
On the Expressive Power of the Unary

Transformation Model�y

Ravi S. Sandhu and Srinivas Ganta
z

Center for Secure Information Systems

&

Department of Information and

Software Systems Engineering

George Mason University

Fairfax, VA 22030-4444

February 15, 1994

�A paper submitted for possible presentation at the IEEE Computer Security Founda-

tions Workshop VII, June 14-16, 1994, Franconia, New Hampshire.
yAll correspondence should be addressed to Ravi Sandhu, ISSE Department, George

Mason University, Fairfax, VA 22030.
zThe work of both authors is partially supported by National Science Foundation grant

CCR-9202270. Ravi Sandhu is also supported by the National Security Agency through

contract MDA904-92-C-5141. We are grateful to Nathaniel Macon, Howard Stainer, and

Mike Ware for their support and encouragement in making this work possible.



ABSTRACT

The Transformation Model (TRM) was recently introduced [10] in
the literature by Sandhu and Ganta. TRM is based on the concept of
transformation of rights. The propagation of access rights in TRM is
authorized entirely by existing rights for the object in question. It has been
demonstrated in earlier work that TRM is useful for expressing various
kinds of consistency, con�dentiality, and integrity controls.

In our previous work [10] a special case of TRM named Binary Trans-
formation Model (BTRM) was de�ned. We proved that BTRM is equiv-
alent in expressive power to TRM. This result indicates that it su�ces to
allow testing for only two cells of the matrix.

In this paper we study the relationship between TRM and the Unary
Transformation Model (UTRM). In UTRM, individual commands are re-
stricted to testing for only one cell of the matrix (whereas individual TRM
commands can test for multiple cells of the matrix). Contrary to our ini-
tial conjecture, we found, quite surprisingly, that TRM and UTRM are
formally equivalent in terms of expressive power. The implications of this
result on safety analysis is also discussed in this paper. The construction
used to prove the equivalence of TRM and UTRM also indicates that they
might not be practically equivalent.



1 Introduction

In this paper we analyze the expressive power of a family of access control models
called transformation models [10]. These models are based on the concept of trans-
formation of rights, which simply implies that the possession of rights for an object
by subjects allows those subjects to obtain and lose rights for that object and also
grant and revoke the rights (for that object) to other subjects. Hence, in these mod-
els, the propagation of access rights is authorized entirely by the existing rights for
the object in question. (More generally, propagation could also be authorized by the
existing rights for the source and destination subjects, for example, in models such as
HRU [4] and TAM [8].) The concept of transformation of rights allows us to express a
large variety of practical security policies encompassing various kinds of consistency,
con�dentiality and integrity controls.

The concept of transformation of access rights was introduced by Sandhu in [7].
Based on it the monotonic transform model [7] and its non-monotonic extension
(NMT) [9] were proposed. The simplicity and expressive power of NMT is demon-
strated in [9] by means of a number of examples. It was recently discovered by the
authors that NMT cannot adequately implement the document release example given
in [9]. The reason behind this is the limited testing power of NMT. This led us to
the formulation of the Transformation Model (TRM). TRM substantially generalizes
NMT.

TRM does have good expressive power (which NMT lacks). TRM can also be
implemented e�ciently [10] in a distributed environment using a typical client-server
architecture. This is due to the fact that the propagation of access rights in TRM
is authorized entirely by existing rights for the object in question. In typical imple-
mentations these rights would be represented in an access control list (ACL), stored
with the object. The server responsible for managing that object will have immediate
access to all the information (i.e., the ACL) required to make access control decisions
with respect to that object. Moreover, the e�ect of propagation commands is also
con�ned only to the ACL of that object.

The Binary Transformation Model (BTRM) was de�ned in [10]. BTRM is a
simpler version of TRM in which testing can involve up to two cells of the matrix. It
has been proved in [10] that BTRM is formally equivalent to TRM. This also implies
that it su�ces to have systems which test for two cells of the matrix.

In this paper we study the relationship between TRM and the Unary Transfor-
mation Model (UTRM) de�ned in [10]. In UTRM the commands are authorized by
checking for rights in a single cell of the access matrix. Contrary to our initial con-
jecture, we have discovered, surprisingly, that UTRM is theoretically equivalent to
TRM in terms of expressive power. We also discuss why this result may not be true
practically. The theoretical equivalence of TRM and UTRM helps in concluding that
the safety results of UTRM are in no way better than that of TRM.

1



The rest of the paper is organized as follows. Section 2 gives a brief background of
the Transformation Model (TRM). It also describes two models, UTRM and BTRM,
which are restricted cases of TRM. In section 3, we prove that UTRM is formally
equivalent to TRM in terms of expressive power. We also discuss, in this section, why
this result might not be practically feasible, and also the implications of the result on
safety analysis. Finally, section 4 concludes the paper.

2 Background

In this section, we review the de�nition of the Transformation Model (TRM), which
was introduced in [10]. Our review is necessarily brief. The motivation for developing
TRM, and its relation to other access control models are discussed at length in [10].
Following the review of TRM we brie
y review the de�nitions of UTRM and BTRM.

2.1 The Transformation Model

TRM is an access control model in which authorization for propagation of access
rights is entirely based on existing rights for the object in question. As discussed in
the introduction this leads to an e�cient implementation of TRM in a distributed
environment using a simple client-server architecture. The expressiveness of TRM
is indicated in [10] by enforcing various kinds of consistency, con�dentiality, and
integrity controls.

The protection state in TRM can be viewed in terms of the familiar access matrix.
There is a row for each subject in the system and a column for each object. In TRM,
the subjects and objects are disjoint. TRM does not de�ne any access rights for
operations on subjects, which are assumed to be completely autonomous entities.
The [X;Y ] cell contains rights which subject X possesses for object Y .

TRM consists of a small number of basic constructs and a language for specifying
the commands which cause changes in the protection state. For each command, we
have to specify the authorization required to execute that command, as well as the
e�ect of the command on the protection state. We generally call such a speci�cation
as an authorization scheme (or simply scheme) [8].

A scheme in the TRM is de�ned by specifying the following components.

1. A set of access rights R.

2. Disjoint sets of subject and object types, TS and TO, respectively.

3. A collection of three classes of state changing commands: transformation com-

mands, create commands, and destroy commands. Each individual command
speci�es the authorization for its execution, and the changes in the protection
state e�ected by it.

2



The scheme is de�ned by the security administrator when the system is �rst set up
and thereafter remains �xed. It should be kept in mind that TRM treats the security
administrator as an external entity, rather than as another subject in the system.
Each component of the scheme is discussed in turn below.

The Typed Access Matrix Model (TAM) [8] and TRM are strongly related. They
di�er in state changing commands. In TRM, propagation of access rights is authorized
entirely by existing rights for the object in question, whereas in TAM this authoriza-
tion can involve testing rights for multiple objects. TRM commands can only modify
one column at a time, where as TAM can modify multiple columns of the matrix.
TRM does allow testing for absence of rights, while the original de�nition of TAM
in [8] does not allow for such testing. If TAM is augmented with testing for absence
of rights (as in [1]), it is then a generalization of TRM.

2.1.1 Rights

Each system has a set of rights, R. R is not speci�ed in the model but varies from
system to system. R is generally expected to include the usual rights such as own,
read, write, append and execute. However, this is not required by the model. We also
expect R to generally include more complex rights, such as review, pat-ok, grade-it,
release, credit, debit, etc. The meaning of these rights will be explained wherever
they are used in our examples.

The access rights serve two purposes. First, the presence of a right, such as r, in
the [S;O] cell of the access matrix may authorize S to perform, say, the read operation
on O. Secondly, the presence of a right, say o, or the absence of right o, in [S;O]
may authorize S to perform some operation which changes the access matrix, e.g.,
by entering r in [S0; O]. The focus of TRM is on this second purpose of rights, i.e.,
the authorization by which the access matrix itself gets changed.

2.1.2 Types of Subjects and Objects

The notion of type is fundamental to TRM. All subjects and objects are assumed to
be strongly typed. Strong typing requires that each subject or object is created to
be of a particular type which thereafter does not change. The advantage of strong
typing is that it groups together subjects and objects into classes (i.e., types) so that
instances of the same type have the same properties with respect to the authorization
scheme.

Strong typing is analogous to tranquility in the Bell-LaPadula style of security
models [2], whereby security labels on subjects and objects cannot be changed. The
adverse consequences of unrestrained non-tranquility are well known [3, 5, 6]. Sim-
ilarly, non-tranquility with respect to types has adverse consequences for the safety
problem [8].

3



TRM requires that a disjoint set of subject types, TS, and object types, TO, be
speci�ed in a scheme. For example, we might have TS=fuser, security-officerg
and TO=fuser-files, system-filesg, with the signi�cance of these types indicated
by their names.

2.1.3 State Changing Commands

The protection state of the system is changed by means of TRM commands. The
security administrator de�nes a �nite set of commands when the system is speci�ed.
There are three types of state changing commands in the TRM, each of which is
de�ned below.

Transformation Commands

We reiterate that every command in TRM has a condition which is on a single object
and the primitive operations comprising the command are only on that object. In
all the commands the last parameter in the command is the object which is being
manipulated, and the �rst parameter is the subject who initiates the command.

A transformation command has the following format:

command �(X1 : s1, X2 : s2, : : : , Xk : sk, O : oi)
if predicate then

op1; op2; : : : ; opn
end

The �rst line of the command states that � is the name of the command and
X1;X2; : : : ;Xk; O are the formal parameters. The formal parameters X1, X2, : : : , Xk

are subjects and of types s1, s2, : : : , sk. The only object formal parameter O is of
type oi and is the last parameter in the command.

The second line of the command � is the predicate and is called the condition

of the command. The predicate consists of a boolean expression composed of the
following terms connected by the usual boolean operators (such as ^ and _):

ri 2 [S;O] or ri 62 [S;O]

where ri is a right in R and S can be substituted with any of the formal subject
parameters. Simply speaking the predicate tests for the presence and absence of some
rights for subjects on object O. Given below are some examples of TRM predicates:

1. approve 2 [S1; O] ^ prepare 62 [S2; O]

2. prepare 2 [S;O] ^ assign 2 [S1; O] ^ creator 62 [S;O]

4



3. own 2 [S;O] _ write 2 [S;O]

4. r1 2 [S1; O] ^ (r2 2 [S1; O] _ r1 2 [S2; O]) ^ r3 2 [S2; O] ^ r 2 [S3; O]

If the condition is omitted, the command is said to be an unconditional command,
otherwise it is said to be a conditional command.

The third line of the command consisting of sequence of operations op1; op2; : : : ;
opn is called the body of �. Each opi is one of the following two primitive operations:

� enter r into [X;O]

� delete r from [X;O]

It is important to note that all the operations enter or delete rights for subjects on
object O alone. The enter operation enters a right r 2 R into an existing cell of the
access matrix. The contents of the cell are treated as a set for this purpose, i.e., if
the right is already present, the cell is not changed. The delete operation has the
opposite e�ect of enter. It (possibly) removes a right from a cell of the access matrix.
Since each cell is treated as a set, delete has no e�ect if the deleted right does not
already exist in the cell. The enter operation is said to be monotonic because it only
adds and does not remove from the access matrix. Because delete removes from the
access matrix it is said to be a non-monotonic operation.

A command is invoked by substituting actual parameters of the appropriate types
for the formal parameters. The condition part of the command is evaluated with
respect to its actual parameters. The body is executed only if the condition evaluates
to true.

Some examples of transformation commands are given below.

command transfer-ownership (S1 : s; S2 : s;O : o)
if own 2 [S1; O] then
enter own in [S2; O]
delete own from [S1; O]

end

command grade (S1 : professor; S2 : student;O : project)
if own 2 [S2; O] ^ grade 2 [S1; O] then
enter good in [S2; O]
delete grade from [S1; O]

end

5



command issue-check (S1 : clerk;O : voucher)
if prepare 62 [S1; O] ^ approve 62 [S1; O] then
enter issue in [S1; O]

end

Command transfer-ownership transfers the ownership of a �le from one subject to
another. In the command grade, the professor gives right good to the students project.
In command issue-check, a clerk gets an issue right only if he/she is not the one who
prepared and approved it.

Create Commands

A create command is an unconditional command. The creator of an object gets some
rights for the created object like own, read, etc., as speci�ed in the body of the
command. No subject other than the creator will get rights to the created object in
the create command. Subjects other than the creator can subsequently acquire rights
for the object via transformation commands. In short, the e�ect of a create command

is to introduce a new column in the matrix with some new rights for the subject who
created it.

A typical create command is given below.

command create(X1 : s1, O : oi)
create object O
enter own in [X1; O]

end

In the general case the body of the command may enter any set of rights in the
(X1; O) cell.

A create command is an unconditional command as the command cannot check
for rights on an object which does not exist, and TRM commands do not allow testing
for rights on objects other than the object which is being created. The create object

operation requires that the object being created have an unique identity di�erent
from all other objects. A create command is monotonic.

Destroy Commands

A destroy command is a conditional command. The e�ect of a destroy command on
the matrix will be removal of the corresponding column from the access matrix. A
typical destroy command is given below.

6



command destroy(X1 : s1, O : oi)
if own 2 [X1; O] then
destroy object O

end

In this case the condition ensures that only the owner can destroy the object. More
generally, deletion can be authorized by some combination of rights possessed by the
destroyer. A destroy command is non-monotonic.

2.1.4 Summary of TRM

To summarize, a system is speci�ed in TRM by de�ning the following �nite compo-
nents.

1. A set of rights R.

2. A set of disjoint subject and object types T .

3. A set of state-changing transformation, creation and destroy commands, as
de�ned above.

4. The initial state.

We say that the rights, types and commands de�ne the system scheme. Note that
once the system scheme is speci�ed by the security administrator it remains �xed
thereafter for the life of the system. The system state, however, changes with time.

2.2 The Unary Transformation Model (UTRM)

The Unary Transformation Model is a simpler version of TRM in which testing in
a command can be on only one cell of the matrix. A UTRM predicate consists of a
boolean expression composed of the following terms:

ri 2 [Xj; O] or ri 62 [Xj; O]

where ri is a right in R and Xj can be any one of the formal subject parameters, but
all the terms in the expression must have the same Xj . In other words, the predicate
tests for the presence and absence of rights for a single subject Xj on object O.
Usually Xj will be the �rst parameter in the command, since that is the one who
initiates the command.

UTRM generalizes the model called NMT (for Non-Monotonic Transform) [9].
The transformation commands in NMT, viz., grant transformation and internal trans-
formation, are easily expressed as UTRM commands and test for rights in one cell of
the matrix.

7



2.3 The Binary Transformation Model (BTRM)

The Binary Transformation Model is also a simpler version of TRM in which testing
in a command can involve up to two cells of the matrix. A BTRM predicate consists
of a boolean expression composed of the following terms:

ri 2 [Xj; O] or ri 62 [Xj; O]

where ri is a right in R and Xj can be any one of the formal subject parameters,
but the expression can have at most two di�erent Xj's from the given parameters. In
other words, the predicate tests for the presence and absence of rights for at most two
subjects (on object O). One of the Xj 's will typically be the �rst parameter which is
the initiator of the command.

3 Expressive Power of UTRM

We now analyze the relative expressive power of TRM and UTRM. Recall that UTRM
is a restricted version of TRM. It is the same as TRM except that the testing in a
command can only be on a single cell. It has been proved in [10] that TRM is
equivalent to BTRM with just three parameters. Thus to prove the equivalence of
TRM and UTRM, it is su�cient to show that for every BTRM scheme with three
parameters, there exists an equivalent UTRM scheme.

We will now show how any given BTRM command can be simulated by multiple
UTRM commands. The Boolean condition of any BTRM command, say Y , can be
converted into the familiar disjunctive normal form which consists of a disjunction
(i.e., _) of minterms. Each minterm is a conjunction (i.e., ^) of primitive terms of
the form ri 2 (Si; O) or ri 62 (Si; O). The command Y can then be factored into
multiple commands, each of which has one minterm as its condition and the original
body of Y as its body. Hence, we can assume without loss of generality that the
predicate of every BTRM command consists of a conjunction of primitive terms.

We will illustrate the construction by simulating a BTRM command X (which
has three parameters) of the following format.

command X(S1 : t1; S2 : t2; O : o)
if P1 ^ P2 then

operations in (S1; O)
operations in (S2; O)

end

In the above command, each Pi is itself composed of a conjunction of terms rj 2
(Si; O) or rj 62 (Si; O), where rj 2 R. Intuitively Pi tests for the presence of, and

8



O : o

S1 : t1 �1

S2 : t1 �2

S3 : t2 �3

: : :

Sn : tx �n

O : o

Lock : lock L

S1 : s1 �1

S2 : s2 �2

: : :

Sn : sn �n

(a) Initial state of BTRM (b) Initial state of UTRM

Figure 1: UTRM simulation of command X

absence of some rights in the single cell (Si; O). In the body of commandX, the phrase
\operations in (Si; O)" denotes a sequence of enter and delete (or possibly empty)
operations in the (Si; O) cell. Note that the types t1 and t2 need not be distinct.
The formal parameters S1, S2 must of course be distinct, but the actual parameters
used on a particular invocation of this command may have repeated parameters as
allowed by parameter types. For ease of exposition, we will initially assume that the
actual parameters S1 and S2 are distinct. The simulation of a BTRM command with
repeated parameters, will be explained at the end of this section.

We now consider how the BTRM commandX can be simulated by several UTRM
commands. As X tests two cells, it is obvious that the simulation of X cannot be a
single UTRM command. Since UTRM can test for only one cell, the simulation of
X must be done by multiple commands in the UTRM system. The key to doing this
successfully is to prevent other UTRM commands from interfering with the simulation
of the given BTRM command,X. The simplest way to do this is to ensure that BTRM
commands can be executed in the UTRM simulation only one at a time. To do this
we need to synchronize the execution of successive BTRM commands in the UTRM
simulation.

This synchronization is achieved by introducing an extra subject called Lock of
type lock, and an extra right, L. The role of Lock is to sequentialize the execution
of simulation of BTRM commands in the UTRM system. The type lock is assumed,
without loss of generality, to be distinct from any type in the given BTRM system.

Also the initial state of the UTRM system is modi�ed in such a way that every
subject of the BTRM system is given a di�erent type. This assumption is acceptable
within the framework of these models, because the number of subjects in the system is
static (as there is no creation and destruction of subjects in Transformation Models).
We will further discuss the implication of this assumption at the end of this section.
If the initial state of the BTRM system resembles �gure 1(a), then in our construction
the initial state of the UTRM system resembles �gure 1(b). The �i's are sets of rights
in the indicated cell.

9



The UTRM simulation of X proceeds in �ve phases as indicated in �gure 2 and
3. In these �gures we show only the relevant portion of the access matrix, and only
those rights introduced speci�cally for the UTRM simulation. Hence, for clarity of
the diagram, we do not show the �i's rights, but these are intended to be present.
Since the focus in TRM is on a single object, the matrix reduces to a single column
for that object.

The objective of the �rst phase is to make sure that no other UTRM command
corresponding to another BTRM command can execute (on object O) until the sim-
ulation of X is complete. The �rst phase also ensures that the actual parameters of
the UTRM commands are tied to the actual parameters of the BTRM command. In
the second phase, if P1 part of the condition of X is true, then that fact is indicated
to all the subjects in the system. If P1 is false, the second phase indicates the failure
of the condition of X by entering right cleanX in (Lock;O). In the third phase, if the
condition of X is true, then the body of X is partly executed. If the condition of X
is false, the third phase also indicates the failure of the condition of X. In the fourth
phase, the rest of the body of X is executed. And �nally the �fth phase removes
all the additional bookkeeping rights and also indicates that the simulation of X is
complete. Each of the phases and the commands used are explained brie
y below.

The UTRM command X-1-invocation corresponds to phase I. It checks for right
L in (Lock;O), and if present deletes it, to make sure that no other UTRM command
(simulating some other BTRM command) can execute (on object O) until the simu-
lation of X is complete. It also makes sure that the actual parameters of X are used
in the simulation by entering rights p1, p2 in cells (S1; O) and (S2; O) respectively. It
also enters the right X in cells (S1; O); (S2; O) to indicate that the simulation of X
is currently in progress. The matrix, after the execution of command X-1-invocation

resembles �gure 2(a). To simulateX, we need a di�erent X-i-invocation command for
each distinct combination of a subject of type t1 and a subject of type t2. For exam-
ple, if there are m subjects of type t1 and n subjects of type t2 in the BTRM system,
then in phase I, the simulation of command X requires mn commands in the UTRM
system. Phase I command simulating X with actual parameters corresponding to
types s1 and s2 respectively is given below.

command X-1-invocation(S1 : s1; S2 : s2; Lock : L;O : o)
if L 2 (Lock;O) then

delete L from (Lock;O)
enter p1 in (S1; O)
enter p2 in (S2; O)
enter X in (S1; O)
enter X in (S2; O)

end

In phase II, the commands test if the P1 part of the condition of X is true. If so,
the command X-2-successfull gives the right P �

1
to all the subjects (to indicate that

10



O

Lock

S1 p1;X

S2 p2;X

Sn

O

Lock

S1 p1;X; P �
1

S2 p2;X; P �
1

: : :

Sn P �
1

(a) End of phase I (b) End of phase II

O

Lock

S1 p1;X; P �
1
; P �

2

S2 operations; p2;X; P �
1
; P �

2

: : :

Sn P �
1
; P �

2

O

Lock cleanX

S1 operations; p1;X; P �
1
; P �

2

S2 p2;X; P �
1
; P �

2

: : :

Sn P �
1
; P �

2

(c) End of phase III (d) End of phase IV

Figure 2: UTRM simulation of the authorized BTRM command X

P1 is true). The matrix at the end of successfull phase II, resembles �gure 2(b). If P1

is false, the command X-2-fail enters the right cleanX in (Lock;O) to indicate that
the condition of command X is false. The right cleanX in (lock;O) also indicates
that simulation has reached the �nal phase. In this case, the matrix at the end of
failed phase II, resembles �gure 3(a). It is important to note that in phase II, only
one of X-2-fail or X-2-successfull can execute. To simulate X, we need a di�erent
X-2-successfull command for each subject of type t1 and a di�erent X-2-fail command
for each subject of type t1. Phase II commands simulating X with actual parameters
corresponding to types s1 and s2 respectively, are given below.

command X-2-successfull(S1 : s1; S2 : s2; S3 : s3; : : : ; Sn : sn; Lock : L;O : o)
if p1 2 (S1; O) ^ P1 ^X 2 (S1; O) then

enter P �
1
in (S1; O)

: : :
enter P �

1
in (Sn; O)

end

command X-2-fail(S1 : s1; Lock : L;O : o)
if p1 2 (S1; O) ^ :P1 ^X 2 (S1; O) then

enter cleanX in (Lock;O)
end

11



O

LOCK cleanX

S1 p1;X

S2 p2;X

Sn

O

LOCK cleanX

S1 p1;X; P �
1

S2 p2;X; P �
1

Sn P �
1

(a) End of phase II (b) End of phase III

Figure 3: UTRM simulation of unauthorized BTRM command X

Note that these are valid UTRM commands because all tests in the condition part
are in the (S1; O) cell.

In phase III, the rest of the condition of X is tested in X-3-successfull. If the
condition is true, part of the body of X is executed. The matrix at the end of
successfull phase III, resembles �gure 2(c). If the condition is not true, the command
X-3-fail enters the right cleanX in (Lock;O) to indicate that the simulation of X
has failed. In this case the matrix at the end of phase III, resembles �gure 3(b).
It is important to note that in phase III, only one of X-3-fail or X-3-successfull can
execute. Here also to simulate X, we need a di�erent X-3-successfull command for
each subject of type t2 and a di�erent X-3-fail command for each subject of type t2.
Phase III commands simulating X with actual parameters corresponding to types s1
and s2 respectively, are given below.

command X-3-successfull(S1 : s1; S2 : s2; : : : ; Sn : sn; Lock : L;O : o)
if p2 2 (S2; O) ^ P �

1
2 (S2; O) ^ P2 ^X 2 (S2; O) then

operations in (S2; O)
enter P �

2
in (S1; O)

: : :
enter P �

2
in (Sn; O)

end

command X-3-fail(S2 : s2; Lock : L;O : o)
if p2 2 (S2; O) ^ :P2 ^X 2 (S2; O) then

enter cleanX in (Lock;O)
end

In the fourth phase, the rest of the body of X is executed. Also right cleanX is
entered in (lock;O) also indicate that simulation has reached the �nal phase. It is
also important to note that the phase IV command is executed only if the commands
executed in phases II and III are successfull commands. The matrix at the end of

12



phase IV resembles �gure 2(d). Here also to simulate X, we need a di�erent X-4-
successfull command for each subject of type t1. Phase IV commands simulating X
with actual parameters corresponding to types s1 and s2 respectively, are given below.

command X-4-successfull(S1 : s1; Lock : L;O : o)
if p1 2 (S1; O) ^ P �

2
2 (S1; O) ^X 2 (S1; O) then

operations in (S1; O)
enter cleanX in (Lock;O)

end

In the �nal phase, all the bookkeeping rights R� = fp1; p2;X; P �
1
; P �

2
; cleanXg are

deleted. Also right L is entered back into (Lock;O) to indicate that the simulation
of X is complete and the simulation of some other BTRM command (on object O)
can now begin. The matrix after the �nal phase, resembles �gure 1(b). The phase V
command to simulate X is given below.

command X-5-complete(S1 : s1; S2 : s2; S3 : s3; : : : ; Sn : Sn; Lock : L;O : o)
if cleanX 2 (Lock;O) then

delete R� from (S1; O)
: : :
delete R� from (Sn; O)
delete cleanX from (Lock;O)
enter L in (Lock;O)

end

The important thing to be noted from our construction is that once the UTRM
simulation of command X proceeds with some actual parameters in phase I, then in
all other phases, the commands execute with the same parameters.

We have shown how a BTRM command X, can be simulated by UTRM com-
mands. The command X has actual parameters (S1,S2) which are distinct (as they
are of types t1 and t2). A BTRM command can also have actual parameters which
are repeated. This is possible if the command has two parameters of the same type.
Our construction can be easily extended to simulate such commands. For example, if
the BTRM command X has both the subject parameters of type t1, then the follow-
ing type of commands are needed along with the �ve phases of commands explained
before. The commandX-1-invocation-repeated will make sure that the two actual sub-
ject parameters of X are same and the command X-repeated-done does the necessary
operations (if the two actual subject parameters of X are same). If there are m sub-
jects of type t1 in the BTRM system, then we need to give m X-1-invocation-repeated

commands and m X-repeated-done commands. The UTRM commands simulating X
with repeated actual parameters corresponding to type s1 are given below.

13



command X-1-invocation-repeated(S1 : s1; Lock;L;O : o)
if L 2 (Lock;O) then

delete L from (Lock;O)
enter p1 in (S1; O)
enter p2 in (S1; O)
enter X in (S1; O)

end

command X-repeated-done(S1 : s1; Lock;L;O : o)
if X 2 (Lock;O) ^ p1 2 (S1; O) ^ p2 2 (S1; O) ^ P1 ^ P2 then

operations in (S1; O)
enter cleanX in (Lock;O)

end

A proof sketch for the correctness of the construction is given below.

Theorem 1 For every BTRM system SY S1, the construction outlined above produces

an equivalent UTRM system SY S2.

Proof Sketch: It is easy to see that any reachable state in SY S1 can be reached in
SY S2 by simulating each BTRM command by UTRM commands, as discussed above.
Conversely any reachable state in SY S2, with L 2 (LOCK;O), will correspond to a
reachable state in SY S1. A reachable state in SY S2, with L =2 (LOCK;O) and which
passes phase III, will correspond to a state in SY S1 where one BTRM command has
been partially completed. A state in SY S2, with L =2 (LOCK;O) and which fails the
testing phase, will then lead SY S2 to a previous state where L 2 (LOCK;O), which
is reachable in SY S1. Our construction also ensures that once the UTRM simulation
passes the �rst phase, then the simulation proceeds with the same actual parameters
of the �rst phase. Hence the above construction proves the equivalence of TRM and
UTRM. A formal inductive proof can be easily given, but is omitted for lack of space.

Discussion

The construction given in this section proves formally the equivalence of TRM and
UTRM. The construction assumes that the initial state of the UTRM system is mod-
i�ed in such a way that every subject of the BTRM system is given a di�erent type.
This assumption is acceptable within the framework of these models, because the
number of subjects is static (as there is no creation and destruction of subjects in
Transformation Models). However, this assumption is not a realistic one in practical
situations. If subject creation is allowed, then our construction breaks down. This is
due to the fact that the number of commands in the UTRM system depend on the
number of subjects in the system and if subject creation is allowed, then the com-
mands in the initial state of the UTRM system would not be enough to accommodate

14



new subjects. New commands need to be introduced whenever a subject is created
and this is not allowed in the framework of TRM. Hence even though, TRM and
UTRM are theoretically equivalent, practically this might not be the case.

If this construction is not allowed, we could prove the same result, by assuming
that every subject in the UTRM system is associated with a di�erent right. This as-
sumption is similar to the assumption that every subject in the BTRM system should
be of di�erent type. We are not sure if we can prove the theoretically equivalence of
TRM and UTRM without these assumptions. Our future works involves proving the
equivalence or non-equivalence of TRM and UTRM without these assumptions.

The theoretical equivalence of TRM and UTRM would imply that the safety
results of UTRM are not any better than TRM. As TRM does not have any e�cient
non-monotonic safety results, neither would UTRM. This leads to the fact that it is
di�cult to have a model which can express some simple policies and at the same time
have e�cient non-monotonic safety results.

4 Conclusion

In this paper we have shown that the Transformation Model (TRM) [10] and the
Unary Transformation Model (UTRM) [10] are formally equivalent in expressive
power. The theoretical equivalence of TRM and UTRM would imply that the safety
results of UTRM are not any better than TRM. The fact that TRM does not yet
have any e�cient non-monotonic safety results indicates that it is di�cult to have a
model which can express some simple policies and at the same time have e�cient non-
monotonic safety result. Our construction used in proving the equivalence of TRM
and UTRM also indicates that TRM and UTRM might not be practically equivalent.

References

[1] Ammann, P.E. and Sandhu, R.S. \Implementing Transaction Control Expres-
sions by Checking for Absence of Access Rights." Proc. Eighth Annual Computer

Security Applications Conference, San Antonio, Texas, December 1992.

[2] Bell, D.E. and LaPadula, L.J. \Secure Computer Systems: Uni�ed Exposition
and Multics Interpretation." MTR-2997, Mitre, Bedford, Massachusetts (1975).

[3] Denning, D.E. \A Lattice Model of Secure Information Flow." Communications

of ACM 19(5):236-243 (1976).

[4] Harrison, M.H., Ruzzo, W.L. and Ullman, J.D. \Protection in Operating Sys-
tems." Communications of ACM 19(8), 1976, pages 461-471.

15



[5] McLean, J. \A Comment on the `Basic Security Theorem' of Bell and LaPadula."
Information Processing Letters 20(2):67-70 (1985).

[6] McLean, J. \Specifying and Modeling Computer Security." IEEE Computer

23(1):9-16 (1990).

[7] Sandhu, R.S. \Transformation of Access Rights." Proc. IEEE Symposium on

Security and Privacy, Oakland, California, May 1989, pages 259-268.

[8] Sandhu, R.S. \The Typed Access Matrix Model" IEEE Symposium on Research

in Security and Privacy, Oakland, CA. 1992, pages 122-136.

[9] Sandhu, R.S. and Suri, G.S. \Non-monotonic Transformations of Access Rights."
Proc. IEEE Symposium on Research in Security and Privacy, Oakland, Califor-
nia, May 1992, pages 148-161.

[10] Sandhu, R.S. and Srinivas Ganta. \On the Minimality of Testing for Rights in
Transformation Models." To appear in IEEE Symposium on Research in Security

and Privacy, Oakland, California, May 16-18, 1994.

16


