the 22 mutation operators is represented by a three-letter acronym. For

example, the \array reference for array reference replacement" (AAR) mutation operator causes

each array reference in a program to be replaced by each other distinct array reference in the

program. Budd's results about the number of mutants are based largely on the fact that the SVR

mutation operator is the dominant operator.

Since mutation operators generate mutant programs at di�erent rates, Mathur [Mat91] proposed

4

Mutation
Operator Description

AAR array reference for array reference replacement
ABS absolute value insertion
ACR array reference for constant replacement
AOR arithmetic operator replacement
ASR array reference for scalar variable replacement
CAR constant for array reference replacement
CNR comparable array name replacement
CRP constant replacement
CSR constant for scalar variable replacement
DER DO statement end replacement
DSA DATA statement alterations
GLR GOTO label replacement
LCR logical connector replacement
ROR relational operator replacement
RSR RETURN statement replacement
SAN statement analysis
SAR scalar variable for array reference replacement
SCR scalar for constant replacement
SDL statement deletion
SRC source constant replacement
SVR scalar variable replacement
UOI unary operator insertion

Table 1: Mothra Mutation Operators.

selective mutation 1 as being mutation without applying the mutation operators that result in the

most mutants. We show the distribution of mutants by operator for a set of 28 programs in Figure

2. Mathur suggested omitting the SVR and ASR operators, which are the two operators that result

in the most mutations. In our previous paper [ORZ93], we called this 2-selective mutation, and

extended the theory to N-selective mutation, which omits the N most prevalent operators. We

presented results based on 2-selective, 4-selective, and 6-selective mutation.

Since the results from 6-selective mutation were so positive, we have extended selective mutation

to try to experimentally determine the fewest number of operators that are required to e�ectively

use mutation testing. The mutation operators used by Mothra can be divided into three general

1In his paper, Mathur used the term \constrained mutation". With his agreement, we have chosen the new term

\selective mutation".

5

0

4

8

12

16

20

dsa lcr der rsr san glr sdl cnr ror crp aor car aar sar uoi abs src acr csr scr asr svr

Mutation Operators

P
er

ce
nt

ag
e

Figure 2: Mutant Types Distribution for Mothra.

categories based on the syntactic elements that they modify. Operand replacement operators replace

each operand in a program with each other legal operand. Referring to Table 1, the operators

AAR, ACR, ASR, CAR, CNR, CRP, CSR, SAR, SCR, SRC, and SVR perform operand replacement.

Expression modi�cation operators (ABS, AOR, LCR, ROR, UOI) modify expressions by replacing

operators and inserting new operators. Statement modi�cation operators (DER, DSA, GLR, RSR,

SAN, SDL) modify entire statements. If the number of constants and variables in a program is

V als, the number of value references is Refs, and the number of source executable lines is Lines,

then operand replacement operators result in O(V als � Refs) mutants, expression modi�cation

operators result in O(Refs) mutants, and statement modi�cation operators result in O(Lines)

mutants. We de�ne expression/statement-selective mutation (ES-selective) to be mutation with

only the expression and statement operators (not using the eleven operand replacement mutation

operators), replacement/statement-selective mutation (RS-selective) to be mutation with only the

replacement and statement mutation operators, and replacement/expression-selective mutation (E-

selective) to be mutation with only the replacement and expression mutation operators. Finally, in

Section 3.3, we de�ne expression-selective mutation (E-selective) to be mutation with only the �ve

expression modi�cation mutation operators.

6

3 Experimentation with Selective Mutation

Our hypothesis is that selective mutation is almost as powerful as non-selective mutation, but

signi�cantly cheaper. Since test sets with mutation scores exceeding 95% are generally e�ective, we

re�ne our hypothesis to be: test sets that kill all mutants under selective mutation will have over

a 95% mutation score under non-selective mutation. Speci�cally, we hypothesize that ES-selective

mutation, RS-selective mutation, and RE-selective mutation will lead to test sets that are over 95%

mutation-adequate.

To evaluate our hypothesis, we compared selective mutation with non-selective mutation. To

do this, we created test data sets that were selective mutation-adequate (achieving mutation scores

of 100% when run against the selective mutants), and measured the mutation-adequacy of those

test data sets. This section discusses the procedure used by, and the results of, those experiments.

3.1 Experimental Procedure

Ten Fortran-77 program units that cover a range of applications were chosen for the experiments.

These programs range in size from 10 to 48 executable statements and had from 183 to 3010

mutants. The programs are described in Table 2.

Program Description Statements Mutants Equivalent
Banker Deadlock avoidance algorithm 48 2765 43
Bub Bubble sort on an integer array 11 338 35
Cal Days between two dates 29 3010 236
Euclid Greatest common divisor (Euclid's) 11 196 24
Find Partitions an array 28 1022 75
Insert Insertion sort on an integer array 14 460 46
Mid Median of three integers 16 183 13
Quad Real roots of quadratic equation 10 359 31
Trityp Classi�es triangle types 28 951 109
Warshall Transitive closure of a matrix 11 305 35

Table 2: Experimental Programs.

We began by experimenting with ES-selective mutation. For each program, we �rst created the

ES-selective mutants for the program (leaving out the AAR, ACR, ASR, CAR, CNR, CRP, CSR, SAR,

7

SCR, SRC, SVR operators). We then eliminated all equivalent mutants (previously determined by

hand). Next, we used the automatic test data generator Godzilla [DO91] to generate test cases

to kill as many non-equivalent mutants as possible, and generated additional test cases by hand

when necessary. This process yielded test sets that were selective mutation-adequate. To eliminate

any bias that could be introduced by one particular test set, we generated �ve sets of selective

mutation-adequate test sets for each program and level of selective mutation. All our results are

based on average scores for �ve test sets.

Next, for each program, we created all non-selective mutants (using all mutation operators)

and eliminated all equivalent mutants. We then ran each set of selective mutation-adequate test

cases on the non-selective mutants and computed the mutation score for these sets. This �nal score

measures the e�ectiveness of selective mutation-adequate test sets on sets of non-selective mutants,

and thus provides a measure of the relative e�ectiveness of selective mutation.

3.2 Experimental Results for Selective Mutation

Mutation scores for each of our programs, averaged over the 5 test sets, are shown in Tables 3 (ES-

selective), 4 (RS-selective), and 5 (RE-selective). These data show that test sets that were 100%

adequate for selective mutation were all almost 100% adequate for non-selective mutation. In fact,

the mutation scores were above 98% for all but one program (Mid under RS-selective mutation).

Tables 6, 7, and 8 show the savings obtained by selective mutation in terms of the number of

mutants. The \Percentage Saved" columns were computed by subtracting the number of selective

mutants from the number of non-selective mutants and dividing the di�erence by the number of

non-selective mutants (the percentage of mutants that did not have to be generated with selective

mutation). Selective sets save from 6% to 72% of the mutants. Not surprisingly, the big gain is

from ES-selective, which eliminates the operators that result in O(V als �Refs) mutants.

Varying the number of test cases used on each program had little a�ect on results. For example,

8

Test Number of Mutation
Program Cases Live Mutants Score

Bub 4.6 0.4 99.87
Cal 25.4 1.8 99.93
Euclid 3.0 1.2 99.30
Find 13.2 1.4 99.85
Insert 2.6 0.2 99.95
Mid 24.6 0.0 100.00
Quad 8.0 2.8 99.15
Trityp 40.8 6.2 99.26
Warshall 3.6 4.2 98.45
Banker 62.8 9.8 99.64

Average 13.9 2.0 99.54

Table 3: Non-Selective Mutation Scores of ES-Selective Mutation Adequate Sets.

Test Number of Mutation
Program Cases Live Mutants Score

Bub 3.0 6.0 98.02
Cal 38.6 6.0 99.78
Euclid 2.6 0.6 99.65
Find 13.4 8.8 99.07
Insert 1.8 5.6 98.65
Mid 6.0 32.8 80.71
Quad 7.0 1.8 99.45
Trityp 31.6 15.6 98.15
Warshall 4.2 0.0 100.00
Banker 90.0 9.2 99.66

Average 12.0 8.6 97.31

Table 4: Non-Selective Mutation Scores of RS-Selective Mutation Adequate Sets.

Test Number of Mutation
Program Cases Live Mutants Score

Bub 6.8 0.0 100.00
Cal 39.8 0.0 100.00
Euclid 3.6 0.0 100.00
Find 15.8 1.4 99.85
Insert 4.0 0.0 100.00
Mid 25.0 0.0 100.00
Quad 13.0 0.0 100.00
Trityp 47.0 0.0 100.00
Warshall 6.2 0.0 100.00
Banker 105.4 2.8 99.90

Average 17.91 0.2 99.97

Table 5: Non-Selective Mutation Scores of RE-Selective Mutation Adequate Sets.

9

Non-Selective Selective Percentage

Program Mutants Mutants Saved

Bub 338 147 56.51
Cal 3009 288 90.43
Euclid 195 115 41.03
Find 1022 422 58.71
Insert 460 197 57.17
Mid 183 133 27.32
Quad 359 190 47.08
Trityp 951 494 48.05
Warshall 305 115 62.30
Banker 2765 629 77.25

Total 9587 2730 71.52

Table 6: Savings Obtained by ES-Selective Mutation.

Non-Selective Selective Percentage

Program Mutants Mutants Saved

Bub 338 221 34.62
Cal 3009 2772 7.88
Euclid 195 106 45.64
Find 1022 765 25.15
Insert 460 316 31.30
Mid 183 68 62.84
Quad 359 185 48.47
Trityp 951 505 46.90
Warshall 305 217 28.85
Banker 2765 2281 17.50

Total 9587 7436 22.44

Table 7: Savings Obtained by RS-Selective Mutation.

Non-Selective Selective Percentage

Program Mutants Mutants Saved

Bub 338 308 8.88
Cal 3009 2958 1.69
Euclid 195 169 13.33
Find 1022 857 16.14
Insert 460 407 11.52
Mid 183 165 9.84
Quad 359 343 4.46
Trityp 951 903 5.05
Warshall 305 278 8.85
Banker 2765 2620 5.24

Total 9587 9008 6.04

Table 8: Savings Obtained by RE-Selective Mutation.

10

Test Number of Mutation
Program Cases Live Mutants Score

Bub 5.6 0.2 99.93
Cal 17.6 10.4 99.63
Euclid 3.0 1.2 99.30
Find 10.8 2.8 99.70
Insert 4.4 0.2 99.95
Mid 25.0 0.0 100.00
Quad 8.8 3.0 99.09
Trityp 42.0 5.4 99.36
Warshall 2.8 3.6 98.67
Banker 50.6 11.6 99.57

Average 13.3 2.9 99.51

Table 9: Non-Selective Mutation Scores of E-Selective Mutation Adequate Sets.

ES-selective mutation-adequate test sets for Find ranged from 10 to 17 test cases with the largest

set increasing the (non-selective) mutation score by only .11% | the scores ranged from 99.89 to

100. In fact, the largest test set only killed 1 more mutant (of the 1022 that existed) than the

smallest set. In other words, even the smallest selective mutation-adequate test sets were almost

as e�ective as the largest such sets.

3.3 Combining ES- and RE-Selective Mutation

Since the mutation scores in Table 4 are lower than the scores in Tables 3 and 5, we assumed that the

expression operators are the most powerful. Thus, we extended our experimentation to measure

the e�ectiveness of combining ES- and RE-selective mutation. Expression-selective (E-selective)

mutation is mutation omitting both the replacement and statement operators. This leaves only

�ve Mothra operators. Table 9 give the mutation scores for E-selective mutation. All scores are

above 98.5%, with an average over our 10 programs of 99.5%. This indicates that the �ve operators

ABS, AOR, LCR, ROR, and UOI are the most important mutation operators, and probably the only

operators necessary to ensure full mutation coverage.

Table 10 give the savings for E-selective mutation. These range from 37% to 92%, for an average

of 78%. At the two extremes, Mid is a very small routine that has a relatively large number of

11

Non-Selective Selective Percentage

Program Mutants Mutants Saved

Bub 338 117 65.38
Cal 3009 237 92.12
Euclid 195 89 54.36
Find 1022 257 74.85
Insert 460 144 68.70
Mid 183 115 37.16
Quad 359 174 51.53
Trityp 951 446 53.10
Warshall 305 88 71.15
Banker 2765 484 82.50

Total 9587 2151 77.56

Table 10: Savings Obtained by E-Selective Mutation.

branches, and very little computation. Cal, on the other hand, contains very few branches, and is

mostly a straight-line series of relatively simple computations. Since the �ve operators in E-selective

mutation modify logical and arithmetic expressions, programs with a large number of decisions and

arithmetic operations (such as Mid) will tend to result in less savings than programs with few

decisions and few arithmetic operations (such as Cal).

4 Quantifying the Savings of Selective Mutation

It is clearly desirable to have an equation, or model, that relates the number of mutants generated

for a given program to lexical characteristics of that program. Various models have been suggested

for non-selective mutation. Budd [Bud80] claimed that the number of mutants for a program

is O(V als � Refs), where V als is the number of data objects and Refs is the number of data

references. Acree et al. [ABD+79] claimed that the number of mutants is O(Lines � Refs) {

assuming that the number of data objects in a program is proportional to the number of lines.

They went on to say that this is actually O(Lines � Lines) for most programs.

We have checked these claims statistically. A sample of 96 Fortran-77 programs was used. The

programs varied in size from 5 to 735 lines of code. Using Mothra, the mutants of each program

were created. The number of mutants created for an individual program ranged from a low of 76

12

to a high of 3,911,460. For the entire sample, 11,180,104 mutants were generated. For each claim,

the corresponding regression model was �tted to the data using the method of least squares. We

used the SAS statistical package [FL81] for all our analysis.

Simple linear regression models with one explanatory, or independent, variable xi can be written

as:

Yi = �0 + �1xi + �i; i = 1; 2; :::; n: (1)

and multiple linear regression models with p explanatory variables xij can be expressed as:

Yi = �0 + �1xi1 + �2xi2 + ::: + �pxip + �i; i = 1; 2; :::; n: (2)

The random variables �1, �2, ..., �n are errors that create scatter around the linear relationships.

For each model, the coe�cient of determination was calculated. The coe�cient of determina-

tion, or R2 value, for a model is de�ned as the proportion of the variability in the predicted, or

dependent, variable that can be accounted for by the explanatory variables of the model [Ott88].

The R2 value provides a summary measure of how well the regression equation �ts the data. For

example, an R2 value of 0.95 for a particular regression model means that the explanatory variables

explain 95% of the variability in the Y values. Also, the observed signi�cance level, or p value, of

each � parameter was calculated; levels of .05 and less were deemed statistically signi�cant.

We found the most accurate predictors of the number of mutants to be the number of lines

(Lines), the number of variables and constant values (V als), and the number of value references

(Refs). Based on the lines of code, we obtain the following model:

Mutants = �0 + �1 � Lines + �2 �Lines � Lines: (3)

For non-selective mutation, we �nd that there is only a .06% probability that the Lines term does

not contribute, and a 1.22% probability that the Lines � Lines term does not contribute. Thus,

we conclude that both terms are signi�cant.

For E-selective mutation, we �nd a .01% probability that the Lines term does not contribute,

13

but a 96.68% probability that the Lines �Lines term does not contribute. Thus, we conclude that

a more appropriate model for E-selective mutation is:

Mutants = �0 + �1 � Lines: (4)

On the other hand, the R2 values for the two models are .488 and .508, respectively, meaning

that only about half of the variation in the number of mutants is predictable from lines of code as

an explanatory variable. Thus, we conclude that Acree et al. [ABD+79] were mistaken, and the

number of lines in a program is not a valid predictor for the number of mutants.

Since Budd suggested that the number of mutants is based on the number of values times the

number of value references, we obtained the following model:

Mutants = �0 + �1 � Lines + �2 � V als �Refs: (5)

The R2 value for this model was .988 for non-selective mutation. The p values were .0001 for each

term.

For E-selective mutation, we obtained a di�erent model:

Mutants = �0 + �1 �Lines + �2 �Refs: (6)

The R2 values for this model was .979, and the p values were .0001 for each term. Thus, we conclude

that E-selective mutation eliminates the V als factor from the number of mutants. This is as we

expected, because the major category of mutants we are eliminating is the category that replaces

variable references by all data values.

Finally, we looked at the simple ratio of mutants to E-selective mutants (M=RS � S) for

our sample programs. On average, that ratio was approximately 17, which indicates that E-

selective gives us an order of magnitude improvement. Unfortunately, the standard deviation is

21.1, indicating that this ratio is very program dependent. For example, in one program we had a

ratio of only 1.59, and in another of 129.8.

14

Another way of reporting the improvement is to compare all mutants for the entire 96 programs.

For standard mutation, we would have had to consider all 11,180,104 mutants. For E-selective, we

would only have had to consider 231,972 mutants, a ratio of 48.2.

5 Conclusions and Future Work

This paper has presented results that indicate that previous mutation implementations are much

more expensive than necessary, and support our hypothesis that selective mutation is e�ective and

e�cient. Speci�cally, our results indicate that the mutation operators that replace all operands with

all syntactically legal operands add very little to the e�ectiveness of mutation testing. Additionally,

the mutation operators that modify entire statements add very little. Our data indicates that of

the 22 mutation operators used by Mothra, only 5 operators are su�cient to implement e�ective

mutation testing. This result is a major step forward in the practical application of mutation,

particularly since this allows mutation to be e�ectively implemented in time linear to the number

of data references rather than references times the number of data objects.

The 5 operators are ABS, which forces each arithmetic expression to take on the value 0, a

positive value, and a negative value, AOR, which replaces each arithmetic operator with every

syntactically legal operator, LCR, which replaces each logical connector (AND and OR) with several

kinds of logical connectors, ROR, which replaces relational operators with other relational operators,

and UOI, which inserts unary operators in front of expressions. It is interesting to note that this set

includes the operators that are required to satisfy branch and extended branch coverage [OV93],

leading us to believe that extended branch coverage is in some sense a major part of mutation.

The results reported here, especially when combined with the techniques of weak mutation

[OL] and schema-based mutation [UOH93], lead us to hope that it may soon be possible to make

mutation testing a practical reality.

Our experiment has two assumption that warrant further investigation. One is our measurement

15

of selective e�ectiveness. We decided whether selective mutation was e�ective by computing the

non-selective mutation scores of the test sets. Other measurements could be the relative abilities of

the test sets to detect actual faults in the program, or other testing criteria. Another assumption

is that our results will scale up to larger programs. The data in Section 2 indicates that on larger

programs, there are relatively more replacement operator mutants, of mutants, thus the savings

from selective mutation could be relatively greater.

A converse view, but one that may shed some light on mutation operators, could be based on

the idea of operator strength. If we de�ne the operator strength of mutation operator i to be the

number of total mutants that are killed by test data that is generated to kill only the mutants of

type i, then the operators with the greatest strength may be the most useful mutation operators.

These observations prompt one �nal question. If selective mutation involves the useful elimina-

tion of certain mutant operators, what is it about those operators that makes them easily killed by

test cases that are su�cient for other operators? Except for a very few special cases [OV93], there

has been no analytical work on the subsumption of some mutation operators by others. Investiga-

tion of this question might shed light on the coupling e�ect and on the nature of the sensitivity of

errors to tests.

6 Acknowledgements

We would like to thank Aditya Mathur for initially suggesting the notion of selective mutation.

References

[ABD+79] A. T. Acree, T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Mutation
analysis. Technical report GIT-ICS-79/08, School of Information and Computer Science,
Georgia Institute of Technology, Atlanta GA, September 1979.

[Bud80] T. A. Budd. Mutation Analysis of Program Test Data. PhD thesis, Yale University,
New Haven CT, 1980.

16

[DGK+88] R. A. DeMillo, D. S. Guindi, K. N. King, W. M. McCracken, and A. J. O�utt. An
extended overview of the Mothra software testing environment. In Proceedings of the
Second Workshop on Software Testing, Veri�cation, and Analysis, pages 142{151, Ban�
Alberta, July 1988. IEEE Computer Society Press.

[DLS78] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help for
the practicing programmer. IEEE Computer, 11(4):34{41, April 1978.

[DO91] R. A. DeMillo and A. J. O�utt. Constraint-based automatic test data generation. IEEE
Transactions on Software Engineering, 17(9):900{910, September 1991.

[FL81] Rudolf J. Freund and Ramon C. Littell. SAS for Linear Models: a guide to the ANOVA
and GLM procedures. SAS Institute Inc., Cary, NC, 1981.

[Ham77] R. G. Hamlet. Testing programs with the aid of a compiler. IEEE Transactions on
Software Engineering, 3(4), July 1977.

[KO91] K. N. King and A. J. O�utt. A Fortran language system for mutation-based software
testing. Software{Practice and Experience, 21(7):685{718, July 1991.

[Mat91] A.P. Mathur. Performance, e�ectiveness, and reliability issues in software testing. In
Proceedings of the Fifteenth Annual International Computer Software and Applications
Conference, pages 604{605, Tokyo, Japan, September 1991.

[Mor84] L. J. Morell. A Theory of Error-Based Testing. PhD thesis, University of Maryland,
College Park MD, 1984. Technical Report TR-1395.

[O�92] A. J. O�utt. Investigations of the software testing coupling e�ect. ACM Transactions
on Software Engineering Methodology, 1(1):3{18, January 1992.

[OL] A. J. O�utt and S. D. Lee. An empirical evaluation of weak mutation. IEEE Transac-
tions on Software Engineering. to appear.

[ORZ93] A. J. O�utt, Gregg Rothermel, and Christian Zapf. An experimental evaluation of
selective mutation. In Proceedings of the Fifteenth International Conference on Software
Engineering, pages 100{107, Baltimore, MD, May 1993. IEEE Computer Society Press.

[Ott88] Lyman Ott. An Introduction to Statistical Methods and Data Analysis. PWS-Kent
Publishing Company, Boston, MA, third edition, 1988.

[OV93] A. J. O�utt and J. M. Voas. Subsumption of condition coverage techniques by mutation
testing. In Submitted for publication, 1993.

[UOH93] R. Untch, A. J. O�utt, and M. J. Harrold. Mutation analysis using program schemata.
In Proceedings of the 1993 International Symposium on Software Testing, and Analysis,
pages 139{148, Cambridge MA, June 1993.

17

